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Abstract

Why does chemistry exist? In standard quantum chemistry, the existence and stability of
chemical bonds depend crucially on two dimensionless inputs: the electromagnetic coupling
strength (the fine-structure constant aen,) and the nuclear—electronic scale separation (the
proton—electron mass ratio y = m,/m.). In the usual narrative, these appear as externally
given parameters, so “chemical existence” is reduced to an accidental location of the universe
in the (qem, 1)-plane.

In the HPA-Q framework (Holographic Polar Arithmetic / Q-axiomatic program), we
instead treat observable dimensionless constants as invariants of a scan—projection readout
protocol. We adopt a strict layer discipline: a closed-theory layer that uses only explicit
axioms and geometric definitions, and an interface layer that records the minimal matching
needed to connect a closed model to operational constants. Within the closed layer, we recall
two theorem-level geometric assignments established in the companion constants-geometry
manuscript: a three-channel geometric impedance for electromagnetism,

-1 _ 4.3, 2
Qgeo = 4T + 77+,

and an internal phase-volume cost for the proton—electron mass ratio,
Hgeo = 67°.

We then show how these two geometric invariants control the two structural pillars of
chemistry. First, aen fixes the absolute chemical energy and length scales via atomic units
(ag x ai! and Ej o a?), explaining the eV-scale of chemistry as a rigid consequence of
a dimensionless coupling. Second, p fixes the Born—Oppenheimer small parameter egg ~
1~ /2 and hence the electronic/vibrational /rotational hierarchy and the stability of molecular
geometry (including isotope effects). We further anchor these scale statements with rigorous
stability-of-matter results (showing that aep, lies deep inside known stability regimes) and
with the textbook H;r Born—Oppenheimer curve as the minimal molecule-level reference.

Keywords: HPA-Q; chemical bond; molecular stability; geometric impedance; fine-structure
constant; proton—electron mass ratio; atomic units; Born—-Oppenheimer; stability of matter.

Layer discipline. We keep a strict separation between: (i) a closed-theory layer (ax-
ioms/definitions = theorem-level invariants), (ii) an interface layer (minimal matching inputs
that connect closed invariants to operational constants), and (iii) an interpretation layer
(mapping to standard effective Hamiltonians and chemistry language). We treat log as the
natural logarithm unless otherwise stated.
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1 From “parameter-input chemistry” to “geometric-inevitability
chemistry”

1.1 The origin problem of chemistry

Chemistry is empirically robust: atoms and molecules exist stably across wide ranges of tem-
perature and pressure, exhibit reproducible valence patterns, and possess sharp spectroscopic
fingerprints. In the standard nonrelativistic account, chemical bonding emerges from the com-
petition between electronic kinetic energy and Coulomb attraction, together with the Born—
Oppenheimer (BO) separation that makes molecular geometry meaningful as a slowly varying
nuclear scaffold [1}2].

However, two dimensionless quantities dominate the very possibility of this structure:

e Electromagnetic coupling strength ae, which fixes atomic-unit scales ag and Fj, and
hence the absolute energy/length scale of chemistry.

e Nuclear—electronic mass hierarchy p; = m,/m., which fixes the small parameter
EBO ~ ,u_l/ 2 and hence the separation between electronic, vibrational, and rotational
degrees of freedom.

In the conventional narrative, aep, and p are empirical inputs; chemical stability is then described
as the fact that these happen to land in a “habitable window.” This viewpoint makes the
existence of chemistry appear as contingent.

1.2 HPA-): constants as protocol invariants

The HPA-Q) program proposes a different starting point: observable dimensionless “constants”
are not adjustable parameters but invariants of a scan—projection readout protocol. In this view-
point, “probability,” “noise,” and “thermodynamics” are not external assumptions but emerge
from finite-resolution readout. The framework therefore enforces a methodological discipline:
identify a closed set of axioms and geometric definitions, derive invariants, then connect to
operational constants through a minimal interface map [3-5].

Within this discipline, the constants-geometry manuscript [5] proposes and audits a concrete
geometricization of aen and w:

)

o = 4m® 4+ 1 4, figeo = 67°. (1)

geo
The present paper asks a chemistry-facing question:

Can chemical bonding and molecular stability be rephrased as necessary conse-
quences of the same protocol-geometric invariants (cem, t)?

1.3 Contributions and structure

Our contributions are twofold.

1. We provide a chemistry-oriented bridge from the geometric invariants (ageo, fgeo) to atomic
units and BO scale separation, isolating how they rigidly fix (i) the eV scale of chemistry
and (ii) the stability of molecular geometry and isotope effects.

2. We anchor the above scale claims with rigorous stability-of-matter results (placing aem
inside known stability regimes) and with the textbook Hj Born-Oppenheimer curve as
the minimal molecule-level reference.



