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Abstract

Life is often described as an emergent far-from-equilibrium structure sustained by chem-
ical dissipation. In the HPA–Ω program, we adopt a strict layer discipline: the ontic layer
is a global unitary scan, while irreversibility and thermodynamic entropy arise operationally
from finite-resolution scan–projection readout [1–4]. This paper proposes a computable and
auditable definition of life in that interface language: life is a predictive active error-
correction (AEC) system. Its core function is to use information acquisition, internal
modeling, and feedback control to reduce its own phase-friction entropy production (relative
to a passive baseline) by exporting dissipation to external waste channels.

In arithmetic statistical mechanics (ASM) [4], phase friction over a length-N window
is certified by star discrepancy D∗

N of the induced phase-point set, with accumulated mis-
match EN := ND∗

N and the phase-friction entropy certificate Spf(N) := kBEN . A geometric
Landauer principle [5,6] together with information-thermodynamic bounds [7,8] yields neces-
sary survival inequalities: Ḟpred ≤ kBTc İpred and Ḟpred > Ẇdiss, hence İpred > Ẇdiss/(kBTc).
We define predictive efficiency ηpred := Ḟpred/Ẇdiss and recast genetic coding, homeostasis,
and evolution as multi-scale strategies that optimize ηpred under readout and architectural
constraints. Finally, we propose a falsifiable control-law hypothesis for biological rhythms:
to resist low-order phase locking, adaptive coupling ratios should be biased toward badly-
approximable irrational numbers, with the golden branch φ−1 as the Hurwitz extremal can-
didate [9–11].

Keywords: HPA–Ω; arithmetic statistical mechanics; phase friction; active error correc-
tion; reverse compilation; predictive information rate; geometric Landauer principle; coupled
oscillators; golden ratio; computational teleology.

Layer discipline and conventions. Unless otherwise stated, log denotes the natural loga-
rithm and “mod 1” refers to reduction in R/Z ∼= T. “Ontic” refers to the global unitary-scan
layer, while “operational” refers to finite-resolution readout and implementation constraints. We
use N for finite-window length and reserve N for computational lapse.

Layered audit rule. We separate a mathematical layer (definitions and computable protocol-
level statements, such as discrepancy-based certificates and information-thermodynamic bounds)
from a biological identification layer (interface mappings to concrete biochemical or physiological
mechanisms, stated in a falsifiable form). Appendix G records a shared interface template that
connects stable-sector descriptions (stability selection under protocol constraints) with AEC
descriptions (active suppression of mismatch relative to a passive baseline).
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1 Introduction: from “negative entropy” to phase friction, from
fitness to predictive efficiency

Schrödinger famously characterized life as “feeding on negative entropy” [12]. The statement
is operationally correct—living systems are open and must dissipate—but it does not by it-
self answer a sharper question: what is life, as a physical mechanism, in a theory where the
ontic microdynamics is unitary and therefore reversible? Standard thermodynamics can quan-
tify entropy production, yet it treats irreversibility at the operational level via coarse graining
and macroscopic state variables [13]. The HPA–Ω program instead locates irreversibility at a
specific interface: finite-resolution scan–projection readout [1–3]. In this view, “temperature,”
“probability,” and entropy increase are not ontic primitives but operational consequences of the
readout channel.

From readout mismatch to phase friction. Arithmetic statistical mechanics (ASM) makes
this interface explicit by identifying a computable mismatch certificate between a continuous
phase orbit and discrete readout statistics [4]. For a Weyl scan with slope α, the readout induces
a finite point set in [0, 1); the star discrepancy D∗

N quantifies the worst-case deviation from
uniformity over a length-N window, and the accumulated mismatch EN := ND∗

N defines the
operational phase-friction entropy certificate Spf(N) := kBEN . The key structural bifurcation
is arithmetic: rational slopes lock into finite periodic orbits with linear mismatch growth, while
badly-approximable irrational slopes admit logarithmic mismatch growth and are maximally
anti-locking in the Hurwitz/Markov sense [9, 14].

Stable sectors and correction as two faces of the same interface. Finite-resolution
readout induces symbolic words and therefore admits a complementary viewpoint in which
explicit protocol constraints select a stable visible sector (a compressed type set) from a larger
microstate alphabet. The present manuscript emphasizes the control-theoretic dual: rather
than assuming stability as a primitive, an agent maintains stability by predictive modeling and
feedback that reduce mismatch relative to a passive baseline. Appendix G records a protocol-
level dictionary connecting these two languages (stability selection and active correction) within
the same layered audit rule [15,16].

Life as predictive active error correction (AEC). Once irreversibility is tied to a concrete
mismatch mechanism, a minimal engineering fact becomes unavoidable: long-lived low-entropy
structure requires continuous repair. This paper proposes a strict operational definition: life is
a predictive AEC subsystem that reduces its own phase-friction entropy production rate relative
to a passive baseline by acquiring information, maintaining an internal model, and applying
feedback, while paying the required dissipation cost. This definition does not invoke metaphysical
teleology; rather, it derives an engineering teleology from readout constraints and information
thermodynamics: a living system must keep a positive margin between predictive free-energy
gain and dissipation required for repair.

Main contributions.

• We formulate an auditable interface definition of life/agency in HPA–Ω as predictive active
error correction against readout-induced phase friction (Section 4).

• We derive necessary survival inequalities from a geometric Landauer principle and information-
thermodynamic bounds, and introduce predictive efficiency as an evolutionary performance
metric (Section 5).
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• We propose a falsifiable control-law hypothesis for biological rhythms: adaptive coupling
ratios should be biased toward badly-approximable irrationals, with the golden branch as
the extremal anti-locking candidate (Section 7).

• We give concrete experimental/data-analysis interfaces (Section 11) and provide minimal
reference implementations for computing the core certificates and statistics (Appendix H).

Scope and posture. This manuscript does not claim to derive terrestrial biochemistry from
first principles. Instead, it provides a layered interface language that constrains what any sus-
tainable “life-like” subsystem must do in a scan–projection universe: it must implement pre-
dictive control at a sufficient information rate and at a sufficient dissipation budget. Biological
chemistry is then a particular high-performance implementation of that control problem.

2 Readout-induced entropy and the necessity of active repair

2.1 Scan–readout two-layer structure and Weyl complementarity

The HPA–Ω axioms separate an ontic unitary scan from an operational readout interface [1–
3]. In the minimal model, the scan and the pointer phase form a Weyl pair (Uscan, V ) with
commutation relation

UscanV = e2πiα V Uscan, α ∈ (0, 1) \ Q. (1)

In the standard representation on L2(T), the scan induces an irrational rotation orbit [17]

xn = x0 + nα (mod 1), n ∈ N, (2)

while the readout extracts only finite-resolution statistics from that orbit. Because Uscan and V
do not commute, finite-resolution readout cannot access “time” (scan index) and “phase” arbi-
trarily sharply at the same time; operational irreversibility is therefore an interface phenomenon
rather than an ontic one.

Finite-resolution readout. Operationally, we model readout as a finite-resolution instru-
ment or POVM {E(ε)

k } indexed by a resolution parameter ε > 0, with ∑k E
(ε)
k = 1 [18]. Each

outcome corresponds to a coarse window w
(ε)
k over the pointer phase, inducing a CPTP map

from the ontic state to an effective classical distribution. The exact choice of kernel is part
of the experimental protocol; the key point is structural: finite resolution injects a systematic
mismatch between the continuous orbit and discrete distinguishable outcomes.

2.2 Arithmetic statistical mechanics: discrepancy and accumulated mismatch

Given the induced phase points {x1, . . . , xN } ⊂ [0, 1), define the empirical distribution function

FN (a) := 1
N

#{1 ≤ n ≤ N : xn < a}, 0 ≤ a ≤ 1, (3)

and the star discrepancy
D∗

N := sup
0≤a≤1

∣∣FN (a) − a
∣∣. (4)

The discrepancy measures the worst-case deviation between the readout-induced finite sample
and the ideal uniform reference on [0, 1). ASM uses the accumulated mismatch

EN := ND∗
N (5)
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as a protocol-auditable certificate of readout inconsistency accumulation [4, 14, 19]. The phase-
friction entropy certificate on a length-N window is defined as

Spf(N) := kBEN . (6)

This is not a claim that all thermodynamic entropy reduces to one-dimensional discrepancy;
rather, it provides a minimal computable certificate that is robust under protocol composition
and captures the key arithmetic bifurcation (rational locking vs irrational spreading).

