
The Linear Universe: Geometric Enforcement of Matter, Mass,
and Spacetime via the 6-DoF Constraint

Haobo Ma (Auric)∗

AELF PTE LTD.
#14-02, Marina Bay Financial Centre Tower 1, 8 Marina Blvd, Singapore 018981

December 30, 2025

Abstract

We adopt a tick-first ontology closed under two declared primitives: time as tick (the
iteration count along a unitary readout stream) and the Computational Action Principle
(CAP) as the unique deterministic closure/selection rule on explicit finite candidate fami-
lies. For reader navigation, we also use the interface-level terms Wish (protocol-stable target
data/structures) and Motive (an auditable objective functional), explicitly marked as [Au-
dit]not used in proofs. Finite observers access only finite windows, hence finite binary words
w ∈ Ωm = {0, 1}m (Section 2). At the golden branch, a forbidden-word grammar and a
cyclic closure predicate define a stable sector Xm ⊂ Ωm with Fibonacci size |Xm| = Fm+2
and a rigid cyclic/boundary split (Section 4).

To speak about locality, “space” is introduced as a derived display structure: an address-
ing basis folds a finite tick prefix into a locality graph, and distance is the induced graph
metric (Section 3 and Section 5). In this paper we use a 2D Hilbert screen for explicit finite
diagnostics, while treating any conversion from tick units to physical units (including the
measured value of c) as a matching-layer dictionary rather than a theorem-level output.

At the CAP-selected anchor on the chosen screen, (m,n) = (6, 3), one has |Ω6| = 64 and
a fully explicit theorem-level folding core 64→ 21 with a canonical 18⊕ 3 split (Section 4).
On the physical identification layer, “particles” are identified with stable readout types, while
gauge fields are interpreted as compensating connection data forced by finite projection fibers
under cross-site consistency. Mass and energy are treated as time dictionaries: mass scales
are expressed in a Fibonacci log-time coordinate and compared to operational delay proxies
(Wigner–Smith) and Compton-clock ratios (Section 10 and Appendix Y).

We close several interfaces by bounded-complexity audits with explicit finite candidate
families and deterministic tie-break rules, and we record falsifiable predictions in the protocol
language. We also record low-complexity rigidity targets for coupling normalization and
CP violation, together with explicit log-mismatch factors and reproducible counterfactual
baselines generated by deterministic scripts.
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golden mean shift; Hilbert addressing; dihedral group; chirality; antimatter duality; gauge con-
nections; Weinberg angle; Jarlskog invariant; CP violation.
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Table 1: A compact roadmap of the m = 1 . . . 12 resolution spectrum (interface). Under the
rigid-frame coarse-lock budget at the anchor (Section 1.3; Proposition 3.7), the bulk dimension
is selected as d = 3 and the minimal single-window coarse-localization anchor is at m = 6, which
induces an interface partition into a sub-geometric vacuum (m < 6), a geometric ground state
(m = 6), and hyper-geometric layers (m > 6). A quantitative m = 1 . . . 12 spectrum template
(counts and threshold scales under the minimal calibration) is recorded later in Table 2.

m 1 2 3 4 5 6 7 8 9 10 11 12

regime pre-geometric sub-geom. vacuum anchor hyper-geometric layers
marker – – – – non-local vacuum electron/SM nuclear QCD bottom EW BSM deep

Conventions. Unless otherwise stated, log denotes the natural logarithm. We use Fibonacci
numbers F1 = F2 = 1, Fk+1 = Fk + Fk−1. For N ∈ N, the Zeckendorf digits ck ∈ {0, 1} satisfy
ckck+1 = 0 and

N =
∑
k≥1

ckFk+1.

We write w = w1 · · ·wm for a finite binary word with letters wi ∈ {0, 1}. We reserve m for
Zeckendorf window length and reserve n for Hilbert order. We write t ∈ Z for the scan iteration
count (tick) when an explicit time index is needed. The standard Abel path refers to the limit
process r ↑ 1 with r ∈ (0, 1).

Dimensional language. Throughout the paper we use conventional terms such as “space”,
“spacetime”, “grid”, and “dimension” only as shorthand for protocol-level addressing and locality
structure induced by the chosen readout basis (e.g. Hilbert addressing at fixed order). No ontic
postulate of a pre-existing continuum manifold or a privileged physical dimension is used as a
premise for the theorem-level folding statements. References to “4D spacetime” and to the 6-DoF
rigid-frame coarse-lock anchor are likewise interface language: time refers to scan iteration count,
while the spatial dictionary refers to the chosen locality basis; these identification statements
are not used as premises for the folding core.

Data and code availability. All finite constructions, audit tables, and quantitative sum-
maries in this paper are generated by deterministic Python scripts included in the repository
under scripts/. Generated LATEX fragments are written to sections/generated/ and are
treated as outputs. The scripts are a reference implementation of the paper’s explicit finite
constructions and bounded-family audits; they are provided to reproduce tables and to avoid
manual transcription errors, not to introduce additional modeling freedom. A single entry point
scripts/run_all.py regenerates the full set of fragments; see Appendix AJ.

Reader guide and audit contract. The layered audit rule and recommended reading paths
are recorded in Part I (Contract).
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Part I

Contract: Wish, Motive, and the
Two-Axiom Spine
Reader-facing contract (audit discipline)
Layer tags used in the main text. [Math]marks theorem-level finite constructions and proofs
(counts, maps, finite tables). [Interface]marks protocol-to-physics identification statements and
operational dictionaries. [Match]marks external comparison conventions (PDG/CODATA tar-
gets, unit/scheme choices) that never serve as premises for theorem-level claims. [Audit]marks
explicit candidate families/objectives/tie-break rules and other audit/provenance statements
(including not used in proofs remarks).

Ledger statuses used for dependency tracking. The inference ledger (Appendix K)
records dependency status using the five tags [Math], [Prot], [Iface], [CAP], and [Open]. These
ledger statuses are not additional main-text layer tags; they are used only for audit and depen-
dency tracking.

Wish and Motive (interface language; not used in proofs). [Interface]We use Wish as
shorthand for a protocol-stable target datum/structure (a reproducible stable readout type
and its associated invariants), and Motive as shorthand for an auditable objective functional
that combines mismatch certificates with bounded implementation cost. [Audit]These names are
organizational and reader-facing: they do not add new axioms, and they are not used as premises
in theorem-level proofs. For a compact template definition (reader-facing; not used in proofs),
see Appendix C. The only primitives are the tick (Axiom 1.1) and CAP (Axiom 1.5); see also
Figure 5 and Appendix G.

No reverse dependence (legend discipline). [Audit]We follow the dependency legend in
Figure 5: theorem-level implications flow along solid arrows, while interface dictionaries and
audit overlays (dashed/dotted arrows) never serve as premises for theorem-level proofs.

Three channels as the mainline. [Interface]The core finite stability reduction is organized by
three channels, denoted φ–π–e: grammar admissibility, cyclic closure, and an analytic stability
template. The fully explicit finite reduction at the anchor is recorded in Section 4. [Audit]For a
compact checklist of auditable “rigidity bridge” certificate forms and where each mainline step
is realized in this paper, see Appendix I.

Reader guide (recommended paths)
This paper supports four complementary reading paths. The main text is organized into eight
parts: Contract (Part I), Tick-first (Part II), Periodic Core (Part III), Structure (Part IV),
Matter (Part V), Dynamics (Part VI), Validation (Part VII), and Recursive closure (Part VIII).

• Narrative path (short mainline). Read the tick dictionary (Section 3), then the folding
core at (m,n) = (6, 3) (Section 4), then the SM labeling closure (Section 9), and finally
the falsifiability statements (Section 14). If you want one minimal spine: Section 3 →
Section 4 → Section 9 → Section 14.2.1.

• Frequency-first dynamical closure (equivalence → action → EOM → thermo).
Read the equivalence semantics and frequency-first dictionary (Appendix AA), then the
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CAP closure of a minimal continuum action (Appendix AD.4), then the variational field
equations (Appendix AD.5), and finally the thermodynamic closure (Appendix AD.6). For
matching-layer delay/redshift templates used as operational proxies, see Appendix Y and
Appendix Z.

• Extended self-contained closures (overhead gravity / quantum / RG / cosmol-
ogy). For the overhead-to-gravity closure and the χ reconstruction protocol, see Appen-
dices AD.7 and AD.8. For the quantum readout interface and Born-probability rigidity,
see Appendix AD.10. For RG/running couplings in the r coordinate, see Appendix AD.11.
For cosmology as resolution flow, see Appendix AD.12.

• Audit path (what depends on what). Verify the declared inputs and the depen-
dency hierarchy using Figure 5 and Appendix K, then spot-check representative rigidity
certificates (e.g. Tables referenced in Sections 11 and 13).

• Reproducibility path (run the pipeline). Use Appendix AJ and run
python3scripts/run_all.py to regenerate sections/generated/ and the figures. The
paper’s definitions and candidate-family specifications are the logical source of truth; the
scripts are the deterministic reproducer.

1 Introduction: from tick-only readout to stable sectors
The Standard Model (SM) organizes known non-gravitational interactions into the gauge struc-
ture

SU(3)× SU(2)× U(1),

with chiral matter content and experimentally established parity violation and CP violation;
see, e.g., [1, 2]. Despite its predictive success, several structural features remain “input-like” at
the microscopic explanatory level: the origin of chirality, the meaning of gauge redundancy, and
the origin of small CP-odd invariants.

This paper adopts the HPA–Ω viewpoint: observability is not the presence of continuous
fields a priori, but the output of a finite-resolution protocol produced by unitary scanning and
window projection (Section 2). In this view, a “particle” is first a stable readout type, and
“forces” arise from the constraints required to keep readout consistent across space.

The present paper is written to be closed under its declared input set (Table 25 and Ap-
pendix K): the only primitives are the tick (Axiom 1.1) and CAP (Axiom 1.5). All other
ingredients (addressing basis, anchor choice, orientation-bit convention, phase-register dictio-
nary, and quantitative normalization targets) are outputs of explicit finite definitions and CAP-
closures with deterministic tie-breaks and reproducible scripts. Companion manuscripts in the
same docs/papers repository provide extended context and alternative presentations [3–11],
but they are not required to follow the present paper’s definitions, proofs, and audits.

Audit note. [Audit]Status: [Audit]. Depends on: the reader-facing audit contract (Table 25)
and the bounded-closure template (Appendix H). If: any quantitative interface component
is reported, it is either a finite theorem-level statement or a CAP-closure over an explicitly
declared finite family with deterministic tie-breaks; external PDG/CODATA values enter only
as matching-layer reference conventions.

For reader navigation, Table 2 provides the global map of the resolution axis under the
minimal calibration. In the tick-first spine used here, the only primitive physical input is time
as tick (scan iteration count), and the only primitive selection law is CAP. Accordingly, all
physical-language notions (space, distance, velocity, gauge connections, mass/energy scales)
are treated as derived protocol structures and/or CAP-closed interface components. Section 3
records the corresponding dictionary and fixes the time-first dependency order used throughout.
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Table 2: The holographic resolution spectrum under the minimal calibration rstep = 2π (Sec-
tion 14.2.1). Under the rigid-frame coarse-lock budget at the anchor (Section 1.3; Proposi-
tion 3.7), the bulk dimension is selected as d = 3 and the minimal single-window coarse-
localization anchor is at m = 6, inducing an interface partition into a sub-geometric vacuum
(m < 6), a geometric ground state (m = 6), and hyper-geometric layers (m > 6). Stable-type
counts obey |Xm| = Fm+2 (Lemma 4.5); threshold energies use the µth(m) rule defined in Sec-
tion 14.2.1.

m |Xm| µth(m) physical correspondence
(interface)

mechanism (protocol language)

Phase I: Sub-geometric (the vacuum)
1–4 2–8 – pre-geometric logic finite bits, causality, addressability
5 13 ∼ 25 keV sub-geometric vacuum

(non-local)
coarse-lock deficit: one bit short of the
m = 6 anchor

Phase II: Geometric ground state (matter)
6 21 0.511 MeV electron / minimal SM anchor coarse-lock anchor: minimal localized

rigid-frame display

Phase III: Hyper-geometric (mass & thresholds)
7 34 ∼ 10 MeV nuclear binding scale binding bridge between m = 6 matter

and hadronic confinement
8 55 ∼ 0.2 GeV QCD onset confinement-scale template at the

protocol interface
9 89 ∼ 4.4 GeV bottom threshold heavy-flavor onset in the staircase
10 144 ∼ 91 GeV electroweak (Z/H) layer uplift/coarse graining: protocol-level

mass generation
11 233 ∼ 1.9 TeV BSM frontier first hyper-compressed layer;

constrained topological capacity
12 377 ∼ 38 TeV deep structure candidate scale for further refinement

(preons/extra dimensions)

Appendix G records the complete tick + CAP derivation spine (explicit candidate families, ob-
jectives, and deterministic tie-breaks for each closed interface component). Appendix R records
short “forced-by-rigidity” interface lemmas (minimal coarse locking, compactness of probability-
preserving redundancy, channelwise factorization, and minimal anomaly-neutral closures) that
are repeatedly used as audit-level justifications in the main text.

1.1 Axiom 0: the tick (sequential readout) as the only primitive input (in-
terface)

Axiom 1.1 (Readout sequentiality (interface)). The microscopic description is sequential. An
observer couples to a single unitary scan order that produces a one-dimensional readout stream,
and finite observability appears through window projection (Section 2). Multi-dimensional lan-
guage enters only through a choice of addressing basis that folds the scan order into a locality
structure (Section 5); throughout, we use “space” and “spacetime” only in this protocol-level
addressing sense (Conventions).

Time, signal rate, and matching dictionaries. Under Axiom 1.1, “time” is operationally
the iteration count along the scan. Any conversion from the dimensionless scan rate to physical
units is therefore a matching-layer and units dictionary: once a locality basis is fixed, a constant
step advance defines a maximal protocol signal rate, while the measured constant c appears only
after choosing a physical calibration. We do not treat c as a theorem-level output of the folding
core.

Matter as recurrent patterns and mass as protocol cost. In a linear ontology, stable
excitations are not points placed in an ontic background, but persistent patterns in the readout
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stream that are stable under the chosen channels. On the physical identification layer, we adopt
the interface identification that an observed mass scale corresponds to protocol overhead required
to resolve and stabilize a pattern at a given resolution (e.g. increased local scan density, deeper
matching shifts, or larger folding-degeneracy costs in the finite invariants). This paper makes
this identification auditable by a closed depth coordinate and a reproducible mass-spectrum
template (Section 13).

Remark 1.2 (Static ontology vs. sequential readout (interface)). Although the paper is written
in the scan-first language of Axiom 1.1, one may also adopt a complementary interface dictio-
nary: the scan order together with the chosen addressing dictionary can be regarded as a fixed
(already-defined) structure, while “time” is the ordered traversal experienced by a coupled ob-
server. In this reading, dynamical episodes are a playback effect of sequential readout on a static
protocol substrate (a block-universe style viewpoint), not the construction of that substrate. We
record this only as an interface dictionary viewpoint; none of the theorem-level finite folding
statements depends on it as a premise.

Remark 1.3 (A historical analogy: Wheeler’s one-electron universe). As a historical analogy,
Wheeler suggested to Feynman that the identity of electrons might admit a radical kinematic
explanation: a single electron world-line could thread the observed phenomenology, with positrons
interpreted as the same object propagating backward in time in the spacetime picture. We use
this only as an analogy for the present linear-ontology interface: a sequential primitive can
generate rich multi-body effective structure once it is read through an addressing basis and a
matching dictionary, without promoting the analogy to a premise of the mathematical layer.
See, e.g., [12,13].

The key inversion relative to conventional field-first narratives is methodological: we treat
the problem of “what particles and forces exist” as a problem of which readout types are stable
under a fixed protocol. Finite windows induce symbolic compression; stability constraints induce
further compression; and the effective “spectrum” is the surviving stable sector. From this
viewpoint, discreteness is not a postulate but a consequence of finite-resolution projection.

Stability and agency as dual interface viewpoints. The stable-sector viewpoint used
in this paper admits a control-theoretic dual dictionary: in open systems, long-lived low-
entropy structure can be modeled as predictive active error correction (AEC) that suppresses
protocol-level mismatch relative to a passive baseline while paying dissipation and implemen-
tation costs [14, 15]. Appendix U records a protocol-level dictionary that aligns stable-sector
objects (alphabets, stability channels, degeneracies) with AEC objects (mismatch certificates,
feedback, and audit constraints) without mixing mathematical-layer premises with physical iden-
tification claims.

1.2 From scan to knot: an interface picture

Figure 1 provides a narrative visualization of the interface picture used throughout this pa-
per. The primitive description is a single sequential readout stream (Axiom 1.1), while spatial
language enters only after choosing an addressing basis that folds the stream into locality neigh-
borhoods (Section 5). Under the rigid-frame coarse-lock budget at the anchor, CAP selects
bulk dimension d = 3, and m = 6 is the smallest single-window anchor for localized display
(Section 1.3).

The scan (1D). One may picture the readout as an extremely thin “luminous thread” whose
order is fixed by the unitary scan: the observer sees only a time-ordered sequence of windowed
binary words.
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Figure 1: Conceptual triptych (interface picture). Left: Vacuum. Below the 6-DoF anchor, a
scan segment can be stable as a symbolic word yet remains sub-admissible for localized rigid-
frame display; it is therefore treated as a non-local background (sub-geometric vacuum). Mid-
dle: Matter (cyclic). At the m = 6 anchor, stability can self-close into localized recurrent
patterns; at the minimal anchor (m,n) = (6, 3) the stable sector obeys 64→ 21 with a canonical
cyclic/boundary split 21 = 18 ⊕ 3. Right: Force (boundary). Boundary-type patterns connect
neighboring voxels/sites and are interpreted as interaction carriers enforcing cross-site consis-
tency. This figure is a schematic interface picture and does not enter the theorem-level folding
statements, which are formulated in finite readout language.

The fold (local compression). Once a locality dictionary is chosen, a single window must
encode enough independent distinctions to be displayed as a localized object in that dictionary.
Under the minimal two-bin-per-DoF convention, this creates a geometric bottleneck at m = 6
in the derived d = 3 dictionary: the readout must fold its local patterning to supply a coarse
position–orientation frame.

The lock (closure vs. bridge). At the interface level, cyclic closure (a local recurrence)
is interpreted as a fermion-like localized excitation, while boundary-type connectivity between
neighboring sites is interpreted as a boson-like carrier that transmits readout constraints across
space. The subsequent sections make these statements auditable by fully explicit finite construc-
tions at (m,n) = (6, 3) and by closed protocol-level interfaces.

1.3 Derived bulk dimension: rigid-frame display budget at the anchor (in-
terface)

While Axiom 1.1 fixes only sequentiality, any physical identification must specify what it means
to display a localized object. In the tick-first dictionary of Section 3, locality is a derived
addressing graph, and a “localized rigid frame” is an interface notion tied to coarse pose distin-
guishability. Let d denote a candidate bulk dimension of such a rigid-frame display dictionary.
A local rigid frame carries d translational degrees of freedom and d(d− 1)/2 rotational degrees
of freedom, hence

dimSE(d) = d+ d(d− 1)
2 = d(d+ 1)

2 .

We now state explicitly what the “bit-per-DoF” language means in this paper. The claim is not
that m bits can encode a continuous pose in SE(d) with arbitrary precision. Rather, it is the
minimal nontrivial coarse-lock convention at the protocol interface (Lemma R.1): a length-m
window yields at most 2m distinct binary readout classes, and to display a local rigid frame the
protocol must be able to distinguish at least two coarse bins along each independent parameter
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of SE(d). In this minimal two-bin-per-parameter convention, a sufficient single-window coarse-
admissibility condition is

2m ≥ 2dim SE(d) ⇐⇒ m ≥ dimSE(d) = d(d+ 1)
2 .

More generally, if one asks to specify an element of a k-dimensional Lie group up to an ε-scale
resolution, the required number of bits scales as m ≳ k log(1/ε) (metric-entropy / quantization
scaling) [16, 17]. In the present paper we use only the minimal two-bin-per-parameter anchor,
and we keep the rigid-frame lock on the physical identification layer.

Remark 1.4 (What the 6-DoF “lock” does and does not assert). The 6-DoF coarse-lock is an
interface convention, not a theorem about continuous pose estimation. It does not claim that
m = 6 is sufficient to “lock” a pose in SE(3) at any fixed accuracy; continuous pose locking at
accuracy ε requires a bit budget scaling as m ≳ 6 log(1/ε) in the standard quantization sense
[16,17]. It also does not claim that m ≥ 6 is necessary for localization under all possible protocols:
multi-window temporal integration, analog readout features, or additional structure/constraints
can reduce the effective information required at a given task. The role of the lock in this paper
is narrower: given the CAP-selected anchor bit budget m = 6 and the minimal two-bin-per-
parameter convention, CAP selects the bulk dimension d = 3 (Proposition 3.7) and thereby
identifies m = 6 as the minimal single-window coarse rigid-frame display budget in that derived
dictionary. Once a µ ↔ m selection rule is fixed at the protocol layer (Corollary 14.2), the
protocol uses the smallest admissible m throughout the corresponding energy band until an uplift
threshold is crossed.

At the anchor m = 6, CAP selects the maximal bulk dimension compatible with the rigid-
frame budget, namely d = 3 (Proposition 3.7). Empirically, the observed locality structure is
three-dimensional to high precision on laboratory and astrophysical scales, providing an external
consistency check.

Audit note. [Audit]Status: [Interface] + CAP. Depends on: the minimal coarse-lock criterion
(Lemma R.1) and Proposition 3.7. If: the coarse-lock is interpreted in the minimal two-bin-
per-parameter sense and applied as a single-window admissibility criterion; the resulting d is a
protocol-interface output and is not used as a premise for the folding core.

At d = 3, a local rigid frame is modeled by the Euclidean group

SE(3) ∼= R3 ⋊ SO(3),

as a semidirect product; see, e.g., [18]. It is specified by a position x ∈ R3 and an orientation
R ∈ SO(3). Hence the minimal kinematic description carries six independent parameters: three
translational plus three rotational degrees of freedom.

We treat this as a geometric coarse-lock on the physical identification layer: a fundamental
readout window supplies one bit per kinematic degree of freedom of a local frame. In 3D this
locks the minimal window to six bits, Ω6 = {0, 1}6. This statement belongs to the physical
identification layer: it fixes the preferred anchor scale under the minimal nontrivial coarse-lock
convention but is not used as a premise for any theorem-level folding statement.

To make the geometric exclusivity explicit, compare the first few balanced candidates m ∈
{4, 6, 8, . . . } against the rigid-frame degree count d(d+1)

2 [18]: in 2D one has 3 DoF, so the
balanced code length m = 4 overspecifies the kinematics (4 > 3); in 4D one has 10 DoF, so the
next balanced length m = 8 underspecifies it (8 < 10). Only at d = 3 does the balanced length
m = 6 match exactly (6 = 3 + 3), yielding a unique geometric lock at the anchor that selects
the bulk dimension.

Once a locality-preserving addressing basis is fixed (e.g. Hilbert addressing on a chosen
readout screen), one may adopt a balanced coupling convention that matches the m-bit readout
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Figure 2: The 6-DoF coarse-lock (interface language): at the anchor m = 6, CAP selects bulk
dimension d = 3 under the minimal coarse-lock convention (Proposition 3.7), so a local rigid
frame has six degrees of freedom (three positional plus three orientational).

alphabet size 2m with the number of sites at Hilbert order n (Lemma 4.1). Throughout this
paper we use the classical 2D Hilbert addressing (a square grid), so the matched site count is
4n = (22)n and the balanced relation takes the form m = 2n; other addressing dimensions would
change this arithmetic match (Remark 4.2 and Remark 5.1). Balanced coupling is used only to
attach spatial diagnostics and is not a theorem-level necessity for the folding core (Remark 4.3).
At the chosen anchor m = 6 on the 2D screen, balanced coupling yields n = 3 and 26 = 43 = 64.

1.3.1 The geometric vacuum and protocol rejection

The rigid-frame coarse-lock has an immediate consequence: in the derived d = 3 locality dic-
tionary, any readout pattern that is to be displayed as a localized object must supply enough
independent information to fix a local position–orientation frame. Under the minimal coarse-lock
hypothesis stated above (two bins per independent parameter), a single-window coarse display
requires at least m ≥ 6 binary distinctions; in this sense m = 6 is the minimal interface anchor
for matter-like localization in the derived dictionary.

For m < 6, stable symbolic types still exist at the mathematical layer—indeed the golden-
mean admissible set has size |Xm| = Fm+2 (Section 4.3)—but they are sub-geometric for a
d = 3 readout: they underdetermine the kinematic frame and cannot be consistently assigned to
a unique local site-and-frame configuration. We therefore treat these modes as protocol-rejected
as matter : they do not appear as stable localized particles, but persist as a non-local background
that can seed transient fluctuations when coupled to higher-resolution readout. [Interface]Below
the anchor, these modes are treated as sub-geometric vacuum/ghost-sector degrees of freedom;
diagnostic sweeps are recorded in Appendix P.