Section [2] recalls the minimal scan-readout interface and discrepancy language. Sections
and @ record the closed-theory derivations of e, and figeo in a form tailored to chemical ap-
plications. Section [5] derives the atomic-unit scaling and the BO hierarchy. Section [6] records
rigorous stability-window anchors. Section [7| uses HJ as a textbook quantitative reference. Sec-
tion [§] discusses interface matching and falsifiable routes. An optional mismatch-based interface
template is recorded in Appendix

2 Minimal scan—readout interface and phase friction

This section recalls the minimal interface assumptions used throughout the HPA-Q) literature
and fixes notation. We only require two axioms (readout-induced probability and a Weyl pair)
plus a discrepancy definition used as a computable proxy for “phase friction” [3}|6/-8].

2.1 Ob5: finite-resolution readout induces probability

Axiom 2.1 (O5: scan—projection readout induces probability). For a given readout resolution
e > 0, an observer has access to a POVM (or instrument) {E,Sf)}k on an effective observer Hilbert

space Heg, satisfying > E,Sf) = 1. For an effective state (positive normalized functional) weg,
the outcome probabilities are

P =wa(EY). (2)

This axiom encodes the HPA principle that probability is not an external sampling postulate
but is induced by finite-resolution readout. For background on POVMs and instruments in
standard quantum measurement theory, see [9]. In the standard density-operator representation,

this reduces to PIEE) = Tr(pesr E,is)).

2.2 06: a Weyl pair and intrinsic noncommutativity

Axiom 2.2 (06: Weyl pair). On Heg there exist unitary operators Uscan and V' satisfying the
Weyl relation .
UscanV = e2myVUscan) Ve (07 1) \Q (3)

In a standard model on L?([0,1)), one may take (Uscan?)(z) = ¥ (x + v) and (Vi))(z) =
e?™%y))(x), so that the scan orbit is the Kronecker sequence z, = z¢ + nv (mod 1) [6]. For
mathematical background on Weyl relations and phase-space representations, see [10].

2.3 Discrepancy and phase friction as mismatch accumulation
Finite readout resolution makes mismatch unavoidable. A convenient quantitative proxy is star
discrepancy. For a point sequence (z1,...,zy) C [0, 1) define the empirical distribution function
1
FN(a):N#{lgngN:xn<a}, 0<a<l, (4)
and the one-dimensional star discrepancy and its cumulative mismatch

Dy = suwp |Fy(a)—al,  Ey:=NDj. (5)
0<a<1
The discrepancy literature provides sharp bounds for Kronecker sequences and related low-
complexity protocols [7,8].

Remark 2.3 (Higher-dimensional discrepancy). For multi-degree-of-freedom readouts, one uses
multi-dimensional discrepancy notions (e.g. star discrepancy on [0,1)?) and corresponding Koksma—
Hlawka-type bounds; see [7,8]. In this paper, we use the one-dimensional definition only as a
minimal interface proxy and only in the optional appendiz-level template (Appendix @



Remark 2.4 (Quantitative size for Kronecker scanning). For Kronecker sequences x,, = xo +
nv (mod 1), discrepancy bounds are controlled by the continued-fraction data of v. In particular,
for bounded partial quotients (e.g. the golden-ratio case relevant in the HPA literature), one has
logarithmic discrepancy bounds of the form D3 = O((log N)/N) and hence Ex = O(logN);
see [7,/8].

In HPA phase thermodynamics, a computable “phase-friction entropy proxy” can be defined
by
Spf(N) = kpEn, (6)

so that mismatch accumulation plays the role of an irreducible cost under coarse-grained (un-
conditional) readout [11].

For chemistry, this language will be used only in the interpretation layer: bonding and
reactions can be modeled as rearrangements that reduce mismatch accumulation under a given
readout interface (Appendix [B)).

3 The geometric origin of a,: three-channel impedance

Chemistry requires an absolute electromagnetic energy scale. In standard physics this scale is
set by the dimensionless electromagnetic invariant cen, through atomic units. In the HPA-Q
constant-geometry program, e, is a target dimensionless invariant of the readout protocol, not
an external knob; the minimal closed model produces a theorem-level geometric prediction cgeo
for its value. We record the minimal closed-theory chain that yields the theorem-level value

ag_elo =473 + 72 + 7, (7)

following the constants-geometry manuscript [5].

3.1 Serial composition and logarithmic readout cost

Axiom 3.1 (Serial composition and geometric impedance). If a readout protocol must satisfy
constraints in a fived hierarchy of channels, assign each channel j a multiplicative weight w; €
(0,1] and define its readout cost by Vj := —logw;. The total weight is

Wtot = ija (8)
J

and the associated geometric impedance is the additive log-cost

O[g_e%) = —log wioy = Z Vj. (9)
J

Remark 3.2. The axiom enforces a precise meaning of “impedance”: the ontological composi-
tion is multiplicative; additivity is an induced feature after the logarithmic readout projection.
This logarithmic additivity is the standard “product-to-sum” mechanism underlying information
measures and cost aggregation; see, e.g., [12+1/)].