Why star discrepancy is the natural certificate. Star discrepancy controls worst-case
readout deviations for all threshold-type coarse measurements, and it also controls integration
error for bounded-variation observables via the Koksma–Hlawka inequality [14, 19]: for any
f : [0, 1) → R of bounded variation V (f),∣∣∣∣∣ 1

N

N∑
n=1

f(xn) −
∫ 1

0
f(x) dx

∣∣∣∣∣ ≤ V (f)D∗
N . (7)

Thus D∗
N is an auditable, protocol-level upper bound on worst-case readout bias across a large

class of coarse observables. Moreover, in one dimension the discrepancy over all intervals is
controlled by star discrepancy up to a universal factor (e.g. DN ≤ 2D∗

N ) [14], so D∗
N is a

sufficient certificate at the level of order-of-magnitude entropy production.

2.3 A “third-law template”: zero friction is unattainable without locking

Discrepancy theory implies a stark dichotomy for Kronecker orbits (2) [9,14]. If α is rational, the
orbit is periodic, and mismatch accumulates linearly. If α is badly approximable (equivalently:
its continued-fraction partial quotients are bounded), discrepancy is controlled and EN grows
only logarithmically.

Proposition 2.1 (Rational locking yields linear mismatch growth). If α = p/q ∈ Q in lowest
terms, then the orbit (2) visits only q distinct points and one has the universal lower bound

D∗
N ≥ 1

2q , EN ≥ N

2q (8)

for infinitely many N (in particular for multiples of q) [14,19].

Theorem 2.2 (Continued-fraction certificate for star discrepancy). Let α ∈ (0, 1) \ Q have
continued fraction expansion α = [0; a1, a2, . . . ] with convergent denominators (qm)m≥0. For
any N ∈ N, choose m such that qm ≤ N < qm+1. Then for the Kronecker sequence (2) one has
the explicit bound [14,19]

D∗
N ≤ 1 +∑m

i=1 ai

N
, equivalently EN ≤ 1 +

m∑
i=1

ai. (9)

Corollary 2.3 (Explicit logarithmic mismatch bound for bounded partial quotients). If α has
bounded continued-fraction partial quotients, i.e. ai ≤ A for all i, then for all N ≥ 1,

EN ≤ 1 +Am(N) ≤ 1 +A
⌈
logφ

(√
5N

)⌉
, (10)

where m(N) is the unique index such that qm(N) ≤ N < qm(N)+1 and φ = (1 +
√

5)/2. In
particular, EN = O(logN) with an explicit constant.

Corollary 2.4 (Golden-branch bound (fully explicit)). For the golden branch α = φ−1 =
[0; 1, 1, 1, . . . ], the convergent denominators are Fibonacci numbers qm = Fm+1, hence for all
N ≥ 1,

EN ≤ 1 +
⌈
logφ

(√
5N

)⌉
. (11)
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In this sense, “zero phase friction” is not a stable operational limit: pushing the system
toward exact periodicity (rational locking) collapses openness into a finite cycle and creates
a linear mismatch channel. For long-term sustainability, a system must instead operate in
the badly-approximable regime where mismatch is unavoidable but controllable. The golden
branch α = φ−1 is extremal in the Hurwitz/Markov sense and provides a canonical anti-locking
reference [9].

3 From mismatch certificates to entropy production rates and
computational thermodynamics

Section 2 defined phase friction over a finite window via discrepancy and accumulated mismatch.
To connect that certificate to biological maintenance costs, we need rate-level quantities.

3.1 Mismatch density and phase-friction entropy production

Let τ denote intrinsic scan time (iteration count). In a spatially extended setting, let x denote
a location or subsystem label. Fix a readout phase coordinate u ∈ [0, 1) (constructed from the
experimental readout protocol) and a window length N . At external time t, let {ut,1, . . . , ut,N }
be the N phase points produced by the protocol over a window ending at t, and define the
windowed certificates D∗

N (t), EN (t) := ND∗
N (t), and

S
(N)
pf (t) := kBEN (t). (12)

The phase-friction entropy flow is then defined by a finite-difference rate:

dSpf
dt (t) := lim

∆t→0
lim

N→∞

S
(N)
pf (t+ ∆t) − S

(N)
pf (t)

∆t , (13)

with N and ∆t chosen by the protocol and then smoothed at the analysis layer. This expression
should be read as an analysis-layer idealization, not as a requirement to take literal limits in
empirical work. Operationally, one fixes a readout uniformization map y 7→ u ∈ [0, 1), a window
length N , a step size ∆t, and a smoothing operator, and then works with finite estimators
extracted from EN (t). All cross-system comparisons are meaningful only under matched protocol
choices (same uniformization, N , ∆t, and smoothing). Section 11 records concrete data-analysis
pipelines and decision criteria built from these finite estimators. In intrinsic scan time, we define
the mismatch density (phase-friction entropy production density) as

σ(x, τ) := 1
kB

dSpf(x; τ)
dτ , (14)

so that
dSpf
dτ = kB σ(x, τ). (15)

Operationally, σ is a rate extracted from the windowed mismatch certificate (12) via (13); it is
not a phenomenological noise parameter.

3.2 Computational lapse and externally observed entropy flow

HPA–Ω introduces a computational lapse N (x) determined by local routing overhead κ(x) in
the implementation dictionary [2, 20,21]. Relative to a reference overhead κ0, define

N (x) := κ0
κ(x) . (16)
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Operationally, N is the protocol-level rescaling between external time t and local scan time τ :

dτloc(x) = N (x) dt. (17)

Combining (15) with (17) yields the externally observed entropy-flow law

dSpf
dt = dSpf

dτloc

dτloc
dt = kB σ(x, τ) N (x). (18)

It is convenient to introduce the external-time mismatch rate

Σ(x, t) := σ(x, τ) N (x), (19)

so that dSpf/dt = kB Σ(x, t). For biological systems, Eq. (18) supplies a unifying interface:
different tissues and environments can exhibit different effective computational lapse profiles
(estimated from routing/transport/control overhead proxies), which rescale the entropy flow
observed per unit external time.

3.3 Computational temperature and the cost of control

In information thermodynamics, temperature sets the energetic scale of information processing
costs and feedback advantages [5,7]. HPA–Ω introduces an effective computational temperature
Tc associated to the readout/implementation interface [4]. Operationally, Tc is the coefficient
that converts erased information into a minimal work/heat scale at the readout interface (Lan-
dauer scale): erasing ∆I nats costs at least kBTc ∆I (up to additional geometric impedance),
and erasing one bit costs at least kBTc ln 2. This Tc need not equal a physical bath temperature;
rather, it is the operational temperature relevant for control and erasure at the interface. In
the next sections we use Tc to formulate necessary inequalities for predictive control to offset
phase-friction dissipation.

4 Operational definition: life as predictive active error correc-
tion

Phase friction is unavoidable at finite resolution (Section 2). Therefore, any subsystem that
maintains stable low-entropy structure over long times must implement continuous repair. This
motivates an operational definition of life that is compatible with the second law and is auditable
at the protocol level.

4.1 Agent definition at the readout interface

Definition 4.1 (Agent as predictive active error correction (AEC)). Fix a finite-resolution
readout protocol and an external environment. Let S be an open subsystem with a bounded
computational flux budget E, understood operationally as an upper bound on the sustained average
control power available for measurement, modeling, and feedback. We call S an agent if there
exist internal state variables M (a memory/model) and feedback operations U such that:

1. (conditional information acquisition) the readout channel provides conditional infor-
mation about the environment, yielding a nontrivial mutual information between M and
environment-dependent readout outcomes;

2. (predictive internal model) the internal dynamics maintains a predictive model of future
readout outcomes (possibly coarse-grained), so that M carries information about future
readout statistics;
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3. (active reduction of phase friction) applying U reduces the subsystem’s phase-friction
entropy production rate relative to a passive baseline (same protocol and environment, but
with feedback disabled), i.e.

