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Abstract
Why does chemistry exist? In standard quantum chemistry, the existence and stability of

chemical bonds depend crucially on two dimensionless inputs: the electromagnetic coupling
strength (the fine-structure constant αem) and the nuclear–electronic scale separation (the
proton–electron mass ratio µ = mp/me). In the usual narrative, these appear as externally
given parameters, so “chemical existence” is reduced to an accidental location of the universe
in the (αem, µ)-plane.

In the HPA–Ω framework (Holographic Polar Arithmetic / Ω-axiomatic program), we
instead treat observable dimensionless constants as invariants of a scan–projection readout
protocol. We adopt a strict layer discipline: a closed-theory layer that uses only explicit
axioms and geometric definitions, and an interface layer that records the minimal matching
needed to connect a closed model to operational constants. Within the closed layer, we recall
two theorem-level geometric assignments established in the companion constants-geometry
manuscript: a three-channel geometric impedance for electromagnetism,

α−1
geo = 4π3 + π2 + π,

and an internal phase-volume cost for the proton–electron mass ratio,

µgeo = 6π5.

We then show how these two geometric invariants control the two structural pillars of
chemistry. First, αem fixes the absolute chemical energy and length scales via atomic units
(a0 ∝ α−1

em and Eh ∝ α2
em), explaining the eV-scale of chemistry as a rigid consequence of

a dimensionless coupling. Second, µ fixes the Born–Oppenheimer small parameter εBO ∼
µ−1/2 and hence the electronic/vibrational/rotational hierarchy and the stability of molecular
geometry (including isotope effects). We further anchor these scale statements with rigorous
stability-of-matter results (showing that αem lies deep inside known stability regimes) and
with the textbook H+

2 Born–Oppenheimer curve as the minimal molecule-level reference.

Keywords: HPA–Ω; chemical bond; molecular stability; geometric impedance; fine-structure
constant; proton–electron mass ratio; atomic units; Born–Oppenheimer; stability of matter.

Layer discipline. We keep a strict separation between: (i) a closed-theory layer (ax-
ioms/definitions ⇒ theorem-level invariants), (ii) an interface layer (minimal matching inputs
that connect closed invariants to operational constants), and (iii) an interpretation layer
(mapping to standard effective Hamiltonians and chemistry language). We treat log as the
natural logarithm unless otherwise stated.
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1 From “parameter-input chemistry” to “geometric-inevitability
chemistry”

1.1 The origin problem of chemistry

Chemistry is empirically robust: atoms and molecules exist stably across wide ranges of tem-
perature and pressure, exhibit reproducible valence patterns, and possess sharp spectroscopic
fingerprints. In the standard nonrelativistic account, chemical bonding emerges from the com-
petition between electronic kinetic energy and Coulomb attraction, together with the Born–
Oppenheimer (BO) separation that makes molecular geometry meaningful as a slowly varying
nuclear scaffold [1, 2].

However, two dimensionless quantities dominate the very possibility of this structure:

• Electromagnetic coupling strength αem, which fixes atomic-unit scales a0 and Eh and
hence the absolute energy/length scale of chemistry.

• Nuclear–electronic mass hierarchy µ = mp/me, which fixes the small parameter
εBO ∼ µ−1/2 and hence the separation between electronic, vibrational, and rotational
degrees of freedom.

In the conventional narrative, αem and µ are empirical inputs; chemical stability is then described
as the fact that these happen to land in a “habitable window.” This viewpoint makes the
existence of chemistry appear as contingent.

1.2 HPA–Ω: constants as protocol invariants

The HPA–Ω program proposes a different starting point: observable dimensionless “constants”
are not adjustable parameters but invariants of a scan–projection readout protocol. In this view-
point, “probability,” “noise,” and “thermodynamics” are not external assumptions but emerge
from finite-resolution readout. The framework therefore enforces a methodological discipline:
identify a closed set of axioms and geometric definitions, derive invariants, then connect to
operational constants through a minimal interface map [3–5].

Within this discipline, the constants-geometry manuscript [5] proposes and audits a concrete
geometricization of αem and µ:

α−1
geo = 4π3 + π2 + π, µgeo = 6π5. (1)

The present paper asks a chemistry-facing question:

Can chemical bonding and molecular stability be rephrased as necessary conse-
quences of the same protocol-geometric invariants (αem, µ)?

1.3 Contributions and structure

Our contributions are twofold.

1. We provide a chemistry-oriented bridge from the geometric invariants (αgeo, µgeo) to atomic
units and BO scale separation, isolating how they rigidly fix (i) the eV scale of chemistry
and (ii) the stability of molecular geometry and isotope effects.

2. We anchor the above scale claims with rigorous stability-of-matter results (placing αem
inside known stability regimes) and with the textbook H+

2 Born–Oppenheimer curve as
the minimal molecule-level reference.
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Section 2 recalls the minimal scan–readout interface and discrepancy language. Sections 3
and 4 record the closed-theory derivations of αgeo and µgeo in a form tailored to chemical ap-
plications. Section 5 derives the atomic-unit scaling and the BO hierarchy. Section 6 records
rigorous stability-window anchors. Section 7 uses H+

2 as a textbook quantitative reference. Sec-
tion 8 discusses interface matching and falsifiable routes. An optional mismatch-based interface
template is recorded in Appendix B.