Roadmap: the m = 1 . . . 12 spectrum. Although the technical core of this paper is anchored
at the CAP-minimal holonomy instance (m,n) = (6, 3) on the chosen 2D screen, the derived
d = 3 rigid-frame coarse-lock dictionary induces a canonical interface partition of the resolution
axis into three regimes: the sub-geometric vacuum (m < 6), the geometric ground state (m = 6),
and hyper-geometric layers (m > 6). We use this dictionary-induced partition as the global
narrative spine, and we summarize a compact m = 1 . . . 12 spectrum template (counts and
threshold scales under the minimal calibration) in Table 2; the detailed falsifiability statement
is then formulated in the protocol language in Section 14.2.1.

1.4 Methodological note: auditable layering

No-hidden-knobs contract (reader-facing). [Audit]Whenever a quantitative claim is re-
ported, it is either a finite theorem-level statement or an audited interface closure within an
explicitly declared finite candidate family with deterministic tie-break rules (Definition H.1; Ap-
pendix AE and Appendix AJ). [Match]External reference targets (PDG/CODATA, scheme/scale
conventions) enter only as comparison inputs and are not fit parameters. The compact audit
contract table is recorded in Appendix H (Table 24).
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Audit-facing contract and inference map (supplement). [Audit]The reader-facing audit
contract and the dependency map are recorded compactly in Appendix J (Table 25 and Figure 5).

Layer separation. [Math]The finite folding statements constrain [Interface]the falsifiable map-
ping/identification layer; Appendix K records the dependency status in compact form.

Inference map (what depends on what). Figure 5 is recorded in Appendix J; we use its
legend throughout: solid arrows are theorem-level dependencies, dashed arrows are interface
dictionaries, and dotted arrows indicate CAP-audited selections within explicit finite families.

Dependency checklist. Appendix K provides the compact checklist of which statements
are [Math]theorem-level, which are [Interface]interface dictionaries/closures, and which are
[Match]matching conventions.

1.5 Research questions (summary)

[Interface]The paper closes (i) minimal stable-sector structure at the anchor, (ii) a deterministic
SM labeling map consistent with anomaly constraints, and (iii) protocol-level falsifiability routes;
the compact dependency status is recorded in Appendix K.

1.6 Audit protocol: bounded-complexity closure and rigidity certificates

Several quantitative interface statements in this paper take the form of a bounded-complexity
closure: we specify a small, discrete candidate family for a target observable and select a unique
minimizer by a deterministic rule under an explicit finite complexity bound. This is designed
to address a standard audit concern in speculative constant/parameter matching: post-hoc
freedom.

Axiom 1.5 (Computational Action Principle (CAP; interface)). Within a fixed protocol class,
realized effective structures are selected by minimizing accumulated readout mismatch (discrep-
ancy) and implementation overhead subject to protocol constraints. In the finite audited setting of
this paper, CAP is instantiated by explicit bounded candidate families and deterministic selection
rules: given a declared finite complexity budget and an explicit objective measuring mismatch to
reference targets, select the unique minimizer with a fully specified tie-break rule (Definition H.1).

Audit form (supplement). [Audit]The formal closure definition, log-mismatch rationale,
rigidity certificate, and audit-output conventions are recorded in Appendix H and Appendix AE.

1.7 A minimal falsifiable anchor: 64→ 21 stability at (m, n) = (6, 3)
[Math]We work at the fully explicit finite anchor (m,n) = (6, 3) on the chosen 2D Hilbert screen
(Table 30). At m = 6 the folding core yields 64 → 21 and the canonical split 21 = 18 ⊕ 3
(Section 4).

1.8 Z128 as a phase-register label

[Interface]We represent internal phases by a finite dyadic register Z2p (Appendix B). At the anchor
window m = 6, the baseline choice is p = m + 1 = 7, i.e. Z128. The remaining bounded phase-
lift freedom (denominators and low-complexity phase maps) is audited by deterministic sweeps
(Appendix AE and Appendix AF).
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1.9 Main interface closures

Building on the provable 64→ 21 folding core, we record three interface closures: [Interface]gauge
as compensation (Section 8.1), [Interface]chirality as protocol selection (Section 7), and [Inter-
face]antimatter as conjugate readout (Section 7).

We emphasize the audit separation: the folding counts and tables are mathematical-layer
facts, while the SM identifications are recorded as falsifiable mapping problems.

Quantitative anchor. The closed-theory rigidity targets and their CODATA/PDG devia-
tions are summarized in Table 16.

Closure deliverables at (m,n)=(6,3). [Math]the folding core 64 → 21 and 18 ⊕ 3 (Sec-
tion 4); [Interface]a unique SM labeling map (Section 9); [Interface]a closed mass-depth template
(Section 13).

Rigidity doctrine (interface). [Interface]Once one commits to finite readout primitives and
CAP-style bounded closure, many interface components become sharply constrained at the
anchor; Appendix K records the compact dependency status.

Reader guide: rigidity checkpoints (supplement). [Audit]A compact checkpoint list is
recorded in Appendix K.

Part II

Tick-first: From Scan to Finite Observables
2 HPA readout dynamics: from unitary scan to Zeckendorf win-

dows

2.1 Unitary scan and a Weyl pair: time as iteration count

In HPA, microscopic dynamics is modeled as a unitary scan with a Weyl-pair structure [19].
Abstractly, one may encode noncommutativity by operators (U, V ) satisfying

UV = e2πiα V U, (1)

with an irrational slope α. At the level of a circle rotation model, let x0 ∈ R/Z and define the
orbit

xn := x0 + nα (mod 1), zn := e2πixn ∈ T. (2)

Time is not imposed as an external parameter; it is realized as the iteration count n ∈ Z along
the scan.

Remark 2.1 (Scan rate, units, and the speed-of-light dictionary). The scan iteration count n
is dimensionless. In this paper, we treat any conversion between “one step per iteration” and a
physical time unit, and therefore any identification of an effective maximal signal speed with the
measured constant c, as part of a matching-layer and units dictionary rather than as a theorem-
level output of the finite folding core. Once a locality basis is fixed (e.g. via Hilbert addressing),
a constant step advance induces a protocol-invariant notion of maximal propagation rate on the
associated locality graph; the physical value of c enters only after calibration.
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Remark 2.2 (Delay observables as an operational time dictionary). When the protocol is
matched to an experimental platform, “time per update” can be accessed through standard delay
observables. In scattering settings where a unitary S-matrix S(ω) is measured as a function of
frequency, the Wigner–Smith time delay provides an operational proxy for additional overhead
via τWS(ω) = Tr

(
−iS†dS/dω

)
[20,21]. We record this dictionary (and its relation to relativistic

lapse/redshift templates) as an interface section (Section Y).

2.2 Window projection and symbolic words: finite observability

Let W ⊂ T be a measurable “readout window”. Define the binary readout word by thresholding
the scan orbit:

wn := 1{zn ∈W} ∈ {0, 1}. (3)
The resulting sequence w = (wn)n∈Z is a symbolic coding of the orbit (mechanical/Sturmian
in classical settings; see, e.g., [22, 23]). Finite observers access only finite windows, hence finite
words w1 · · ·wm ∈ Ωm. In operational quantum language, such coarse readout corresponds to
a POVM-like description, where the “particle spectrum” is readout-induced discreteness rather
than an a priori field continuum; see, e.g., [24] for standard measurement and POVM formalism.
In particular, what is experimentally accessible is not the underlying continuous orbit, but the
empirical statistics of finite window words. The finite readout alphabet Ωm and its stability-
filtered subsets therefore serve as the primary objects for any auditable finite-resolution model.

Remark 2.3 (Irrational rotations and Sturmian minimal complexity). For the canonical two-
interval partition induced by an irrational rotation (equivalently, for the length-α window Wα =
[1 − α, 1) or its complement), the resulting binary coding is Sturmian (a mechanical word):
it is aperiodic and has minimal factor complexity among aperiodic binary sequences, namely
p(ℓ) = ℓ + 1 distinct length-ℓ subwords for each ℓ ≥ 1. Appendix L gives a self-contained proof
of the complexity formula and the resulting zero entropy-rate bound.

2.3 The golden branch and Zeckendorf/Ostrowski coding

At the golden branch α = φ−1, the symbolic language is constrained by Fibonacci/Sturmian
structure and connects naturally to Ostrowski and Zeckendorf numeration [22, 25, 26]. In par-
ticular, every N ∈ N admits a unique Zeckendorf expansion

N =
∑
k≥1

ckFk+1, ck ∈ {0, 1}, ckck+1 = 0, (4)

which is a forbidden-word grammar (no adjacent ones) on the digit string (ck). This grammar
is the mathematical origin of the φ-channel in the folding model: it selects a stable type set
Xm ⊂ Ωm by excluding the forbidden substring “11” at finite window length (Section 4).

A coding bridge (symbol↔ arithmetic). At the golden branch, Fibonacci weights provide
a canonical arithmetic bridge between symbolic digits and integers. Given a binary digit sequence
(ck) satisfying the Zeckendorf grammar, the value map is

V (c) :=
∑
k≥1

ckFk+1.

Conversely, given a binary readout word (wk) produced by a window protocol, one may form a
Fibonacci-weighted observable

Z :=
∑
k≥1

wkFk, (5)

which makes explicit the “arithmetic–symbol–geometry” loop emphasized in the HPA program:
window projection induces symbolic words; the golden branch constrains them by a forbidden
grammar; and Fibonacci weights convert the resulting digits into arithmetic invariants.
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Audit note (finite coordinate bridge). [Audit]Status: [Math] (numeration/grammar) →
[Interface] (protocol identification). Depends on: the golden-branch choice α = φ−1 and its
induced Zeckendorf/Ostrowski numeration (Section 2.3). If: one represents a finite microstate
register dyadically while reading stable types in Zeckendorf digits, the explicit bridge between
these coordinates is fixed by the folding map Foldm in Section 4; a bounded counterfactual
family of alternative bridges at m = 6 is audited in Appendix Q.

Remark 2.4 (Why the golden branch is singled out among irrational slopes). For a general
irrational slope α, interval codings of the rotation (2) are Sturmian and admit an Ostrowski
numeration determined by the continued-fraction expansion of α [22,26]. The choice α = φ−1 =
[0; 1, 1, 1, . . . ] is distinguished by its extremal Diophantine property: among irrationals it is “most
poorly approximable” by rationals (all continued-fraction digits are minimal), yielding a canonical
and maximally rigid substitution structure (the Fibonacci word) and therefore a canonical digit
grammar that closes to Zeckendorf/Fibonacci weights [22,27]. This is the mathematical sense in
which the golden branch is the minimal nontrivial symbolic/arithmetic bridge: it is the unique
slope whose Ostrowski system reduces to the Fibonacci/Zeckendorf system used throughout the
folding layer.

Tick-only reading: the base φ as the intrinsic clock-ratio. In a tick-first ontology,
the scan index n is the only primitive time variable. Choosing a slope α therefore fixes, at
finite depth, how the tick stream distributes symbols under window projection and how mis-
match accumulates along time. Proposition 2.5 makes this selection auditable: at every finite
depth, the golden branch is the unique minimizer of a finite-depth continued-fraction com-
plexity proxy and therefore the unique choice that closes the symbolic/arithmetic bridge to a
canonical digit grammar. This is why the Fibonacci growth rate logφ becomes the intrinsic
normalization constant for scale and time dictionaries downstream: it is the topological en-
tropy (capacity) of the Zeckendorf-admissible stable-type language Xm on the golden branch
(cf. Remark 10.2 and Remark 4.4). This should not be confused with the entropy rate of the
Sturmian time-series readout, which vanishes (Appendix L). Accordingly, the resolution coor-
dinate r(µ) = log(µ/me)/ logφ used later is simultaneously a log-frequency and (up to sign) a
log-time coordinate (Appendix Y), providing a unified tick-derived scale language.

Proposition 2.5 (Finite-depth least-discrepancy rigidity of the golden branch). Let α =
[0; a1, a2, . . . ] ∈ (0, 1) \ Q and fix a depth m ≥ 0. Define the finite-depth continued-fraction
proxy

Cm(α) :=
m∑

k=0
ak+1.

Then Cm(α) ≥ m + 1, with equality if and only if a1 = · · · = am+1 = 1. In particular,
α = φ−1 = [0; 1, 1, 1, . . . ] uniquely minimizes Cm(α) at every depth.

Proof. Since ai ∈ N for all i, one has ai ≥ 1, hence Cm(α) ≥ m+ 1. Equality holds if and only
if each term satisfies ak+1 = 1 for k = 0, . . . ,m, i.e. a1 = · · · = am+1 = 1.

The CAP reading is that, among irrational scan slopes, the golden branch is rigidly selected
as the unique minimizer of a finite-depth complexity/discrepancy proxy, and it is the unique
choice that closes the Ostrowski numeration to Zeckendorf/Fibonacci ticks used throughout the
folding layer.

2.3.1 Accumulated mismatch and discrepancy certificates (interface)

Beyond finite-depth proxies, mismatch accumulation along scan time admits a standard certifi-
cate formulation in terms of discrepancy. For the orbit xn = x0 + nα (mod 1) (Section 2.1),
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define the star discrepancy of the length-N prefix by [28]

D∗
N := sup

a∈[0,1]

∣∣∣∣∣ 1
N

N−1∑
n=0

1[0,a)(xn)− a
∣∣∣∣∣ , (6)

and the accumulated mismatch by
EN := N D∗

N . (7)

In this language, sustainable readout corresponds to keeping EN controlled over long horizons,
while phase locking corresponds to linear growth in EN for rational (or effectively rational)
slopes. For bounded-type irrational slopes (notably the golden branch), EN admits explicit
logarithmic upper bounds tied to continued-fraction data [28, 29]; in the HPA–Ω program this
provides a quantitative mismatch dynamic that complements the symbolic/grammar viewpoint
and supports least-discrepancy selection principles [4, 7].

Remark 2.6 (An explicit bounded-type certificate (self-contained)). Appendix N records a self-
contained derivation of a continued-fraction/Ostrowski bound for the Kronecker scan: if α =
[0; a1, a2, . . .] has bounded partial quotients ak ≤ A, then

D∗
N (PN (α)) ≤ 8A

N

(
4 + logφN

)
, EN ≤ 8A

(
4 + logφN

)
,

and the golden branch ak ≡ 1 is the minimax choice within this audited certificate family (Re-
mark N.7).

Remark 2.7 (What changes if α is varied). If one replaces α = φ−1 by another irrational, the
theorem-level Sturmian minimal-complexity property remains (Remark 2.3), but the canonical
digit system changes: the induced numeration becomes the Ostrowski system associated to the
continued fraction of α rather than Zeckendorf/Fibonacci [22, 26]. Accordingly, the specific Fi-
bonacci counts and φ-based depth coordinates used in later sections are tied to the golden branch
choice; a generalized program would replace Fibonacci weights by the corresponding Ostrowski
weights and would induce a different admissibility grammar. In the present paper we therefore
fix α = φ−1 as the CAP-minimal choice within this audited class (Proposition 2.5), and we
audit robustness primarily under window-length uplift m 7→ m′ and balanced refinement m = 2n
(Appendix AE), rather than under arbitrary irrational-slope substitution.

Golden-angle scan on a planar screen (phyllotaxis overlay; not
used in proofs)
[Interface]For reader intuition, one may visualize the golden-branch scan as a planar point set (a
phyllotaxis/sunflower disk) obtained by a deterministic map from the one-dimensional rotation
orbit. [Audit]This construction is an interpretation-layer overlay: it introduces no new axiom and
is not used as a premise in theorem-level proofs. The quantitative auditable proxy remains the
mismatch/discrepancy certificates of Subsubsection 2.3.1 and Appendix N.

Let α = φ−1 be the golden-branch slope in (2). Writing the same orbit with the comple-
mentary step

β := 1− α = φ−2,

the corresponding planar “golden angle” increment is γ := 2πβ ≈ 137.5◦. Given a horizon
N ≥ 1, define the tick-indexed planar points by

θk := 2πkβ, ρk :=
√
k

N
, zk := ρk eiθk ∈ C, k = 0, 1, . . . , N − 1.
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The set {zk} is the classical phyllotaxis disk. Its role here is organizational: it turns the slope
selection at the golden branch into a planar “screen” picture that helps connect three interface
dictionaries used elsewhere in the paper: (i) uniform coverage / isotropy proxies (quantified by
discrepancy, i.e. EN in (7)), (ii) distance as addressing steps on a chosen display graph (Section 5
and Definition 3.3), and (iii) local density/revisit as a visualization proxy for overhead/latency
dictionaries (Section 10 and Appendix Y).

[Match]The value 137.5◦ is an angle reported in a chosen unit system, while 1/αem is a
dimensionless ratio; any numerical comparison belongs to matching/interpretation and is not
used as a premise for closure.

3 Tick calculus: deriving observables, space, gauge, and scale
from sequential readout

Aim. This section fixes the time-first spine used throughout the paper. We treat the tick (scan
iteration count) as the only primitive input and CAP as the only primitive closure/selection rule,
and we define all physical-language quantities as derived protocol structures. Mathematical-layer
statements (counts, maps, and finite tables) remain as in Sections 2 and 4; the additional content
here is a dictionary that maps each physical concept to an explicit mathematical object.

3.1 The tick as the only primitive input

Definition 3.1 (Tick (scan time)). The tick is the scan iteration index t ∈ Z. The direction
t 7→ t+ 1 is the operational notion of forward time within the protocol.

Audit note. [Audit]Status: [Interface]. Depends on: Axiom 1.1. If: time is identified with
the executed update order (a definitional convention; no additional dynamical assumption).

3.2 Time orientation and initialization: the arrow of time in tick-only lan-
guage

Orientation is part of sequential execution. [Interface]At the mathematical layer, the scan
orbit can be indexed by Z and is formally symmetric under reversal t 7→ −t. In the executed
protocol, “time” is the operational update order (Definition 3.1), so t 7→ t + 1 is the forward
direction by definition.

Origin choice. [Interface]Protocol observables depend only on tick differences (e.g. Defini-
tion 3.4), so shifting t 7→ t+ t0 is a coordinate convention away from boundary conditions.

Irreversibility from finite observability (no new axiom). [Interface]The arrow is not pos-
tulated as an extra dynamical law: it arises because “physics” here is the finite record after
window projection and stability folding, both many-to-one. Consequently, observable word his-
tories are not invertible to unique microstate histories, and reversal corresponds to a different
protocol/run (Section 7.1).

3.3 From ticks to finite observables: windows and words

Observable records are finite. Fix a window length m ≥ 1. Finite readout is represented
by length-m binary words

Ωm := {0, 1}m, |Ωm| = 2m,

obtained by window projection of the scan stream (Section 2.2). [Math]At resolution m, an
elementary record is the pair (tick, word).
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3.4 Stability as an intrinsic grammar: admissible types and folding

Stability is a predicate on words. At the golden branch, the φ-channel selects the ad-
missible set Xm ⊂ Ωm by a forbidden-word grammar (no adjacent ones), and one has the
Fibonacci count |Xm| = Fm+2 (Lemma 4.5). The π-channel induces the cyclic/boundary split
(Proposition 4.8).

Microstates and projection. [Math]The folding map Foldm (Definition (14)) deterministi-
cally projects microstate indices in Ωm to stable types in Xm; it is surjective for all m (Propo-
sition 4.20).

Audit note. [Audit]Status: [Math]. Depends on: the admissible grammar defining Xm and
the explicit truncation map Foldm (Section 4). If: Foldm is the Zeckendorf-truncation projection
adopted in this paper (theorems apply to the map as defined).

3.5 Space as addressing: display graphs, distance, and velocity

Space is a derived display structure. To speak about locality, the protocol must choose
an addressing basis that embeds a finite tick prefix into a neighborhood graph. At Hilbert order
n, the canonical finite prefix is t ∈ {0, . . . , 4n− 1} and the Hilbert addressing map is a bijection

Hn : {0, 1, . . . , 4n − 1} → {0, 1, . . . , 2n − 1}2

(Section 5).

Definition 3.2 (Addressing map and display graph). Fix an order n and an addressing map
An from indices to sites. For the Hilbert screen, An := Hn. Define the display graph Gn as the
nearest-neighbor graph on the site set An({0, . . . , 4n − 1}), with edges given by unit Manhattan
adjacency on the grid.

Definition 3.3 (Protocol distance). For sites x, y in the display graph Gn, define the protocol
distance

dn(x, y) := shortest-path distance between x and y in Gn.

Tick-distance relation. [Interface]Distance is a tick-count proxy once a per-move tick budget
is fixed (Definition 3.3).

Definition 3.4 (Protocol velocity and maximal signal rate (tick units)). Given a tick-indexed
site trajectory x(t) ∈ Gn, define the protocol velocity (in sites per tick) by

v(t1, t2) := dn(x(t1), x(t2))
|t2 − t1|

(t1 ̸= t2).

The maximal protocol signal rate on Gn is the supremum of v over admissible update rules.

Remark 3.5 (Physical units and the speed-of-light dictionary). The quantities in Definitions 3.3
and 3.4 are dimensionless (graph units per tick). Any identification with meters/seconds, and
hence any identification with the measured constant c, is a matching-layer calibration (Re-
mark 2.1).
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3.6 Bulk dimension as a CAP output from the anchor bit budget

Screen versus bulk. The addressing screen used for finite diagnostics is a protocol-level
readout basis (Section 5). By contrast, the bulk dimension d is an interface parameter that
enters when one asks what it means to display a localized rigid object and to compare its pose
across sites. In the tick-only language, d is not taken as a primitive input: it is selected from a
finite candidate set by CAP at the chosen anchor scale.

Definition 3.6 (Rigid-frame coarse-lock budget (tick-only interface)). Let d ≥ 1 be a candi-
date bulk dimension. A local rigid frame has d translational degrees of freedom and d(d − 1)/2
rotational degrees of freedom, hence dimSE(d) = d(d + 1)/2. Under the minimal nontrivial
coarse-lock convention (two bins per independent parameter), a single binary window of length
m can coarse-lock a rigid frame only if

m ≥ dimSE(d) = d(d+ 1)
2 .

Proposition 3.7 (CAP-maximal bulk dimension at the anchor). At the chosen anchor window
length m = 6, CAP selects the maximal bulk dimension compatible with the coarse-lock budget
in Definition 3.6, namely d = 3. Equivalently, dimSE(3) = 6 matches the anchor bit budget.

Proof. For d = 4 one has dimSE(4) = 10 > 6, so a single m = 6 window cannot coarse-lock
a 4D rigid frame under the minimal two-bin convention. For d = 3 one has dimSE(3) = 6, so
d = 3 is admissible and saturates the budget. Thus the maximal admissible d is 3.

Audit note. [Audit]Status: [Interface] + CAP. Depends on: Definition 3.6 and the anchor
choice m = 6. If: the single-window coarse-lock criterion uses the minimal two-bin-per-
parameter convention; this selection does not enter the theorem-level folding statements.

3.7 Gauge data as fiber compensation

Why connections are forced. At fixed m, stable labels w ∈ Xm carry finite microstate
fibers P (w) = Fold−1

m (w). Once the protocol demands cross-site consistency on the display
graph, stable labels alone are insufficient: one must also specify how fibers are matched between
neighbors (Proposition 8.1). This is the finite origin of compensating connection data and gauge
redundancy.

3.8 Overhead, delay, and scale: mass and energy as time dictionaries

Overhead as time-lag. In a tick-first ontology, “mass as depth” is an operational state-
ment about overhead: stabilizing a pattern consumes additional local protocol resources. At
the matching layer, this overhead can be accessed through delay observables (Wigner–Smith;
Appendix Y) and compared to clock-rate/lapse dictionaries.

A single log-time coordinate. Fix the electron reference µ0 = me and define the resolution
coordinate

r(µ) := log(µ/me)
logφ .

By the Compton-clock dictionary (Appendix Y), r is simultaneously a log-frequency and (up to
a sign) a log-time coordinate. This is the sense in which mass and energy are derived from time
in the present protocol language: they are calibrated re-expressions of time-scale ratios relative
to the m = 6 anchor.
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protocol concept mathematical object where fixed in this paper operational proxy (matching
layer)

time (tick) t ∈ Z (Definition 3.1) Axiom 1.1; Section 3 laboratory clock ticks after cali-
bration

finite observables w ∈ Ωm = {0, 1}m Section 2.2 binary readout stream / bit
records

stability (types) Xm ⊂ Ωm Section 4 persistent readout classes
projection Foldm : {0, . . . , 2m − 1} ↠

Xm

Section 4.7 coarse graining / equivalence
classes

space (display) addressing map An and graph
Gn

Section 5; Definition 3.2 locality graph used for audits

distance dn (graph metric) Definition 3.3 hop count / minimal transport
steps

velocity (tick units) v = ∆d/∆t Definition 3.4 propagation rate; c after calibra-
tion

phase dyadic register Z2p and eiθ Appendix B; Section 1.8 phase readout / interferometry
frequency ω = ∆θ/∆t (tick units) Appendix AA spectral peaks; clock ratios; red-

shift
gauge data fiber matchings / holonomy Section 6 plaquette holonomy statistics
curvature (finite) holonomy conjugacy invari-

ants
Section 6; Appendix AA loop/plaquette statistics

overhead / lapse κ, χ = log(κ/κ0), N = e−γχ Appendices Y, AD.7 clock slowdown; redshift; time
delay

mass (overhead) depth / delay dictionary Sections 10, 13 Compton time; Wigner–Smith
delay

energy/scale r(µ) = logφ(µ/me) Section 10.1 frequency/energy conventions
dynamics (continuum
closure)

CAP-selected action class [S]
and its EOM

Appendices AD.4–AD.5 weak-field tests; effective-field
fits

entropy/temperature state-count and conjugate
scale

Appendix AD.6 thermodynamic entropy; noise
spectra

force response functional (ac-
tion/free energy gradient)

Appendices AD.5, AD.6 acceleration; pressure/gradient
forces

Born probabilities POVM probabilities Pk =
Tr(ρEk)

Appendix AD.10 measurement frequencies

RG / running dg/dr = (log φ)β(g) Appendix AD.11 scale dependence of couplings
cosmology (interface) fstab(m) = Fm+2/2m, dm =

2m/Fm+2

Appendix AD.12 energy budget / clustering prox-
ies

Table 3: Tick-first dictionary: each physical-language concept used in this paper is identified
with an explicit mathematical object derived from sequential readout.