Ṡ
(active)
pf < Ṡ

(passive)
pf (20)

on a sustained time interval, while respecting the budget E.

Remark 4.2 (Life as an AEC phase). Definition 4.1 is intentionally minimal and interface-level:
it does not identify life with a particular chemistry. In this manuscript we use “life” as shorthand
for an AEC-capable agent that operates stably over long time scales, i.e. one that can maintain
low-entropy structure despite persistent phase friction. The definition is compatible with standard
thermodynamics: an agent does not destroy entropy; it redirects dissipation into waste channels
while protecting internal degrees of freedom. In practice, the inequality in Definition 4.1 is
tested using the mismatch-rate estimator ΣN (t) derived from windowed discrepancy certificates
(Section 3.1).

4.2 Reverse compilation: prediction as arithmetic compression, control as
phase correction

In the Ω implementation dictionary, local unitary update rules can be compiled into nearest-
neighbor circuits, and the required depth defines routing overhead κ(x) and lapse N (x) (Sec-
tion 3.2). We use “forward compilation” for the map from dynamics to implementation cost. The
agent operation is the reverse direction: given limited internal bits, infer what future readout
will produce and pre-configure corrective actions.

Reverse compilation (interface description). At the operational layer, prediction is the
compression of future readout words under a finite alphabet and finite resolution. Control is the
implementation of phase corrections compatible with the Weyl structure (1). Together they aim
to reduce mismatch density σ(x, τ) and therefore reduce the phase-friction entropy flow (18).

Canonical coding in the golden branch. For irrational rotations, canonical codings (Os-
trowski, Zeckendorf/Fibonacci in the golden branch) provide a natural coordinate system for
readout compression and for multi-scale stabilization [1, 4, 21, 22]. In this sense, “life is not a
collection of chemical reactions”: chemistry is a physical substrate, while life is the algorithmic
phase of reverse compilation—predicting future readout and actively correcting phase-friction
mismatch.

5 Thermodynamic bounds: geometric Landauer, predictive gain,
and a survival inequality

An AEC agent must pay for error correction; otherwise Definition 4.1 would contradict the
second law. This section summarizes the relevant lower bounds and yields a necessary survival
inequality in terms of predictive information rate.

5.1 Geometric Landauer principle: correction costs depend on architecture

Landauer’s principle bounds the minimal heat generated by logically irreversible operations
such as erasure [5, 6]. In HPA–Ω, the relevant operational temperature is the computational
temperature Tc (Section 3.3). Moreover, erasure and re-encoding occur on a constrained physical
network (locality, transport, routing), so there is an additional architecture-dependent cost [4]:

Werase ≥ kBTc ln 2 + Zgeom. (21)
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Here Zgeom is a geometric impedance term that accounts for routing overhead, localization
constraints, and reconfiguration costs. For biology, Eq. (21) means that the energetic price of
repair depends not only on bit counts but also on physical organization: transport distances,
congestion, connectivity topology, and control latency all affect the minimal dissipation required
for maintaining reliable structure.

5.2 Predictive gain upper bound from information thermodynamics

Measurement–feedback thermodynamics bounds the maximum work/free-energy advantage ob-
tainable from information [7, 8]. At the operational level, we write the predictive free-energy
gain rate as Ḟpred and the predictive mutual information rate between internal state M and
future readout outcomes as İpred. Then a generic bound of the form

Ḟpred ≤ kBTc İpred (22)

holds when İpred is measured in nats per unit time (our convention log = ln). If İpred is measured
in bits per unit time, the corresponding bound is

Ḟpred ≤ kBTc ln 2 İ(bits)
pred . (23)

Eq. (22) makes “prediction” an accountable resource: without sufficient predictive information
rate, no agent can extract a sustained free-energy advantage to fund repair.

5.3 A necessary survival inequality and predictive efficiency

Let Ẇdiss denote the dissipation rate required to counter phase friction and maintain structure
(including the geometric impedance costs implicit in Zgeom). A necessary condition for sustained
existence of the AEC phase is that predictive gain exceeds dissipation:

Ḟpred > Ẇdiss. (24)

Minimal dissipation imposed by phase-friction entropy flow. Independent of any par-
ticular biological mechanism, if phase-friction entropy is produced at rate dSpf/dt and is exported
through a channel characterized by computational temperature Tc, then the second law requires
a minimal heat/work outflow of order Tc dSpf/dt. Using Eq. (18) and the definition (19), this
yields the protocol-level lower bound

Ẇdiss ≥ Tc
dSpf
dt = kBTc Σ(x, t). (25)

We interpret this as a Clausius-type bound at the readout interface [13,23].

Information-rate threshold (explicit form). Combining (22), (24), and (25) yields the
predictive-information-rate threshold

İpred >
Ẇdiss
kBTc

≥ Σ(x, t). (26)

We define the predictive efficiency

ηpred := Ḟpred

Ẇdiss
. (27)

In this interface language, biological “purpose” becomes a computable engineering objective:
maximize ηpred under resource constraints so that ηpred > 1 is sustainable over the relevant time
scales.
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6 Multi-scale realizations of AEC: from cells to organisms
The AEC definition (Section 4) is an interface statement. This section maps it to familiar
biological mechanisms as concrete realizations of information acquisition, predictive modeling,
and feedback correction.

6.1 Cellular scale: homeostasis as error-correction budget management

At the cellular scale, the three elements of Definition 4.1 have direct correspondences:

• Information acquisition. Receptor signaling, metabolic sensing, and damage sensing
are finite-resolution readouts with thresholds, noise, and discretization. They produce
conditional information about external conditions and internal state [24].

• Internal model. Gene-regulatory networks and epigenetic states encode compressed pri-
ors mapping environments to phenotypes; operationally, they approximate future readout
distributions under finite resources [24].

• Feedback correction. Proteostasis (folding quality control, chaperones, ubiquitin–proteasome
degradation), DNA replication proofreading and repair, membrane-potential maintenance,
and stress responses are all mechanisms that reduce effective mismatch density σ(x, τ) by
actively exporting dissipation to waste heat and waste material [24–27].

The HPA–Ω framing emphasizes that these processes are not optional “luxuries”; they are forced
by the inevitability of phase friction at finite resolution.

6.2 Organism scale: behavior and nervous systems as higher-level reverse
compilers

At the organism scale, reverse compilation (Section 4.2) appears as predictive perception and
action:

• Sensorimotor loops. Sensory streams provide conditional information, internal circuits
encode predictive models of future sensory outcomes, and actions implement feedback that
shapes future readout [28,29].

• Learning and memory. Learning increases predictive mutual information rate İpred
by compressing regularities, while memory maintenance and updating incur geometric
Landauer costs that depend on circuit architecture (Eq. (21)) [29].

• Behavioral teleology. Strategy selection can be reinterpreted as maximizing long-run
predictive efficiency ηpred (Eq. (27)) under metabolic and architectural constraints.

This does not replace evolutionary fitness; it provides a physical decomposition of fitness into
an information-rate budget and a dissipation budget, yielding a measurable interface between
biology and readout thermodynamics.

7 Golden-branch stabilizer: an anti-locking control-law hypoth-
esis for biological rhythms

If phase friction is tied to arithmetic mismatch, then a dominant failure mode of adaptive oscil-
latory control is low-order phase locking: rational resonances generate short pseudo-periods and
amplify mismatch accumulation (Proposition 2.1). Coupled-oscillator theory organizes locking
near rationals by Arnold tongues, with low-denominator resonances typically having the widest
tongues and therefore being easiest to lock into at fixed noise/coupling strength [10,11].
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7.1 Number-theoretic reason: the golden branch is maximally badly approx-
imable

For any irrational α, Diophantine approximation studies the quality of rational approximations
p/q. Badly-approximable numbers are those with a uniform lower bound of order 1/q2. The
golden branch α = φ−1 = (

√
5 − 1)/2 is extremal: among irrationals it maximizes the uniform

constant in the 1/q2 bound (Hurwitz/Markov extremality) [9]. This makes it the canonical
anti-locking ratio under finite tolerance.