2 Minimal scan–readout interface and phase friction
This section recalls the minimal interface assumptions used throughout the HPA–Ω literature
and fixes notation. We only require two axioms (readout-induced probability and a Weyl pair)
plus a discrepancy definition used as a computable proxy for “phase friction” [3, 6–8].

2.1 O5: finite-resolution readout induces probability

Axiom 2.1 (O5: scan–projection readout induces probability). For a given readout resolution
ε > 0, an observer has access to a POVM (or instrument) {E(ε)

k }k on an effective observer Hilbert
space Heff , satisfying

∑
k E

(ε)
k = 1. For an effective state (positive normalized functional) ωeff ,

the outcome probabilities are
P

(ε)
k = ωeff

(
E

(ε)
k

)
. (2)

This axiom encodes the HPA principle that probability is not an external sampling postulate
but is induced by finite-resolution readout. For background on POVMs and instruments in
standard quantum measurement theory, see [9]. In the standard density-operator representation,
this reduces to P (ε)

k = Tr(ρeff E
(ε)
k ).

2.2 O6: a Weyl pair and intrinsic noncommutativity

Axiom 2.2 (O6: Weyl pair). On Heff there exist unitary operators Uscan and V satisfying the
Weyl relation

UscanV = e2πiνV Uscan, ν ∈ (0, 1) \ Q. (3)

In a standard model on L2([0, 1)), one may take (Uscanψ)(x) = ψ(x + ν) and (V ψ)(x) =
e2πixψ(x), so that the scan orbit is the Kronecker sequence xn = x0 + nν (mod 1) [6]. For
mathematical background on Weyl relations and phase-space representations, see [10].

2.3 Discrepancy and phase friction as mismatch accumulation

Finite readout resolution makes mismatch unavoidable. A convenient quantitative proxy is star
discrepancy. For a point sequence (x1, . . . , xN ) ⊂ [0, 1) define the empirical distribution function

FN (a) = 1
N

#{1 ≤ n ≤ N : xn < a}, 0 ≤ a ≤ 1, (4)

and the one-dimensional star discrepancy and its cumulative mismatch

D∗
N = sup

0≤a≤1
|FN (a) − a| , EN := ND∗

N . (5)

The discrepancy literature provides sharp bounds for Kronecker sequences and related low-
complexity protocols [7, 8].

Remark 2.3 (Higher-dimensional discrepancy). For multi-degree-of-freedom readouts, one uses
multi-dimensional discrepancy notions (e.g. star discrepancy on [0, 1)d) and corresponding Koksma–
Hlawka-type bounds; see [7, 8]. In this paper, we use the one-dimensional definition only as a
minimal interface proxy and only in the optional appendix-level template (Appendix B).
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Remark 2.4 (Quantitative size for Kronecker scanning). For Kronecker sequences xn = x0 +
nν (mod 1), discrepancy bounds are controlled by the continued-fraction data of ν. In particular,
for bounded partial quotients (e.g. the golden-ratio case relevant in the HPA literature), one has
logarithmic discrepancy bounds of the form D∗

N = O((logN)/N) and hence EN = O(logN);
see [7,8].

In HPA phase thermodynamics, a computable “phase-friction entropy proxy” can be defined
by

Spf(N) = kBEN , (6)

so that mismatch accumulation plays the role of an irreducible cost under coarse-grained (un-
conditional) readout [11].

For chemistry, this language will be used only in the interpretation layer: bonding and
reactions can be modeled as rearrangements that reduce mismatch accumulation under a given
readout interface (Appendix B).

3 The geometric origin of αem: three-channel impedance
Chemistry requires an absolute electromagnetic energy scale. In standard physics this scale is
set by the dimensionless electromagnetic invariant αem through atomic units. In the HPA–Ω
constant-geometry program, αem is a target dimensionless invariant of the readout protocol, not
an external knob; the minimal closed model produces a theorem-level geometric prediction αgeo
for its value. We record the minimal closed-theory chain that yields the theorem-level value

α−1
geo = 4π3 + π2 + π, (7)

following the constants-geometry manuscript [5].

3.1 Serial composition and logarithmic readout cost

Axiom 3.1 (Serial composition and geometric impedance). If a readout protocol must satisfy
constraints in a fixed hierarchy of channels, assign each channel j a multiplicative weight wj ∈
(0, 1] and define its readout cost by Vj := − logwj. The total weight is

wtot =
∏
j

wj , (8)

and the associated geometric impedance is the additive log-cost

α−1
geo := − logwtot =

∑
j

Vj . (9)

Remark 3.2. The axiom enforces a precise meaning of “impedance”: the ontological composi-
tion is multiplicative; additivity is an induced feature after the logarithmic readout projection.
This logarithmic additivity is the standard “product-to-sum” mechanism underlying information
measures and cost aggregation; see, e.g., [12–14].