3.9 Dictionary summary: physical concepts as mathematical objects

Full derivation spine (supplement). [Audit]Appendix G records the full tick + CAP deriva-
tion spine (candidate families, objectives, and deterministic tie-breaks) behind the interface
components summarized here.

Part III

Periodic Core: the (φ, π, e) channels and the
anchor
4 Resolution folding core: Ω6 → X6 and the 64→ 21 stable sector
This section records the finite-resolution mathematical layer of the construction with fully ex-
plicit definitions and proofs. The broader resolution-folding and recursive uplift program (be-
yond the m = 6 anchor emphasized here) is developed in the companion manuscript [9].
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4.1 Microstate readout space and balanced coupling

Fix a window length m ≥ 1 and define the microstate readout space

Ωm := {0, 1}m, |Ωm| = 2m,

with linearizationHm := ℓ2(Ωm). To attach explicit spatial diagnostics later (Hilbert addressing,
chirality, holonomy), we use an addressing basis as a readout screen (Section 5); at the minimal
anchor this choice is made explicit and auditable (Table 5). We adopt the classical 2D Hilbert
addressing and a balanced cardinality match on that screen, 2m = 4n (equivalently m = 2n).
We focus on the minimal instance used in this paper, n = 3 and hence m = 6:

Ω6 = {0, 1}6, |Ω6| = 64.

At the same order n = 3, the 2D Hilbert-addressed grid has 4n = 64 sites, matching the local
readout cardinality.

Lemma 4.1 (Balanced coupling equivalences). For integers m,n ≥ 1, the following are equiv-
alent:

2m = 4n, m = 2n.

Equivalently, an order-n Hilbert grid has the same number of sites as the m-bit readout alphabet
Ωm if and only if m = 2n.

Proof. Since 4n = (22)n = 22n, the equality 2m = 4n holds if and only if m = 2n.

Remark 4.2 (Balanced coupling and addressing dimension). Lemma 4.1 is the cardinality match
specialized to the 2D Hilbert addressing used for the explicit finite diagnostics in this paper: an
order-n square grid has 4n = (22)n sites, hence 2m = 4n ⇐⇒ m = 2n. More generally, a
d-dimensional hypercubic addressing basis at side length 2n has (2n)d = 2dn sites, and matching
|Ωm| = 2m corresponds to m = dn. We use the 2D Hilbert grid as an explicit readout screen for
the diagnostics below; see Remark 5.1 for the rationale, Table 5 for the bounded counterfactual
audit, and the 3D comparison in Remark 5.1.

Operational forcing rationale for m = 2n (2D screen) and for the “minimal” instance.
At Hilbert order n, the scan index ranges over {0, . . . , 4n−1} and therefore carries exactly 2n bits
of information. The balanced rule m = 2n identifies a readout window length with this canonical
bit budget and yields a simple one-to-one site labeling on the chosen 2D screen (Lemma 4.1).

Remark 4.3 (Balanced coupling is a diagnostic convention). Balanced coupling is not a theorem-
level requirement of the folding core. All folding maps, admissible sets, and counting statements
in this section are defined for every m. The balanced relation 2m = 4n is adopted only when we
attach spatial diagnostics by placing window words (or stable types) on an order-n addressing
grid with matched cardinality so that each site carries exactly one m-bit microstate label. Within
the tick-only interface of this paper, this choice is CAP-minimal among couplings on a fixed
screen: a bijective site↔window assignment avoids additional protocol conventions and mapping
overhead. Other couplings 2m ̸= 4n correspond to non-bijective site↔window assignments and
would require additional protocol conventions; they are not pursued here.

Why (m,n)=(6,3)? A minimal holonomy anchor (CAP). The algebra permits any m
and any addressing basis; attaching locality and transport diagnostics requires additional pro-
tocol structure. A closed-loop holonomy diagnostic requires at least a two-dimensional display
graph, so we use a 2D screen (Section 5). Given a fixed 2D screen and an addressing basis,
balanced coupling 2m = 4n is CAP-minimal because it yields a bijective site↔microstate assign-
ment and avoids additional mapping overhead (Remark 4.3). Among balanced pairs, CAP then
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channel explicit finite-m definition and derived output at m = 6

φ (grammar) Forbidden-word legality: Xm := {w ∈ {0, 1}m : wiwi+1 = 0}, equivalently Dφ(w) =
1{w contains 11} and φ-stability is Dφ(w) = 0 (Equation (8)). Then |Xm| = Fm+2 and in
particular |X6| = F8 = 21 (Lemma 4.5).

π (wrap-
around)

Cyclic closure at finite window length: Dπ(w) = 1{w1 = wm = 1} and Xm = Xcyc
m ⊔ Xbdry

m with
Xcyc

m = {w ∈ Xm : w1wm = 0} and Xbdry
m = {w ∈ Xm : w1 = wm = 1} (Section 4.4). Then

|Xbdry
m | = Fm−2 and at m = 6 one has the canonical split 21 = 18 ⊕ 3 with explicit boundary

words (Proposition 4.8 and Corollary 4.9).
e (analytic) Analytic stability template: Artin–Mazur zeta and Abel normalization for the golden mean shift,

yielding ζ(z) = 1/(1−z−z2) and the Abel pole barrier at r = 1 under z = r/φ (Section 4.5). At m =
6 this channel is used as an interpretation layer rather than to further reduce X6 (Remark 4.12).

Table 4: The three stability channels as explicit finite constructions. The reduction 64 → 21
at m = 6 is enforced by the φ-grammar (admissible words), while the π-channel induces the
canonical 18⊕3 cyclic/boundary split; the e-channel supplies an analytic stability template used
for interpretation and for higher-resolution variants.

selects the smallest n for which the deterministic finite connection yields nontrivial plaquette
holonomies (3/4 cycles) and a nonzero phase-lift signal; the balanced-chain sweep in Table 30
shows that n = 1, 2 produce only trivial holonomy while n = 3 is the first scale with nontriv-
ial 3/4-cycle content. Thus the minimal anchor on this screen is (n,m) = (3, 6). We treat
(m,n) = (6, 3) as a concrete anchor for fully explicit finite diagnostics; higher balanced pairs
such as (m,n) = (8, 4) and (10, 5) are addressed uniformly by the same definitions and by the
uplift sweeps recorded in Appendix AE. In particular, the Fibonacci admissible sizes and the
π-channel split persist for all m (Lemma 4.5 and Proposition 4.8): for example,

28 → |X8| = 55, 55 = 47⊕ 8,

and
210 → |X10| = 144, 144 = 123⊕ 21,

as recorded in Table 66.

4.2 Three stability channels (summary)

At finite window length, stability is organized by three channels, denoted φ–π–e. For the
mainline narrative we treat them as explicit predicates/definitions on finite words. An equivalent
defect-operator viewpoint and an optional relaxation dynamics are recorded in Appendix O.

Three stability channels (fully explicit at finite window length). The 64→ 21 claim at
m = 6 is not obtained by fitting or post-hoc filtering: it follows deterministically from explicit
defect predicates on finite words (the φ and π channels) together with a standard analytic
template (the e channel). For reader convenience, Table 4 summarizes the precise channel
definitions used in this paper and points to the theorem-level count statements that follow.

4.3 The φ-channel: Zeckendorf grammar and |X6| = 21
Define the golden-mean admissible set (forbidden substring “11”)

Xm := {w ∈ {0, 1}m : wiwi+1 = 0 for all i = 1, . . . ,m− 1}. (8)

Equivalently, define the defect function

Dφ(w) := 1{w contains the substring 11},

so that φ-stability is Dφ(w) = 0 and the φ-stable sector is exactly Xm.
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Remark 4.4 (Sturmian readout language vs. golden-mean admissible language). The set Xm

is the length-m block language of the golden-mean shift (the shift of finite type forbidding the
word 11), hence |Xm| = Fm+2 and its associated topological entropy is logφ (Lemma 4.5 and
Remark 10.2). This should not be confused with the factor language of the Sturmian time-series
readout produced by an irrational scan and a canonical two-interval window partition, which
has factor complexity p(m) = m + 1 and zero entropy rate (Appendix L). The two notions are
compatible because the Sturmian language is a strict subset of the golden-mean admissible block
language (Appendix M).

Lemma 4.5 (Fibonacci count of admissible words). For all m ≥ 1, one has |Xm| = Fm+2. In
particular, |X6| = F8 = 21.

Proof. Let am := |Xm|. An admissible length-m word either starts with 0 followed by an
admissible length-(m−1) word, or starts with 10 followed by an admissible length-(m−2) word.
Thus am = am−1 + am−2 with initial values a1 = 2, a2 = 3, hence am = Fm+2.

Remark 4.6 (Sub-geometric stable types at m < 6 (interface)). Lemma 4.5 shows that ad-
missible stable types exist at every window length, including the near-threshold case m = 5
with |X5| = F7 = 13. Under the rigid-frame coarse-lock budget at the anchor (Section 1.3;
Proposition 3.7), m = 6 is the minimal single-window anchor compatible with coarse localized
rigid-frame display at the protocol interface, so m < 6 admissible types are sub-geometric in
this interface sense (cf. Remark 1.4). We refer to Section 1.3.1 and Section P for the com-
plementary protocol interpretations of the vacuum sector (sub-geometric admissibility versus
protocol-unstable microstates).

Remark 4.7 (The ghost sector: protocol-unstable microstates (interface)). In the HPA scan–
projection paradigm, a vacuum is not the absence of microstates but the absence of stable lo-
calized outputs under a fixed finite-resolution protocol. In addition to sub-geometric admissible
types at m < 6 (Section 1.3.1), a second contribution is present already at fixed m: the protocol-
unstable complement Ωm\Xm consisting of readout words that violate the admissibility grammar.
We refer to Ωm \Xm as the ghost sector.

At the anchor m = 6, one has |Ω6| = 64 and |X6| = 21, hence |Ω6 \ X6| = 64 − 21 = 43.
This same count also appears as projection redundancy in the many-to-one folding map Fold6
(Section 4.6): stable readout labels retain 21 degrees of freedom while 43 microscopic degrees of
freedom are suppressed by projection.

A minimal instability witness. Define the adjacent-ones count

N11(w) := #{ i ∈ {1, . . . ,m− 1} : wi = wi+1 = 1 }.

Then Xm = {w ∈ Ωm : N11(w) = 0} and the ghost sector is Ωm\Xm = {w ∈ Ωm : N11(w) ≥ 1}.
Section P records diagnostic m-sweeps for the ghost sector (violation distributions and minimal
repair costs) generated by deterministic scripts.

Define the φ-stable projection Pφ : Hm → Hm as the orthogonal projection onto ℓ2(Xm). At
m = 6, this is the first rigid compression:

rank(Pφ) = |X6| = 21.

4.4 The π-channel: cyclic closure and the 18⊕ 3 split

At finite window length, the π-channel refines stability by imposing a cyclic wrap-around ad-
missibility. Define the wrap-around defect

Dπ(w) := 1{w1 = wm = 1}.
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For a window length m ≥ 4, define

Xcyc
m := {w ∈ Xm : w1wm = 0}, Xbdry

m := {w ∈ Xm : w1 = wm = 1}.

Proposition 4.8 (Cyclic/boundary split size for the π-channel). For every m ≥ 4, the boundary
set has Fibonacci size

|Xbdry
m | = Fm−2,

and therefore, using Lemma 4.5,

|Xcyc
m | = |Xm| − |Xbdry

m | = Fm+2 − Fm−2.

Proof. If w ∈ Xbdry
m , then w1 = wm = 1 and Zeckendorf admissibility forces w2 = wm−1 = 0.

Thus the middle substring w3 · · ·wm−2 is an admissible word of length m− 4 with no adjacent
ones, i.e. an element of Xm−4. Conversely, any u ∈ Xm−4 yields a boundary word w = 10u 01 ∈
Xbdry

m . This gives a bijection Xbdry
m

∼= Xm−4, hence

|Xbdry
m | = |Xm−4| = F(m−4)+2 = Fm−2

by Lemma 4.5.

Corollary 4.9 (Canonical 18⊕3 split atm = 6). At m = 6, one has |Xcyc
6 | = 18 and |Xbdry

6 | = 3,
and

Xbdry
6 = {100001, 100101, 101001}.

Proof. The sizes follow from Proposition 4.8 and Lemma 4.5. For the explicit list, use the
bijection in the proof of Proposition 4.8: every boundary word at m = 6 has the form w =
10u 01 with u ∈ X2. Now X2 = {00, 01, 10}, hence Xbdry

6 = {10 00 01, 10 01 01, 10 10 01} =
{100001, 100101, 101001}.

4.5 The e-channel: Artin–Mazur zeta and Abel pole barrier

The e-channel expresses analytic stability through zeta functions and Abel normalization [30–32].
For a compact, self-contained summary of the Abel-path and pole-barrier viewpoint used in this
channel, see Appendix B. For a dynamical system (X, f), the Artin–Mazur zeta function is
defined by the periodic-point counts

ζf (z) := exp

∑
n≥1

#Fix(fn)
n

zn

 , (9)

whenever the series is well-defined [30,31]. For shifts of finite type with transition matrix A, the
Artin–Mazur zeta function admits the standard rational form ζ(z) = 1/ det(I − zA) [23,31,32].
For the golden mean shift, one can make A explicit:

Lemma 4.10 (Golden mean shift: transition matrix and zeta). Let X ⊂ {0, 1}Z be the shift
of finite type defined by the forbidden word 11. With state space {0, 1} and allowed transitions
0→ 0, 0→ 1, 1→ 0, the transition matrix is

A =
(

1 1
1 0

)
.

Consequently,
ζ(z) = 1

det(I − zA) = 1
1− z − z2 . (10)
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Proof. The transition rule encodes the forbidden substring “11”, hence the stated adjacency
matrix. Then

I − zA =
(

1− z −z
−z 1

)
, det(I − zA) = (1− z) · 1− z2 = 1− z − z2,

which gives (10).

Let φ be the golden ratio and apply spectral normalization z = r/φ. Then

ζe(r) := ζ(r/φ) = 1
1− r

φ −
r2

φ2

= 1
(1− r)

(
1 + r

φ2
) . (11)

The principal pole at r = 1 lies on the boundary of the unit disk and plays the role of an analytic
“pole barrier” for Abel-type limits.

Lemma 4.11 (Golden normalization factorization). One has the identity

1− r

φ
− r2

φ2 = (1− r)
(
1 + r

φ2
)
,

so the poles of ζe are located at r = 1 and r = −φ2.

Proof. Using 1− φ−2 = φ−1 (equivalently φ2 = φ+ 1), expand

(1− r)
(
1 + r

φ2
)

= 1− r + r

φ2 −
r2

φ2 = 1−
(
1− 1

φ2

)
r − r2

φ2 = 1− r

φ
− r2

φ2 .

Remark 4.12 (Finite window vs. higher-resolution distinction). At the minimal window length
m = 6, the analytic channel is used here primarily as an interpretation layer for stability (holo-
morphy domain and boundary pole), while the admissible-word selection is already enforced by the
φ-grammar. At higher resolution, weighted/pressure-like variants can make e genuinely distinct
from a single forbidden-word predicate.

4.6 The folding map Fold6: from 64 indices to 21 stable types

Index the microstate words by integers {0, . . . , 2m − 1} via the usual binary identification. For
N ∈ {0, . . . , 63}, let (ck) be the Zeckendorf digits of N as in (4). Define the length-6 folding
map by truncation:

Fold6(N) := (c1, . . . , c6) ∈ X6, (12)

padding by zeros if the expansion length is < 6.

Remark 4.13 (Dyadic microstates versus Zeckendorf digits). At fixed window length m, there
are two distinct binary coordinate systems in play. The microstate register {0, . . . , 2m − 1} is
dyadic (a size-2m index set), while the stable sector Xm is defined as a Zeckendorf-admissible
digit language (no adjacent ones) on the golden branch. The folding map Foldm used in this paper
is the explicit deterministic bridge between these coordinates: it converts a dyadic index N to its
Zeckendorf digits and then takes a length-m prefix (Definition (14)). This is a [Math]definition of
the finite folding layer. Other deterministic base-change/repair conventions from {0, . . . , 2m −
1} to Xm are possible and would, in general, induce different fiber statistics. To make this
dependence auditable, Appendix Q records a bounded counterfactual family of alternative maps
at m = 6 and summarizes the resulting finite invariants. Within that bounded family, the
additional natural fixed-point constraint F (V (w)) = w for all w ∈ X6 (Definition Q.1) selects
the Zeckendorf-truncation map uniquely (Proposition Q.2).
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Definition 4.14 (Zeckendorf value of a stable word). For w = w1 · · ·w6 ∈ X6, define its
Zeckendorf value

V (w) :=
6∑

k=1
wkFk+1 = w1 · 1 + w2 · 2 + w3 · 3 + w4 · 5 + w5 · 8 + w6 · 13. (13)

Proposition 4.15 (Value labeling of the 21 stable types). The map V : X6 → {0, 1, . . . , 20} is
a bijection.

Proof. Step 1 (range). Since w ∈ X6 has no adjacent ones, the maximal value is attained by
the admissible choice w = 010101, giving

V (w) = 2 + 5 + 13 = 20.

Thus 0 ≤ V (w) ≤ 20 for all w ∈ X6, so V maps into {0, . . . , 20}.

Step 2 (injectivity). Let w,w′ ∈ X6 and suppose V (w) = V (w′) =: N . By Step 1, N ≤ 20 <
21 = F8, so the Zeckendorf expansion of N uses only Fibonacci weights up to F7 = 13 and has
zero digits beyond position 6. Therefore the length-6 Zeckendorf digit vector of N is uniquely
defined. Since w and w′ are both admissible digit vectors yielding the same value N , Zeckendorf
uniqueness forces w = w′. Hence V is injective.

Step 3 (bijectivity). By Lemma 4.5, |X6| = 21, and |{0, . . . , 20}| = 21. An injective map
between two finite sets of equal size is bijective.

Lemma 4.16 (Surjectivity of Fold6). For every stable word w ∈ X6, one has

Fold6
(
V (w)

)
= w.

In particular, Fold6 : {0, . . . , 63}↠ X6 is surjective.

Proof. Fix w = w1 · · ·w6 ∈ X6 and set M := V (w). By Proposition 4.15, 0 ≤ M ≤ 20 <
21 = F8, so the Zeckendorf expansion of M uses only Fibonacci weights up to F7 = 13 and
has zero digits beyond c6. Moreover, by construction of V (w), the digit vector (c1, . . . , c6) of
this Zeckendorf expansion equals (w1, . . . , w6). Therefore, by the definition (12), Fold6(M) =
(c1, . . . , c6) = w.

Lemma 4.17 (Explicit fiber description of Fold6). Let w ∈ X6 and write v := V (w) ∈
{0, . . . , 20}. Then Fold−1

6 (w) is given explicitly by:

• If w6 = 1, then Fold−1
6 (w) = {v, v + 34}.

• If w6 = 0 and v ≤ 8, then Fold−1
6 (w) = {v, v + 21, v + 34, v + 55}.

• If w6 = 0 and 9 ≤ v ≤ 12, then Fold−1
6 (w) = {v, v + 21, v + 34}.

In particular, every stable type has preimage size in {2, 3, 4}.

Proof. Fix w ∈ X6 and write v := V (w). By definition, Fold6(N) = w iff the Zeckendorf digit
string of N begins with (c1, . . . , c6) = w. Write the Zeckendorf expansion of N as

N = v +
∑
k≥7

ckFk+1 = v + 21c7 + 34c8 + 55c9 +
∑

k≥10
ckFk+1,

using F8 = 21, F9 = 34, F10 = 55. Since 0 ≤ N ≤ 63, one must have ck = 0 for all k ≥ 10
because F11 = 89 > 63. Hence

N = v + 21c7 + 34c8 + 55c9, c7, c8, c9 ∈ {0, 1},
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with Zeckendorf admissibility constraints

w6c7 = 0, c7c8 = 0, c8c9 = 0.

We now enumerate admissible (c7, c8, c9) and enforce N ≤ 63.

Case 1: w6 = 1. Then c7 = 0. If c8 = 1 then c9 = 0 and N = v + 34. If c8 = 0, then either
c9 = 0 giving N = v, or c9 = 1 giving N = v + 55. But when w6 = 1 one has v ≥ 13, hence
v + 55 ≥ 68 > 63, so c9 = 1 is impossible. Thus Fold−1

6 (w) = {v, v + 34}.

Case 2: w6 = 0. Now c7 may be 0 or 1. If c7 = 1 then c8 = 0, and c9 may be 0 or 1: this
yields N = v+ 21 or N = v+ 76. The latter exceeds 63, so only N = v+ 21 remains. If c7 = 0,
then c8 may be 0 or 1. If c8 = 1 then c9 = 0 and N = v + 34. If c8 = 0 then c9 may be 0 or 1,
yielding N = v or N = v+ 55. The option N = v+ 55 is admissible iff v ≤ 8. Finally, note that
for w6 = 0 one always has v ≤ 12 (the maximal value without the F7 = 13 digit). Therefore:

• if v ≤ 8, all three values v, v + 21, v + 34, v + 55 lie in [0, 63];

• if 9 ≤ v ≤ 12, v + 55 > 63 and the preimage reduces to {v, v + 21, v + 34}.

This proves the stated cases and the preimage-size set {2, 3, 4}.

Theorem 4.18 (Finite folding statistics at m = 6). The map Fold6 : {0, . . . , 63} ↠ X6 is
surjective. Every stable type has preimage size 2, 3, or 4, with degeneracy histogram

(|V2|, |V3|, |V4|) = (8, 4, 9),

where Vk := {w ∈ X6 : |Fold−1
6 (w)| = k}. Moreover, the boundary-sector preimages are

Fold−1
6 (100001) = {14, 48}, Fold−1

6 (100101) = {19, 53}, Fold−1
6 (101001) = {17, 51}.

Proof. Surjectivity is Lemma 4.16. Lemma 4.17 gives |Fold−1
6 (w)| ∈ {2, 3, 4}.

Histogram. First count words with w6 = 1. Such words satisfy w5 = 0 and the prefix w1 · · ·w4
is any admissible word in X4, hence there are |X4| = F6 = 8 such words. By Lemma 4.17 (case
w6 = 1) they have fiber size 2, so |V2| = 8.

Now consider words with w6 = 0. Then w1 · · ·w5 ∈ X5, so there are |X5| = F7 = 13 such
words. Among them, those with w5 = 1 have w4 = 0 and the remaining triple (w1, w2, w3) can
be any admissible length-3 word not equal to 000. Indeed, if (w1, w2, w3) = 000 then v = 8,
while any other admissible triple adds at least 1 to the value, giving v ∈ {9, 10, 11, 12}. There
are exactly 4 admissible triples with sum ≥ 1, namely 100, 010, 001, 101. Hence there are 4 words
in X6 with w6 = 0 and v ∈ {9, 10, 11, 12}, and by Lemma 4.17 they have fiber size 3. Thus
|V3| = 4. The remaining 13− 4 = 9 words with w6 = 0 have v ≤ 8 and therefore fiber size 4, so
|V4| = 9. This yields (|V2|, |V3|, |V4|) = (8, 4, 9).

Boundary-sector preimages. Using Definition 4.14, compute the boundary values:

V (100001) = 1 + 13 = 14, V (100101) = 1 + 5 + 13 = 19, V (101001) = 1 + 3 + 13 = 17.

All three have w6 = 1, so Lemma 4.17 gives Fold−1
6 (w) = {V (w), V (w) + 34}, yielding the

displayed pairs.

Degeneracy histogram (supplement). The rigid (2, 3, 4) degeneracy histogram is recorded
in Appendix O.
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Summary at minimal resolution. At (m,n) = (6, 3), the three-channel stability mechanism
yields an explicit, auditable chain:

Ω6 (64 microstates) forbidden grammar−−−−−−−−−−−−→
φ-projection

X6 (21 stable types) cyclic closure−−−−−−−−→
π-split

Xcyc
6 ⊕Xbdry

6 (18⊕ 3).

This 64 → 21 and 18 ⊕ 3 structure is not a metaphor but a finite combinatorial theorem with
explicit tables. The remainder of the paper treats this rigid finite skeleton as the stable-sector
substrate for Standard Model interface hypotheses.

4.7 Uplift: Foldm and persistence across m

The m = 6 map Fold6 is the first nontrivial instance of a general truncation map at arbitrary
window length. For m ≥ 1 and N ∈ {0, . . . , 2m − 1}, let (ck)k≥1 be the Zeckendorf digits of N
(no adjacent ones) and define

Foldm(N) := (c1, . . . , cm) ∈ Xm, (14)

padding by zeros if the digit vector length is < m.