3.2 Three strata and canonical phase volumes

Axiom 3.3 (Geometric cost as canonical volume). For each channel j, the process cost is
identified with a canonical geometric invariant of its compact phase space M. In the minimal
model,

Vj = Vol(M;), (10)

where Vol is the volume induced by the standard bi-invariant metric on compact Lie groups and
quotient metrics.



Axiom 3.4 (Electromagnetic three-stratum phase spaces). The electromagnetic readout channel
is represented by three topologically distinct strata:

My 2 U(1) x SU(2), Mboundary = SO(3), Miine = RPL. (11)

Remark 3.5. The projective quotients encode the intrinsic ray identification of readout. In
particular, SU(2) — SO(3) = SU(2)/{£1} reflects the spinorial double cover, and RP! =
U(1)/{£1} reflects phase-ray identification [15,16].

3.3 Theorem-level value from group volumes

Theorem 3.6 (Three-channel geometric impedance). Under Azioms the minimal-
model geometric value of the inverse fine-structure constant is

Qgor = 4% 4+ 7% + 7 ~ 137.0363037759. (12)

geo

Proof. By Axiom age}) = Woulk + Vhoundary + Viine- By Axiom Vj = Vol(M;), and by
Axiom this reduces to canonical volumes. Standard values [15,/16] are

Vol(U(1)) = 2z, Vol(SU(2)) = 272, Vol(SO(3)) =72, Vol(RP!) = . (13)
Therefore

Viulk = Vol(U (1) x SU(2)) = 473, Vioundary = T2, Viine = T, (14)

and the sum gives 473 4+ 72 4 7. O

3.4 Interface matching to CODATA

Let aexp denote the CODATA recommended fine-structure constant [17]. Define the inverse-
impedance gap
Aa~t:=al —al (15)

- “geo exp*

In the multiplicative readout variable w = exp(—a~!), the mismatch is absorbed by a single
matching input

Sq 1= Wexp _ exp(Aa_l), (16)
Wgeo
which encodes the interface between the minimal geometric model and operational low-energy
coupling [5]. In this paper we keep the interface explicit rather than treating it as a tuning
parameter: s, is recorded and can be propagated into any chemistry-facing prediction requiring
high precision.

Remark 3.7 (Why the weight variable w = exp(—a™!)). The variable w = exp(—a~1) is the
natural multiplicative counterpart of the additive impedance o™ under the logarithmic readout
map. It is introduced only to make the interface matching multiplicative (a single factor s, ),
avoiding hidden additive retuning across different applications.

Quantitative size. Using the CODATA 2022 central inverse coupling quoted in [5,/17], one

has
Aot

1

Ao~ ~ 3.046 x 1074, —
Qexp

~2.22 x 1079, 5o A 1.0003046.

Thus the interface mismatch is at the few-ppm level in inverse impedance and at the few-ppm
level in any derived chemical scale that depends smoothly on aep,.



3.5 Rigidity at bounded complexity (no coefficient tuning)

A key concern for any constant-geometry claim is coefficient tuning. The constants-geometry
manuscript records an explicit bounded-complexity rigidity check: minimize the CODATA error
within the ansatz an® 4 br? + cm over small nonnegative integers. We quote the result as an
internal rigidity anchor.

Proposition 3.8 (Uniqueness at low coefficient complexity). Within the coefficient-sum com-
plezity domain a,b,c € Z>o and a+ b+ c < 10, the unique minimizer of law> + br? + e — a;}p]
is (a,b,c) = (4,1,1), with relative error ~ 2.2 x 1076, The neat-best triple in the same domain
has relative error at least 3.2 x 1073,

Proof. This is a finite exhaustive enumeration recorded in [5]. O

4 The geometric origin of y = m,/m.: internal phase volume
and scale separation

Chemistry requires not only bound electronic states but also a robust separation between fast
electronic and slow nuclear motion. This separation is controlled by the dimensionless proton—
electron mass ratio = my,/me. In the HPA-Q constant-geometry program, p is again a
target dimensionless invariant of internal protocol geometry; the minimal closed model yields
the phase-volume prediction pigeo. We record the minimal closed-theory chain yielding

[geo = 6T°, (17)

following [5].

4.1 Mass ratios as phase-volume costs (closed layer)
Definition 4.1 (Mass-ratio invariants). For particle classes i,j, define the dimensionless ratio

m; I;
— 18
mj Ij7 ( )

where I; is a protocol-geometric invariant induced by the internal defect/holonomy data of class
i.