3.2 Three strata and canonical phase volumes

Axiom 3.3 (Geometric cost as canonical volume). For each channel j, the process cost is
identified with a canonical geometric invariant of its compact phase space Mj. In the minimal
model,

Vj = Vol(Mj), (10)

where Vol is the volume induced by the standard bi-invariant metric on compact Lie groups and
quotient metrics.
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Axiom 3.4 (Electromagnetic three-stratum phase spaces). The electromagnetic readout channel
is represented by three topologically distinct strata:

Mbulk ∼= U(1) × SU(2), Mboundary ∼= SO(3), Mline ∼= RP 1. (11)

Remark 3.5. The projective quotients encode the intrinsic ray identification of readout. In
particular, SU(2) → SO(3) = SU(2)/{±1} reflects the spinorial double cover, and RP 1 =
U(1)/{±1} reflects phase-ray identification [15,16].

3.3 Theorem-level value from group volumes

Theorem 3.6 (Three-channel geometric impedance). Under Axioms 3.1–3.4, the minimal-
model geometric value of the inverse fine-structure constant is

α−1
geo = 4π3 + π2 + π ≈ 137.0363037759. (12)

Proof. By Axiom 3.1, α−1
geo = Vbulk + Vboundary + Vline. By Axiom 3.3, Vj = Vol(Mj), and by

Axiom 3.4 this reduces to canonical volumes. Standard values [15,16] are

Vol(U(1)) = 2π, Vol(SU(2)) = 2π2, Vol(SO(3)) = π2, Vol(RP 1) = π. (13)

Therefore

Vbulk = Vol(U(1) × SU(2)) = 4π3, Vboundary = π2, Vline = π, (14)

and the sum gives 4π3 + π2 + π.

3.4 Interface matching to CODATA

Let αexp denote the CODATA recommended fine-structure constant [17]. Define the inverse-
impedance gap

∆α−1 := α−1
geo − α−1

exp. (15)

In the multiplicative readout variable w = exp(−α−1), the mismatch is absorbed by a single
matching input

sα := wexp
wgeo

= exp(∆α−1), (16)

which encodes the interface between the minimal geometric model and operational low-energy
coupling [5]. In this paper we keep the interface explicit rather than treating it as a tuning
parameter: sα is recorded and can be propagated into any chemistry-facing prediction requiring
high precision.

Remark 3.7 (Why the weight variable w = exp(−α−1)). The variable w = exp(−α−1) is the
natural multiplicative counterpart of the additive impedance α−1 under the logarithmic readout
map. It is introduced only to make the interface matching multiplicative (a single factor sα),
avoiding hidden additive retuning across different applications.

Quantitative size. Using the CODATA 2022 central inverse coupling quoted in [5, 17], one
has

∆α−1 ≈ 3.046 × 10−4,
∆α−1

α−1
exp

≈ 2.22 × 10−6, sα ≈ 1.0003046.

Thus the interface mismatch is at the few-ppm level in inverse impedance and at the few-ppm
level in any derived chemical scale that depends smoothly on αem.
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3.5 Rigidity at bounded complexity (no coefficient tuning)

A key concern for any constant-geometry claim is coefficient tuning. The constants-geometry
manuscript records an explicit bounded-complexity rigidity check: minimize the CODATA error
within the ansatz aπ3 + bπ2 + cπ over small nonnegative integers. We quote the result as an
internal rigidity anchor.

Proposition 3.8 (Uniqueness at low coefficient complexity). Within the coefficient-sum com-
plexity domain a, b, c ∈ Z≥0 and a+ b+ c ≤ 10, the unique minimizer of |aπ3 + bπ2 + cπ−α−1

exp|
is (a, b, c) = (4, 1, 1), with relative error ∼ 2.2 × 10−6. The next-best triple in the same domain
has relative error at least 3.2 × 10−3.

Proof. This is a finite exhaustive enumeration recorded in [5].

4 The geometric origin of µ = mp/me: internal phase volume
and scale separation

Chemistry requires not only bound electronic states but also a robust separation between fast
electronic and slow nuclear motion. This separation is controlled by the dimensionless proton–
electron mass ratio µ = mp/me. In the HPA–Ω constant-geometry program, µ is again a
target dimensionless invariant of internal protocol geometry; the minimal closed model yields
the phase-volume prediction µgeo. We record the minimal closed-theory chain yielding

µgeo = 6π5, (17)

following [5].

4.1 Mass ratios as phase-volume costs (closed layer)

Definition 4.1 (Mass-ratio invariants). For particle classes i, j, define the dimensionless ratio

mi

mj
= Ii
Ij
, (18)

where Ii is a protocol-geometric invariant induced by the internal defect/holonomy data of class
i.