Lemma 4.19 (Dyadic bound for Fibonacci growth). For all m ≥ 1, one has Fm+2 ≤ 2m.

Proof. At m = 1, F3 = 2 = 21. Assume Fm+2 ≤ 2m and Fm+1 ≤ 2m−1 for some m ≥ 2 (the
second inequality holds by the induction hypothesis at m− 1). Then

Fm+3 = Fm+2 + Fm+1 ≤ 2m + 2m−1 < 2m+1.

Thus Fm+3 ≤ 2m+1, completing the induction.

Proposition 4.20 (Surjectivity of Foldm onto Xm). For every m ≥ 1, the map Foldm :
{0, . . . , 2m − 1}↠ Xm is surjective.

Proof. Let w ∈ Xm and define its Zeckendorf value

Vm(w) :=
m∑

k=1
wkFk+1.

It is standard that the admissible digit set Xm has size Fm+2 and represents exactly the integers
{0, . . . , Fm+2 − 1} under Vm (Lemma 4.5; see also [25, 26, 33–35]). In particular, Vm(w) ≤
Fm+2−1. By Lemma 4.19, Fm+2 ≤ 2m for all m ≥ 1, hence Vm(w) ∈ {0, . . . , 2m−1}. Moreover,
the Zeckendorf expansion of Vm(w) uses no Fibonacci weights beyond Fm+1, hence its digits
beyond cm are zero and its first m digits equal w. Therefore Foldm(Vm(w)) = w.

A canonicality criterion for the digit window. Beyond surjectivity, one may ask whether
the choice of the digit window (c1, . . . , cm) in (14) is forced within natural nearby variants. The
following simple fixed-point condition rules out “shifted” Zeckendorf digit windows.

Definition 4.21 (Shifted Zeckendorf-window maps). For m ≥ 1 and an integer shift s ≥ 0,
define the shifted map

Fold(s)
m (N) := (c1+s, c2+s, . . . , cm+s) ∈ Xm,

where (ck)k≥1 are the Zeckendorf digits of N (padding by zeros for indices beyond the expan-
sion length). Thus Fold(0)

m = Foldm and s = 1 is the “FoldZ-shift” counterfactual at m = 6
(Appendix Q).
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Definition 4.22 (Value consistency at window length m). A deterministic map F : {0, . . . , 2m−
1} → Xm is value-consistent if

F (Vm(w)) = w for all w ∈ Xm,

where Vm(w) = ∑m
k=1wkFk+1 is the Zeckendorf value used above.

Proposition 4.23 (Value consistency forbids Zeckendorf window shifts). Fix m ≥ 1. Within
the shifted Zeckendorf-window family {Fold(s)

m : s ≥ 0}, the only value-consistent map (Defini-
tion 4.22) is the unshifted map Fold(0)

m = Foldm.

Proof. Let w = 10 · · · 0 ∈ Xm (a single 1 followed by zeros). Then Vm(w) = F2 = 1. The
Zeckendorf digits of 1 satisfy c1 = 1 and ck = 0 for all k ≥ 2. Therefore, for any shift s ≥ 1,

Fold(s)
m (Vm(w)) = (c1+s, . . . , cm+s) = (0, . . . , 0) ̸= w,

so Fold(s)
m is not value-consistent. On the other hand, Fold(0)

m (Vm(w)) = Foldm(1) = w by the
definition of Foldm and Zeckendorf uniqueness.

Degeneracy as truncated Zeckendorf tails. For a fixed w ∈ Xm, the preimage size
gm(w) := |Fold−1

m (w)| counts how many Zeckendorf expansions of numbers N ∈ {0, . . . , 2m − 1}
share the same first m digits. Equivalently, writing

N = Vm(w) +
∑

k≥m+1
ckFk+1,

the fiber size is the number of admissible tail digit strings (cm+1, cm+2, . . . ) (with cm = wm

enforcing cmcm+1 = 0) whose tail value keeps N in the finite domain. Thus finite preimage
degeneracy is a direct consequence of Zeckendorf truncation at finite window length and the
cutoff N < 2m; it is not an artifact of the m = 6 case.

Uplift evidence. Appendix AE records an m-sweep (generated by
scripts/exp_foldm_stats.py) that verifies Im(Foldm) = Xm and reports the full de-
generacy histograms for m = 6, . . . , 16 (Table 68). In particular, the support {2, 3, 4} at m = 6
uplifts to larger, still highly structured degeneracy values at m = 8 and m = 10 (Table 68),
consistent with the tail-count interpretation above.

Vacuum / ghost-sector diagnostics (supplement). [Interface]The protocol-unstable com-
plement Ωm \Xm (the ghost sector) and its diagnostic sweeps are recorded in Appendix P.

Part IV

Structure: Locality, Gauge, Chirality, and
Antimatter
Planar holographic screen as a chart (stereographic projection;
interface)
[Interface]When we speak of a “screen” in this paper, the concrete object is a finite display graph
induced by an addressing basis (Section 5). The 2D Hilbert grid is used for fully explicit finite
diagnostics at the anchor, and it may also be viewed as a discrete sampling of a planar chart.
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[Interface]A standard continuous display chart that connects bearing/boundary language to
planar coordinates is the stereographic projection of the unit sphere S2 ⊂ R3 to the complex
plane. For a direction ω = (ω1, ω2, ω3) ∈ S2 (away from the projection pole), define

z(ω) := ω1 + iω2
1− ω3

∈ C.

Conversely, for z ∈ C define the inverse map

ω(z) :=
(

2 Re z
1 + |z|2 ,

2 Im z

1 + |z|2 ,
|z|2 − 1
1 + |z|2

)
∈ S2.

In this chart, planar distance and density are display-dependent quantities; the protocol distance
used for operational statements in this paper remains the graph metric on the chosen display
graph (Definition 3.3).

[Audit]This stereographic chart is a display convention (interface dictionary) and is not used
as a premise for theorem-level folding statements or for CAP minimality audits; it provides a
compact coordinate language for “planar screen” discussions when a continuum chart is conve-
nient.

5 Hilbert addressing and dihedral layout families

5.1 Hilbert addressing as a locality-preserving embedding

Under the linear-ontology interface of this paper (Axiom 1.1), the primitive object is a one-
dimensional scan order (tick stream). To represent locality at finite resolution, we introduce space
as a derived display structure: an addressing basis folds a finite tick prefix into a neighborhood
graph (Section 3). Hilbert addressing provides a classical locality-preserving bijection

Hn : {0, 1, . . . , 4n − 1} → {0, 1, . . . , 2n − 1}2

with bounded jump statistics relative to the Euclidean metric; see [36–38]. At n = 3, the
grid has 43 = 64 sites, matching the 64 microstates of Ω6 for the chosen 2D balanced coupling
(m,n) = (6, 3).

5.1.1 Space from ticks: display graph, distance, and velocity (dictionary)

Fix an order n and view tick indices as embedded on the grid by Hn. We treat the resulting
nearest-neighbor grid graph as the display graph and use its graph metric as the protocol notion
of distance (Definition 3.3). Accordingly, a tick-indexed trajectory x(t) on the display graph has
a protocol velocity in sites per tick given by

v(t1, t2) = dn(x(t1), x(t2))
|t2 − t1|

,

as in Definition 3.4. Any conversion of this dimensionless rate to physical units, and therefore
any identification with the measured constant c, is a matching-layer calibration (Remark 2.1).

Remark 5.1 (Why the 2D Hilbert grid is used in this paper). Higher-dimensional locality-
preserving space-filling curves (including 3D Hilbert variants) exist. Other 2D space-filling curves
can likewise be used as alternative addressing bases; we do not claim they fail. At the minimal
anchor used in this paper, the choice of addressing basis is made explicit and auditable by a
bounded counterfactual comparison, in which Hilbert addressing is selected as CAP-minimal
within the stated finite family (Table 5). Independently of this audit, Hilbert addressing provides
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addressing jump q90 jump q99 edge q90 edge q99 failures/total failure frac status

hilbert 1.000 1.000 12.000 17.000 0/5 0.000 selected
row-major 8.000 8.000 10.000 12.000 0/3 0.000

Table 5: Addressing-basis audit at the minimal anchor (m,n) = (6, 3): Hilbert vs. a row-
major counterfactual on the 8 × 8 screen. “jump” is the Manhattan step length along
the scan path (tick order) on the screen; “edge” is the 0.90/0.99 quantile of the mini-
mum fiber-matching cost across nearest-neighbor edges (Hamming cost on 6-bit microstates);
“failures” counts Gram–Schmidt failures when projecting phase-lifted holonomies (denom =
64) on nontrivial (3/4-cycle) plaquettes. Rows are reproduced by the deterministic script
scripts/exp_addressing_selection.py.

a concrete locality-preserving representative with a fully explicit symmetry structure [37]. In
particular, one may use a 3D Hilbert-type addressing map

H(3)
n : {0, 1, . . . , 23n − 1} → {0, 1, . . . , 2n − 1}3,

so that the order-n hypercubic grid has (2n)3 = 23n sites. At window length m = 6, the balanced
cardinality match for 3D addressing is m = 3n, hence n = 2 and 26 = 23·2 = 64; equivalently,
a 4 × 4 × 4 grid carries the same 64 sites as Ω6. We use the classical 2D Hilbert grid for
three complementary reasons. First, it is the minimal screen dimension that admits closed
loops (plaquettes) and therefore supports the holonomy diagnostics used later (Section 6); in
one dimension there are no cycles. Second, it yields an explicit dihedral layout family with
a transparent orientation-preserving vs. orientation-reversing split (Section 5.2), making the
parity/chirality protocol audits fully explicit at the 64-site anchor [37]. Third, the 2D grid can
be read as a minimal finite “screen” on which the linear scan is rendered, consistent with a
boundary-first (holographic) viewpoint in which observable data live on a readout boundary while
bulk locality is an interface dictionary [39–41]. Nothing in the folding statements depends on
the addressing dimension; changing the addressing basis changes only which spatially organized
diagnostics (e.g. chirality/holonomy histograms) are attached to the same theorem-level stable
types.

A bounded counterfactual and a CAP-minimality audit. To make the addressing choice
auditable in the tick-first language, we compare Hilbert addressing to a bounded counterfactual
of equal description complexity: a row-major scan order on the same 8 × 8 screen. We score
each candidate by protocol-internal locality metrics (no external targets): (i) high-quantile scan-
path jump length (Manhattan distance) per tick, and (ii) neighbor-fiber matching overhead and
a phase-lift computability diagnostic on nontrivial plaquettes. Table 5 reports the resulting com-
parison and records the CAP-style deterministic selection within this explicit finite candidate
family.

Remark 5.2 (Addressing geometry versus ontic dimension). The square grid and its Euclidean
metric are used here as part of a protocol-level readout basis that makes locality auditable at finite
resolution. They do not serve as premises about an underlying ontic manifold; the theorem-level
folding statements depend only on word combinatorics, while addressing enters only through
controlled families of readout bases (Section 5.2).

5.2 The D4 layout family and non-canonicity

Hilbert recursion is not unique: there are 8 global layout variants related by the dihedral group
D4 acting on the square by rotations and reflections. These correspond to different address fami-
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lies (different orientation and reflection choices at recursion seed), and can be treated as different
readout bases. Rotation elements preserve orientation; reflection elements reverse orientation.

Lemma 5.3 (D4 layouts and orientation classes (standard)). The symmetry group of the square
is the dihedral group D4 with |D4| = 8 elements. Composing a fixed order-n Hilbert addressing
map Hn with any g ∈ D4 yields another valid global layout with the same locality-preserving re-
cursion statistics. Moreover, D4 splits into 4 orientation-preserving rotations and 4 orientation-
reversing reflections.

Proof. The symmetry group of the square is classical and has 8 elements. Since each g ∈ D4 is an
isometry of the grid, the composition g◦Hn is again a bijection {0, . . . , 4n−1} → {0, . . . , 2n−1}2.
The rotation subgroup has order 4 and preserves orientation; the remaining coset consists of
reflections and reverses orientation [37].

This non-canonicity is the geometric entrance for chirality in the readout protocol: fixing an
orientation class at initialization selects a handedness for the address recursion. In the physical
identification layer, we elevate this to a protocol choice whose mirror is not a symmetry within
the same protocol (Section 7).

Non-canonicity as protocol, not gauge. Changing Hilbert layout changes the address
mapping and therefore changes certain finite statistics of neighborhood patterns. At the same
time, the folding core of Section 4 is protocol-stable: the 64 → 21 and 18 ⊕ 3 statements are
invariant as combinatorics of words, independent of the spatial embedding. The role of D4 is
therefore not to modify the folding theorem, but to provide a controlled family of readout bases
in which chirality can be defined and tested.

5.3 A discrete Hilbert chirality index

Let p0, p1, . . . , p4n−1 ∈ Z2 be the Hilbert path points, with pk = Hn(k). Define the discrete
chirality index

χ :=
4n−2∑
k=1

sgn((pk − pk−1)× (pk+1 − pk)) , (15)

where the 2D cross product is the scalar (ax, ay)×(bx, by) := axby−aybx and sgn(t) ∈ {−1, 0,+1}.
Intuitively, χ is the net excess of left turns over right turns along the discrete path. We take
sgn(0) = 0, so collinear triples contribute 0; thus χ counts signed turns and ignores straight
steps.

Proposition 5.4 (Parity and traversal reversal flip χ). Let P be any reflection of the grid and
let T be traversal reversal (path reversal). Then

χ(P · p) = −χ(p), χ(T · p) = −χ(p),

while orientation-preserving rigid motions (rotations and translations) preserve χ.

Proof. Reflections reverse orientation, hence reverse the sign of the scalar cross product at every
non-collinear local turn. Traversal reversal swaps the order of each local triple (pk−1, pk, pk+1),
which also flips the cross-product sign. Rotations preserve orientation and therefore preserve
cross-product signs. Translations cancel in the differences pk − pk−1 and pk+1 − pk, hence leave
every cross product unchanged.

Appendix AE records a reproducible n = 3 check (generated by
scripts/exp_hilbert_chirality_index.py): the canonical Hilbert path has χ = −2,
while both reflection and traversal reversal yield χ = +2.
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projection fibers
P (w) under Fold6

deterministic edge
transport pa→b ∈ S4

plaquette holonomy
p□ (cycle type)

SU(3) embedding
(standard subrep.)

dyadic phase lift
denom = 2p

effective 3 × 3
unitary U

invariants
angles, J

Figure 3: Holonomy diagnostic pipeline (finite, auditable): deterministic edge matching induces
an S4 connection on the Hilbert grid; plaquette holonomies are embedded into an SU(3) skeleton
and optionally phase-lifted to yield effective unitary matrices and rephasing-invariant summaries.

6 Protocol connections and finite holonomy diagnostics on a
tick-addressed grid

This section records a minimal, auditable connection model that makes the slogan “gauge fields
as compensating connections” concrete at finite resolution. The construction is discrete, finite,
and fully computable at the chosen anchor scale (m,n) = (6, 3). It is used here as a protocol-level
diagnostic: every choice is explicit, every search domain is finite, and the reported fit objectives
reuse the same log-mismatch norms as in Definition H.1. No continuum limit is assumed in
the computations below; any continuum interpretation is an interface dictionary (see Propo-
sition 8.2). As an audit-oriented look-elsewhere check, Appendix AE includes counterfactual
baselines for selected holonomy fits (e.g. Hilbert vs. row-major addressing) in Table 74. In the
tick-first spine, the addressing basis is part of the display dictionary (Section 3); its minimality
at the anchor is made explicit by the addressing audit in Table 5.

Non-circular diagnostic contract. The holonomy outputs in this section are diagnostics and are
not used as premises for the CKM/PMNS closures in Sections AF.4 and 12. Whenever PDG/global-
fit targets appear, they enter only as external comparison values to score a finite family of protocol
outputs under the shared audit norm (Definition H.1).

Fit objective and deterministic tie-breaks (audit rule). Whenever we report a “best
fit” of a finite holonomy construction to a target triple of mixing sines (s12, s23, s13) in PDG
conventions, we use the same audit norm as elsewhere in the paper: for each component si with
reference sref

i > 0 we set ei := | log(si/s
ref
i )|, then summarize by

E∞ := max
i
ei, E1 :=

∑
i

ei.

Candidates are selected by lexicographic minimization of (E∞, E1), followed by an explicitly
stated deterministic complexity tie-break (e.g. phase-denominator exponent p, discrete phase
map family, loop indices, and global S3 × S3 relabelings), so that reported best fits are unique
within the declared finite search domains.

Remark 6.1 (Diagnostic status and non-circular use of mixing targets). The holonomy con-
structions in this section are diagnostics: they do not supply premises for the CKM/PMNS
closures in Sections AF.4 and 12. Whenever PDG/global-fit targets appear here, they enter
only as external comparison values used to score a finite family of protocol outputs under the
audit norm. In particular, we do not tune the connection rule, the phase-map family, or the
phase denominator by importing Standard Model targets into the folding core; we instead re-
port bounded sweeps over these explicit finite protocol parameters and record uniqueness/gap
information within each declared search domain.
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6.1 Fibers under projection: stable types with finite degeneracy

At m = 6, the folding map Fold6 : {0, . . . , 63} → X6 is surjective and each stable type w ∈ X6
has a finite preimage

P (w) := Fold−1
6 (w) ⊂ {0, . . . , 63}, |P (w)| ∈ {2, 3, 4}.

From the protocol viewpoint, P (w) is a finite fiber of microstates that project to the same stable
readout label. Comparing stable labels across space requires a convention for how these fibers
are identified, which is the discrete origin of a compensating connection.

6.2 A deterministic discrete connection on grid edges

Fix Hilbert order n = 3 and embed indices k ∈ {0, . . . , 63} into an 8 × 8 grid via Hilbert
addressing (Section 5). Label each site by its stable type w = Fold6(k). For each undirected
nearest-neighbor grid edge {a, b}, we define a deterministic transport map between the two
endpoint fibers by the following rule:

• For each stable type w, list its fiber P (w) in increasing order and pad it deterministically
to length 4 (the maximal degeneracy at m = 6) by repeating its last element.

• Define a cost between microstates by Hamming distance on their 6-bit binary words.

• Choose the minimum-cost bijection between the two length-4 padded fibers; if multiple
bijections attain the same minimum cost, select the lexicographically smallest permutation.
This yields a well-defined permutation in S4.

• For the reverse orientation, use the inverse permutation.
This produces a discrete, non-abelian edge connection on edges, designed to be auditable and
fully reproducible by a finite exhaustive search over 4! matchings per edge.
Remark 6.2 (Why we pad fibers to 4 and use Hamming cost). At (m,n) = (6, 3) the Fold6
preimage sizes satisfy |P (w)| ∈ {2, 3, 4} (Theorem 4.18), so rank-4 padding is the unique smallest
uniform slot count that accommodates every fiber without truncation. Repeating the last element
is a deterministic minimal padding that does not introduce any new microstate index beyond the
true fiber. For the cost, Hamming distance on {0, 1}6 is the canonical bit-flip metric induced by
the readout alphabet itself; it measures the minimal number of elementary bit changes between
microstates and is independent of any external geometric scale.

Definition 6.3 (Hamming distance on microstates). Let u, v ∈ Ω6 = {0, 1}6. Define the Ham-
ming distance

dH(u, v) :=
6∑

i=1
|ui − vi|.

For indices k, ℓ ∈ {0, . . . , 63}, write bin(k) ∈ {0, 1}6 for the 6-bit binary word of k and set
dH(k, ℓ) := dH(bin(k), bin(ℓ)).
Lemma 6.4 (Well-defined edge transport in S4). For any oriented neighbor edge a → b, the
above rule produces a unique permutation pa→b ∈ S4. Moreover, the reverse-edge rule pb→a :=
p−1

a→b makes the transport involutive under orientation reversal.

Proof. Each endpoint has a padded fiber list of length 4. There are finitely many bijections
between two 4-element index sets, namely 4! permutations. The cost of a permutation is a finite
sum of Hamming distances (Definition 6.3), hence each cost is well-defined and real-valued.
Therefore a minimum-cost permutation exists. If the minimum is attained by more than one
permutation, the fixed lexicographic tie-break selects a unique one, giving a unique pa→b ∈ S4.
Defining the reverse-edge transport as the inverse permutation is then deterministic and satisfies
(pa→b)−1 = pb→a by construction.
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degeneracy pair (|P (wa)|, |P (wb)|) count fraction

(2, 2) 16 0.143
(2, 3) 11 0.098
(2, 4) 13 0.116
(3, 3) 12 0.107
(3, 4) 11 0.098
(4, 4) 49 0.438

Table 6: Distribution of preimage-size (fiber degeneracy) pairs across nearest-neighbor
edges on the 8 × 8 grid at n = 3. Rows are reproduced by the deterministic script
scripts/exp_edge_mismatch_decomposition.py.

quantile q min-match cost quantile

0.00 0.000
0.50 8.000
0.90 12.000
0.99 17.000
1.00 17.000

Table 7: Quantiles of the minimum matching cost (sum of Hamming distances under the chosen
optimal bijection) across all nearest-neighbor edges. Rows are reproduced by the deterministic
script scripts/exp_edge_mismatch_decomposition.py.

Definition 6.5 (Vertex relabelings and cycle-type invariance). At a vertex x, relabeling the
padded fiber positions is modeled by a permutation gx ∈ S4 acting on the local index i ∈
{0, 1, 2, 3}. Under such a local relabeling field g : vertices → S4, the edge transport transforms
as

pa→b 7→ p′
a→b := gb pa→b g

−1
a .

Proposition 6.6 (Plaquette cycle type is invariant under local relabelings). Let p□ be the
plaquette holonomy obtained by composing the four oriented edge permutations around a unit
square. Under the local relabeling action of Definition 6.5, the holonomy transforms by conju-
gation, hence its S4 cycle type is invariant.

Proof. This is the standard lattice-gauge transformation law: edge transports change by
left/right multiplication at endpoints, so the ordered product around a closed loop changes by
conjugation by the vertex relabeling at the basepoint [42,43]. Conjugation preserves cycle type
in S4, so the cycle-type summary in Table 8 is gauge invariant under local fiber relabelings.

6.3 Elementary plaquette holonomy

Given an S4-valued edge transport rule, we define the holonomy of a unit-square plaquette by
composing the four oriented edge permutations around its boundary. Because the connection
takes values in a non-abelian group, holonomy can be nontrivial even in a fully finite setting. This
is the standard lattice-gauge notion of plaquette holonomy as a minimal loop observable [42,43].
We summarize holonomy values by S4 cycle type.

Remark 6.7 (Why we emphasize 3/4-cycle holonomies). In the standard S4 action on four
fiber slots, 3- and 4-cycles are the simplest nontrivial cycle types that move at least three slots.
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cycle type count fraction

1 24 0.490
2 19 0.388
2x2 1 0.020
3 3 0.061
4 2 0.041
other 0 0.000

Table 8: Holonomy distribution on the 7×7 family of unit-square plaquettes in the 8×8 grid at
n = 3, under the deterministic S4 edge transport rule. Rows are reproduced by the deterministic
script scripts/exp_holonomy_loops.py.

Under the 3-dimensional sum-zero (standard) representation used below, these cycle types induce
genuine rotations in SO(3) with nonzero angles, providing the minimal finite skeleton for later
3× 3 mixing-matrix diagnostics [44].

6.4 A minimal SO(3) ⊂ SU(3) representation bridge

To connect the discrete S4 holonomy values to a continuous group action (as a skeleton for later
mixing-matrix work), we use the standard permutation representation and its 3-dimensional
“standard” subrepresentation [44]. Concretely, let ρ : S4 → O(4) act by permutation matrices
on R4, and let

H :=
{
x ∈ R4 :

4∑
i=1

xi = 0
}
,

the sum-zero subspace. Then H is ρ-invariant and dimH = 3.
Remark 6.8 (Why the sum-zero subspace is canonical). The permutation representation of S4
on R4 contains a trivial one-dimensional invariant subspace spanned by (1, 1, 1, 1). Restricting to
H removes this trivial mode and yields the standard 3-dimensional representation that captures
the nontrivial mixing of slots; see, e.g., [44].
Lemma 6.9 (Sign-twisted standard representation S4 → SO(3)). Let ρH : S4 → O(H) ∼=
O(3) be the restriction of the permutation representation to H. Then det(ρH(σ)) = sgn(σ).
Consequently the twisted representation

ρ̃(σ) := sgn(σ) ρH(σ)

lands in SO(3). Viewing SO(3) matrices as real unitary matrices gives an inclusion SO(3) ⊂
SU(3).
Proof. Permutation matrices satisfy det(ρ(σ)) = sgn(σ). Moreover R4 decomposes as an orthog-
onal direct sum

R4 = span{(1, 1, 1, 1)} ⊕ H,

and ρ(σ) fixes (1, 1, 1, 1). Thus det(ρ(σ)) = det(ρ(σ)|span{(1,1,1,1)}) · det(ρH(σ)) = 1 · det(ρH(σ)),
proving det(ρH(σ)) = sgn(σ). Finally, on the 3-dimensional space H, multiplication by the
scalar sgn(σ) ∈ {±1} contributes determinant sgn(σ)3 = sgn(σ), hence

det(ρ̃(σ)) = det(sgn(σ) I3) det(ρH(σ)) = sgn(σ) · sgn(σ) = 1,

so ρ̃(σ) ∈ SO(3). The inclusion SO(3) ⊂ SU(3) follows because a real orthogonal 3× 3 matrix
is unitary over C, and determinant 1 is preserved.