7.2 A quantitative anti-locking index

Fix an operational locking tolerance δ > 0 that summarizes noise level, coupling strength, or
measurement resolution. Define the resonance susceptibility index

Qδ(α) := min
{
q ∈ N : ∃ p ∈ Z s.t.

∣∣∣∣α− p

q

∣∣∣∣ < δ

}
. (28)

If Qδ(α) is large, the system must reach high-order resonances (large denominator) before it can
lock within tolerance δ.

Proposition 7.1 (Diophantine lower bound for the anti-locking index). If α is badly approx-
imable, then there exists c(α) > 0 such that∣∣∣∣α− p

q

∣∣∣∣ ≥ c(α)
q2 for all p

q
∈ Q (29)

[9]. For any tolerance δ > 0, this implies

Qδ(α) ≥
⌈(

c(α)
δ

)1/2⌉
. (30)

In particular, for α = φ−1 one can take c(φ−1) = 1/
√

5, yielding the sharp bound

Qδ(φ−1) ≥
⌈( 1√

5 δ

)1/2
⌉
. (31)

7.3 Operational identification of the tolerance δ

The tolerance parameter δ is not a metaphysical knob; it is an operational summary of how
wide low-order resonances are under noise and coupling. In standard phase-reduction theory,
two weakly coupled oscillators admit an Adler-type phase-difference equation [10,11]. For a near
p:q resonance, define the resonant phase ψ := pθ1 −qθ2; then the reduced dynamics has the form

ψ̇ = ∆p:q +Kp:q g(ψ) + noise, (32)

where ∆p:q := pω1 − qω2 is the detuning and Kp:q is an effective coupling amplitude. In the
noise-free case, locking occurs when |∆p:q| is below an order-Kp:q threshold. Converting detuning
into ratio space, with α := ω1/ω2 one has∣∣∣∣α− p

q

∣∣∣∣ = |∆p:q|
q ω2

≲
Kp:q
q ω2

, (33)

which provides an operational route to estimate δ (or a q-dependent tolerance δp:q) from inferred
coupling strengths and noise levels.
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7.4 Null baseline: typical scaling of Qδ for random ratios

To turn Prediction P1 into a quantitative statistical test, one needs a baseline for Qδ in the
absence of selection pressure. If α is drawn uniformly from (0, 1), then Qδ(α) ≤ Q iff α lies
within δ of some reduced rational p/q with 1 ≤ q ≤ Q. A simple union bound yields

P
(
Qδ(α) ≤ Q

)
≤ 2δ

Q∑
q=1

ϕ(q), (34)

where ϕ(q) is Euler’s totient function counting reduced residues. Using the classical summatory
estimate ∑q≤Q ϕ(q) = 3

π2Q
2 +O(Q logQ) [30], one obtains the asymptotic baseline

P
(
Qδ(α) ≤ Q

)
≲

6
π2 δ Q

2 (δQ2 ≪ 1), (35)

so the typical scale of Qδ under the null is Qδ ≍ δ−1/2. This suggests a scale-free normalization
for cross-system comparison:

Zδ(α) :=
√
δ Qδ(α). (36)

At the leading-order null scale, the threshold 6
π2 δQ

2 ∼ 1 corresponds to Zδ ∼ π/
√

6. Pre-
diction P1 therefore becomes a concrete tail test: at matched δ, biological data should show
systematically larger Qδ than the δ−1/2 null scaling.

7.5 Prediction P1: statistical bias of rhythm ratios toward anti-locking irra-
tionals

We can now state a falsifiable control-law hypothesis.

Remark 7.2 (Control-law hypothesis (anti-locking selection pressure)). Consider an adaptive
biological oscillator network whose primary failure mode is low-order phase locking (synchrony
collapse, limit-cycle trapping, energy blow-up due to repeated mismatch accumulation). If selec-
tion pressure favors operating points that remain unlockable within the effective tolerance δ, then
inferred effective coupling ratios α should be biased toward badly-approximable irrationals and
should exhibit systematically larger Qδ(α) than appropriate randomized baselines. The golden
branch is the Hurwitz extremal candidate and therefore a natural reference point.

This hypothesis is not a claim that “the golden ratio is everywhere”; it is a task- and
tolerance-dependent statistical prediction. Section 11 gives a concrete data-analysis pipeline
and a reproducible computation of Qδ (Appendix H).

8 Genetic information as readout arithmetic: discretization,
coarse graining, and correction

HPA–Ω is basis-independent at the interface level: “scan–projection readout” is a structural
constraint, not a particular physical substrate. This motivates a biological interface hypothesis:
persistent biological information systems may exhibit architectures that look like finite-resolution
readout plus active correction.

8.1 Interface hypothesis: genetic systems as finite-resolution readout–correction
channels

Remark 8.1 (Interface hypothesis for genetic coding). The genetic alphabet and its decoding
pipeline are modeled as a finite-resolution readout map from a large microscopic configuration
space (molecular conformations, binding fluctuations, chemical noise) to a discrete executable
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output space (amino-acid sequences and regulatory actions). Degeneracy of the code (many
codons mapping to one amino acid) is a coarse-graining that increases robustness under read-
out noise, while proofreading and repair mechanisms provide active correction to maintain low
effective mismatch [24–27,31].

We treat this as an interface-level mapping whose scientific content is carried by operational
predictions and measurable proxies. It does, however, align with three basic observations:

• Finite alphabet with combinatorial capacity. A small discrete alphabet supports
large effective state spaces through composition (e.g. triplet codons).

• Degeneracy as controlled coarse graining. Many-to-one mappings (including wobble
pairing) trade fine detail for robustness [31].

• Correction is not free. Proofreading and repair require energy and physical transport;
therefore their minimal costs must include a Landauer scale and an architecture-dependent
geometric impedance (Eq. (21)).

8.2 Genetic memory as compressed predictive prior

In the AEC language, genetic information is not a static “blueprint” but a compressed prior
that supports prediction and control across time: it constrains the space of internal models M
that an organism can instantiate and maintain under finite resources. Maintenance of that prior
(replication fidelity, error correction, epigenetic stabilization) consumes dissipation budget Ẇdiss
and therefore competes with other uses of energy such as growth and reproduction. This makes
genetics part of the same optimization problem as behavior: allocate limited dissipation and
limited predictive information capacity to sustain ηpred in the environment.

9 Evolution as computational teleology: selection as predictive-
efficiency optimization

In the HPA–Ω program, “teleology” is not a metaphysical goal but an interface-level resource
statement: under finite readout and finite implementation budgets, stable histories must bal-
ance expressive openness against readability/auditability [21]. For living systems, this balance
appears locally as a requirement to avoid both trivial periodic locking (loss of openness) and
unstructured noise (loss of readability/predictability).

9.1 A protocol-stable selection template

Protocol-stable period data and computational teleology propose a generic selection template:
in a finite time horizon N , define an auditable cost JN (θ) capturing accumulated mismatch (or
an explicitly defined estimator derived from it) and a complexity/implementation cost Ccomp(θ)
capturing geometric impedance and maintenance burdens [32]. A minimal teleological dynamics
takes the form of a dissipative gradient flow

θ̇ = −∇θ

(
JN (θ) + β Ccomp(θ)

)
, (37)

where θ is a vector of protocol or architecture parameters and β is an effective Lagrange multiplier
summarizing environmental scarcity and constraints.
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9.2 Biological interpretation

Equation (37) becomes biologically interpretable under an interface mapping:

• θ: heritable architecture parameters (regulatory topology, metabolic allocation, repair
intensity, oscillator coupling ratios, morphology).

• JN (θ): finite-lifetime accumulated mismatch (phase-friction certificate, or an explicitly
defined estimator derived from it) under the environment and readout protocol.

• Ccomp(θ): energetic/architectural burden (geometric impedance, transport cost, memory
maintenance, control latency).

• β: environmental constraint strength (resource scarcity, stress, noise level).