Axiom 4.2 (Mass invariants as phase-volume costs). For each particle class i, the invariant Ii
is given by a canonical phase volume of an internal compact manifold Mi (or a finite disjoint
union), normalized so that the electron satisfies Ie = 1:

Ii = Vol(Mi), Vol
(

A⊔
a=1

Mi,a

)
=

A∑
a=1

Vol(Mi,a). (19)

4.2 Proton internal phase space (three-color sector sum)

Axiom 4.3 (Proton internal phase space). Model the proton as a sum over three identical color
sectors (Nc = 3) [18]. Each color sector is assigned the compact phase space

Mq
∼= SO(3) × SO(3) × U(1), (20)

so that the proton internal space Mp is the disjoint union of three copies of Mq.

Remark 4.4. At the level of canonical volumes, this choice is equivalent to SO(3)×SU(2)×RP 1

because Vol(SO(3))Vol(U(1)) = Vol(SU(2))Vol(RP 1). The convention above treats rotational
sectors projectively while keeping the phase circle unquotiented [5].
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4.3 Theorem-level value and interface matching

Theorem 4.5 (Proton–electron mass ratio). Under Axioms 4.2–4.3, the geometric prediction
for the proton–electron mass ratio is

µgeo := mp

me
= 6π5 ≈ 1836.1181087117. (21)

Proof. By Definition 4.1 and Axiom 4.2, mp/me = Ip/Ie = Ip since Ie = 1. By Axiom 4.3,

Ip = 3 Vol(SO(3) × SO(3) × U(1)). (22)

Using Vol(SO(3)) = π2 and Vol(U(1)) = 2π yields

Ip = 3(π2)(π2)(2π) = 6π5. (23)

Let µexp denote the CODATA recommended value [17]. Define the multiplicative interface
matching input

sµ := µexp
µgeo

. (24)

As emphasized in [5], sµ is not a per-system tuning knob but a single interface encoding non-
perturbative QCD binding and radiative structure. In chemistry-facing applications, the key
output is not the exact value of µ itself but the existence of a large hierarchy µ ≫ 1 and the
induced expansion parameter µ−1/2.

Quantitative size. Using the CODATA 2022 central value quoted in [5, 17], the offset is

∆µ := µgeo − µexp ≈ −3.456 × 10−2,
∆µ
µexp

≈ −1.88 × 10−5, sµ ≈ 1.0000188.

4.4 Rigidity signals (no tuning): factorization and bounded complexity

The constants-geometry manuscript records two rigidity checks relevant for µ.

Proposition 4.6 (Finite primitive factorization rigidity). Fix the primitive candidate set {U(1), SU(2), SO(3),RP 1}
with canonical volumes as in [5]. Restrict a per-color sector to be a product of three primitives
(order irrelevant). Then the condition 3 Vol(Mq) = 6π5 holds if and only if

Mq
∼= SO(3) × SO(3) × U(1) or Mq

∼= SO(3) × SU(2) × RP 1.

In particular, among the 20 three-factor multisets, these two are the unique solutions; the next-
closest candidate has order-one relative error.

Proof. This is a finite enumeration recorded in [5].

Proposition 4.7 (Uniqueness at low coefficient complexity). Within the coefficient-sum com-
plexity domain a, b, c, d, e ∈ Z≥0 and a+ b+ c+d+ e ≤ 10, the unique minimizer of |aπ5 + bπ4 +
cπ3 + dπ2 + eπ − µexp| is 6π5, with relative error ∼ 1.9 × 10−5. The next-best combination in
the same domain has relative error at least 4.4 × 10−4.

Proof. This is a finite exhaustive enumeration recorded in [5].
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5 From (αem, µ) to chemistry: atomic units and Born–Oppenheimer
hierarchy

This section isolates a key structural fact: in a nonrelativistic Coulombic molecule, αem fixes the
absolute units (Hartree and Bohr) while µ fixes the small parameter controlling nuclear motion.
Consequently, once (αem, µ) are treated as rigid protocol invariants rather than empirical inputs,
two necessary prerequisites of chemistry—an absolute eV-scale and a robust BO hierarchy—
become rigid consequences of protocol geometry (with stability anchored separately in Section 6).

5.1 Atomic units: why chemistry lives at the eV scale

In standard physics, atomic units are defined by the Bohr radius and Hartree energy [17]:

a0 = ℏ
mec αem

, Eh = mec
2 α2

em, Ry = 1
2Eh. (25)

Numerically, a0 ≈ 0.529 Å and Eh ≈ 27.21 eV [17]. In SI units, mec
2 is a MeV-scale quantity,

and Eh is suppressed by α2
em ∼ 10−4, landing at the characteristic chemical scale of tens of eV.

Typical bond energies are fractions of a Hartree, so eV-scale chemistry is a direct consequence
of a dimensionless weak coupling. See, e.g., standard molecular quantum mechanics discussions
in [19].

In the HPA–Ω constants program, αem is not a free input: the minimal closed-theory model
predicts α−1

geo = 4π3 + π2 + π (Theorem 3.6). Hence the absolute chemical energy scale is locked
by protocol geometry, up to the explicit interface matching sα.