Axiom 4.2 (Mass invariants as phase-volume costs). For each particle class i, the invariant I;
is given by a canonical phase volume of an internal compact manifold M; (or a finite disjoint
union), normalized so that the electron satisfies I, = 1:

A A
I; = Vol(M,), V01<|_| M@a) = Vol(Mja). (19)
a=1 a=1

4.2 Proton internal phase space (three-color sector sum)

Axiom 4.3 (Proton internal phase space). Model the proton as a sum over three identical color
sectors (N. = 3) [18]. Each color sector is assigned the compact phase space

M, = 50(3) x SO3) x U(1), (20)
so that the proton internal space M,, is the disjoint union of three copies of M,.

Remark 4.4. At the level of canonical volumes, this choice is equivalent to SO(3) x SU(2) x RP!
because Vol(SO(3))Vol(U(1)) = Vol(SU(2))Vol(RP'). The convention above treats rotational
sectors projectively while keeping the phase circle unquotiented [5].



4.3 Theorem-level value and interface matching

Theorem 4.5 (Proton-electron mass ratio). Under Azioms the geometric prediction
for the proton—electron mass ratio is

Jigeo = —2 = 675 ~ 1836.1181087117. (21)
m

e

Proof. By Definition and Axiom myp/me = Ip/I. = I, since I, = 1. By Axiom
I, =3Vol(S0O(3) x SO(3) x U(1)). (22)
Using Vol(SO(3)) = 72 and Vol(U(1)) = 27 yields

I, = 3(n?)(n?)(2m) = 67°. (23)

Let plexp denote the CODATA recommended value [17]. Define the multiplicative interface
matching input

Hexp
S, = ——. 24
a Hgeo ( )

As emphasized in [5], s, is not a per-system tuning knob but a single interface encoding non-
perturbative QCD binding and radiative structure. In chemistry-facing applications, the key
output is not the exact value of u itself but the existence of a large hierarchy p > 1 and the
induced expansion parameter /fl/ 2,

Quantitative size. Using the CODATA 2022 central value quoted in [5}/17], the offset is

Ap

~—1.88x107°, s, ~ 1.0000188.
Hexp

A,U ‘= Hgeo — Mexp = —3.456 X 10727

4.4 Rigidity signals (no tuning): factorization and bounded complexity

The constants-geometry manuscript records two rigidity checks relevant for p.

Proposition 4.6 (Finite primitive factorization rigidity). Fiz the primitive candidate set {U(1),SU(2),SO(3),1
with canonical volumes as in [5]. Restrict a per-color sector to be a product of three primitives
(order irrelevant). Then the condition 3 Vol(M,) = 67 holds if and only if

M, = SO(3) x SO(3) x U(1) or M, S0(3)x SU(2) x RP.

In particular, among the 20 three-factor multisets, these two are the unique solutions; the next-
closest candidate has order-one relative error.

Proof. This is a finite enumeration recorded in [5]. O

Proposition 4.7 (Uniqueness at low coefficient complexity). Within the coefficient-sum com-
plezity domain a,b,c,d,e € Z>g and a+b+c+d+e < 10, the unique minimizer of |am® + b +
emd + dr? + em — Hexp| 18 67°, with relative error ~ 1.9 x 107°. The next-best combination in
the same domain has relative error at least 4.4 x 1074,

Proof. This is a finite exhaustive enumeration recorded in [5]. O



5 From (tep, it) to chemistry: atomic units and Born—Oppenheimer
hierarchy

This section isolates a key structural fact: in a nonrelativistic Coulombic molecule, ay, fixes the
absolute units (Hartree and Bohr) while u fixes the small parameter controlling nuclear motion.
Consequently, once (qem, 1) are treated as rigid protocol invariants rather than empirical inputs,
two necessary prerequisites of chemistry—an absolute eV-scale and a robust BO hierarchy—
become rigid consequences of protocol geometry (with stability anchored separately in Section@.

5.1 Atomic units: why chemistry lives at the €V scale

In standard physics, atomic units are defined by the Bohr radius and Hartree energy [17]:

h
ag =

1
= ———— Ey=m.?a?,, Ry=-E, 25
M€ Ctomy h MeC Oy y 9 h ( )

Numerically, ag ~ 0.529 A and Ej, ~ 27.216V [17]. In SI units, m.c? is a MeV-scale quantity,
and Ej, is suppressed by a2, ~ 1074, landing at the characteristic chemical scale of tens of eV.
Typical bond energies are fractions of a Hartree, so eV-scale chemistry is a direct consequence
of a dimensionless weak coupling. See, e.g., standard molecular quantum mechanics discussions
in [19].

In the HPA—) constants program, aep is not a free input: the minimal closed-theory model
predicts Oég_c}) = 473 + 72 4+ 7 (Theorem [3.6). Hence the absolute chemical energy scale is locked
by protocol geometry, up to the explicit interface matching s,.