Natural selection can then be seen as pushing populations toward protocols/architectures that
keep mismatch auditable and bounded within the finite horizon, without exceeding the dissi-
pation budget required for maintenance. In the AEC framing, this is equivalent to improving
long-run predictive efficiency ηpred.

10 Openness and undecidability: why life must be interactive
prediction

Computational teleology emphasizes a structural boundary: in universal computational sub-
strates (including universal QCA-like dynamics), many future properties are undecidable or in-
feasible to predict within bounded resources [21,33,34]. Therefore, biological prediction cannot
be “full simulation” of the environment; it must be interactive, approximate, and continuously
updated.

Online correction near the undecidability boundary. In the AEC language, a system
maintains survival only if it sustains the inequality (24). When environmental novelty exceeds
the compressive capacity of the internal model, the predictive information rate İpred drops. To
restore viability, the agent has limited options:

• increase exploration/measurement effort (raising dissipation and possibly increasing İpred),

• simplify the task by lowering effective resolution (sacrificing precision to regain predictabil-
ity),

• reconfigure architecture (paying geometric Landauer costs) to support faster model up-
dating.

These options are precisely the trade-offs seen in biological adaptation: stress responses increase
metabolic costs, sensory systems adjust gain and resolution, and learning reorganizes circuits at
energetic expense. These are standard features of cellular and neural adaptation mechanisms
[24,29].

Intelligence as rapid model reconfiguration. Within this view, “intelligence” is not a
separate ontological entity; it is an AEC capability for rapid interactive model updates that
maintain ηpred when prediction degrades. This provides an interface-level explanation of why
living systems exhibit exploration, plasticity, and multi-scale correction: such features are forced
by readout constraints and by the presence of hard computational limits on prediction.
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11 Testable predictions and experimental/data-analysis proto-
cols

The appropriate empirical posture for HPA–Ω is to specify testable interfaces: statistical biases,
scaling laws, and protocol-level certificates that can be measured across systems. This section
gives three minimal, falsifiable templates aligned with the AEC definition.

11.1 Audit posture: bounded-complexity protocols

Each test below depends on explicit protocol choices: how a readout variable is mapped to a
phase coordinate (uniformization), how ratios and tolerances are inferred, which window length
N and step size ∆t are used, which smoothing operator is applied, and which surrogate/baseline
family is used for comparison. To avoid post-hoc freedom, these choices should be fixed a
priori or selected by a deterministic bounded-complexity rule from a finite admissible domain
(Appendix G, Definitions G.1–G.2). All reported effects should be stated relative to a baseline
that preserves the relevant sampling and noise structure of the measurement protocol.

11.2 P1: rhythm ratio bias and the anti-locking index Qδ

Data. Cross-species or cross-condition measurements of coupled biological rhythms (e.g. heart–
respiration, gait frequencies, circadian harmonics, neural band couplings), together with esti-
mates of noise levels and coupling strengths.

Pipeline.

1. Infer an effective frequency ratio α using standard phase-synchrony or coupled-oscillator
identification methods [10,11].

2. Estimate an operational locking tolerance δ from noise/coupling (or from empirical locking
width) using the detuning-to-ratio conversion (33).

3. Compute Qδ(α) as in Eq. (28) (Appendix H provides a reference implementation).

4. Compare the distribution of Qδ (or normalized Qδ relative to the Diophantine bound)
against appropriate baselines that preserve sampling and noise structure.

Decision criterion. If there is no anti-locking selection pressure, Qδ should not systematically
exceed baselines. If the control-law hypothesis holds (Remark 7.2), Qδ should be significantly
shifted upward and should exhibit an enhanced upper tail near the golden-branch extremum.

Audit form (baseline and rejection region). Fix an admissible protocol domain (win-
dowing, inference method, and surrogate family) and compute the scale-free score Zδ =

√
δ Qδ

(Eq. (36)) for each inferred coupling ratio. Let T be a pre-specified summary statistic of the
empirical Zδ sample (e.g. median or an upper-tail quantile). Generate a baseline distribution
of T using protocol-matched surrogates (e.g. time-shuffled or phase-randomized controls that
preserve power spectra and noise levels) and reject the no-bias hypothesis at level α if T exceeds
the (1 − α) baseline quantile.

11.3 P2: phase-friction certificate EN vs maintenance dissipation

Claim. Stronger AEC should manifest as lower effective mismatch density σ (or lower discrepancy-
based proxies such as D∗

N at matched scales) under comparable external perturbations, at the
cost of higher maintenance dissipation Ẇdiss.
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Operational proxies. Fix a readout variable y(t) (e.g. inter-event intervals, phase-difference
increments, or any scalar readout chosen by the protocol) and map it to a phase coordinate
u(t) ∈ [0, 1) by uniformization under a reference distribution:

u(t) := F̂
(
y(t)

)
, (38)

where F̂ is an empirically estimated CDF under matched baseline conditions. For a window of
N samples ending at time t, compute the star discrepancy D∗

N (t) of {ut,1, . . . , ut,N } and define

EN (t) := ND∗
N (t), S

(N)
pf (t) := kBEN (t). (39)

Define the external-time mismatch rate by a finite difference

ΣN (t) := EN (t+ ∆t) − EN (t)
∆t , (40)

which estimates Σ(x, t) after smoothing (Section 3.1).
For the dissipation side, use a protocol-matched estimate of maintenance power Pmaint(t) (e.g.

metabolic power minus external mechanical work, or ATP expenditure rates). In the minimal
closure where maintenance is dominated by exporting phase-friction entropy at temperature Tc,
the bound (25) gives

Pmaint(t) ≥ kBTc Σ(x, t), (41)
and with geometric impedance one expects an affine lower envelope

Pmaint(t) ≳ kBTc Σ(x, t) + Pgeom(t), (42)

where Pgeom aggregates architecture-dependent overhead terms (Section 5.1).

Decision criterion. Across matched conditions, systems with enhanced repair/control should
exhibit reduced ΣN at the relevant scale. For quantitative fitting, one can regress Pmaint against
ΣN to estimate kBTc as the minimal slope and diagnose additional intercept/overhead terms as-
sociated with Zgeom. To make this auditable, the window length N , step size ∆t, and smoothing
operator used to compute ΣN should be fixed (or selected by a bounded-complexity rule) and
reported alongside the fitted slope/intercept and their uncertainty under resampling.

11.4 P3: hierarchical relaxation and 1/f structure from Fibonacci/Zeckendorf
layering

HPA–Ω predicts that canonical multi-scale coding (Ostrowski/Zeckendorf hierarchies) can im-
print hierarchical time scales on readout-induced residuals [4]. If biological repair/relaxation
processes aggregate across a roughly logarithmic ladder of time scales, a mid-band 1/f spectrum
can appear as a robust template (with task- and protocol-dependent prefactors). This yields a
falsifiable interface: identify the relevant band, estimate the slope and prefactor, and test con-
sistency with hierarchical-ladder aggregation rather than with purely white-noise assumptions.
For background on 1/f phenomenology and spectral estimation practices, see e.g. [35].

11.5 Reference implementations

Appendix H includes minimal Python reference implementations for:
• logarithmic mismatch-growth compatibility for the golden branch vs linear growth for

rationals (Experiment A),

• a numerical illustration of the predictive-information-rate threshold (26) (Experiment B),

• computation of Qδ (Experiment C).
The scripts are provided for transparent reproducibility of the certificate computations and
threshold numerics used in the text.
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12 Conclusion
In the HPA–Ω framework, irreversibility and entropy production are operational consequences
of finite-resolution scan–projection readout rather than ontic randomness. Arithmetic statisti-
cal mechanics supplies a computable mismatch certificate (star discrepancy and accumulated
mismatch) that quantifies phase friction. Within that interface language, this paper proposed
a strict operational definition of life: life is a predictive active error-correction (AEC) phase—a
subsystem that acquires conditional information, maintains a predictive internal model, and ap-
plies feedback that lowers its own phase-friction entropy production relative to a passive baseline
while paying the required dissipation costs.