5.2 Dimensionless molecular Hamiltonian in atomic units (model assump-
tions)

Consider a molecule with N electrons (mass me) and nuclei labeled by A with charges ZA
and masses MA. In atomic units (length in a0, energy in Eh), the nonrelativistic Coulomb
Hamiltonian takes the dimensionless form [2]

H

Eh
= −1

2

N∑
i=1

∇′2
i − 1

2
∑
A

1
µA

∇′2
A −

∑
i,A

ZA
r′
iA

+
∑
i<j

1
r′
ij

+
∑
A<B

ZAZB
R′
AB

, (26)

where µA := MA/me and primes denote coordinates in units of a0. This is the standard non-
relativistic point-charge Coulomb model used as the baseline of quantum chemistry; relativistic,
QED, and finite-nuclear-size effects are treated as corrections at higher precision [2, 19].

Two points are structurally decisive:

• αem no longer appears in the dimensionless Hamiltonian (26); it only survives through the
choice of absolute units a0 and Eh.

• All nuclear slowness enters through the large parameters µA (in particular µ for hydrogenic
nuclei).

Thus αem fixes the overall absolute scale of chemistry, while µ fixes the expansion parameter
governing nuclear dynamics.

5.3 Born–Oppenheimer parameter and spectral hierarchy

For diatomic molecules with identical nuclei of mass M ∼ mp, a standard BO small parameter
is

εBO ∼
√
me

M
∼ µ−1/2. (27)
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This parameter controls (i) nonadiabatic couplings between electronic surfaces and (ii) the hi-
erarchy of energy scales. Dimensionally, one obtains the standard estimates

Eelec ∼ Eh, Evib ∼ Eh√
µ
, Erot ∼ Eh

µ
. (28)

For µ ≃ 1836, one has µ−1/2 ≃ 0.023, consistent with the robust empirical hierarchy (electronic
≫ vibrational ≫ rotational). See standard molecular quantum mechanics texts for these scalings
and their refinements [2, 19].

5.4 A stability criterion: zero-point motion versus well depth

Molecular “geometry” is meaningful only if nuclear zero-point motion does not wash out the
electronic potential well. Let De denote a typical electronic well depth (in Hartree units) and
approximate the vibrational frequency near equilibrium by ω ∼

√
k/µred, where µred is a nuclear

reduced mass in electron-mass units and k is the dimensionless curvature of the BO curve. Then
the vibrational zero-point energy scales as

EZPE ∼ 1
2ω ∝ µ−1/2. (29)

A minimal stability requirement is EZPE ≪ De, which becomes a scale inequality of the form

µ1/2 ≫ 1
η
, De ∼ η Eh, η ∈ (10−2, 10−1) (typical). (30)

With µ1/2 ∼ 43, the inequality is naturally satisfied for a wide range of chemical η, explaining
why stable molecular geometries are abundant. The order-of-magnitude range for η is consistent
with textbook bond-energy scales in atomic units [19].

5.5 Isotope effects as µ-controlled interface

Replacing a nucleus by an isotope changes M and hence µA while leaving αem unchanged.
Consequently vibrational frequencies and zero-point energies shift as M−1/2, producing isotopic
shifts in spectra and kinetic isotope effects. In the HPA–Ω viewpoint, this is not an empirical
coincidence: isotope effects are direct consequences of the same internal phase-volume invariant
µ that enforces the BO hierarchy.

6 A rigorous stability window: why chemistry is not destroyed
by collapse

Sections 3–5 showed that (αem, µ) rigidly fix the absolute atomic-unit scale and the BO hierarchy.
A reviewer will rightly ask a sharper question:

Do these inputs merely set scales, or do they also ensure stability (no catastrophic
collapse) in the underlying Coulombic matter model?

This section records the relevant rigorous facts from mathematical physics. We do not reprove
them; they are mature results and are used as external anchors.

6.1 Nonrelativistic Coulomb matter is stable (bounded below)

Consider the standard nonrelativistic many-body Coulomb Hamiltonian for electrons and nuclei
(with fixed nuclear charges and masses). The stability of matter problem asks whether the
ground-state energy is bounded below linearly in particle number (so that macroscopic matter

11



does not collapse as N → ∞). This is a classic theorem: stability holds for nonrelativistic
Coulomb matter, established in foundational works and summarized in modern expositions
[20–23].

For the present paper, the consequence is simple: in the standard nonrelativistic Coulomb
model that underlies quantum chemistry, the Hamiltonian is well-defined and extensive. There-
fore, once the absolute scale is fixed by αem and the nuclear slowness by µ, there is no hidden
“instability loophole” that would forbid chemistry.

Minimal assumptions (external theorem input). The stability-of-matter theorems are
statements about the standard quantum many-body Coulomb model under physically standard
hypotheses: fermionic electrons (Pauli principle), Coulomb interactions, and (for thermody-
namic stability statements) appropriate charge constraints and/or neutrality conditions. Precise
formulations and assumptions are given in the cited mathematical physics literature [23].