5.2 Dimensionless molecular Hamiltonian in atomic units (model assump-
tions)

Consider a molecule with N electrons (mass m.) and nuclei labeled by A with charges Z4
and masses M 4. In atomic units (length in ag, energy in FEj), the nonrelativistic Coulomb
Hamiltonian takes the dimensionless form [2]

H 1&_, 1w 1_p Z4 1
Fh__§;vi_§%:u7vA_ZT+ZF+Z

/
i,A 1A i<j i A<B ~'AB

ZAZB

, (26)

where 4 := My/me and primes denote coordinates in units of ag. This is the standard non-
relativistic point-charge Coulomb model used as the baseline of quantum chemistry; relativistic,
QED, and finite-nuclear-size effects are treated as corrections at higher precision [24|19].

Two points are structurally decisive:

e Qe NO longer appears in the dimensionless Hamiltonian ; it only survives through the
choice of absolute units ag and Ej,.

o All nuclear slowness enters through the large parameters p4 (in particular p for hydrogenic
nuclei).

Thus ey fixes the overall absolute scale of chemistry, while p fixes the expansion parameter
governing nuclear dynamics.
5.3 Born—Oppenheimer parameter and spectral hierarchy

For diatomic molecules with identical nuclei of mass M ~ m,, a standard BO small parameter
is

Me -1/2
BO ~Y —_— . 27
c M a ( )

10



This parameter controls (i) nonadiabatic couplings between electronic surfaces and (ii) the hi-
erarchy of energy scales. Dimensionally, one obtains the standard estimates

Ep Ep
Eelec ~ Eh7 Evib ~ ﬁ7 Erot ~ 7 (28)

For 11 ~ 1836, one has p~'/2 ~ 0.023, consistent with the robust empirical hierarchy (electronic
> vibrational > rotational). See standard molecular quantum mechanics texts for these scalings
and their refinements [2,[19].

5.4 A stability criterion: zero-point motion versus well depth

Molecular “geometry” is meaningful only if nuclear zero-point motion does not wash out the
electronic potential well. Let D, denote a typical electronic well depth (in Hartree units) and
approximate the vibrational frequency near equilibrium by w ~ \/k/fireq, Where pieq is a nuclear
reduced mass in electron-mass units and k is the dimensionless curvature of the BO curve. Then
the vibrational zero-point energy scales as

1
Ezpg ~ Jw po 2, (29)
A minimal stability requirement is Fzpg < D,., which becomes a scale inequality of the form

1
pt? > m De ~nEp, n€(1072,107Y) (typical). (30)

With p!/2 ~ 43, the inequality is naturally satisfied for a wide range of chemical 7, explaining
why stable molecular geometries are abundant. The order-of-magnitude range for n is consistent
with textbook bond-energy scales in atomic units [19).

5.5 Isotope effects as p-controlled interface

Replacing a nucleus by an isotope changes M and hence pa while leaving ey unchanged.
Consequently vibrational frequencies and zero-point energies shift as M ~1/2, producing isotopic
shifts in spectra and kinetic isotope effects. In the HPA—Q) viewpoint, this is not an empirical
coincidence: isotope effects are direct consequences of the same internal phase-volume invariant
p that enforces the BO hierarchy.

6 A rigorous stability window: why chemistry is not destroyed
by collapse

Sectionsshowed that (qem, i) rigidly fix the absolute atomic-unit scale and the BO hierarchy.
A reviewer will rightly ask a sharper question:

Do these inputs merely set scales, or do they also ensure stability (no catastrophic
collapse) in the underlying Coulombic matter model?

This section records the relevant rigorous facts from mathematical physics. We do not reprove
them; they are mature results and are used as external anchors.
6.1 Nonrelativistic Coulomb matter is stable (bounded below)

Consider the standard nonrelativistic many-body Coulomb Hamiltonian for electrons and nuclei
(with fixed nuclear charges and masses). The stability of matter problem asks whether the
ground-state energy is bounded below linearly in particle number (so that macroscopic matter

11



does not collapse as N — oo). This is a classic theorem: stability holds for nonrelativistic
Coulomb matter, established in foundational works and summarized in modern expositions
[20-23].

For the present paper, the consequence is simple: in the standard nonrelativistic Coulomb
model that underlies quantum chemistry, the Hamiltonian is well-defined and extensive. There-
fore, once the absolute scale is fixed by aem and the nuclear slowness by g, there is no hidden
“instability loophole” that would forbid chemistry.

Minimal assumptions (external theorem input). The stability-of-matter theorems are
statements about the standard quantum many-body Coulomb model under physically standard
hypotheses: fermionic electrons (Pauli principle), Coulomb interactions, and (for thermody-
namic stability statements) appropriate charge constraints and/or neutrality conditions. Precise
formulations and assumptions are given in the cited mathematical physics literature [23].