Information thermodynamics and a geometric Landauer principle yield a necessary inequal-
ity for sustained existence: predictive gain must exceed dissipation, implying a predictive
information-rate threshold. This turns “biological teleology” into an engineering objective:
maximize predictive efficiency under architectural constraints. We further proposed a falsifi-
able control-law hypothesis for adaptive rhythms: to resist low-order locking, effective coupling
ratios should be biased toward badly-approximable irrationals, with the golden branch as the
extremal anti-locking reference.

The result is a unified interface picture: genetics, homeostasis, learning, and evolution can
be reformulated as multi-scale strategies for sustaining predictive AEC against unavoidable
readout-induced phase friction.

A Appendix

B Symbols and minimal object table
• Uscan: unitary scan operator (ontic layer).

• V : pointer-phase unitary; (Uscan, V ) form a Weyl pair.

• α ∈ (0, 1) \ Q: scan slope for irrational rotation.

• xn = x0 + nα (mod 1): Kronecker orbit on [0, 1).

• D∗
N : star discrepancy of {x1, . . . , xN }.

• EN := ND∗
N : accumulated mismatch (audit certificate).

• Spf(N) := kBEN : phase-friction entropy certificate on a length-N window.

• τ : intrinsic scan time (iteration count).

• σ(x, τ) := 1
kB

dSpf(x;τ)
dτ : mismatch density (entropy production density in scan time).

• t: external time.

• κ(x): routing overhead (implementation cost).

• N (x) := κ0/κ(x): computational lapse.

• Tc: computational temperature (operational temperature at the interface).

• Werase: work required for erasure/re-encoding.

• Zgeom: geometric impedance term in geometric Landauer principle.

• Ḟpred: predictive free-energy gain rate achievable via measurement–feedback control.
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• İpred: predictive mutual information rate (internal state vs future readout).

• Ẇdiss: dissipation rate required for maintenance/repair against phase friction.

• ηpred := Ḟpred/Ẇdiss: predictive efficiency.

• Qδ(α): resonance susceptibility / anti-locking index at tolerance δ.

C From discrepancy to phase friction: key bounds and “locking
thermal death”

This appendix collects standard discrepancy facts used in Sections 2.2–2.3.

C.1 Star discrepancy and accumulated mismatch

For a point set {x1, . . . , xN } ⊂ [0, 1), the star discrepancy is

D∗
N = sup

0≤a≤1

∣∣∣∣ 1
N

#{xn < a} − a

∣∣∣∣ . (43)

If y1 ≤ · · · ≤ yN are the sorted points, one has the exact 1D formula

D∗
N = max

{
max

1≤i≤N

(
i

N
− yi

)
, max

1≤i≤N

(
yi − i− 1

N

)}
. (44)

The accumulated mismatch is EN := ND∗
N and the phase-friction entropy certificate is Spf(N) =

kBEN .

C.2 Badly-approximable slopes yield logarithmic mismatch growth

For Kronecker sequences xn = x0 + nα (mod 1), discrepancy bounds depend on Diophantine
properties of α [9, 14, 19]. The main quantitative certificate used in the text is Theorem 2.2: if
α = [0; a1, a2, . . . ] and qm ≤ N < qm+1, then

EN ≤ 1 +
m∑

i=1
ai. (45)

If ai ≤ A for all i, then EN ≤ 1 + Am(N), and since qm ≥ Fm+1 for every continued fraction
(because ai ≥ 1), one has the explicit bound

m(N) ≤
⌈
logφ

(√
5N

)⌉
, EN ≤ 1 +A

⌈
logφ

(√
5N

)⌉
, (46)

which makes the logarithmic mismatch-growth compatibility fully explicit. This is the controlled-
mismatch regime used as the operational “non-locking” phase.

C.3 Rational slopes yield linear mismatch growth

If α = p/q is rational, the orbit is periodic with period q. In particular, the empirical distribution
over [0, 1) cannot approach uniformity, and one has the universal bound

D∗
N ≥ 1

2q , EN ≥ N

2q (47)

for infinitely many N (including multiples of q). In the phase-friction interpretation, this cor-
responds to an operational “thermal death” by phase locking: mismatch accumulates linearly
because the readout repeatedly revisits the same finite orbit.
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C.4 Golden branch as the canonical extremum

The golden branch φ−1 is characterized by continued fraction coefficients ai ≡ 1, hence it
minimizes ∑m

i=1 ai for a given index m and maximizes the rate at which qm grows relative to that
sum. Together with Hurwitz/Markov extremality for Diophantine approximation constants [9],
this makes the golden branch a canonical arithmetic choice when the operational objective is to
delay low-order rational resonances under finite tolerance.

D Thermodynamic bounds for predictive AEC
This appendix summarizes the inequality chain used in Section 5. We emphasize that these are
necessary conditions at the interface level, not sufficient conditions for biological viability.

D.1 Predictive gain and mutual information rate

In measurement–feedback thermodynamics, information obtained about a system can be con-
verted into work or free-energy advantage, but the advantage is bounded by mutual informa-
tion [7, 8]. In its simplest form, one obtains inequalities of the type

⟨W ⟩ ≤ kBT I (48)

up to sign conventions and depending on whether W denotes extracted work or required work.
At the HPA–Ω interface we use the computational temperature Tc and consider a rate form:

Ḟpred ≤ kBTc İpred. (49)

The operational content is that predictive free-energy gain cannot exceed the energetic scale per
nat times the predictive information rate (our convention log = ln). If İpred is expressed in bits
per unit time, the corresponding bound acquires a factor ln 2.

D.2 Survival inequality and predictive efficiency

Let Ẇdiss be the dissipation rate required to resist phase friction and to maintain internal struc-
ture and model memory (including geometric impedance contributions). A necessary condition
for sustained AEC is a positive margin between predictive gain and dissipation:

Ḟpred > Ẇdiss. (50)

Combining the two inequalities yields the predictive information-rate threshold

İpred >
Ẇdiss
kBTc

. (51)

If the dominant maintenance burden is exporting phase-friction entropy at computational tem-
perature Tc, then the second law implies

Ẇdiss ≥ Tc
dSpf
dt = kBTc Σ(x, t), (52)

and hence İpred > Σ(x, t) (Eq. (26)). This motivates the predictive efficiency

ηpred := Ḟpred

Ẇdiss
. (53)
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E Geometric Landauer: why correction costs are architecture-
dependent

Landauer’s principle bounds the minimal dissipation for logically irreversible operations [5, 6].
HPA–Ω refines this statement by emphasizing that operational information processing happens
on constrained architectures (locality, routing, finite signal speed) and therefore incurs an addi-
tional geometric impedance cost [4, 21]:

Werase ≥ kBTc ln 2 + Zgeom. (54)

The term Zgeom is not universal; it depends on the physical organization of the information-
processing substrate.

E.1 Biological proxies for geometric impedance

In biological systems, candidate proxies for Zgeom include (non-exhaustively):

• molecular transport distances and congestion (diffusion vs active transport),

• network topology and path-length distributions in signaling and regulatory networks,

• sparsity and long-range wiring costs in neural circuits,

• parallelism limits in repair pathways (bottlenecks and queueing),

• spatial localization constraints for assembly and proofreading operations.

Operationally, one can treat Zgeom as a fitted impedance term in an energy budget for correction
tasks and then test whether its fitted variation correlates with measurable architectural features.

F Statistical test details for the golden-branch control-law hy-
pothesis

Given samples {(αi, δi)}M
i=1 inferred from data (Section 11.2), define

Qδi
(αi) := min

{
q ∈ N : ∃ p ∈ Z s.t.

∣∣∣∣αi − p

q

∣∣∣∣ < δi

}
. (55)

The following statistical choices are natural:

• Matched baselines. Construct baselines by randomizing phases or shuffling within com-
parable noise/coupling strata so that δi and sampling protocols are preserved.

• Normalization. Normalize Qδi
(αi) by the Diophantine lower bound scale qmin(δi) ≈

(c/δi)1/2 to compare across different tolerances.

• Tail sensitivity. In addition to mean shifts, test upper-tail enhancement (e.g. quantiles)
because the hypothesis predicts increased anti-locking robustness.