Quantitative form (stability of the second kind). One standard formulation is that the
ground-state energy E0(N,K) of a Coulomb system with N electrons and K nuclei admits a
linear lower bound

E0(N,K) ≥ −C (N +K), (31)

for a constant C independent of N,K (under the stated hypotheses). This is the mathematical
statement that macroscopic matter does not collapse as particle number grows [23].

6.2 Relativistic constraints give an α-window

When relativistic kinematics are included (Dirac-type operators and/or magnetic fields), sta-
bility becomes nontrivial and depends on αem and nuclear charges ZA. There are sharp one-
particle thresholds and distinguished self-adjointness regimes for Dirac–Coulomb operators, as
well as sufficient conditions for many-body stability; see [23–25] for detailed statements and
references. A widely used stability indicator is the requirement that Zαem remain below the
critical O(1) thresholds associated with Dirac–Coulomb collapse (point-nucleus heuristics often
quote Zαem < 1 as the basic bound-state regime).

In particular, αem ≈ 1/137 lies deep in the weak-coupling regime relative to the known
relativistic thresholds (which are O(1)), and therefore does not trigger relativistic collapse for
the range of nuclear charges realized in chemistry. The inequality Zαem < 1 is used here only as
an intuitive window marker; rigorous statements depend on the precise operator model (point
nucleus vs. extended charge, single-particle vs. many-body, projection choices) and are detailed
in the cited references.

A concrete numerical bound for the periodic table. For the largest nuclear charges
realized in nature (Z ≤ 118), one has

Z αem ≲
118
137 ≈ 0.861,

which lies below the standard point-nucleus Dirac–Coulomb bound-state threshold Zαem <
1 and (numerically) even below the classical essential self-adjointness window quoted in the
mathematical literature (see, e.g., [24] for precise statements). This makes the “relativistic
collapse” concern quantitatively irrelevant for chemistry at observed Z.

6.3 Closed-theory implication: αgeo and µgeo land inside the window

In the HPA–Ω constants program, the minimal closed-theory model fixes

α−1
geo = 4π3 + π2 + π, µgeo = 6π5.
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Numerically, αgeo ≃ 7.297 × 10−3 and µgeo ≃ 1.836 × 103 [5]. Two derived quantities control
chemistry directly:

Eh
mec2 = α2

em, εBO ∼ µ−1/2. (32)

Thus the closed-theory prediction implies

α2
geo ≃ 5.33 × 10−5, µ−1/2

geo ≃ 2.33 × 10−2,

which simultaneously (i) pushes the chemical scale down from MeV to eV and (ii) enforces
a robust electronic/vibrational/rotational hierarchy. Moreover, the small interface mismatches
between (αgeo, µgeo) and operational constants are at the 10−6–10−5 level [5,17]; their propagated
effect on chemical scales is correspondingly tiny.

Propagation to chemical scales. At the level of atomic units,

a0 ∝ α−1
em, Eh ∝ α2

em, εBO ∼ µ−1/2.

Therefore a relative perturbation δα/α induces
δa0
a0

= −δα

α
,

δEh
Eh

= 2 δα
α
,

while a relative perturbation δµ/µ induces

δ(µ−1/2)
µ−1/2 = −1

2
δµ

µ
.

With the interface sizes quoted in [5], the propagated effects remain at the few-ppm level for
(a0, Eh) and at the ∼ 10−5 level for µ−1/2.

7 A textbook anchor: H+
2 and the (α, µ) control of scale and

hierarchy
To keep the chemistry discussion anchored to a concrete system without introducing unnecessary
numerical artifacts, we use the simplest bound molecule as a textbook reference: the hydrogen
molecular ion H+

2 (two protons and one electron). Its BO potential curve is a classical worked
example in molecular quantum mechanics and can be treated analytically (or numerically to
essentially arbitrary precision) in standard references [2, 19, 26]. Our purpose here is not to
improve accuracy, but to isolate two structural consequences of (αem, µ) that are already visible
in this minimal system:

• the absolute scale of Req and De is fixed once a0 and Eh are fixed, hence by αem;

• the vibrational hierarchy is controlled by µ−1/2 through nuclear reduced mass.

7.1 Born–Oppenheimer setup in atomic units

Fix the internuclear distance R (in Bohr units). The electronic Hamiltonian is

Ĥe(R) = −1
2∇2 − 1

rA
− 1
rB
, (33)

with nuclei placed at RA = (0, 0,−R/2) and RB = (0, 0, R/2). Let Ee(R) be the electronic
ground-state energy. The BO potential curve for nuclear motion is

E(R) = Ee(R) + 1
R
. (34)

Bonding corresponds to a local minimum of E(R) below the dissociation limit E(∞) = −1/2
(in Hartree).
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7.2 Scale statement: dimensionless geometry is α-independent

In the nonrelativistic Coulomb model, after rescaling to atomic units, αem disappears from the
dimensionless Hamiltonian (Section 5). Consequently, dimensionless molecular geometry (e.g.
Req expressed in Bohr) is determined by the dimensionless Coulombic problem and does not
depend on αem. The absolute bond length is then

R(SI)
eq = R(Bohr)

eq a0, a0 = ℏ
mec αem

,

so αem fixes the overall length scale. This statement is understood within the nonrelativistic
Coulomb model; small relativistic and QED corrections reintroduce mild αem-dependence at
high precision [19].