Quantitative form (stability of the second kind). One standard formulation is that the
ground-state energy Ey(N, K) of a Coulomb system with N electrons and K nuclei admits a
linear lower bound

Ey(N,K) > -C (N + K), (31)

for a constant C' independent of N, K (under the stated hypotheses). This is the mathematical
statement that macroscopic matter does not collapse as particle number grows [23].

6.2 Relativistic constraints give an a-window

When relativistic kinematics are included (Dirac-type operators and/or magnetic fields), sta-
bility becomes nontrivial and depends on ., and nuclear charges Z4. There are sharp one-
particle thresholds and distinguished self-adjointness regimes for Dirac-Coulomb operators, as
well as sufficient conditions for many-body stability; see [23H25] for detailed statements and
references. A widely used stability indicator is the requirement that Zaey, remain below the
critical O(1) thresholds associated with Dirac-Coulomb collapse (point-nucleus heuristics often
quote Zaem < 1 as the basic bound-state regime).

In particular, aen & 1/137 lies deep in the weak-coupling regime relative to the known
relativistic thresholds (which are O(1)), and therefore does not trigger relativistic collapse for
the range of nuclear charges realized in chemistry. The inequality Zaey, < 1 is used here only as
an intuitive window marker; rigorous statements depend on the precise operator model (point
nucleus vs. extended charge, single-particle vs. many-body, projection choices) and are detailed
in the cited references.

A concrete numerical bound for the periodic table. For the largest nuclear charges
realized in nature (Z < 118), one has

118

Z vy < 2
Qem > 737

~ (0.861,

which lies below the standard point-nucleus Dirac—Coulomb bound-state threshold Zae, <
1 and (numerically) even below the classical essential self-adjointness window quoted in the
mathematical literature (see, e.g., [24] for precise statements). This makes the “relativistic
collapse” concern quantitatively irrelevant for chemistry at observed Z.

6.3 Closed-theory implication: o, and e, land inside the window

In the HPA—Q) constants program, the minimal closed-theory model fixes

-1 3 2 5
Qgeo = 4T +7° + 7, Hgeo = 6T°.
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Numerically, ogeo ~ 7.297 x 1073 and Hgeo =~ 1.836 X 103 [5]. Two derived quantities control
chemistry directly:

Ej, -
MeC2 = azmv €BO ™~ M 12 (32)
e

Thus the closed-theory prediction implies
2o =533 x107°,  pg/? ~2.33 x 1072,

geo

which simultaneously (i) pushes the chemical scale down from MeV to eV and (ii) enforces
a robust electronic/vibrational/rotational hierarchy. Moreover, the small interface mismatches
between (0geo, flgeo) and operational constants are at the 1076-1075 level [517]; their propagated
effect on chemical scales is correspondingly tiny.

Propagation to chemical scales. At the level of atomic units,

-1 2 —1/2
a9 X Olapys Ey o< agy, EBO ~ [ /2,

Therefore a relative perturbation da/a induces

bug __da 0B, _,da

)

ag o’ Ey o
while a relative perturbation du/u induces

S(ut?) _ 14p
pl2 2
With the interface sizes quoted in [5], the propagated effects remain at the few-ppm level for
(ap, Ey,) and at the ~ 107 level for pu=1/2,

7 A textbook anchor: Hj and the («,u) control of scale and
hierarchy

To keep the chemistry discussion anchored to a concrete system without introducing unnecessary

numerical artifacts, we use the simplest bound molecule as a textbook reference: the hydrogen

molecular ion Hy (two protons and one electron). Its BO potential curve is a classical worked

example in molecular quantum mechanics and can be treated analytically (or numerically to

essentially arbitrary precision) in standard references [2,|19,26]. Our purpose here is not to

improve accuracy, but to isolate two structural consequences of (aem, 1) that are already visible
in this minimal system:

 the absolute scale of R, and D, is fixed once ag and Ej, are fixed, hence by aem;

« the vibrational hierarchy is controlled by ;~'/2 through nuclear reduced mass.

7.1 Born—Oppenheimer setup in atomic units

Fix the internuclear distance R (in Bohr units). The electronic Hamiltonian is

with nuclei placed at R4 = (0,0,—R/2) and Rp = (0,0, R/2). Let E.(R) be the electronic

ground-state energy. The BO potential curve for nuclear motion is

1
E(R) = Ee(R) + 3. (34)
Bonding corresponds to a local minimum of E(R) below the dissociation limit F(o0) = —1/2

(in Hartree).
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7.2 Scale statement: dimensionless geometry is a-independent

In the nonrelativistic Coulomb model, after rescaling to atomic units, aen, disappears from the
dimensionless Hamiltonian (Section [5)). Consequently, dimensionless molecular geometry (e.g.
Ry expressed in Bohr) is determined by the dimensionless Coulombic problem and does not
depend on qep. The absolute bond length is then

h

MeC Clon

R(SI) — R(Bohr) a

eq eq 05 ap =

SO (e fixes the overall length scale. This statement is understood within the nonrelativistic
Coulomb model; small relativistic and QED corrections reintroduce mild «en-dependence at
high precision [19].