F.1 Computing Qδ in practice

The definition of Qδ is constructive: for each q one only needs to check whether there exists an
integer p such that |α − p/q| < δ. A practical computation is to set p = ⌊αq⌉ (nearest integer)
and check both ⌊αq⌋ and ⌈αq⌉. Appendix H provides a reference Python implementation.
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F.2 A quantitative null baseline for Qδ

If α is drawn uniformly from (0, 1), then Qδ(α) ≤ Q iff α lies within δ of some reduced rational
p/q with 1 ≤ q ≤ Q. By a union bound over reduced rationals, one has

P
(
Qδ(α) ≤ Q

)
≤ 2δ

Q∑
q=1

ϕ(q), (56)

and the classical summatory estimate ∑q≤Q ϕ(q) = 3
π2Q

2 + O(Q logQ) [30] yields the baseline
scaling P(Qδ ≤ Q) ≲ 6

π2 δQ
2 when δQ2 ≪ 1. This provides a quantitative reference curve for

goodness-of-fit tests and tail comparisons under matched tolerances.

Scale-free normalization. Since the null scale is Qδ ≍ δ−1/2, it is natural to compare samples
using the normalized score

Zδ(α) :=
√
δ Qδ(α), (57)

which is O(1) under the null and directly comparable across different tolerances.

G Interface isomorphisms: stable sectors, mismatch certificates,
and active correction

This appendix records a shared protocol-level template in the HPA–Ω program: finite-resolution
scan–projection readout induces symbolic words and coarse observables; stability/consistency
constraints select a compressed visible sector; and sustained low-entropy structure requires either
passive compensation (connections enforcing consistency) or active correction (feedback control
reducing mismatch).

G.1 A shared interface template

We separate the discussion into the same two layers used throughout the manuscript:

• Ontic scan layer. Microscopic dynamics is unitary and reversible. Time is realized as
scan iteration.

• Operational readout layer. Observables arise from finite windows and finite resolution.
Discreteness and irreversibility are protocol consequences rather than ontic primitives.

Within the operational layer, a broad class of problems can be organized by the following
interface objects:

• Readout alphabet. A finite word alphabet Ωm = {0, 1}m (or a finite outcome set for a
POVM-like instrument) obtained by window projection.

• Stability/mismatch mechanism. Either (i) explicit stability predicates/defect func-
tions that select a stable subset Xm ⊂ Ωm, or (ii) computable mismatch certificates com-
paring finite readout statistics to an ideal reference (e.g. discrepancy-based certificates).

• Coarse-graining and degeneracy. Many-to-one maps from microstates to stable types
(or from microscopic configurations to discrete outputs) generate degeneracy distributions
that trade resolution for robustness.

• Correction/compensation. Consistency can be enforced passively by compensating
connections (a protocol-geometric bookkeeping of local rephasing/transport) or actively
by feedback that reduces mismatch relative to a passive baseline.
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Interface object Stable-sector language AEC/biological language

finite readout alphabet window words w ∈ Ωm = {0, 1}m discretized outcomes from finite-
resolution sensors/thresholds

stability selection admissible/stable subset Xm ⊂ Ωm

defined by protocol constraints
viable operating region of the agent
under implementation and readout
constraints

mismatch/defect quantifier defect predicates D(·) certifying
protocol inconsistency

discrepancy/mismatch certificates
D∗

N , EN certifying readout bias ac-
cumulation

coarse graining many-to-one folding Ωm ↠ Xm

with degeneracy
many-to-one coding (e.g. genetic de-
generacy) increasing robustness un-
der readout noise

consistency enforcement compensating connections
(protocol-local bookkeeping of
transport/rephasing)

feedback control and repair redi-
recting dissipation into waste chan-
nels

resource accounting implementation cost as an au-
dit constraint (bounded-complexity
closure)

Landauer-scale and architecture-
dependent costs bounding sustain-
able correction

observable signatures rigid finite counts/histograms and
thresholded spectrum changes

statistical biases/scaling laws in Qδ,
EN , Σ under matched protocols

Table 1: A protocol-level isomorphism dictionary: stable-sector constructions and predictive
AEC can be viewed as two realizations of the same interface template (finite readout, mis-
match/stability, correction, and bounded-complexity audit).

• Audit closure under bounded complexity. Quantitative claims are framed as de-
terministic selections from finite candidate families under explicit complexity bounds, to-
gether with rigidity/stabilization diagnostics.

G.2 Isomorphism dictionary (stable sectors ↔ AEC)

Table 1 summarizes a protocol-level correspondence between (a) stable-sector constructions in
finite-resolution readout models and (b) predictive AEC mechanisms that suppress readout-
induced mismatch.

G.3 Audit template: bounded-complexity closure and rigidity

To state quantitative claims in an auditable form, we use a bounded-complexity selection prin-
ciple.

Definition G.1 (Bounded-complexity closure (audit form)). Fix reference targets xref
i > 0 and

a candidate family xi(θ) > 0 indexed by discrete parameters θ. For a bound B ∈ N, let Θ(B) be
a finite admissible domain (the complexity box). Define the log-mismatch vector

ei(θ) := log
(
xi(θ)
xref

i

)
,

and summary objectives

E∞(θ) := max
i

|ei(θ)|, E1(θ) :=
∑

i

|ei(θ)|.

A bounded-complexity closure is the selection of a unique θB ∈ Θ(B) by a fully specified lexico-
graphic minimization rule (first E∞, then E1, then stated secondary tie-break criteria).
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Definition G.2 (Rigidity certificate). A closure is called rigid on a tested range B ∈ {1, . . . , Bmax}
if the minimizer is unique at each B and stabilizes: there exists B∗ ≤ Bmax such that θB = θB∗

for all B∗ ≤ B ≤ Bmax.

G.4 Transferable falsifiable problems

The interface dictionary suggests cross-domain falsifiability questions that do not rely on post-
hoc freedom:

• Degeneracy–robustness link. Do observed many-to-one code degeneracies correlate
with reduced mismatch certificates under matched protocols, at the expected energetic
cost?

• Anti-locking selection. Under an operational tolerance δ, do inferred coupling ratios
exhibit an upward shift in Qδ relative to baselines that preserve sampling/noise structure?

• Thresholded sector growth. If effective window length changes with environment
or scale, do stable-type counts and splits change in constrained batches dictated by the
underlying grammar/stability channel?

• Cost slopes. Does maintenance power admit a lower-envelope slope consistent with a
computational temperature scale when regressed against a protocol-matched mismatch-
rate estimator?

H Reference implementations (Python)
This appendix contains reference implementations for Section 11.5. They require only Python
3 (no third-party dependencies). A minimal requirement file is provided in requirements.txt.

H.1 What is reproduced

The scripts in scripts/ reproduce the following protocol-level computations used in the main
text:

• Discrepancy and accumulated mismatch. Exact 1D star discrepancy D∗
N for a finite

phase-point set and the accumulated mismatch EN = ND∗
N (Section 2).

• Predictive-information-rate threshold (toy illustration). A numerical demonstra-
tion of the inequality chain leading to the threshold form (26) (Section 5). This is a unit
test of the interface inequalities rather than a biological model.

• Anti-locking index. A constructive computation of Qδ(α) together with the golden-
branch Hurwitz-scale lower bound (31) (Section 7).

H.2 How to run (examples)

• python3 scripts/experiment_a_star_discrepancy.py

• python3 scripts/experiment_b_predictive_threshold.py

• python3 scripts/experiment_c_qdelta.py

All scripts print a small, deterministic summary to standard output.
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H.3 Sanity checks and expected patterns

• Experiment A. For a rational slope (phase locking), the reported EN grows approxi-
mately linearly with N ; for irrational slopes, the reported ratios EN/ logN vary slowly
with N (compatibility with O(logN) growth). Under the default parameters, the rational
case dominates by orders of magnitude at large N .

• Experiment B. With the default toy settings (kBTc = 1 and Ẇdiss = 0.15), the script
prints whether the upper bound Ḟpred ≤ kBTc İpred can exceed Ẇdiss. Increasing environ-
mental unpredictability (larger p_flip) reduces the estimated information-rate proxy and
eventually flips the printed survive? flag to False for bounded memory.