7.3 Textbook quantitative anchor

For H+
2 , standard treatments find a bound minimum at an equilibrium separation Req of order

2 a0, with a well depth of order 10−1Eh (relative to the H + p limit) [19, 26]. Numerically,
representative values are

Req ≈ 2.0 a0, E(Req) ≈ −0.60Eh, De := E(∞) − E(Req) ≈ 0.10Eh,

consistent across standard references. These are exactly the kind of scale data emphasized here:
order-unity dimensionless geometry in Bohr units and sub-Hartree well depth in Hartree units.
Using a0 ≈ 0.529 Å and Eh ≈ 27.21 eV [17], this corresponds to

Req ≈ 1.06 Å, De ≈ 2.7 eV,

illustrating the chemically natural length and energy scales as direct consequences of atomic
units.

7.4 Nuclear zero-point motion and the µ control

Near Req, approximate the BO curve by a harmonic potential:

E(R) ≈ E(Req) + 1
2k(R−Req)2, k = E′′(Req).

For two identical nuclei of mass ratio µ = M/me, the reduced mass (in electron-mass units) is
µred = µ/2. The vibrational frequency in atomic units is

ω ≈
√

k

µred
, (35)

and the zero-point energy is EZPE ≈ ω/2. Therefore

EZPE ∝ µ−1/2, (36)

which is the quantitative statement behind the qualitative BO “frozen geometry” picture. In
particular, the large closed-theory value µgeo = 6π5 implies µ−1/2 ≈ 2.3 × 10−2 and therefore a
strong separation between electronic and vibrational scales.

8 Interface corrections and falsifiability routes
The closed-theory values αgeo and µgeo are not claimed to coincide identically with operational
constants; instead, the HPA layer discipline requires that discrepancies be isolated as explicit
interface inputs, not absorbed as hidden retuning. This section records the interface variables
and outlines falsifiable spectroscopy routes.
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8.1 Two small mismatches and two matching inputs

For αem, define the inverse-impedance gap ∆α−1 = α−1
geo −α−1

exp and the multiplicative matching
input sα = exp(∆α−1) (Section 3). For µ, define sµ = µexp/µgeo (Section 4). Numerically, the
relative gaps are at the 10−6–10−5 level [5, 17].

In chemistry-facing applications, these matching inputs propagate into:

• absolute unit conversions (energies in eV, lengths in Angstrom) through Eh and a0 (con-
trolled by sα),

• nuclear kinematics through µ (controlled by sµ),

• any additional interface corrections through explicit, low-parameter matching inputs (e.g.
resolution parameters) rather than hidden per-system retuning.

8.2 Precision spectroscopy as a falsifiability channel

Beyond the scale-setting claims of the main text, one may ask whether finite-resolution read-
out consistency leaves additional, structured corrections to molecular energies. A mismatch-
augmented interface template is recorded in Appendix B. If such corrections are physically
present, they must leave residual signatures in systems where standard theory is already ex-
tremely accurate. Suitable candidates include few-body molecules such as H+

2 and HD+, which
are among the benchmark systems discussed in the CODATA constants review as inputs and
cross-checks across theory and precision measurement [17].

Concretely, one compares measured transition frequencies νexp with state-of-the-art theory
predictions νth(αem, µ, . . .) (including QED, relativistic, and finite-size corrections as appropri-
ate) and studies the residual

∆ν := νexp − νth.

In the HPA interface viewpoint, any additional readout-consistency correction must enter through
explicit, low-parameter interface quantities (e.g. a resolution proxy ε or an induced mismatch
variable such as EN in Appendix B), so that ∆ν admits a structured decomposition rather than
an unconstrained per-transition fit.

The falsifiability logic is:

• If experiments and standard theory agree within uncertainties, then either λ is effectively
negligible at the relevant resolution, or the functional form of Dε and Spf must be con-
strained to yield suppressed corrections.

• If persistent residuals exist beyond known QED/nuclear corrections, then an interface
model must explain not only magnitudes but also selection rules and systematic depen-
dence on resolution-related proxies. Discrepancy-based corrections are highly structured
and therefore restrictive.

In either case, the mismatch-cost proposal is testable.

8.3 What this paper does not claim

We do not claim that the closed-theory derivations alone replace quantum chemistry, nor that
the interface functional (37) is already uniquely fixed. The claim is narrower: once (αem, µ)
are treated as protocol invariants, the two main structural prerequisites of chemistry (absolute
scale and BO hierarchy) become necessary consequences of the same geometric data, and any
additional readout-consistency physics must be encoded in explicit, falsifiable interface terms.

15



9 Conclusion
We reframed the “existence of chemistry” problem in the HPA–Ω scan–readout paradigm. In
standard quantum chemistry, chemical bonding and molecular stability depend critically on two
empirical dimensionless inputs: the fine-structure constant αem and the proton–electron mass
ratio µ. In the HPA layer discipline, these are instead treated as protocol-geometric invariants.