Table 9 summarizes the induced rotation angles (in degrees) by S4 cycle type for the plaquette
holonomies at n = 3.
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cycle type count mean angle [deg] min [deg] max [deg]

1 24 0.000 0.000 0.000
2 19 180.000 180.000 180.000
2x2 1 180.000 180.000 180.000
3 3 120.000 120.000 120.000
4 2 90.000 90.000 90.000
other 0 − − −

Table 9: Rotation-angle summary for the sign-twisted standard SO(3) ⊂ SU(3) represen-
tation of plaquette holonomies at n = 3. Rows are reproduced by the deterministic script
scripts/exp_holonomy_su3_representation.py.

6.5 A phase-register lift and a CP-odd invariant

To allow CP-odd signatures in a holonomy-based description, one must go beyond purely real
orthogonal representations. As a minimal protocol-level bridge consistent with the Z128 phase-
register stance, we can attach a deterministic discrete phase to each microstate and lift the edge
transport to a unitary (phase-weighted) transport. We make this lift fully explicit. Fix a dyadic
denominator denom = 2p and a low-complexity index map τ : {0, . . . , 63} → {0, . . . , 63} chosen
from the family

τid(k) = k, τgray(k) = k ⊕ (k≫1), τbitrev(k) = bitreverse6(k), τnot(k) = 63− k.

Here ⊕ and ≫ denote bitwise XOR and right shift on 6-bit integers, and bitreverse6 reverses
the 6-bit binary expansion.
Remark 6.10 (Why the phase-map family is bounded). The map τ is a pure indexing con-
vention for attaching phases to the finite microstate set {0, . . . , 63}. To bound look-elsewhere
freedom, we restrict to a small explicit family of invertible, bit-level transforms of minimal de-
scription complexity (identity, Gray map, bit reversal, and complement). Within this bounded
family, the protocol adopts a canonical representative by CAP tie-break (Axiom 1.5): the baseline
choice is τ = τid unless an explicitly stated bounded-complexity closure selects otherwise. This
keeps the phase attachment auditable and makes any refinement of the map family an explicit
change of the finite candidate set rather than an implicit tuning knob.

Remark 6.11 (Dyadic phase registers and Z128). The choice denom = 2p matches the finite-
ring phase-register stance in which phases are represented in Z2p rather than as continuous
angles. In particular, p = 7 corresponds to a Z128 register. At the minimal window m = 6, the
default choice denom = 2m = 64 used in several tables is equivalently a Z128 register restricted to
even residues, since 2π τ(k)/64 = 2π (2τ(k))/128. Smaller p coarsen the phase resolution, while
larger p refine it; the dyadic family provides a nested, auditable refinement chain. In CAP audit
language, denominators of the form denom = 2p are treated as an explicit bounded candidate
family: the baseline uses the anchor-coherent choice denom = 2m and the bounded sweeps record
sensitivity and counterfactuals (Appendix AE and Appendix S). This is consistent with standard
dyadic phase encodings used in finite-register quantum information models; see, e.g., [24].

Define the phase register embedding

ϕ(k) := 2π τ(k)
denom . (16)

For an oriented edge a → b with padded fibers fa(i) and fb(i) (i = 0, 1, 2, 3) and transport
permutation p ∈ S4 (Section 6.2), define the phase-lifted edge transport Ua→b ∈ U(4) by

(Ua→b)p(i),i := exp
(
i
(
ϕ(fb(p(i)))− ϕ(fa(i))

))
, i = 0, 1, 2, 3, (17)
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cycle type count mean |J | max |J | mean J

1 24 1.25398e-50 8.55285e-50 +1.00603e-50
2 19 1.05674e-17 6.04883e-17 +3.42678e-18
2x2 1 0 0 +0
3 3 0.0634247 0.0772868 +0.0396244
4 2 0.0225747 0.030227 -0.00765223
other 0 − − −

Table 10: Phase-register lifted holonomy and a CP-odd invariant in a finite projec-
tion/renormalization model at n = 3. The baseline CAP choice here is τ = τid and denom = 64
(equivalently a Z128 register restricted to even residues; Remark 6.11). Rows are reproduced by
the deterministic script scripts/exp_holonomy_phase_lift_cp_invariant.py.

with all other entries equal to 0.

Lemma 6.12 (Phase-lifted edge transport is unitary). For each oriented edge a→ b, the matrix
Ua→b defined in (17) is unitary.

Proof. Each column i has exactly one nonzero entry, located at row p(i), and this entry has
modulus 1. Since p is a permutation, distinct columns have disjoint nonzero rows, hence the
columns are orthonormal. Therefore U∗

a→bUa→b = I4, so Ua→b ∈ U(4).

Projecting the resulting 4 × 4 unitary plaquette holonomy to the 3-dimensional sum-zero
subspace and renormalizing by a deterministic Gram–Schmidt procedure yields an effective 3×3
unitary matrix.

Remark 6.13 (When projection/renormalization can fail). The projection to the sum-zero sub-
space can produce a rank-deficient 3 × 3 matrix for certain degenerate holonomies or phase
choices. In that case Gram–Schmidt cannot produce a full orthonormal basis and the effective
unitary is undefined. Our scripts treat such cases as deterministic failures and record the failure
counts explicitly in the relevant tables (e.g. Tables 11 and 30).

From this effective unitary one can compute a rephasing-invariant CP-odd quantity, e.g. the
Jarlskog-type invariant

J := ℑ
(
U11U22U

∗
12U

∗
21
)
.

This is the standard rephasing-invariant combination for 3 × 3 unitary mixing matrices [2, 45].
Table 10 summarizes the induced values by underlying S4 cycle type for the n = 3 plaquettes.

A bounded family sweep over the phase denominator. To make the phase-lift choice
auditable, we can sweep a bounded candidate family for the phase denominator denom = 2p

and record the induced mean |J | on the nontrivial plaquettes (3- and 4-cycles). Table 11 reports
the resulting values and the log mismatch to the constant-geometry target Jgeo = 1/(11π7).

Angle extraction (PDG convention, diagnostic). From a 3× 3 unitary matrix U in the
PDG standard parameterization [2], one can extract mixing sines by the identities

s13 = |U13|, c13 =
√

1− s2
13, s12 = |U12|

c13
, s23 = |U23|

c13
,

and obtain a principal Dirac phase δ from the Jarlskog invariant via

sin δ = J

s12s23s13c12c23c2
13
, cij =

√
1− s2

ij .
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denom p mean |J | (3) mean |J | (4) mean |J | (3/4) log(mean/Jgeo) | · | failures

64 6 0.0634247 0.0225747 0.0470847 +7.355 7.355 0
128 7 0.0253985 0.0480647 0.034465 +7.043 7.043 0
256 8 0.0096841 0.0408178 0.0221376 +6.601 6.601 0
512 9 0.0045296 0.0192532 0.010419 +5.847 5.847 0

1024 10 0.00222787 0.00943926 0.00511243 +5.135 5.135 0
2048 11 0.00110939 0.00469533 0.00254376 +4.437 4.437 0
4096 12 0.000554126 0.0023446 0.00127032 +3.743 3.743 0
8192 13 0.000276992 0.00117192 0.000634963 +3.049 3.049 0

16384 14 0.000138487 0.000585911 0.000317457 +2.356 2.356 0
32768 15 6.92426e-05 0.00029295 0.000158725 +1.663 1.663 0
65536 16 3.46211e-05 0.000146474 7.93623e-05 +0.970 0.970 0

131072 17 1.73106e-05 7.3237e-05 3.96811e-05 +0.276 0.276 0
262144 18 8.65527e-06 3.66185e-05 1.98406e-05 -0.417 0.417 0

Table 11: Phase-denominator sweep for the phase-lifted holonomy CP invariant at n = 3,
over denom = 2p for a bounded range of p. Rows are reproduced by the deterministic script
scripts/exp_holonomy_phase_lift_family_sweep.py.

cycle type count mean s12 mean s23 mean s13 mean δ [deg] mean |J |

1 24 0.0000 0.0000 0.0000 38.77 1.25398e-50
2 19 0.4569 0.7719 0.3407 14.01 1.05674e-17
2x2 1 1.0000 0.8165 0.8112 nan 0
3 3 0.6434 0.8005 0.4966 59.46 0.0634247
4 2 0.7439 0.8485 0.4548 47.03 0.0225747
other 0 − − − − −

Table 12: PDG-style angle extraction from phase-lifted effective holonomy matrices at
n = 3 (finite diagnostic). The default choice here is τ = τid and denom =
64 (the same choice as Table 10). Rows are reproduced by the deterministic script
scripts/exp_holonomy_phase_lift_angles.py.

In the holonomy diagnostics below, because row/column identifications are not fixed a priori, we
also allow a global relabeling (a pair of permutations in S3×S3) when comparing to PMNS/CKM
targets. Table 12 reports cycle-type aggregated mean values at the default phase denominator
used in Table 10.

Extended sweeps and robustness diagnostics (supplement). The balanced-chain sweep
across higher balanced pairs, loop-scale/denominator scans, phase-map family sweeps, and the
soft-transport variant are recorded in Appendix S.

Protocol EFT embedding (supplement). [Interface]A standard local gauge-invariant EFT
embedding consistent with the closed labeling is recorded in Appendix T.

7 Chirality, antimatter, and CPT as protocol geometry

7.1 Protocol-level P, T, C: definitions

Definition 7.1 (Protocol-level discrete symmetries). Fix a Hilbert order n and a window length
m. We define:
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• Pprot: a spatial reflection (an orientation-reversing element of the D4 layout family acting
on the Hilbert-addressed grid);

• Tprot: scan traversal reversal (replacing the scan index order k 7→ 4n− 1−k on the Hilbert
path);

• Cprot: phase conjugation on the scan orbit, zn 7→ zn, with window conjugation chosen so
that admissible readout is compared within matched protocols.

These are protocol transformations; they need not coincide with the continuum-field definitions
of P, T,C in standard QFT, but are designed to be auditable at finite resolution. In particular,
Tprot reverses the execution orientation of a finite tick prefix, and is therefore a protocol change
relative to a given initialized run in the tick-only language (Section 3.2).

7.2 Scan–chirality locking

Hilbert addressing admits both orientation-preserving and orientation-reversing layout families
(Section 5). The D4 layout family therefore splits into two orientation classes exchanged by
reflection, and this exchange flips the sign of the discrete chirality index χ (Proposition 5.4).

Definition 7.2 (Orientation class bit and canonical representative (CAP tie-break)). The ori-
entation class is a one-bit protocol datum: it specifies whether the initialized addressing layout
lies in the orientation-preserving or orientation-reversing class. Since the two classes are cost-
degenerate under the tick-only locality diagnostics of Section 5, we fix a canonical representative
by the deterministic tie-break rule of CAP (Axiom 1.5): at the n = 3 anchor, use the standard
Hilbert layout for which the forward-traversal chirality index satisfies χ < 0 (Appendix AE). The
reflected layout defines the mirror protocol and has χ > 0. Accordingly, protocol-level parity is
implemented as a protocol swap to the mirror layout rather than as a symmetry within a fixed
protocol.

Which D4 choices are physically distinguishable. The D4 family consists of 4 rotations
and 4 reflections (Lemma 5.3). In an isotropic setting, a global rotation of the spatial grid is a
coordinate convention and does not define a distinct physical protocol once the observer’s coor-
dinate frame is fixed. The nontrivial discrete choice is therefore the orientation class (rotation
vs. reflection), which is detected by the sign of the discrete chirality index χ (Proposition 5.4).
This is why SCL is formulated as an orientation-class selection rather than as a choice among
all eight layouts.

Proposition 7.3 (Orientation class as the minimal discrete protocol datum). Fix a Hilbert
order n and an observer coordinate frame. Within the D4 layout family, orientation-preserving
layouts are related by rigid motions of the grid and are coordinate conventions, while orientation-
reversing layouts flip the sign of the discrete chirality index χ. Consequently, modulo orientation-
preserving conventions, the only physically distinguishable discrete choice is the orientation class,
and it is detected by sgn(χ).

Proof. Lemma 5.3 gives the D4 split into rotations and reflections. Proposition 5.4 shows that
rotations preserve χ while reflections flip its sign.

In this view, parity violation in the weak sector is a protocol statement: the weak compen-
sation connection is defined within a chosen protocol class, while its mirror requires a protocol
swap (it changes the readout basis).

Proposition 7.4 (A minimal parity-odd sign datum at finite resolution). Fix a Hilbert order
n and any Hilbert layout within a chosen orientation class. Let χ be the discrete chirality index
of the associated path, defined in (15). Then Pprot flips the sign of χ (Proposition 5.4), while
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any orientation-preserving protocol change leaves χ invariant. Consequently, any protocol-level
observable that is a deterministic function of χ is parity-odd in the sense that it changes sign
under Pprot.

Proof. This is immediate from Proposition 5.4.

Why this targets the weak sector. Within the three-channel template, the π-channel is the
closure/topology channel, and the weak sector is the minimal non-abelian gauge sector SU(2). If
the corresponding compensation connection is implemented by protocol-local consistency rules
that depend on Hilbert layout orientation, then the mirror layout is not a symmetry but a
different protocol. This provides a readout-geometric route to parity asymmetry: the “right-
handed” copy is not an internal symmetry operation within the fixed protocol.

Observable consequences of different orientation classes. If different orientation classes
occur in different spacetime domains (different initializations), then parity-odd observables tied
to χ should flip sign between domains while remaining invariant under orientation-preserving
layout changes; see Prediction P2 in Section 14.1.2. Conversely, if a single global protocol class
is selected, then all parity-odd statistics should be coherent with a fixed sign of χ at a given
scale.

7.3 Time reversal and discrete chirality

The chirality index χ in (15) flips sign under traversal reversal (Proposition 5.4). Since traversal
reversal is the discrete operational avatar of time reversal in a scan process, this provides an
auditable finite-resolution coupling:

T reversal ⇐⇒ χ 7→ −χ.

Appendix AE records the n = 3 computation (generated by
scripts/exp_hilbert_chirality_index.py) that χ(path) = −2 and χ(reversed path) = +2.

A discrete proxy for geometric phase. The index χ counts the signed turning of a locality-
preserving address curve. In continuous settings, signed turning and orientation couple naturally
to geometric phase (Berry phase) and to spinorial sign structures [46, 47]. The finite n = 3
computation therefore provides a minimal auditable finite-resolution model for the statement

T reversal ⇐⇒ chirality/spin sign flip,

at the protocol layer: both traversal reversal (time reversal) and reflection (parity) flip the same
discrete sign datum.

7.4 Antimatter as conjugate readout

Consider the scan orbit zn = e2πi(x0+nα). Complex conjugation yields

zn = e−2πi(x0+nα) = e2πi((−x0)+(−n)α).

Thus phase conjugation is equivalent to scan reversal n 7→ −n up to a phase shift. Formally:

Lemma 7.5 (Conjugation equals reversal up to an initial-phase flip). Let zn = e2πi(x0+nα) and
define z′

n := e2πi(x′
0+nα) with x′

0 = −x0. Then zn = z′
−n for all n ∈ Z.

Proof. This is the displayed computation.
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Lemma 7.6 (Matched-window readout conjugation induces scan reversal). Let W ⊂ T be a
measurable readout window and write W := {z : z ∈W}. Let (zn) and (z′

n) be as in Lemma 7.5.
Define readout sequences by

wn := 1{zn ∈W}, w′
n := 1{z′

n ∈W}.

Then w′
n = w−n for all n ∈ Z.

Proof. By Lemma 7.5, z′
n = z−n. Therefore z′

n ∈W if and only if z−n ∈W , hence w′
n = 1{z−n ∈

W} = w−n.

Consequently, in the rotation model the protocol operation Cprot is realized by traversal
reversal together with an initial-phase flip, hence it is tied to the same discrete chirality sign
datum as Tprot:

Cprot =⇒ χ 7→ −χ.

A CP-sign anchor from chirality. Complex conjugation flips the sign of any conjugation-
odd (hence CP-odd) holonomy residue. Since Cprot is realized at the scan layer by conjugation-
as-reversal, the protocol already contains a canonical orientation sign datum, sgn(χ), that can be
used to fix the CP-odd sign convention within a chosen protocol class. We record the resulting
interface rule:
Definition 7.7 (Chirality-anchored CP-odd sign convention (interface)). Let JCP be a CP-
odd rephasing-invariant holonomy residue (e.g. a Jarlskog invariant) expressed in a fixed PDG
convention. Within a fixed protocol class, its sign is anchored by the chirality sign datum:

sgn(JCP) = sgn(χ).

Switching to the mirror protocol (reflection) flips χ and therefore flips the anchored sign.

Remark 7.8 (Convention dependence of CP-odd signs). The sign of a CP-odd invariant de-
pends on phase conventions and on bookkeeping conventions (e.g. generation ordering and pa-
rameterization), even when the magnitude is rephasing invariant. In this paper, whenever a
CP-odd sign is used, we keep the PDG parameterization fixed and treat the chirality sign sgn(χ)
as a protocol-internal orientation datum that removes the remaining quadrant ambiguity in a
deterministic way (cf. the PMNS phase closure in Section 12.2). Observable consequences are
therefore phrased at the protocol level as parity-sensitive statistical contrasts (Prediction P2),
rather than as a standalone claim about a convention-free sign.

At the level of finite readout words, Lemma 7.6 yields a concrete antimatter dual:
Definition 7.9 (Scan-reversal dual of a finite word). For a finite binary word w = w1 · · ·wm,
define its scan-reversal dual by

w := wm · · ·w1.

Lemma 7.10 (Reversal preserves admissibility and the π-tag). If w ∈ Xm (no adjacent ones),
then w ∈ Xm. Moreover, the π-channel boundary tag is preserved: Dπ(w) = Dπ(w).
Proof. The forbidden substring “11” occurs in w if and only if it occurs in the reversed word w,
so Zeckendorf admissibility is preserved. For the boundary tag, Dπ(w) = 1{w1 = wm = 1} and
reversal swaps endpoints, hence Dπ(w) = 1{w1 = wm = 1} = Dπ(w).

Massless-limit matching dictionary (consistency check). In the relativistic massless
limit, chirality coincides with helicity [1,48]. Under conjugation-as-reversal, a left-handed parti-
cle maps to a right-handed antiparticle, matching the standard massless-limit dictionary between
chirality and helicity when combined with scan-direction reversal. Remark: we record this only
as a matching-layer consistency check with standard QFT kinematics, not as a premise of the
folding layer.
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7.5 CPT at the scan layer vs. symmetry breaking at the protocol layer

The scan layer is unitary and reversible by construction, so combined transformations can re-
main valid at the microscopic level. However, once a readout protocol is fixed (window choice
plus Hilbert orientation class), P and T may no longer be symmetries within the same proto-
col: they change the readout basis. This provides a protocol-geometric route to understanding
why effective theories may violate P (and CP ) while preserving CPT . Remark: in standard
local Lorentz-invariant quantum field theory under the usual assumptions (locality, a Hermi-
tian Hamiltonian, and the spectrum condition), CPT invariance is enforced by the CPT the-
orem; see, e.g., [48, 49]. Here we use the CPT theorem only as a consistency reference point:
Pprot, Tprot, Cprot are explicitly defined finite-resolution protocol operations, and no continuum-
field axioms are used as premises in the folding layer.

7.6 Mirror protocols and a “right-handed” universe

If the initialization at t = 0 selects the opposite Hilbert orientation class, then the protocol-level
chirality sign flips globally. In such a mirror protocol, the weak sector would appear right-
handed rather than left-handed. This provides a precise sense in which a “mirror universe” is
not a different Lagrangian, but a different readout protocol (Hilbert layout class). If protocol
domains existed in the early universe, their boundaries would be protocol defects, yielding the
domain-wall prediction in Section 14.1.2.

Part V

Matter: Standard Model interface closures
at the anchor
8 A φ–π–e template for the Standard Model interface
This section records the physical identification layer: falsifiable mapping hypotheses that connect
the three-channel folding template to Standard Model structures.

8.1 Three channels as three compensation classes

The folding framework isolates three commuting stability channels:

• (φ) syntactic legality. A forbidden-word grammar (Zeckendorf admissibility).

• (π) topological closure. A cyclic monodromy / wrap-around admissibility condition.

• (e) analytic stability. A zeta/Abel holomorphy domain with a pole barrier.

Independently, the Standard Model gauge group is a three-factor product SU(3)× SU(2)×
U(1) [1]. We first record the protocol-level necessity of compensation under cross-site consis-
tency, and then record a CAP-minimal gauge-factor closure under explicit compactness and
factorization constraints that are forced by probability-preserving internal redundancy (Propo-
sition R.3) and by channelwise independence (Lemma R.4).

Proposition 8.1 (Finite-fiber mismatch forces a compensating connection datum (interface)).
Fix a window length m and an addressing graph that renders a finite tick prefix as a locality
structure (Section 3; e.g. the Hilbert-addressed grid at order n = 3). Let each site x carry a
stable label wx ∈ Xm and let its microstate fiber be

P (wx) := Fold−1
m (wx) ⊂ {0, . . . , 2m − 1},

50



so that multiple microscopic indices can project to the same stable readout label. If protocol-
consistent comparison/transport of stable labels is required across a neighbor edge x ∼ y,
then the stable labels alone are insufficient: one must specify an additional transport rule that
matches the endpoint fibers. After embedding endpoint fibers into a common slot set of size
r := maxw∈Xm |P (w)| (by any deterministic padding convention), any such edge transport is
represented by a permutation in Sr. Changing the local slot labeling at a vertex acts by conjuga-
tion on edge transports, so the transport rule is defined only up to local relabelings (a finite gauge
redundancy). In a continuum modeling dictionary, such discrete connection data are represented
by gauge connections on a bundle.

Proof. The point is finite and protocol-internal. When |P (w)| > 1, the stable label w identifies
only an equivalence class of microstates, so comparing two neighboring stable labels requires a
choice of how the two equivalence classes are matched. Once a uniform slot count r is fixed, such
matchings are elements of the finite symmetry group Sr. Local relabelings at vertices change
edge matchings by left/right multiplication and therefore conjugate loop products, which is the
standard discrete gauge-transformation law on graphs [42,43]. At the minimal anchor m = 6 one
has r = 4, and Section 6 gives an explicit deterministic construction of an S4 edge connection
and its plaquette holonomy diagnostics.

Assumption bundle for gauge-factor closure (audit). [Audit]For audit clarity, Proposi-
tion 8.2 should be read as a conditional interface closure under an explicit assumption bundle:

• (G1) Channelwise factorization. The three commuting defect channels correspond to
three independent local redundancy sectors (Lemma R.4).

• (G2) Compact probability-preserving redundancy. In a continuum dictionary, in-
ternal redundancy is represented by probability-preserving transformations on a finite-
dimensional local Hilbert space, hence is compact at the connected level (Proposition R.3).

• (G3) Candidate family. The non-abelian redundancy closes to two simple compact
factors G2, G3 (non-isomorphic) together with the U(1) sector forced by local rephasing
(Proposition 8.4).

• (G4) Complexity label and tie-break. CAP selects the lexicographically minimal
factor pair under a declared discrete complexity label; the main text uses dim(g), and
Appendix AI audits sensitivity to alternative labels.

Proposition 8.2 (CAP-minimal three-factor gauge closure (interface)). Fix a continuum mod-
eling dictionary in which the compensation redundancy is internal and probability-preserving
(hence compact at the connected level; Proposition R.3) and in which the three defect channels
define three independent redundancy sectors (Lemma R.4). Equip compact gauge factors with
the intrinsic complexity label dim(g) (Lie-algebra dimension) and select the lexicographically
minimal triple, under CAP (Axiom 1.5), among compact gauge groups of the form

U(1)×G2 ×G3,

where G2 and G3 are compact, non-abelian, simple, and non-isomorphic. Then the unique
minimizer is U(1)× SU(2)× SU(3) (up to finite group quotients).

Proof. By Proposition 8.4, local rephasing redundancy enforces an abelian U(1) connection
sector in any local continuum dictionary. Compact Lie algebras split as a direct sum of an
abelian torus algebra and compact simple factors; requiring two additional inequivalent non-
abelian simple factors and applying minimality in dim(g) selects dimensions 3 and 8, hence
su(2) and su(3) by Lemma 9.4.
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The content of Proposition 8.1 is operational: gauge redundancy arises because compen-
sation is only defined up to local rephasing of the readout basis. The three-factor structure
is not assumed as a premise, but closed as a CAP-minimal identification within the stated
compactness/factorization constraints (Proposition 8.2).

Proposition 8.3 (Three commuting defect channels force a three-factor compensation struc-
ture (interface)). Suppose protocol mismatch certificates decompose into three commuting defect
channels and that, at the modeling level, compensation is defined only up to independent local
basis changes associated with each channel (the channelwise redundancy stance of Lemma R.4).
Then the minimal compensating connection splits into three independent connection components,
so the effective local redundancy factorizes into a product of three gauge redundancies.