7.3 Textbook quantitative anchor

For H;r, standard treatments find a bound minimum at an equilibrium separation R, of order
2ag, with a well depth of order 107! E}, (relative to the H + p limit) [19,/26]. Numerically,
representative values are

Req~2.0ag,  E(Req) ~ —0.60E,, D, := E(c0) — E(Req) = 0.10 B},

consistent across standard references. These are exactly the kind of scale data emphasized here:
order-unity dimensionless geometry in Bohr units and sub-Hartree well depth in Hartree units.
Using ag ~ 0.529 A and Ej, ~ 27.21 eV [17], this corresponds to

Req =~ 1.06 A, D, ~2.7¢V,
illustrating the chemically natural length and energy scales as direct consequences of atomic
units.
7.4 Nuclear zero-point motion and the i control
Near R4, approximate the BO curve by a harmonic potential:
E(R) = E(Req) + %k(R - Req)2v k= E”(Req)-

For two identical nuclei of mass ratio u = M /me, the reduced mass (in electron-mass units) is
fred = f4/2. The vibrational frequency in atomic units is

[k
w , 35
Hred ( )

and the zero-point energy is Fzpg ~ w/2. Therefore

Ezpp o /2, (36)

which is the quantitative statement behind the qualitative BO “frozen geometry” picture. In
particular, the large closed-theory value pigeo = 67° implies = Y/2 ~ 2.3 x 1072 and therefore a
strong separation between electronic and vibrational scales.

8 Interface corrections and falsifiability routes

The closed-theory values cge, and pigeo are not claimed to coincide identically with operational
constants; instead, the HPA layer discipline requires that discrepancies be isolated as explicit
interface inputs, not absorbed as hidden retuning. This section records the interface variables
and outlines falsifiable spectroscopy routes.
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8.1 Two small mismatches and two matching inputs

For aem, define the inverse-impedance gap Aa~! = age}) — oz;(lp and the multiplicative matching

input s, = exp(Aa~!) (Section . For p1, define s, = flexp/geo (Section . Numerically, the
relative gaps are at the 1076-107° level [5,/17].
In chemistry-facing applications, these matching inputs propagate into:

« absolute unit conversions (energies in eV, lengths in Angstrom) through E} and ag (con-
trolled by s4),

o nuclear kinematics through p (controlled by s,,),

 any additional interface corrections through explicit, low-parameter matching inputs (e.g.
resolution parameters) rather than hidden per-system retuning.

8.2 Precision spectroscopy as a falsifiability channel

Beyond the scale-setting claims of the main text, one may ask whether finite-resolution read-
out consistency leaves additional, structured corrections to molecular energies. A mismatch-
augmented interface template is recorded in Appendix [B] If such corrections are physically
present, they must leave residual signatures in systems where standard theory is already ex-
tremely accurate. Suitable candidates include few-body molecules such as Hi and HD", which
are among the benchmark systems discussed in the CODATA constants review as inputs and
cross-checks across theory and precision measurement [17].

Concretely, one compares measured transition frequencies veyx, with state-of-the-art theory
predictions vip (em, i, - - ) (including QED, relativistic, and finite-size corrections as appropri-
ate) and studies the residual

AV = Vexp — Vth-

In the HPA interface viewpoint, any additional readout-consistency correction must enter through
explicit, low-parameter interface quantities (e.g. a resolution proxy e or an induced mismatch
variable such as Ey in Appendix, so that Av admits a structured decomposition rather than
an unconstrained per-transition fit.

The falsifiability logic is:

o If experiments and standard theory agree within uncertainties, then either X is effectively
negligible at the relevant resolution, or the functional form of D, and Spy; must be con-
strained to yield suppressed corrections.

o If persistent residuals exist beyond known QED /nuclear corrections, then an interface
model must explain not only magnitudes but also selection rules and systematic depen-
dence on resolution-related proxies. Discrepancy-based corrections are highly structured
and therefore restrictive.

In either case, the mismatch-cost proposal is testable.

8.3 What this paper does not claim

We do not claim that the closed-theory derivations alone replace quantum chemistry, nor that
the interface functional is already uniquely fixed. The claim is narrower: once (cem, ()
are treated as protocol invariants, the two main structural prerequisites of chemistry (absolute
scale and BO hierarchy) become necessary consequences of the same geometric data, and any
additional readout-consistency physics must be encoded in explicit, falsifiable interface terms.
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9 Conclusion

We reframed the “existence of chemistry” problem in the HPA—) scan-readout paradigm. In
standard quantum chemistry, chemical bonding and molecular stability depend critically on two
empirical dimensionless inputs: the fine-structure constant aen and the proton—electron mass
ratio p. In the HPA layer discipline, these are instead treated as protocol-geometric invariants.