Using the companion constants-geometry results, we recorded the closed-theory theorem-
level values α−1

geo = 4π3 +π2 +π and µgeo = 6π5 and showed how they control the two structural
pillars of chemistry: (i) αem fixes atomic units and hence the absolute eV-scale of chemical
energies, and (ii) µ fixes the BO small parameter µ−1/2 and thereby the hierarchical separation
of electronic/vibrational/rotational spectra, molecular geometry stability, and isotope effects.

We further anchored these scale statements with rigorous stability-of-matter results, placing
αgeo deep inside known stability regimes, and used the textbook H+

2 Born–Oppenheimer curve
as the minimal molecule-level reference that exhibits a bound minimum and the µ−1/2 control of
nuclear zero-point motion. An optional mismatch-based interface template consistent with HPA
phase thermodynamics is recorded in Appendix B; specifying and auditing concrete models for
Dε and Spf is a natural next step.

A Audit table and reproducibility notes

A.1 Audit table: closed layer versus interface versus interpretation

Layer Content used in this paper
Closed-theory O5/O6 scan–readout interface (Axioms 2.1–2.2); discrepancy defini-

tions; geometric impedance and phase-volume axioms (Sections 3–4);
theorem-level values α−1

geo = 4π3 + π2 + π and µgeo = 6π5.
Interface Matching inputs sα = exp(∆α−1) and sµ = µexp/µgeo, treated as ex-

plicit low-parameter interfaces to CODATA [5,17].
Interpretation Atomic-unit scaling, BO hierarchy, and the stability-window an-

chors used to interpret (αgeo, µgeo) in chemistry language. An op-
tional mismatch-based interface template is recorded separately in Ap-
pendix B.

A.2 Reproducible scripts

This paper directory includes a small helper script:

• scripts/compute_constants.py: computes α−1
geo and µgeo and compares to CODATA

central values (as recorded in [5]).

The scripts are written to be readable and auditable rather than maximally optimized.

B An optional interface template: phase stabilization under fi-
nite readout

This appendix records an interface-level model that connects the scan–readout viewpoint to
chemistry language (bonding, reactions, and free-energy descent). It is not used in the closed-
theory derivations of (αgeo, µgeo), nor in the stability and scaling arguments of the main text; it
is included as a constrained, falsifiable interface consistent with HPA phase thermodynamics.
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B.1 A minimal mismatch-augmented functional

Let R denote nuclear coordinates (collectively). Let ψ be an electronic state normalized on the
electronic Hilbert space at fixed R. Define the functional

F [ψ;R] := ⟨ψ|ĤCoul(αem;R)|ψ⟩ + λDε[ψ;R] − Tc Spf [ψ; ε], (37)

where ĤCoul is the standard Coulomb electronic Hamiltonian, Dε is a resolution-dependent
mismatch penalty, and Spf is a phase-friction entropy proxy (e.g. discrepancy-based) [11]. For
fixed R, define the corresponding effective surface

Eeff(R) = inf
ψ

F [ψ;R]. (38)

In the formal limit λ → 0 and when the entropy term is negligible, Eeff reduces to the standard
BO surface used in quantum chemistry.

B.2 Bonding and reaction direction (interpretation)

In standard chemistry language, a bond forms when the electronic energy is lowered by delocal-
ization and exchange at an intermediate nuclear separation, producing a minimum in EBO(R).
In the HPA interface language, the same phenomenon can be phrased as:

• Bond formation: reconfiguration that lowers the total protocol cost by stabilizing phases
(reducing mismatch accumulation) under finite readout.

• Reaction direction: evolution toward configurations that decrease the effective func-
tional (37), aligning with a free-energy descent structure but expressed via phase-friction
entropy and mismatch penalties [11,27].

The purpose of (37) is falsifiability: once a concrete Dε and Spf are specified, the implied
corrections to molecular levels must exhibit structured parameter dependence tied to readout
resolution and discrepancy, rather than arbitrary higher-order operators.

B.3 A minimal computable toy choice (for falsifiability bookkeeping)

To make (37) operational without committing to a full microscopic derivation, we record a
minimal interface that is explicit, low-parameter, and auditable:

• Choose a finite readout depth N associated with resolution ε (e.g. N ∼ ε−1 as a book-
keeping proxy).

• Let the scan orbit be xn = x0 + nν (mod 1) from Axiom 2.2.

• Define a phase-friction proxy by Spf(N) = kB EN with EN = ND∗
N as in Section 2.

• Define a mismatch penalty as a scalar multiple of the same mismatch accumulation,

Dε := EN ,

so that the interface correction is controlled by a single effective coefficient (λ− TckB) at
fixed (ε,N).

This minimal choice fixes a concrete residual template so that any spectroscopy-facing compar-
ison can be phrased in terms of an explicit mismatch variable EN rather than an unspecified
functional; more detailed interfaces should reduce to an equivalent low-parameter form at leading
order.
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