Proof. Since the defect channels commute, a mismatch certificate can be represented as a triple
of channelwise components and compared channel-by-channel. By the channelwise redundancy
stance, each channel admits its own local basis redundancy, so at each site x the modeling dic-
tionary permits independent local changes (gφ(x), gπ(x), ge(x)). Consequently, any channelwise
covariant transport rule along an edge x ∼ y is a triple of group elements

(Aφ, Aπ, Ae)x→y ∈ Gφ ×Gπ ×Ge,

transforming under local basis changes as

(Aφ, Aπ, Ae)x→y 7→
(
gφ(y)Aφgφ(x)−1, gπ(y)Aπgπ(x)−1, ge(y)Aege(x)−1).

Thus the minimal redundancy group is the direct product of the three independent channel
redundancies.

Uniqueness at the Lie-algebra level. Under probability-preserving internal redundancy
(hence compactness at the connected level; Proposition R.3) and using Lie-algebra dimension
as an intrinsic complexity label, the dimensions (1, 3, 8) already pin the factor Lie algebras
uniquely to u(1)⊕ su(2)⊕ su(3) (up to finite group quotients), by the Cartan–Killing classifica-
tion (Lemma 9.4). In this sense, once the three-channel template is fixed and one commits to
dimension-as-complexity, the choice of U(1), SU(2), and SU(3) is rigid rather than a naming
convention. Appendix AI records a bounded sensitivity sweep showing that the same minimizer
persists under several alternative discrete complexity labels in the tested window. Moreover,
Proposition AI.1 gives a short theorem-level reason for this robustness for the most natural
low-complexity labels (dimension, rank, dimension+rank, and dmin).

Compensation as a locality cost. In the finite protocol language, a gauge field is not an ex-
tra substance but the bookkeeping of enforcing phase consistency across neighboring addresses.
When the local stable sector is defined by defect suppression, neighboring sites generically dis-
agree on which microstates project to which stable types. A compensating connection is the
minimal additional datum required to compare (and transport) stable types between sites with-
out ambiguity. In this paper, we formulate this as an implementation budget: compensation has
a cost, and the effective dynamics favors minimal discrepancy subject to protocol constraints
(Axiom 1.5).

Rigidity and defects. In topologically trivial regions a compensating connection can be
gauged away (pure gauge), while persistent mismatch requires nontrivial holonomy supported
by defects. This aligns the “matter as defect” view with the “gauge as compensation” view:
matter is a stable obstruction that prevents global trivialization of the connection.
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Proposition 8.4 (From local rephasing to a connection field (standard)). Let ψ(x) be a complex
matter field and impose local U(1) redundancy ψ(x) 7→ eiλ(x)ψ(x). Then invariance of a local
kinetic term under this redundancy requires introducing a compensating connection Aµ and re-
placing ∂µ by the covariant derivative Dµ = ∂µ− iAµ. Assuming locality and Lorentz covariance
and restricting to bulk terms quadratic in Aµ and its first derivatives, the unique gauge-invariant
quadratic kinetic term is proportional to FµνF

µν , where Fµν = ∂µAν − ∂νAµ.

Proof. This is standard; see, e.g., [1, 48,50].

Proposition 8.5 (From local SU(N) redundancy to a Yang–Mills connection (standard)). Let
ψ(x) transform in a representation of SU(N) and impose local redundancy ψ(x) 7→ U(x)ψ(x)
with U(x) ∈ SU(N). Then invariance of a local kinetic term under this redundancy requires
introducing an SU(N) connection Aµ(x) and replacing ∂µ by the covariant derivative Dµ =
∂µ − ig Aµ. The corresponding curvature (field strength) is

Fµν := i
g

[Dµ, Dν ] = ∂µAν − ∂νAµ − ig [Aµ, Aν ],

and, restricting to local bulk terms quadratic in Fµν , the gauge-invariant kinetic term is propor-
tional to Tr(FµνF

µν).

Proof. Standard; see, e.g., [1, 48,51].

Remark 8.6 (Relation to the CAP gauge-field viewpoint). The standard continuum statements
above are included only as a matching dictionary: they translate local basis redundancy into the
familiar connection-field language. In the HPA–Ω program, the same structural conclusion—
that a compensating connection is forced once local phase consistency is demanded—is devel-
oped directly from finite readout and CAP-minimal discrepancy logic; see the companion CAP
manuscript [4] for an extended presentation.

8.2 Stable types as minimal defect-carrying modes

In the protocol viewpoint adopted here, matter is modeled as persistent topological defects
whose stability is constrained by an implementation budget. In the present finite-resolution
setting, the stable types X6 provide a minimal, explicitly enumerable set of defect labels.

Definition 8.7 (Particles as stable types (interface)). Physical particle labels at the chosen
anchor scale are identified with stable readout types in X6 (or with protocol-invariant functionals
thereof), while microstates in Ω6 \X6 are protocol-unstable and do not survive as visible outputs
under projection.

The 18⊕3 split of X6 then becomes a structural interface candidate: boundary types are non-
closed readout defects (endpoints), while cyclic types are closed defects (loops). This matches the
qualitative distinction between colorless endpoint-like excitations and loop-carrying excitations
that can support nontrivial holonomy.

Why the 18⊕ 3 split is a rigid interface constraint. The split is enforced by a concrete
wrap-around defect predicate Dπ, hence has an intrinsic “closure vs endpoint” meaning at the
protocol level. Interpreting cyclic types as loop-like carriers and boundary types as endpoint-like
carriers is therefore not an analogy but a direct reading of the π-constraint. The numbers also
provide a rigid counting target: any SM identification must explain why exactly 18 stable types
admit closure while exactly 3 do not at the anchor scale.
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A rigid integer pattern tying 21 to SM data. Beyond closure semantics, the minimal
stable count admits a nontrivial arithmetic decomposition that matches Standard Model integers
used elsewhere in this paper:

|X6| = 21 = (18 + 3) = (8 + 3) + 10.

Here 8 = dim(su(3)) and 3 = dim(su(2)) are the gauge-sector dimensions, while 10 = ∑
f∈SM Y 2

f

is the hypercharge-squared sum over the chiral fermion content in three generations under the
PDG normalization Q = T3 + Y . The identity 21 = (8 + 3) + 10 is an integer constraint and
does not involve any post-hoc fitting freedom; it is recorded as an auditable counting target for
the closed labeling interface (Proposition 8.10). The same integers reappear in the electroweak
normalization (13 = 10 + 3; Section AF.2) and in the CP-odd multiplicity (dCP = 8 + 3;
Section AF.3), providing a cross-checked integer backbone across multiple independent interface
diagnostics.

Lemma 8.8 (Hypercharge-squared sum ∑
Y 2). Under the PDG convention Q = T3 + Y [2],

the Standard Model chiral fermion content without right-handed neutrinos satisfies
∑

Y 2 = 10
3 per generation,

∑
f∈SM

Y 2
f = 10 for three generations.

Proof. For one generation, sum Y 2 over left-handed Weyl fields with multiplicities (color and
weak components):

6
(1

6

)2
+ 3

(2
3

)2
+ 3

(1
3

)2
+ 2

(1
2

)2
+ 1 · (1)2 = 10

3 ,

corresponding to QL, uR, dR, LL, and eR. Multiplying by three generations yields 10. A sterile
singlet νR has Y = 0 and does not change the sum.

8.3 Minimal mapping problem

We record the interface as an explicit mapping problem. A closed, computable field-level labeling
map is provided in Section 9.

How the closed labeling is constructed (preview). The labeling closure is not an un-
structured guess: it is a deterministic order-isomorphism between two finite totally ordered
sets. On the protocol side, the 18 cyclic stable types are totally ordered by intrinsic invariants
(Definition 9.9 and Definition 9.11). On the Standard Model side, the 18 chiral multiplets are
totally ordered by the tuple (g,dim(SU(3)-rep), (6Y )2, dim(SU(2)-rep), name) under the PDG
convention Q = T3 + Y (Definition 9.12). Matching ranks yields a unique cyclic assignment,
while the three boundary types are assigned to {U(1), SU(2), SU(3)} by monotone matching of
intrinsic value and gauge-sector complexity (Lemma 9.3); see Theorem 9.17 and Table 15.

Definition 8.9 (Intrinsic invariants available at window length 6). For w ∈ X6, the finite
protocol provides several intrinsic, directly computable invariants:

• closure/boundary tag: Dπ(w) ∈ {0, 1} (cyclic vs. boundary);

• Zeckendorf value: V (w) ∈ {0, . . . , 20} (Definition 4.14);

• Hamming weight: |w|1 ∈ {0, 1, 2, 3} (Appendix AE);

• folding degeneracy: g(w) := |Fold−1
6 (w)| ∈ {2, 3, 4} (Theorem 4.18).
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Proposition 8.10 (Closed Standard Model labeling at (m,n) = (6, 3)). The Standard Model
labeling of the 21 stable types at the chosen anchor (m,n) = (6, 3) is closed and unique: The-
orem 9.17 constructs a unique split-compatible labeling map LSM : X6 → FSM ⊔ GSM by order
isomorphism on the cyclic sector and the unique monotone assignment on the boundary sector.
Moreover, under window uplift m 7→ m′ the labeling admits a canonical functorial lift by prefix
projection together with explicit refinement multiplicities and deterministic refinement indices
(Appendix V).

8.4 No-Go Theorem: the scalar exclusion principle (interface)

At the chosen anchor instance (m,n) = (6, 3), the 21-type interface is optimized for a chi-
ral/gauge closure: 18 cyclic labels for chiral fermion multiplets and 3 boundary labels for
gauge-factor classes (Section 9). In this setting we record a no-go statement on the physical
identification layer: the directed-scan geometry of the minimal stable alphabet excludes parity-
even scalar degrees of freedom as distinct primitive stable types, so scalar effective modes should
arise only as coarse-grained and uplift-dependent observables. At the audit level, this is already
forced by the closed 21-type contract at the anchor: there is no unused stable label in X6 avail-
able for an additional Higgs-like primitive type (Proposition R.6). The additional geometric
constraint is that the minimal stable-sector closure is tied to directional protocol data (scan
order and the chirality sign datum) and to compensation transport, whereas a scalar mode is,
by definition, an observable whose effective appearance is insensitive to these orientation-sign
choices.

The vector nature of the linear universe (interface). Under Axiom 1.1 the primitive
ontology is a directed scan: the microscopic description is not a static configuration but an
ordered stream. As a result, the elementary readout carriers at the minimal stable alphabet
inherit directional protocol data (in particular the orientation-sign information that controls
chirality in the Hilbert addressing family). A fundamental scalar (spin-0) would amount to
a directionless primitive mode whose effective appearance is insensitive to the scan-direction
and chirality sign datum already at the minimal window. This contradicts the directed-scan
identification at the interface level. Therefore, within the minimal stable-sector closure at m = 6,
a fundamental Higgs-like scalar cannot be a primitive stable type. Accordingly, the observed
Higgs boson must be realized as a composite or statistical emergent mode supported by higher-
resolution texture and coarse graining, where directional protocol data effectively averages out.

Remark 8.11 (Relation to composite/Goldstone Higgs paradigms). Treating the Higgs dou-
blet as an EFT-level degree of freedom rather than a primitive elementary mode is compatible
with mature composite/Goldstone Higgs frameworks, in which a scalar arises as an emergent
low-energy excitation of a more microscopic sector; see, e.g., [52,53]. The present protocol for-
mulation differs in microscopic language, but it implies the same practical expectation: scalar
behavior can be resolution-dependent and should admit additional diagnostic constraints beyond
a minimal chiral labeling at m = 6.

In particular, a renormalizable Standard Model EFT includes a scalar Higgs doublet whose
vacuum structure controls electroweak symmetry breaking. In the present protocol language,
the Higgs is therefore treated as an EFT-level completion (Appendix T) rather than as an
additional minimal stable type at m = 6 (Remark 9.1). The resolution-uplift narrative fixes a
concrete locus for scalar emergence: in the admissible-set sweep one has |X10| = 144 = 123⊕ 21
(Table 66), and under the minimal staircase calibration the threshold for m = 10 lies near
the electroweak scale (Section 14.2.1, Table 19). Accordingly, in the present interface language
electroweak-scalar behavior is modeled as an emergent, parity-even background supported by
higher-resolution texture, not as a primitive type at the minimal window.

55



Proposition 8.12 (Scalar-sector closure in the protocol language). At the minimal stable alpha-
bet (m,n) = (6, 3), parity-even scalar modes are closed as protocol-emergent observables rather
than as additional primitive stable types:

• (parity-even scalar observables) Coarse-grained scalar observables are obtained by spa-
tial block-averaging intrinsic stable-type functionals on the Hilbert-addressed grid (Defini-
tion 8.13); by construction they are invariant under Pprot up to pullback (Remark 8.14).

• (coupling to compensating connections) In a lattice-gauge modeling dictionary, scalar
site variables couple to link connections by gauge-covariant nearest-neighbor terms that
reduce to (DµH)†(DµH) in a continuum limit [42, 43, 54]; in protocol language this cor-
responds to allowing the local implementation cost of transport/holonomy to depend on a
coarse-grained scalar observable (Remark 8.14 and Remark T.1).

• (uplift dependence) A distinct scalar “type” is therefore expected only under resolution
uplift and coarse graining, not as a new label in X6; the first audited locus is the m = 10
uplift where |X10| = 144 = 123 ⊕ 21 and the staircase calibration places µth(10) near the
electroweak scale (Table 66 and Table 19).

Quantitative scalar-scale closure (supplement). [Audit]The bounded-denominator Higgs–
Z depth-offset rigidity audit is recorded in Appendix AH (Proposition AH.1, Table 99).

Definition 8.13 (Coarse-grained protocol scalars). Fix a Hilbert order n and view the scan
index as embedded on the grid by Hn (Section 5). Let q be any intrinsic protocol functional
on stable types (for example q(w) ∈ {V (w), |w|1, g(w), Dπ(w)} at m = 6). A coarse-grained
scalar observable is any block-averaged field obtained by spatial averaging of q over a finite
neighborhood on the Hilbert-addressed grid. Block averaging as a coarse-graining operation is
standard in lattice models; see, e.g., [42,43].

Remark 8.14 (A minimal protocol route to scalar effective modes). By construction, coarse-
grained observables of Definition 8.13 are parity-even in the protocol sense: under Pprot they
transform by pullback of the spatial reflection on the grid rather than by an intrinsic sign flip.
They are likewise insensitive to the traversal-direction sign datum used to define the discrete
chirality index χ. This provides a concrete protocol interpretation for a scalar exclusion at
the minimal stable alphabet: parity-even scalar modes are naturally modeled as composite or
protocol-emergent observables whose appearance depends on coarse graining and resolution uplift,
consistent with the Higgs-sector status recorded in Remark 9.1.

A minimal finite check (supplement). [Audit]The parity-contrast check between the chiral-
ity sign datum and coarse-grained scalar summaries is recorded in Appendix AH (Table 100).

Remark 8.15 (Coupling scalars to connections (interface viewpoint)). In lattice gauge theory,
gauge fields live on links while scalar fields can be modeled as site variables transforming in
a representation of the gauge group, with gauge-covariant nearest-neighbor couplings that re-
duce to (DµH)†(DµH) in a continuum limit [42, 43, 54]. In the present protocol language, this
provides a concrete modeling route for scalar-sector closure (Proposition 8.12): allow the local
implementation cost of compensating transport to depend on a coarse-grained scalar observable
(Definition 8.13), yielding a site-dependent modulation of transport/holonomy statistics without
introducing a new minimal stable type at m = 6.

8.5 Protocol flow under uplift and coarse graining (interface)

The program treats finite resolution as primary: both the window length m and the spatial
addressing scale n are protocol parameters. Changing resolution (uplift in m and/or n) and ap-
plying coarse graining are therefore the protocol-native candidates for a discrete renormalization
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step. In this paper, the protocol flow law is fixed explicitly as a discrete uplift–coarse-graining
flow together with a standard RG dictionary in the resolution coordinate r [42, 43].

Definition 8.16 (Protocol flow step and flowing objects). Fix a family of protocol parameters
(m,n) and a chosen coarse-graining map C on the Hilbert-addressed grid (e.g. block averaging
or kernel readout). The protocol flow step is the deterministic update

(m,n) 7→ (m′, n′)

together with the induced map on observables obtained by: (i) recomputing the finite stable
sector Xm′ and intrinsic invariants at the new window length, (ii) pushing observables for-
ward/backward along the canonical prefix projection(s) πm′→m (Appendix V), and (iii) applying
C to obtain coarse observables. The flowing objects are any protocol observables defined at
finite resolution (stable-type counts, degeneracy histograms, holonomy distributions, bounded-
complexity minimizers, and derived effective couplings defined as functions of these invariants).

Proposition 8.17 (RG dictionary in the Fibonacci resolution coordinate). Let µ(r) = µ0 φ
r

be the Fibonacci resolution map (Section 10.1) and let g(µ) be any scale-dependent effective
parameter with a standard RG equation dg/d logµ = β(g) away from thresholds. Then, in the
resolution coordinate,

dg
dr = (logφ)β(g).

Proof. Since logµ = logµ0 + r logφ, one has d/dr = (logφ) d/d logµ.

9 Closure: field-level labeling of the 21 stable types
This section closes the Standard Model labeling interface by giving an explicit, computable
assignment of field-level labels to the finite stable type set X6. We work at the chosen anchor
scale (m,n) = (6, 3), where |X6| = 21 and X6 = Xcyc

6 ⊔Xbdry
6 with |Xcyc

6 | = 18 and |Xbdry
6 | = 3

(Proposition 4.9).

9.1 Field-level targets and audit discipline

We use “field-level” in the Standard Model sense of chiral multiplets per generation (rather than
individual Weyl components), with the unique minimal extension forced by the closure of the
18 cyclic types under anomaly-neutrality (Proposition R.5). Concretely, for each generation
g ∈ {1, 2, 3}, we consider the six chiral multiplets

Q
(g)
L , u

(g)
R , d

(g)
R , L

(g)
L , e

(g)
R , ν

(g)
R ,

with the usual SU(3)×SU(2)×U(1) quantum numbers under the PDG convention Q = T3 +Y

[1, 2]. Here ν(g)
R denotes a neutral singlet (hypercharge Y = 0) that is absent in the minimal

SM, but standard in minimal sterile extensions used to parametrize neutrino mass interfaces [2].
Within the explicit minimal candidate family “one additional multiplet per generation”, anomaly
neutrality and the global SU(2) consistency condition force the choice of a sterile singlet with
Y = 0 (Proposition R.5); in particular, adding a gauge singlet with Y = 0 does not change the
SM anomaly-cancellation identities (Proposition 9.6). This yields 18 fermion multiplets. The
remaining three stable types in the 18⊕3 split are reserved for the three gauge-factor connection
classes, aligned with the three-channel template (Proposition 8.2).

Remark 9.1 (Higgs sector and what is (not) covered by the 21 stable types). The 21 stable
types at (m,n) = (6, 3) are used here to close a minimal chiral labeling interface: 18 cyclic labels
for fermion multiplets and 3 boundary labels for gauge-factor classes. This does not, by itself,
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provide a stable-type label for the Higgs doublet. Accordingly, when we discuss a field-theoretic
embedding (Appendix T), the Higgs is treated as an additional field required for a renormalizable
SM EFT, not as a claim that it must appear as a distinct stable type at the minimal window
length. At the protocol-geometry layer, Hilbert addressing enters through an oriented scan order
on the grid, and parity-odd sign data such as the discrete chirality index χ in (15) are built
from signed turns along this order (Section 5). Accordingly, the minimal labeling interface
closed at (m,n) = (6, 3) emphasizes chiral/gauge degrees of freedom tied to the orientation-
class choice (Section 7). By contrast, Lorentz-scalar sectors carry no intrinsic handedness and
are treated, in the present interface language, as composite or protocol-emergent modes whose
effective appearance depends on resolution uplift and on the choice of coarse graining, rather
than on the minimal m = 6 stable alphabet. The corresponding scalar-sector closure in protocol
language is recorded in Proposition 8.12.

Non-negotiable interface constraints (audit contract). From an audit viewpoint, the
labeling stage is closed under an explicit constraint set:

• Split compatibility. Cyclic vs. boundary types are fixed by the π-predicate Dπ, so the
18 ⊕ 3 split is not negotiable (Section 4); we therefore require LSM(Xcyc

6 ) ⊂ FSM and
LSM(Xbdry

6 ) ⊂ GSM.

• Standard consistency constraints. The field-level target set obeys the standard
anomaly-cancellation identities and hypercharge quantization under Q = T3 + Y [1, 2];
adding a sterile νR with Y = 0 is the minimal anomaly-neutral closure of the cyclic count
(Proposition 9.6).

• No numerical SM targets in the labeling stage. Masses, couplings, and fit-derived
continuous parameters are not used to construct LSM; only discrete quantum-number
invariants enter (representation dimensions and the integer invariant (6Y )2).

• Deterministic closure. Any remaining ties are resolved by explicit deterministic rules
(Definitions 9.11 and 9.12), and the sensitivity to the SM-side ordering-key choice is audited
(Table 14).

Within this contract, the labeling is not a free-form assignment: once the protocol-side order
and SM-side order are fixed, the cyclic-sector bijection is forced as the unique order isomorphism
(Theorem 9.17). To address the concern that the result is a vacuous relabeling, we additionally
report inverse diagnostics that test recoverability of several SM quantum-number patterns from
intrinsic stable-type invariants by bounded-complexity rules (Table 13 and Appendix W).

Definition 9.2 (Gauge-sector complexity order). For a gauge factor G ∈ {U(1), SU(2), SU(3)},
define its protocol-level complexity by the Lie-algebra dimension

dim(g),

equivalently the number of gauge bosons in the corresponding factor.

Lemma 9.3 (Dimension order of the SM gauge factors). For the Standard Model gauge factors
one has

dim(u(1)) = 1, dim(su(2)) = 3, dim(su(3)) = 8,

hence U(1) ≺ SU(2) ≺ SU(3) in the complexity order of Definition 9.2.

Proof. This is standard: dim(u(1)) = 1 and dim(su(N)) = N2 − 1; see, e.g., [1].
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Lemma 9.4 (Uniqueness of compact simple factors at dimensions 3 and 8 (standard)). Among
compact simple real Lie algebras, the only isomorphism class of dimension 3 is su(2) ∼= so(3), and
the only isomorphism class of dimension 8 is su(3). Consequently, if the gauge-sector complexity
in Definition 9.2 is identified with dim(g) and one assumes compact (semi)simple gauge factors,
then the dimension triple (1, 3, 8) pins the factor Lie algebras uniquely to

u(1)⊕ su(2)⊕ su(3),

up to finite quotients at the group level.

Proof. This follows from the Cartan–Killing classification of compact simple Lie algebras and
their dimension formulas; see, e.g., [18, 55].

Lemma 9.5 (A standard Z6 quotient in the global gauge group). Let G := SU(3)×SU(2)×U(1)
and normalize hypercharge by Q = T3 + Y so that 6Y ∈ Z (Lemma 9.13). Let the U(1) factor
act on a field of hypercharge Y by the integer charge QY := 6Y , i.e. u ∈ U(1) acts as uQY .
Define the central element

z :=
(
e2πi/3 13, −12, eiπ/3

)
∈ SU(3)× SU(2)× U(1).

Then z acts trivially on all Standard Model fermion multiplets used in this paper (including a
sterile νR), and the resulting faithful gauge group may be taken as G/⟨z⟩ ∼= (SU(3) × SU(2) ×
U(1))/Z6.

Proof. For each multiplet (SU(3), SU(2))Y , the SU(3) center contributes e2πi/3 on triplets and
1 on singlets, the SU(2) center contributes −1 on doublets and 1 on singlets, and the U(1)
factor contributes eiπQY /3 = eiπ(6Y )/3. Using the standard hypercharges under Q = T3 + Y for
QL, uR, dR, LL, eR, νR [1, 2], one checks that the product phase equals 1 in each case.

We note two standard consistency facts for this fermion content (per generation), recorded
here as audit-level requirements and referenced to the standard literature: (i) the hypercharge-
squared sum (with multiplicities) equals ∑Y 2 = 10/3 under Q = T3 + Y (Lemma 8.8), and
(ii) the gauge and mixed gravitational anomalies cancel (a neutral singlet does not affect these
cancellations) [1, 2, 56].

Proposition 9.6 (Anomaly cancellation is unchanged by adding νR). Under the PDG con-
vention Q = T3 + Y , the Standard Model chiral fermion content (per generation, without νR)
has vanishing gauge and mixed gravitational anomalies. Adding a sterile singlet νR with Y = 0
preserves these cancellations.

Proof. The anomaly-cancellation identities for the Standard Model hypercharge assignments are
standard [1,2,56]. A sterile singlet νR contributes Y = 0 to all anomaly sums and therefore does
not change them.

Lemma 9.7 (Explicit anomaly sums in a left-handed basis (one generation)). Under the PDG
convention Q = T3 + Y , write one generation in a left-handed Weyl basis

QL, uc, dc, LL, ec (and optionally νc with Y = 0),

with hypercharges Y (QL) = 1/6, Y (uc) = −2/3, Y (dc) = 1/3, Y (LL) = −1/2, and Y (ec) = 1.
Then the mixed gravitational–hypercharge anomaly and the cubic hypercharge anomaly vanish:∑

Y = 0,
∑

Y 3 = 0,

where the sums include multiplicities from color and weak isospin components. Moreover, the
mixed non-abelian anomalies vanish:

SU(3)2U(1) : 2 · 1
6 −

2
3 + 1

3 = 0, SU(2)2U(1) : 3 · 1
6 −

1
2 = 0,
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equivalently
∑
Y T (R) = 0 for each non-abelian factor (with T the Dynkin index of the funda-

mental representation).