Using the companion constants-geometry results, we recorded the closed-theory theorem-
level values ag_e%) =473 + 7% 4+ 7 and Hgeo = 67> and showed how they control the two structural
pillars of chemistry: (i) qem fixes atomic units and hence the absolute eV-scale of chemical
energies, and (ii) p fixes the BO small parameter 1~ Y2 and thereby the hierarchical separation
of electronic/vibrational /rotational spectra, molecular geometry stability, and isotope effects.

We further anchored these scale statements with rigorous stability-of-matter results, placing
Ogeo deep inside known stability regimes, and used the textbook H Born-Oppenheimer curve
as the minimal molecule-level reference that exhibits a bound minimum and the p~/2 control of
nuclear zero-point motion. An optional mismatch-based interface template consistent with HPA
phase thermodynamics is recorded in Appendix [B} specifying and auditing concrete models for
D, and Spy is a natural next step.

A Audit table and reproducibility notes

A.1 Audit table: closed layer versus interface versus interpretation

Layer Content used in this paper

Closed-theory 05/06 scan-readout interface (Axioms ; discrepancy defini-
tions; geometric impedance and phase-volume axioms (Sections [3-H4]);

theorem-level values agelo =473 + 7% + 7 and pgeo = 67°.

Interface Matching inputs s, = exp(Aa~!) and Sy = Mexp/Mgeo, treated as ex-
plicit low-parameter interfaces to CODATA [5.|17].

Interpretation Atomic-unit scaling, BO hierarchy, and the stability-window an-
chors used to interpret (@geo,flgeo) in chemistry language. An op-
tional mismatch-based interface template is recorded separately in Ap-

pendix

A.2 Reproducible scripts

This paper directory includes a small helper script:

e scripts/compute_constants.py: computes age}) and figeo and compares to CODATA
central values (as recorded in [5]).

The scripts are written to be readable and auditable rather than maximally optimized.

B An optional interface template: phase stabilization under fi-
nite readout

This appendix records an interface-level model that connects the scan-readout viewpoint to

chemistry language (bonding, reactions, and free-energy descent). It is not used in the closed-

theory derivations of (qgeo, flgeo), NOT in the stability and scaling arguments of the main text; it
is included as a constrained, falsifiable interface consistent with HPA phase thermodynamics.
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B.1 A minimal mismatch-augmented functional

Let R denote nuclear coordinates (collectively). Let ¢ be an electronic state normalized on the
electronic Hilbert space at fixed R. Define the functional

Flb; R] := (| Heou(em; R)[) + ADe[t; R — T, Spelisel, (37)

where -FICoul is the standard Coulomb electronic Hamiltonian, D, is a resolution-dependent
mismatch penalty, and Sp¢ is a phase-friction entropy proxy (e.g. discrepancy-based) [11]. For
fixed R, define the corresponding effective surface

Eea(R) = inf 7 [v); R]. (38)

In the formal limit A — 0 and when the entropy term is negligible, Fog reduces to the standard
BO surface used in quantum chemistry.

B.2 Bonding and reaction direction (interpretation)

In standard chemistry language, a bond forms when the electronic energy is lowered by delocal-
ization and exchange at an intermediate nuclear separation, producing a minimum in Ego(R).
In the HPA interface language, the same phenomenon can be phrased as:

« Bond formation: reconfiguration that lowers the total protocol cost by stabilizing phases
(reducing mismatch accumulation) under finite readout.

¢ Reaction direction: evolution toward configurations that decrease the effective func-
tional , aligning with a free-energy descent structure but expressed via phase-friction
entropy and mismatch penalties [11},27].

The purpose of is falsifiability: once a concrete D. and Sy are specified, the implied
corrections to molecular levels must exhibit structured parameter dependence tied to readout
resolution and discrepancy, rather than arbitrary higher-order operators.

B.3 A minimal computable toy choice (for falsifiability bookkeeping)

To make (37) operational without committing to a full microscopic derivation, we record a
minimal interface that is explicit, low-parameter, and auditable:

1

o Choose a finite readout depth N associated with resolution ¢ (e.g. N ~ ¢~ as a book-

keeping proxy).
o Let the scan orbit be z,, = 29 + nv (mod 1) from Axiom
o Define a phase-friction proxy by Spt(N) = kp En with Ey = ND} as in Section
e Define a mismatch penalty as a scalar multiple of the same mismatch accumulation,
D, := En,

so that the interface correction is controlled by a single effective coefficient (A — T kp) at
fixed (e, N).

This minimal choice fixes a concrete residual template so that any spectroscopy-facing compar-
ison can be phrased in terms of an explicit mismatch variable Ey rather than an unspecified
functional; more detailed interfaces should reduce to an equivalent low-parameter form at leading
order.
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