• Experiment C. For a rational ratio (e.g. 3/5), Qδ quickly stabilizes at a small denomi-
nator once δ is sufficiently small; for the golden branch, Qδ increases as δ decreases and
should be comparable to (and bounded below by) the printed Hurwitz-scale estimate.

H.4 Experiment A: star discrepancy and accumulated mismatch EN

"""
Experiment A: star discrepancy and accumulated mismatch for rotation sequences.

Pure-Python (no third-party dependencies) reference implementation.

We compare accumulated mismatch E_N = N * D_N^* for:
- an irrational slope (golden branch),
- another irrational slope (sqrt(2) - 1),
- a rational slope (1/2) as a simple phase-locking / periodic case.
"""

from __future__ import annotations

import math

def kronecker_points(alpha: float, n: int, x0: float) -> list[float]:
"""Return points x_k = (x0 + k*alpha) mod 1 for k=1..n."""
pts: list[float] = []
a = float(alpha)
for k in range(1, n + 1):

x = x0 + k * a
pts.append(x - math.floor(x))

return pts

def star_discrepancy_1d(points: list[float]) -> float:
"""
1D star discrepancy:

D*_N = sup_{a in [0,1]} | (1/N)*#{x_i < a} - a |.

For sorted points y_i, an exact formula is:
max_i (i/N - y_i) and max_i (y_i - (i-1)/N).

"""
y = sorted(points)
n = len(y)
if n == 0:

return 0.0
inv = 1.0 / float(n)
d1 = 0.0
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d2 = 0.0
for i, yi in enumerate(y, start=1):

d1 = max(d1, i * inv - yi)
d2 = max(d2, yi - (i - 1) * inv)

return max(d1, d2)

def accumulated_mismatch(alpha: float, n: int, x0: float) -> float:
pts = kronecker_points(alpha, n=n, x0=x0)
d = star_discrepancy_1d(pts)
return float(n) * d

def main() -> None:
phi = (1.0 + math.sqrt(5.0)) / 2.0
alpha_golden = 1.0 / phi
alpha_sqrt2 = math.sqrt(2.0) - 1.0
alpha_rational = 1.0 / 2.0

x0 = 0.123456789
ns = [100, 300, 1_000, 3_000, 10_000, 30_000]

print("N, E_N(golden), E_N(sqrt2-1), E_N(1/2)")
for n in ns:

eg = accumulated_mismatch(alpha_golden, n=n, x0=x0)
es = accumulated_mismatch(alpha_sqrt2, n=n, x0=x0)
er = accumulated_mismatch(alpha_rational, n=n, x0=x0)
print(f"{n:>8d} {eg:>12.6f} {es:>12.6f} {er:>12.6f}")

print("\nCompatibility check: E_N/log N (slow variation suggests O(log N))")
print("N, Eg/logN, Es/logN, Er/logN")
for n in ns:

logn = math.log(float(n))
eg = accumulated_mismatch(alpha_golden, n=n, x0=x0) / logn
es = accumulated_mismatch(alpha_sqrt2, n=n, x0=x0) / logn
er = accumulated_mismatch(alpha_rational, n=n, x0=x0) / logn
print(f"{n:>8d} {eg:>12.6f} {es:>12.6f} {er:>12.6f}")

if __name__ == "__main__":
main()

H.5 Experiment B: a numerical illustration of the predictive-information-
rate threshold

"""
Experiment B: a toy demonstration of the predictive-information-rate threshold.

This is NOT a biological model. It is a unit test for the inequality chain:
Fdot_pred <= k_B*T_c * Idot_pred
survival needs Fdot_pred > Wdot_diss
=> Idot_pred > Wdot_diss/(k_B*T_c)

We simulate a binary environment with tunable predictability and a simple predictor
with tunable memory, then estimate a mutual-information-rate proxy from accuracy.
"""
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from __future__ import annotations

import math
import random

def simulate_environment(T: int, p_flip: float, seed: int) -> list[int]:
"""
Binary Markov environment:

s_{t+1} = s_t XOR Bernoulli(p_flip).
Smaller p_flip -> more predictable.
"""
rng = random.Random(seed)
s = 0
out: list[int] = []
for _ in range(T):

out.append(s)
if rng.random() < p_flip:

s ^= 1
return out

def predictor_majority_memory(seq: list[int], m: int, seed: int) -> float:
"""
Toy predictor with memory length m:
predict next bit as majority of last m bits; if insufficient history, guess

random.↪→

Returns empirical one-step-ahead accuracy.
"""
rng = random.Random(seed)
T = len(seq)
if T < 2:

return 0.0
correct = 0
for t in range(T - 1):

if m <= 0 or t < m:
pred = rng.randint(0, 1)

else:
window = seq[t - m + 1 : t + 1]
ones = sum(window)
pred = 1 if ones > (m / 2.0) else 0

correct += int(pred == seq[t + 1])
return correct / float(T - 1)

def mutual_information_rate_proxy_from_accuracy(acc: float) -> float:
"""
Proxy: treat prediction as a binary symmetric channel with crossover e=1-acc.
Then I = 1 - H2(e) bits/step (clipped at 0).
"""
e = max(1e-12, min(1.0 - 1e-12, 1.0 - float(acc)))
H2 = -(e * math.log2(e) + (1.0 - e) * math.log2(1.0 - e))
return max(0.0, 1.0 - H2)

def main() -> None:
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# Units: set k_B*T_c = 1 so the threshold is simply Idot_pred > Wdot_diss.
kBTc = 1.0
Wdot_diss = 0.15

T = 50_000
memory_list = [0, 1, 2, 4, 8, 16, 32]
for p_flip in [0.01, 0.05, 0.10, 0.20]:

seq = simulate_environment(T=T, p_flip=p_flip, seed=0)
print(f"\nEnvironment p_flip={p_flip:.2f} (smaller -> more predictable)")
for m in memory_list:

acc = predictor_majority_memory(seq, m=m, seed=1)
Idot = mutual_information_rate_proxy_from_accuracy(acc)
Fdot_upper = kBTc * Idot
survives = Fdot_upper > Wdot_diss
print(

f" m={m:2d} acc={acc:.3f} Idot~={Idot:.3f} "
f"Fdot_upper~={Fdot_upper:.3f} survive? {survives}"

)

if __name__ == "__main__":
main()

H.6 Experiment C: computing the anti-locking index Qδ

"""
Experiment C: computing the resonance susceptibility / anti-locking index

Q_delta(alpha).↪→

Definition:
Q_delta(alpha) = min{ q in N : exists p in Z s.t. |alpha - p/q| < delta }.

We implement a constructive search by scanning q and checking the nearest p.
This is a toy utility for Section 7 and Appendix (golden-branch control-law

hypothesis).↪→

"""

from __future__ import annotations

import math

def q_delta(alpha: float, delta: float, q_max: int = 200_000) -> int | None:
"""Return Q_delta(alpha) up to q_max, or None if not found within the search."""
a = float(alpha)
d = float(delta)
for q in range(1, q_max + 1):

aq = a * q
p0 = int(round(aq))
# Check nearest integers (robust to rounding edge cases).
for p in (p0 - 1, p0, p0 + 1):

if abs(a - (p / q)) < d:
return q

return None
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def main() -> None:
phi = (1.0 + math.sqrt(5.0)) / 2.0
alpha_golden = 1.0 / phi
alpha_rational = 3.0 / 5.0

deltas = [1e-1, 5e-2, 2e-2, 1e-2, 5e-3, 2e-3, 1e-3]

print("delta, Q_delta(golden), Q_delta(3/5)")
for delta in deltas:

qg = q_delta(alpha_golden, delta=delta, q_max=200_000)
qr = q_delta(alpha_rational, delta=delta, q_max=200_000)
print(f"{delta:>8.1e} {str(qg):>14s} {str(qr):>10s}")

print("\nHurwitz lower bound scale for golden branch:
ceil((1/(sqrt(5)*delta))^(1/2))")↪→

for delta in deltas:
bound = math.ceil(math.sqrt(1.0 / (math.sqrt(5.0) * delta)))
print(f"{delta:>8.1e} {bound:>6d}")

if __name__ == "__main__":
main()
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