Proof. For the gravitational sum, include multiplicities of left-handed Weyl components:

6
(1

6

)
+ 3

(
−2

3

)
+ 3

(1
3

)
+ 2

(
−1

2

)
+ 1 · (1) = 0.

For the cubic U(1)3
Y sum:

6
(1

6

)3
+ 3

(
−2

3

)3
+ 3

(1
3

)3
+ 2

(
−1

2

)3
+ 1 · (1)3 = 0.

For SU(3)2U(1), only color triplets contribute, and all fundamental/antifundamental contribu-
tions share the same Dynkin index; factoring it out yields 2Y (QL) + Y (uc) + Y (dc) = 0. For
SU(2)2U(1), only weak doublets contribute; factoring out the SU(2) fundamental Dynkin index
yields 3Y (QL) + Y (LL) = 0. These are the standard anomaly-cancellation identities in a chiral
left-handed basis [1, 2, 56].

Remark 9.8 (Why the minimal extension is chosen as a neutral singlet). The role of νR in
this paper is purely interface-level and audit-driven: it closes the cyclic-cardinality count to 18
using the smallest additional bookkeeping burden. Adding new chiral multiplets charged under
U(1) and/or SU(3) would introduce nontrivial local anomaly contributions unless accompanied
by additional compensating matter [1, 2]. Moreover, adding SU(2) doublets is constrained by
the global SU(2) anomaly (Witten anomaly), which depends on the parity of half-integer isospin
representations [57]. Choosing νR as a sterile singlet with Y = 0 preserves both the standard
local anomaly cancellations and the SU(2) global consistency condition while matching a minimal
sterile extension widely used in neutrino-mass parametrizations [2].

The construction is auditable in the finite protocol language: we build the labeling map from
intrinsic invariants of stable types (Definition 8.9), with the Hilbert order entering through the
depth assignment in Definition 9.9.

9.2 Nontriviality checks: inverse diagnostics and ordering sensitivity

The closed labeling map in this section is an explicit deterministic rank-matching between two
finite ordered sets (Theorem 9.17). To demonstrate that this assignment is not a vacuous
relabeling, we record two audit-level nontriviality diagnostics.

Inverse interface diagnostics (recoverability of quantum-number patterns). Ap-
pendix W treats the closed labeling as supervised data on the cyclic stable types and asks,
for several Standard Model targets, whether bounded-complexity rules built from intrinsic in-
variants can recover target patterns above fixed chance/majority baselines (and in some targets
exactly). Table 13 summarizes those inverse diagnostics; full details and model families are
recorded in Appendix W. These inverse diagnostics are not premises for any result in the main
text: they are post-hoc audits of structure.

Ordering sensitivity. To test how much the induced cyclic assignment depends on SM-side
ordering conventions in Definition 9.12, we run a bounded sensitivity sweep that varies: (i) the
component order among {dim(SU(3)), (6Y )2, dim(SU(2))}, (ii) whether the generation index
appears first or later, and (iii) whether the final deterministic tie-break uses the SM name
or a name-free integer code (e.g. Ynum = 6Y ). For each variant we recompute the induced
cyclic pairing by rank matching. As a summary metric we report, for each induced pairing,
the Hamming distance (and fraction) between the resulting ordered multiplet-type list and the
baseline ordering used in this paper. Table 14 records the resulting sensitivity sweep.
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target baseline best accuracy detail

(6Y )2 class 1/6 0.389 Table 55
sign(Y ) 1/2 0.667 Table 56
Ynum = 6Y 1/6 1.000 Table 57
dim(SU(3)) 1/2 0.833 Table 58
dim(SU(2)) 2/3 0.778 Table 58
generation g 1/3 1.000 Table 59

Table 13: Summary of inverse interface diagnostics on cyclic stable types at m = 6: each row
compares a fixed chance/majority baseline to the best bounded-complexity accuracy achieved
by a reproducible inverse diagnostic (Appendix W). Rows are reproduced by the deterministic
bounded sweeps described in Appendix W (scripts/exp_inverse_diag_summary.py).

SM ordering key labels changed (of 18) fraction

(g,dim(SU(3)), (6Y )2,dim(SU(2)),name) 0 0.000
(g,dim(SU(3)),dim(SU(2)), (6Y )2,name) 15 0.833
(g, (6Y )2,dim(SU(3)),dim(SU(2)),name) 15 0.833
(g, (6Y )2,dim(SU(2)),dim(SU(3)),name) 15 0.833
(g,dim(SU(2)),dim(SU(3)), (6Y )2,name) 15 0.833
(g,dim(SU(2)), (6Y )2,dim(SU(3)),name) 15 0.833
(g,dim(SU(3)), (6Y )2,dim(SU(2)), Ynum) 0 0.000
(dim(SU(3)), (6Y )2,dim(SU(2)), g, name) 14 0.778
(dim(SU(3)), (6Y )2,dim(SU(2)), g, Ynum) 14 0.778

Table 14: Ordering sensitivity audit: varying SM-side ordering conventions (component order,
generation placement, and name vs. name-free tie-break) and counting how many cyclic multiplet
labels change relative to the baseline ordering used in Definition 9.12. The bold row is the
baseline. Rows are reproduced by a deterministic finite sweep over the stated ordering-key
variants (scripts/exp_labeling_order_sensitivity.py).

9.3 A canonical labeling map

We first define an intrinsic protocol depth from stable-type invariants.

Definition 9.9 (Effective protocol depth at (m,n) = (6, 3)). For w ∈ X6, define

r∗(w) := V (w) + n (g(w)− 2), (18)

where V (w) ∈ {0, . . . , 20} is the Zeckendorf value, g(w) ∈ {2, 3, 4} is the folding degeneracy, and
n = 3 is the Hilbert order at the chosen anchor (m,n) = (6, 3).

Lemma 9.10 (Discrete range of r∗ at (m,n) = (6, 3)). At the minimal anchor (m,n) = (6, 3)
one has r∗(w) ∈ {0, 1, . . . , 26} for every w ∈ X6.

Proof. By Proposition 4.15, V (w) ∈ {0, . . . , 20}. By Theorem 4.18, g(w) ∈ {2, 3, 4}, hence
n(g(w) − 2) ∈ {0, 3, 6} for n = 3. Therefore r∗(w) = V (w) + n(g(w) − 2) ∈ [0, 20] + [0, 6] =
{0, . . . , 26}.

Why r∗ is used in the labeling order. The quantity r∗(w) is an intrinsic protocol-level
scalar built only from finite-resolution invariants at (m,n) = (6, 3). It is reused consistently
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across the paper: it is the same unnormalized depth that enters the closed mass template
(Definition 13.3) and therefore ties the labeling interface to the resolution-depth spectrum closure
by a shared protocol cost coordinate. Using r∗ in the cyclic ordering makes the labeling stage
deterministic without importing any Standard-Model numerical targets as premises.

We now turn the labeling into a closed optimization statement.

Definition 9.11 (Ordering of cyclic stable types). On the cyclic sector Xcyc
6 , define the total

order ≺X by

w1 ≺X w2 ⇐⇒
(
r∗(w1), V (w1), w1

)
is lexicographically smaller than

(
r∗(w2), V (w2), w2

)
.

Definition 9.12 (Ordering of SM fermion multiplets). Let FSM be the set of 18 chiral fermion
multiplets used in Section 9.1. Define the total order ≺F on FSM by lexicographic comparison
of the tuple (

g, dim(SU(3)-rep), (6Y )2, dim(SU(2)-rep), name
)
,

where g ∈ {1, 2, 3} is the generation index and Y is the hypercharge under the PDG convention
Q = T3 + Y [1, 2].

Lemma 9.13 (Hypercharge quantization and the integer invariant (6Y )2). Under the PDG
convention Q = T3 + Y , every Standard Model chiral multiplet (including a sterile singlet νR

with Y = 0) has hypercharge Y ∈ 1
6Z. Consequently 6Y ∈ Z and (6Y )2 ∈ N is an intrinsic

integer invariant of the field-level label.

Proof. This is the standard hypercharge assignment for one generation: Y (QL) = 1/6, Y (uR) =
2/3, Y (dR) = −1/3, Y (LL) = −1/2, Y (eR) = −1, and Y (νR) = 0 under Q = T3 +Y [1,2]. Each
value is an integer multiple of 1/6.

Remark 9.14 (Why (6Y )2 is used in the ordering). Using (6Y )2 replaces the rational invariant
Y 2 by the minimal integer normalization compatible with Lemma 9.13. This keeps the ordering
rule fully discrete and bounded-complexity. For the minimal fermion multiplet set used here, the
discrete gauge-quantum-number tuple already distinguishes the six multiplet types within each
generation, so the final deterministic tie-break can be taken either as the SM name or as a
name-free integer code (Table 14).

Lemma 9.15 (Representation dimensions in the SM multiplet set). Within the Standard Model
fermion multiplets used in this paper, the SU(3) representation is either the singlet (dim = 1) or
the fundamental triplet (dim = 3), and the SU(2) representation is either the singlet (dim = 1)
or the fundamental doublet (dim = 2).

Proof. This is standard for the chiral matter content of the Standard Model (per generation):
QL and (uR, dR) are color triplets, while leptons are color singlets; QL and LL are weak doublets,
while the right-handed singlets are weak singlets [1, 2].

Remark 9.16 (Generation labels and deterministic tie-breaks). The generation index g in
Definition 9.12 is a bookkeeping label for the three copies of the same gauge-quantum-number
pattern; any permutation of {1, 2, 3} corresponds to a relabeling at the level of gauge interac-
tions. We fix the conventional naming order and take g = 1 to be the charged-lepton reference
generation used later in the mass template (Definition 13.3). The final “name” entry is used
only as a deterministic tie-break when the gauge-quantum-number tuple is otherwise identical.
Within the multiplet set FSM used in this paper, that name tie-break is redundant: the tuple
(dim(SU(3)), (6Y )2,dim(SU(2))) already separates the six multiplet types per generation. Ta-
ble 14 includes a name-free variant (replacing the final name tie-break by Ynum) and confirms
that the induced cyclic labeling is unchanged.
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We define a labeling map
LSM : X6 → FSM ⊔ GSM,

where GSM := {SU(3), SU(2), U(1)} denotes the three gauge-factor connection classes. The map
is chosen to satisfy:

• (split compatibility) LSM(Xcyc
6 ) ⊂ FSM and LSM(Xbdry

6 ) ⊂ GSM;

• (protocol covariance) rotations preserve labels while reflections/traversal reversal act
by the protocol-level Pprot/Tprot rules (Section 7);

• (minimality) among all assignments satisfying the above, we select the unique minimal-
complexity solution under a fixed lexical tie-break rule.

Theorem 9.17 (Closed labeling as the unique order-preserving assignment). There exists a
unique labeling map LSM such that:

• it is split-compatible;

• on the cyclic sector it is order-preserving:

w1 ≺X w2 =⇒ LSM(w1) ≺F LSM(w2);

• on the boundary sector, it assigns the three boundary types in increasing V (w) order to
{U(1), SU(2), SU(3)} in increasing gauge-sector complexity order (Lemma 9.3).

Proof. Both (Xcyc
6 ,≺X) and (FSM,≺F ) are finite totally ordered sets with the same cardinality

18, hence admit a unique order isomorphism given by matching ranks. The boundary words
in Xbdry

6 have distinct values V (w), hence a unique increasing order. Likewise, the three gauge
factors have distinct complexity values dim(g), hence a unique increasing order by Lemma 9.3.
Matching ranks gives the unique order-preserving boundary assignment.

Remark 9.18 (CAP minimality of the monotone boundary assignment). Among the 3! = 6
boundary permutations, the monotone assignment is the unique one compatible with the com-
plexity order of Definition 9.2 and therefore the unique CAP-minimal choice under any monotone
mismatch cost between intrinsic boundary value and gauge-sector complexity. Any non-monotone
assignment would map a larger intrinsic boundary value to a lower-complexity gauge factor, cre-
ating an avoidable ordering mismatch that must be compensated elsewhere in the interface.

Operationally, the assignment is therefore constructed as follows (equivalently: among the
3! = 6 boundary permutations, it is the unique one that is monotone in the intrinsic value V (w)
and the gauge-sector complexity).

• The three boundary types are sorted by V (w) and assigned to {U(1), SU(2), SU(3)} in
increasing gauge-sector complexity order (Definition 9.2).

• The 18 cyclic types are sorted by ≺X and assigned to the 18 fermion multiplets sorted by
≺F .

Remark 9.19 (Explicit boundary-value order at m = 6). At m = 6, the boundary words are
100001, 101001, and 100101 (Corollary 4.9). Their Zeckendorf values are V (100001) = 14,
V (101001) = 17, and V (100101) = 19 (Definition 4.14). Thus the intrinsic increasing boundary
order is

100001 ≺ 101001 ≺ 100101,

which is the order used for the unique monotone assignment to U(1) ≺ SU(2) ≺ SU(3)
(Lemma 9.3).
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stable type w V (w) g(w) |w|1 r∗(w) Dπ(w) label LSM(w) (SU(3), SU(2))Y

000000 0 4 0 6 0 ν
(1)
R (1, 1)0

100000 1 4 1 7 0 L
(1)
L (1, 2)−1/2

010000 2 4 1 8 0 e
(1)
R (1, 1)−1

001000 3 4 1 9 0 Q
(1)
L (3, 2)1/6

101000 4 4 2 10 0 d
(1)
R (3, 1)−1/3

000100 5 4 1 11 0 u
(1)
R (3, 1)2/3

100100 6 4 2 12 0 ν
(2)
R (1, 1)0

010100 7 4 2 13 0 e
(2)
R (1, 1)−1

000010 8 4 1 14 0 u
(2)
R (3, 1)2/3

100010 9 3 2 12 0 L
(2)
L (1, 2)−1/2

010010 10 3 2 13 0 Q
(2)
L (3, 2)1/6

001010 11 3 2 14 0 ν
(3)
R (1, 1)0

101010 12 3 3 15 0 L
(3)
L (1, 2)−1/2

000001 13 2 1 13 0 d
(2)
R (3, 1)−1/3

100001 14 2 2 14 1 U(1) −
010001 15 2 2 15 0 e

(3)
R (1, 1)−1

001001 16 2 2 16 0 Q
(3)
L (3, 2)1/6

101001 17 2 3 17 1 SU(2) −
000101 18 2 2 18 0 d

(3)
R (3, 1)−1/3

100101 19 2 3 19 1 SU(3) −
010101 20 2 3 20 0 u

(3)
R (3, 1)2/3

Table 15: Closed field-level labeling of the 21 stable types at (m,n) = (6, 3). The
labeling map is the unique order-preserving assignment of Theorem 9.17. Rows are
reproduced by a deterministic implementation of the same rank-matching construction
(scripts/exp_sm_labeling_solver.py).

Remark 9.20 (Determinism vs. reproducibility). Theorem 9.17 is the logical closure: it pins
a unique map LSM once the two total orders ≺X and ≺F and the boundary monotonicity con-
vention are fixed. The script scripts/exp_sm_labeling_solver.py is only a deterministic
implementation of this rank-matching construction used to reproduce the table rows and to
avoid manual transcription errors; it is not an additional premise and it does not select among
multiple solutions.

10 Mass as latency: the Fibonacci resolution coordinate (inter-
face)

This section records the resolution-depth coordinate and the operational mass-as-delay dictio-
nary used at the matching layer. These definitions are used downstream by the closed mass-
spectrum template and by the falsifiability statements formulated in the protocol language.

A readout viewpoint (interface). In a static-ontology reading (Remark 1.2), the underlying
protocol substrate is fixed while physical episodes reflect sequential access and finite-resolution
projection. On this viewpoint, increasing effective resolution does not change the substrate; it
changes which structure is rendered/accessible in the readout, and how much overhead (latency)
is paid to stabilize it.
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10.1 Fibonacci resolution coordinate

Fix the reference scale µ0 = me and define the resolution coordinate

r(µ) := log(µ/me)
logφ , (19)

where φ = (1 +
√

5)/2 is the golden ratio. Equivalently, the exponential map is

µ(r) = me φ
r. (20)

This is the resolution-flow dictionary used throughout the paper.

Tick-first meaning. In the tick-first dictionary (Section 3), mass and energy are not primitive
substances: they are calibrated names for time-scale ratios. Accordingly, the coordinate r(µ)
is used as a single log-time coordinate: by the Compton-clock relation, it is simultaneously a
log-frequency coordinate and (up to sign) a log-time coordinate (Remark 10.1 and Appendix Y).
This is the precise sense in which the present framework treats “mass as depth” as “mass as a
time-lag / overhead coordinate” rather than as an independent input.

10.1.1 Mass as delay: scattering time lag as inertia (interface)

In the scan-based identification dictionary used in this paper, “mass as depth” is read as “mass
as protocol overhead”: deeper stabilization requires additional local protocol resources. An
operational proxy for such overhead is measurable scattering delay. Let S(ω) be a (nearly)
unitary scattering matrix at angular frequency ω. The Wigner–Smith time-delay matrix is

Q(ω) := −iS(ω)† dS
dω , τWS(ω) := TrQ(ω),

and in a one-channel setting S(ω) = eiδ(ω) one has τWS(ω) = dδ/dω (Section Y).
Why should depth create mass? Physically, high information density forces the one-

dimensional scan to execute additional local folding and consistency operations to stabilize a
persistent pattern. When probed through a scattering channel, this manifests as an excess time
delay. To an external observer, a localized excitation that systematically “lags” in response be-
haves as an inertial degree of freedom. Throughout this paper this dictionary is used only at the
matching layer: it complements the Compton-clock relation below and provides an independent
falsifiability route via delay-derived lapse ratios (Section 14.3.3 and Section Y).
Remark 10.1 (Mass as a clock rate (matching dictionary)). By the standard relations E = mc2

and E = ℏω [24, 58], a mass scale µ defines a Compton angular frequency ωC(µ) = µc2/ℏ and
a Compton time scale τC(µ) = 1/ωC(µ) = ℏ/(µc2). Therefore the resolution coordinate (19) is
equivalently a log-frequency (or log-time) coordinate:

r(µ) = logφ

(
ωC(µ)
ωC(me)

)
= − logφ

(
τC(µ)
τC(me)

)
.

In particular, the depth mismatch ∆r = r − r̂ reported later in the mass-spectrum closure is
the same multiplicative mismatch in Compton-clock period, τC/τC,pred = φ−∆r, and can be
compared to operational delay proxies (Section Y) at the matching layer. The same logarithmic
coordinate also linearizes Schwarzschild black-hole thermodynamics: logφ SBH = 2 r(M) + const
and logφ TH = − r(M) + const (Appendix X).
Remark 10.2 (Why the base φ is canonical on the golden branch). Lemma 4.5 gives |Xm| =
Fm+2 for the admissible language at window length m. By Binet’s formula, Fm+2 grows expo-
nentially as φm up to a fixed prefactor [27]. Equivalently, the golden-mean shift has topological
entropy logφ and its Artin–Mazur zeta function is ζ(z) = 1/(1 − z − z2) (Lemma 4.10) [23].
Thus using logφ as the denominator in (19) matches the intrinsic exponential growth rate of
the admissible symbolic language on the golden branch.

65



Quantity closed value reference (CODATA/PDG) log(closed/ref)

α−1
em (low energy) 4π3 + π2 + π 137.035999084 (CODATA 2022) +2.22× 10−6

α−1(µZ) 13π2 127.955 (PDG) +2.73× 10−3

sin2 θW (µZ) 3/13 0.23122 (PDG, MS) −1.95× 10−3

J (CKM) 1/(11π7) 3.00× 10−5 (PDG) +3.31× 10−3

Table 16: Quantitative rigidity targets of the closed model in this paper, together with stan-
dard reference values and signed log mismatches in the audit norm. For small deviations,
log(closed/ref) ≈ (closed − ref)/ref. Domain sizes, uniqueness gaps, uncertainty-robustness
checks, and counterfactual baselines for the associated bounded-complexity closures are recorded
in Appendix AE (Tables 70–74) [2, 59]. Rows are reproduced by the deterministic script
scripts/exp_quant_summary.py.

Delay / lapse matching dictionaries (supplement). [Match]The Wigner–Smith delay
proxy, Compton-clock ratios, and GR/SR lapse reference formulas used at the matching layer
are recorded in Appendix Y and Appendix Z.

11 Couplings and CP violation as geometric normalization
This section records two interface points: (i) coupling constants as geometric normalization
costs, and (ii) CP violation as a CP-odd phase-space volume with discrete multiplicity. We
treat the closed expressions as CAP-closed interface normalizations: they follow from explicitly
declared finite candidate families and canonical geometric data, and their mismatch to scheme-
/scale-dependent experimental conventions is recorded as a matching-layer factor.

Audit pointer (bounded-family closure). [Audit]Quantitative selections in this section are
CAP closures within explicitly declared finite candidate families with deterministic tie-break
rules; see Appendix H and Appendix G for the audit contract, and Appendix AE and Ap-
pendix AF for domain/gap tables and reproducibility pointers.

Detailed constructions (supplement). The explicit geometric constructions, bounded-
complexity enumerations, and CKM reconstruction tables are recorded in Appendix AF.

11.1 Summary table: closed values vs. CODATA/PDG

Interpretation of mismatch. The closed expressions in Table 16 are not free fit parameters:
they are rigidity targets selected by explicit bounded-complexity closure rules. The mismatch
log(closed/ref) is recorded as a protocol-level matching factor between an idealized closed nor-
malization and a scheme-/scale-dependent reference convention. This plays the same structural
role as the matching-layer depth shift ∆r used later for masses (Appendix AG). The corre-
sponding finite rigidity enumerations (top candidates and gaps within the declared domains)
are recorded in Appendix AE (Tables 76–79).

Supplementary sigma-normalized view. [Audit]A sigma-normalized mismatch view (for
interpretive convenience only) is recorded in Appendix AE; the closed-model statement remains
the log-mismatch/matching-layer interpretation used throughout.
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ordering eigenstate reference µ [GeV] r(µ) nearest r̂ ∆r µ/µpred

NO m1 0 − − − −
NO m2 8.61394e− 12 -37.195 -37 -0.195 0.910594
NO m3 5.01697e− 11 -33.533 -34 0.467 1.25199
IO m1 4.998e− 11 -33.541 -34 0.459 1.24726
IO m2 5.07169e− 11 -33.510 -34 0.490 1.26565
IO m3 0 − − − −

Table 17: A minimal neutrino mass-scale interface in the resolution coordinate. For each refer-
ence mass µ we compute r(µ) = log(µ/me)/ logφ and select the nearest integer depth r̂, yielding
a depth mismatch ∆r = r − r̂ and the implied multiplicative matching factor. Rows are repro-
duced by the deterministic script scripts/exp_neutrino_mass_interface.py.

12 Lepton mixing and a neutrino-scale interface
This section extends the bounded-complexity closure program to the lepton sector. We record
a minimal, auditable closure for the PMNS mixing angles and provide a corresponding matrix
reconstruction in the PDG standard parameterization. Majorana phases do not affect oscillation
probabilities and are not constrained by this minimal closure, so we ignore them here [2].

Audit pointer (bounded-family closure). [Audit]The reported PMNS closures are CAP
selections within explicitly declared finite candidate families with deterministic tie-break rules;
see Appendix H and Appendix G for the audit contract, and Appendix AF and Appendix AE
for the enumerations, gaps, and robustness tables.

12.1 PMNS angles as bounded-complexity amplitudes

The bounded-complexity candidate family, the stabilized minimizers, and the associated rigid-
ity/robustness tables are recorded in Appendix AF.

12.2 Matrix reconstruction and a discrete CP-phase closure

The bounded-denominator Dirac-phase selection and the induced PMNS matrix/ unitarity di-
agnostics are recorded in Appendix AF.

12.3 A minimal neutrino mass-scale interface

At the anchor resolution (m,n) = (6, 3), the mass-spectrum closure of Section 13 anchors scheme-
stable charged-lepton scales and treats neutrino absolute masses as an interface input. To express
neutrino scales in the same resolution language, we record a deterministic nearest-integer depth
assignment for representative minimal-mass normal/inverted orderings inferred from oscillation
splittings. We use representative central values for (∆m2

21, |∆m2
31|) from standard global fits

[2, 60].

Remark 12.1 (Status of the neutrino-scale assignment). The nearest-integer depth assignment
in Table 17 is an interface-level bookkeeping device: it expresses commonly quoted oscillation-
inferred mass scales in the same additive depth coordinate used elsewhere, without claiming
a unique absolute-mass prediction at (m,n) = (6, 3). Any stronger neutrino-mass prediction
requires additional physical identification input (e.g. a concrete mass-generation mechanism and
threshold/matching conventions) beyond the minimal closure reported in this paper.
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13 Closure: mass spectrum as resolution depth and protocol
cost

This section closes the interface by connecting the field-level labeling map (Section 9) to a
concrete, reproducible mass-spectrum template. We work with dimensionless ratios relative
to the electron reference, and we phrase running/threshold effects in the Fibonacci resolution
coordinate of the golden branch.

We use the resolution-depth coordinate and the operational delay/lapse dictionaries recorded
in Section 10 and Section Y.

Audit pointer (bounded-family closure). [Audit]The depth template and its integer-
coefficient rigidity are CAP closures within explicitly declared bounded families with determin-
istic tie-break rules; see Appendix H and Appendix G for the audit contract and Appendix AG
for the bounded-domain searches, gaps, and robustness diagnostics.

Tick-only interpretation. The closure below is written in the r-coordinate precisely because
r is a log-time coordinate: it linearizes multiplicative time-scale ratios. On this view, the
predicted depth r̂ is a discrete protocol overhead (in tick-derived units), while the mismatch ∆r =
r− r̂ is a matching-layer time-scale factor (Compton-clock and delay dictionaries; Appendix Y).

13.1 A closed depth assignment from stable-type invariants

Let w ∈ X6 and recall the intrinsic invariants (V (w), g(w), Dπ(w)) (Definition 8.9). We use the
effective protocol depth r∗(w) from Definition 9.9. The folding degeneracy g(w) is the fiber size
of the finite projection Fold6 and therefore measures the intrinsic multiplicity of microstates that
share the same stable readout label (Section 6).

Lemma 13.1 (Uniform fiber distribution and residual uncertainty). Let N be uniformly dis-
tributed on {0, . . . , 63} and set W := Fold6(N) ∈ X6. Then for each w ∈ X6 one has

P(W = w) = g(w)
64 , P(N = k |W = w) = 1

g(w) for k ∈ Fold−1
6 (w),

and the conditional Shannon entropy of N given W = w equals log g(w) (in nats) [17,61].

Proof. Immediate from uniformity and Bayes’ rule; see, e.g., [17].

Remark 13.2 (Protocol depth as a cost coordinate (interface)). Lemma 13.1 makes explicit that
g(w) controls the intrinsic residual multiplicity of microstates that share the same stable readout
label at m = 6. In a scan-based identification dictionary (Axiom 1.1), resolving or compensating
such multiplicities across space requires additional protocol resources (extra scan steps, deeper
matching, or additional connection data), and therefore fixes the use of g(w) as a discrete cost
term in r∗ and in the normalized depth (21). The closed quantitative content used for mass
matching in this paper is the auditable template (22) together with the bounded-complexity rigid-
ity certificate for its integer coefficients (Proposition AG.1). A stronger time/mass matching
dictionary based on scattering delay (Wigner–Smith) and relativistic lapse/redshift templates is
recorded in Section Y and provides the operational closure used at the matching layer.

Definition 13.3 (Closed mass template). Fix the electron reference field e := e
(1)
R and let

we ∈ X6 denote its stable-type label under LSM. Define the normalized depth

r̂(f) := κ
(
r∗(wf )− r∗(we)

)
+
(
|wf |1 − |we|1

)
+
(
g(we)− g(wf )

)
, (21)
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where wf ∈ X6 satisfies LSM(wf ) = f , κ := m/n = 2 for the balanced coupling at the chosen
anchor (m,n) = (6, 3) on the 2D Hilbert screen, |w|1 is Hamming weight, and g(w) is folding
degeneracy (Definition 8.9). Then define the closed template mass prediction by

µpred(f) := me φ
r̂(f). (22)

Remark 13.4 (Choice of charged-lepton reference). We take e := e
(1)
R as the charged-lepton ref-

erence because the three singlet multiplets {e(1)
R , e

(2)
R , e

(3)
R } form a minimal family already present

in the field-level labeling closure (Section 9). Since (21) uses only depth differences relative to we,
any global normalization shift is absorbed into the matching-layer depth shift ∆r (Section AG.2).

It is useful to express r̂ directly as a bounded-complexity integer combination of stable-type
differences.

Proposition 13.5 (Simplified depth formula). Let ∆V := V (wf )−V (we), ∆g := g(wf )−g(we),
and ∆|w|1 := |wf |1 − |we|1. Under Definition 13.3 at (m,n) = (6, 3) one has

r̂(f) = 2 ∆V + 5 ∆g + ∆|w|1. (23)

Proof. By Definition 9.9, r∗(w) = V (w) + 3(g(w) − 2) at n = 3. Hence κ(r∗(wf ) − r∗(we)) =
2∆V + 6∆g. The remaining two correction terms in (21) contribute ∆|w|1 − (∆g), yielding
2∆V + 5∆g + ∆|w|1.

Equation (22) yields a discrete spectrum of reference scales. Threshold and scheme effects
are recorded as multiplicative matching factors (equivalently, additive shifts in r) as in effective
field theory [1, 2].

13.2 Predicted spectrum and PDG/CODATA comparisons

Table 18 records the closed template values. Standard reference values are listed using PDG
and CODATA conventions. For quarks we use a scheme-dependent reference (e.g. MS running
masses) and treat scheme dependence as a matching input rather than an integer-depth anchor,
consistent with the resolution-map calibration philosophy used in this paper. For neutrinos
we record an order-of-magnitude reference scale inferred from oscillation data, but we do not
fix a unique absolute mass prediction at this minimal resolution [2, 60]. For W , Z, and H we
include the canonical electroweak anchor depths as discrete reference points in the r-coordinate.
These bosonic rows are not identified with individual stable types in X6; they serve as protocol-
calibration thresholds for the electroweak interface in the same sense as the Z-scale normalization
recorded in Section 11 [2].

Remark 13.6 (Bosonic anchor depths as nearest-integer reference points). The bosonic anchor
depths reported for W , Z, and H are taken as the nearest-integer reference points to r(µ) =
log(µ/me)/ logφ at the corresponding PDG masses. This keeps the bosonic thresholds fully
discrete (no continuous fit) while allowing the residual mismatch to be recorded explicitly in
the same additive form ∆r used elsewhere. The same nearest-depth convention is used in the
minimal neutrino-scale interface table (Table 17).

Scheme dependence and matching inputs. For light quarks, PDG masses are convention-
dependent and quoted as running masses in a chosen scheme; even for heavy quarks, perturbative
matching and threshold conventions affect the quoted reference values [2]. Accordingly, the
extended fermion rows in Table 18 are diagnostic: they record the implied depth mismatch
∆r and the corresponding multiplicative matching factor µ/µpred under the stated reference
convention, rather than serving as scheme-independent rigidity anchors.
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field reference µ [GeV] r(µ) r̂ ∆r := r − r̂ µ/µpred

Anchor scales
e 5.10999× 10−4 0.000 0 0.000 1
µ 0.10565838 11.080 11 0.080 1.03901
τ 1.77686 16.945 17 -0.055 0.973741
W 80.377 24.866 25 -0.134 0.937607
Z 91.1876 25.128 25 0.128 1.06371
H 125.25 25.788 26 -0.212 0.902982
Quark refs (scheme)
u 0.00216 2.996 6 -3.004 0.235563
d 0.00467 4.598 5 -0.402 0.82406
s 0.093 10.814 12 -1.186 0.565212
c 1.27 16.247 12 4.247 7.71848
b 4.18 18.722 23 -4.278 0.127656
t 172.76 26.456 28 -1.544 0.47574
Neutrino scale
ν (scale) 5× 10−11 -33.540 − − −

Table 18: Mass-spectrum closure in the resolution-depth language. The predicted values use the
normalized depth (21) (equivalently (23)) together with the exponential map (20). The depth
mismatch ∆r is additive, while µ/µpred = φ∆r is the corresponding multiplicative matching
factor. All rows are reproduced by the deterministic script scripts/exp_mass_spectrum.py.

Rigidity audits and matching-layer summaries (supplement). Bounded-coefficient
rigidity searches, leave-one-out robustness diagnostics, and the quantized matching-layer tables
are recorded in Appendix AG.

Audit reading and failure criteria. [Audit]The depth-coefficient closure is anchored on the
scheme-stable charged-lepton set {µ, τ} (Appendix AG.1); quark rows are treated as diagnostic
matching inputs under a stated scheme convention rather than as scheme-independent rigidity
anchors. Operationally, the closure would be falsified within its stated hypothesis class if (i) the
bounded-integer minimizer for (a, b, c) were not unique or did not stabilize across modest bound
increases, or (ii) the matching-layer residuals required substantially finer denominators than the
minimal dyadic quarter-step lattice to be compactly summarized (Appendix AG.2).

Part VI

Dynamics: continuum representatives, free
energy, RG, cosmology
Pointer. [Audit]This part is a reader-facing index to the closed continuum representative mod-
ules recorded in the appendices; it introduces no additional theorem-level inputs beyond tick
and CAP.

• Appendix C: Wish/Motive templates and a generic Lyapunov certificate (reader-facing;
not used in proofs).

• Appendix D: semigroup and exponential-kernel notes (arrow-of-time template; reader-
facing; not used in proofs).
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• Appendix E: Abel finite parts and a resolvent-style unit-disk holomorphy template (reader-
facing; not used in proofs).

• Appendix F: holomorphy versus interior poles (pole-barrier rigidity template; reader-
facing; not used in proofs).

• Appendix AA: equivalence semantics and a frequency-first dictionary.

• Appendix AB: modular geodesic flow and Gauss-map renormalization (mother-space notes;
not used in proofs).

• Appendix AC: Morita equivalence and Fourier exchange (equivalence structures; not used
in proofs).

• Appendix AD: Hecke operators and the prime skeleton (cross-scale symmetry template;
not used in proofs).

• Appendix AD.4: CAP-closed minimal continuum action skeleton.

• Appendix AD.5: variational field equations (Einstein/Yang–Mills/χ templates).

• Appendix AD.6: thermodynamics from equivalence/coarse graining (en-
tropy/temperature/free energy dictionary).

• Appendix AD.7: overhead/χ to lapse and weak-field gravity closures.

• Appendix AD.8: χ(x) reconstruction protocol from finite diagnostics.

• Appendix AD.10: quantum readout interfaces and Born-probability rigidity.

• Appendix AD.11: running couplings in the resolution coordinate r.

• Appendix AD.12: cosmology as resolution flow (interface, audited assumptions).

• Appendix Y: unified delay closure and matching-layer dictionaries.

Part VII

Validation and falsifiability (and open
closures)
14 Falsifiability: predictions in the protocol language
The folding counts and tables are mathematical-layer facts. The statements below are physical-
layer predictions: they can be tested by observational constraints, laboratory bounds, and re-
producible protocol-level audits.

Time-first test strategy. In the tick-first dictionary of this paper (Section 3), the primitive
input is the sequential update count and the primitive closure rule is CAP. Accordingly, the
most direct experimental handles are time dictionaries: delay and clock-rate proxies that test
the overhead interpretation of mass and scale. For a time-first reading, begin with P6 (scatter-
ing delay as a lapse proxy). Predictions P1/P2/P4/P5 are protocol-level structural or rigidity
statements that do not require a numerical staircase calibration. Prediction P3 is special: its
threshold locations depend on the bounded-complexity calibration of rstep and the chosen ref-
erence anchors, and should therefore be read as a conditional prediction within that calibrated
hypothesis class.
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14.1 Independent protocol predictions (no staircase calibration required)

14.1.1 P1: right-handed neutrinos as protocol-external / ghost modes

If weak chirality is tied to the Hilbert-protocol orientation bit and its mirror-protocol swap
(Definition 7.2), then a neutral singlet νR can behave as a protocol-decoupled mode: it can be
stable at the level of type labeling while remaining effectively unobservable through the weak
compensation connection within a fixed protocol. Operationally, this manifests as an “invisible”
or “ghost-like” degree of freedom with extremely suppressed couplings at the readout level [2].

Remark 14.1 (Relation to standard sterile-neutrino extensions). Gauge-singlet right-handed
neutrinos are also the standard minimal extension used in neutrino-mass model building (e.g.
seesaw completions of the dimension-five Weinberg operator); see, e.g., [2, 62,63].

A concrete interface reason at the chosen 2D anchor (m,n)=(6,3). In the closed
labeling map, νR carries (SU(3), SU(2))Y = (1, 1)0 (Table 15), hence is neutral under all three
gauge-factor connection classes. In this sense, νR is the forced protocol-external candidate
within the closed labeling: it can exist as a stable label without participating in the weak SU(2)
compensation transport within a fixed protocol.

Relation to the hidden microstates. At m = 6, the protocol-unstable complement has size
|Ω6 \X6| = 64− 21 = 43. In addition to protocol-decoupling within X6, a stronger possibility is
protocol-instability: if certain degrees of freedom are implemented as readout patterns outside
X6, they reside in this ghost sector and are absent from stable visible outputs.

Data channel. Laboratory sterile-neutrino searches (oscillation anomalies, beta-decay spec-
tral distortions, missing-energy signatures) and cosmological bounds on extra relativistic degrees
of freedom provide direct constraints on protocol-decoupled neutral singlets.

Fail condition. Evidence for an unsuppressed weakly coupled right-handed neutrino mode
within the same protocol class (i.e. a νR that participates in the SU(2) compensation transport
comparably to left-handed leptons) would contradict the protocol-external/decoupled identifi-
cation used here.

14.1.2 P2: chirality-domain defects and large-scale statistical signatures

If early-universe initialization admitted domains with different Hilbert orientation classes, do-
main boundaries would act as protocol defects. Such defects should leave parity-sensitive sta-
tistical signatures (e.g. polarization correlations) tied to the chirality index sign. Remark: do-
main walls as macroscopic defect remnants are standard in symmetry-breaking narratives; see,
e.g., [64, 65].

Test strategy. The prediction is protocol-level: one should search for statistics that are invari-
ant under orientation-preserving layout changes but change sign under reflection-like protocol
swaps, consistent with Proposition 5.4. Conversely, parity-even observables provide a control:
coarse-grained scalars such as those in Definition 8.13 should be coherent across orientation
domains up to pullback and should not exhibit an intrinsic sign flip.

Concrete observable channel: CMB parity-odd correlators and cosmic birefringence.
A standard parity-sensitive testbed is CMB polarization: the E/B decomposition separates
parity-even and parity-odd modes [66, 67]. In statistically isotropic parity-invariant models,
the TB and EB cross-correlations vanish (up to foreground/systematics), while a parity-odd
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polarization-rotation (cosmic birefringence) angle β mixes E and B and induces nonzero TB/EB
with a sign controlled by β [68,69]. In the present protocol language, different Hilbert orientation
domains flip sgn(χ); therefore any fitted parity-odd estimator whose sign tracks an effective
rotation/birefringence sign is expected to flip sign between domains while parity-even control
statistics remain coherent up to pullback.

Data channel. CMB polarization (parity-odd TB/EB correlators), cosmic-birefringence es-
timators, and other large-scale parity-odd correlation searches provide concrete observational
channels.

Fail condition. If improved multi-frequency data and systematics-controlled analyses exclude
any domain-like sign-flip pattern in parity-odd estimators while the protocol-chirality mapping
remains fixed, the chirality-domain defect scenario is disfavored.

14.2 Calibration-dependent staircase prediction (requires a calibrated rstep)

14.2.1 P3: resolution jumps and Fibonacci-structured spectrum thresholds

At window length m, the admissible stable type count is |Xm| = Fm+2 (Lemma 4.5). Moreover,
the π-channel cyclic/boundary split is itself Fibonacci-rigid: for m ≥ 4,

|Xbdry
m | = Fm−2, |Xcyc

m | = Fm+2 − Fm−2

(Proposition 4.8). If effective window length changes with energy or environment, the number
of stable types should exhibit threshold behavior constrained by Fibonacci growth rather than
arbitrary particle additions.

Collider as an active observer: forced zoom (interface). In this framework, a high-
energy collider is not merely a kinetic machine but an information-focusing device. By concen-
trating energy density into a small interaction region, the experiment can force the local protocol
to operate at higher effective resolution and thereby make higher-m structure accessible in read-
out. Operationally, this corresponds to pushing the local scale across the calibrated thresholds
µth(m) so that the deterministic selection meff(µ) jumps (Corollary 14.2). We refer to this ex-
perimental act as active renormalization: one does not change the theorem-level folding core,
but forces the protocol to render latent high-complexity modes that are otherwise inaccessible
at the m = 6 ground-state readout.

Fibonacci-structured thresholds. Since Fm+2 obeys Fm+2 = Fm+1 + Fm, any one-step
resolution uplift m 7→ m + 1 admits only a constrained increment of stable type count. This
provides a rigid spectral-template prediction: new stable modes, if any, should enter in Fibonacci-
structured batches. At the minimal anchor m = 6, the split is 18⊕3; the next two uplifts would
yield 29⊕ 5 at m = 7 and 47⊕ 8 at m = 8.

A minimal µ ↔ m calibration. To compare these discrete uplifts to energy thresholds, we
use the golden resolution coordinate already employed in the mass-spectrum closure:

r(µ) = log(µ/me)
logφ .

We record a minimal calibration in which a one-step window uplift m 7→ m+ 1 corresponds to
a fixed additive depth increment

rstep := 2π, rth(m) := (m− 6) rstep, µth(m) = me φ
rth(m).
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In this calibration, the threshold for m = 10 lies near the electroweak scale (µth(10) ≈ 91 GeV),
providing a concrete protocol-level staircase template for where Fibonacci-structured stable-type
uplifts may occur. The resulting spectrum template is summarized in Table 2.

Odd steps as bridges between even stability islands (interface). The even steps m =
6, 8, 10 are already singled out by the combination of the m = 6 coarse-lock anchor and the
bounded-complexity staircase calibration: they align the minimal matter anchor (electron), a
conservative hadronic-scale reference (QCD onset), and the electroweak layer, respectively. Once
this scaffold is fixed, the odd steps are no longer optional: the same staircase necessarily places
intermediate thresholds at m = 7, 9, 11 (Table 2). This yields three concrete, falsifiable targets
for where additional stable-mode structure should concentrate if it arises through resolution
uplifts:

• Prediction 1 (nuclear binding scale): m = 7 corresponds to µth(7) ∼ 10 MeV, near
the characteristic nuclear binding scale (few–10 MeV), suggesting an intermediate “bind-
ing” information density that can glue m = 6 matter-like objects into nuclei without yet
requiring the full hadronic confinement structure of m = 8.

• Prediction 2 (bottom onset): m = 9 corresponds to µth(9) ∼ 4.4 GeV, close to the
bottom threshold (mb ≈ 4.18 GeV), marking the staircase onset point for heavy-flavor
physics under the fixed calibration [2].

• Prediction 3 (BSM frontier target): m = 11 corresponds to µth(11) ∼ 1.9 TeV and
provides a protocol-level BSM target at the LHC/FCC frontier: any additional stable
modes entering as an effective uplift to m = 11 should be constrained by the finite topo-
logical capacity |X11| = 233 and by the inherited cyclic/boundary split constraints from
the π channel.

Corollary 14.2 (Resolution selection by least discrepancy (interface)). Fix rstep > 0 and
the threshold map µth(m) above. Given an effective energy (or mass) scale µ, define r(µ) =
log(µ/me)/ logφ and select an effective window length by the deterministic rule

meff(µ) := 6 +
⌊
r(µ)
rstep

⌋
,

equivalently: meff(µ) = m if and only if µth(m) ≤ µ < µth(m + 1). This is the minimal closed
selection principle compatible with CAP (Axiom 1.5): window length increases only when the
scale crosses a calibrated threshold, and within each band the protocol uses the smallest admissible
m.

Remark 14.3 (Why the step size 2π is canonical (interface)). The factor 2π is the canonical
period of phase in the unitary scan language (circle normalization), and it is also the canonical
normalization that relates horizon surface gravity to Hawking temperature, TH = κsg/(2π), in
the standard semiclassical dictionary [70, 71]. Accordingly, using an additive increment rstep =
2π is the minimal-description choice for a dimensionless “one-step” uplift in a protocol depth
coordinate. We nevertheless keep it auditable: the bounded family rstep = kπ is explicitly swept
and selected by deterministic objectives (Tables 20–21 and Proposition 14.4).

A bounded-complexity calibration comparison. To make the choice rstep = 2π explicit
as a low-complexity calibration, we compare the small candidate family rstep = kπ for 1 ≤ k ≤ 10
against the single electroweak anchor scale mZ (PDG), using the template threshold at m = 10.
Table 20 reports the induced µth(10) and the log mismatch log(µth(10)/mZ) for each candidate.
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m rth(m) µth(m) [GeV] |Xm| |Xcyc
m | |Xbdry

m | ∆|Xm|

6 0.000 5.10999× 10−4 21 18 3 0
7 6.283 0.0105082 34 29 5 13
8 12.566 0.216091 55 47 8 21
9 18.850 4.44369 89 76 13 34

10 25.133 91.3802 144 123 21 55
11 31.416 1879.15 233 199 34 89
12 37.699 3.86428× 104 377 322 55 144
13 43.982 7.94651× 105 610 521 89 233
14 50.265 1.63412× 107 987 843 144 377
15 56.549 3.36041× 108 1597 1364 233 610
16 62.832 6.91036× 109 2584 2207 377 987

Table 19: A concrete resolution-uplift staircase template under the minimal calibration
rstep = 2π. The stable-type counts use |Xm| = Fm+2 and the cyclic/boundary split
|Xbdry

m | = Fm−2 for m ≥ 4 (Proposition 4.8). Rows are reproduced by the deterministic script
scripts/exp_resolution_thresholds.py.

candidate rstep rstep µth(10) [GeV] log(µth(10)/mZ) | · |

π 3.14159 0.216091 -6.0450 6.0450
2π 6.28319 91.3802 +0.0021 0.0021
3π 9.42478 3.86428 × 104 +6.0492 6.0492
4π 12.5664 1.63412 × 107 +12.0963 12.0963
5π 15.708 6.91036 × 109 +18.1434 18.1434
6π 18.8496 2.92225 × 1012 +24.1905 24.1905
7π 21.9911 1.23576 × 1015 +30.2375 30.2375
8π 25.1327 5.22576 × 1017 +36.2846 36.2846
9π 28.2743 2.20986 × 1020 +42.3317 42.3317
10π 31.4159 9.34505 × 1022 +48.3788 48.3788

Table 20: Calibration sweep at m = 10 over the bounded family rstep = kπ (1 ≤ k ≤ 10),
using mZ = 91.1876 GeV as a reference scale. Rows are reproduced by the deterministic script
scripts/exp_resolution_calibration_sweep.py.

A two-anchor minimax calibration (diagnostic). As an additional diagnostic (still on the
physical identification layer), we can calibrate rstep against two reference anchors simultaneously:
the Z pole mass at m = 10 and an order-of-magnitude nonperturbative QCD reference scale
µQCD = 0.2 GeV at m = 8 (a conservative hadronic-scale anchor; see, e.g., [2]). We evaluate
the same bounded family rstep = kπ with a deterministic minimax objective across the anchors.
Table 21 reports the resulting mismatches and selects the unique minimizer by lexicographic
tie-break rules.

Proposition 14.4 (Bounded-complexity calibration selection of rstep = 2π). Within the bounded
candidate family rstep = kπ for 1 ≤ k ≤ 10, the calibration rstep = 2π is the unique minimizer
against the single Z-anchor objective in Table 20. Under the two-anchor minimax objective re-
ported in Table 21, the same choice remains the unique minimizer under the stated deterministic
tie-break rules.

Proof. Finite exhaustive enumeration over the stated candidate family; see the generated tables
and the scripts cited in their captions.
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candidate rstep rstep µth(10) [GeV] log(µth(10)/mZ) µth(8) [GeV] log(µth(8)/µQCD) E∞ E1

π 3.14159 0.216091 -6.0450 0.0105082 -2.9462 6.0450 8.9911
2π 6.28319 91.3802 +0.0021 0.216091 +0.0774 0.0774 0.0795
3π 9.42478 3.86428 × 104 +6.0492 4.44369 +3.1009 6.0492 9.1501
4π 12.5664 1.63412 × 107 +12.0963 91.3802 +6.1245 12.0963 18.2207
5π 15.708 6.91036 × 109 +18.1434 1879.15 +9.1480 18.1434 27.2914
6π 18.8496 2.92225 × 1012 +24.1905 3.86428 × 104 +12.1716 24.1905 36.3620
7π 21.9911 1.23576 × 1015 +30.2375 7.94651 × 105 +15.1951 30.2375 45.4326
8π 25.1327 5.22576 × 1017 +36.2846 1.63412 × 107 +18.2186 36.2846 54.5033
9π 28.2743 2.20986 × 1020 +42.3317 3.36041 × 108 +21.2422 42.3317 63.5739
10π 31.4159 9.34505 × 1022 +48.3788 6.91036 × 109 +24.2657 48.3788 72.6445

Table 21: Two-anchor minimax calibration over the bounded family rstep = kπ (1 ≤
k ≤ 10), using mZ = 91.1876 GeV and µQCD = 0.2 GeV as reference anchors at
m = 10 and m = 8, respectively. Rows are reproduced by the deterministic script
scripts/exp_resolution_calibration_multianchor.py.

Figure 4: Optional visualization of the staircase m(µ) under the same calibration, if the figure
file is generated.

Why this is not post-hoc tuning. The step size is selected from a small explicit candidate
family rstep = kπ with deterministic objectives and tie-break rules, and the residual mismatches
to the reference anchors are reported explicitly in the same log-mismatch language used through-
out. Thus the staircase calibration is a discrete audited selection rather than a continuous fit.

Test strategy. The prediction is not that a specific new particle must appear at every µth(m),
but that if additional stable modes do appear as effective resolution uplifts, they should enter
in Fibonacci-structured batches ∆|Xm| = Fm and inherit the cyclic/boundary split constraints
from the π channel.

Data channel. Collider and fixed-target threshold scans (new stable-mode onsets, heavy-
flavor thresholds, and clustering of new phenomena in energy) provide the primary laboratory
channels; astrophysical threshold phenomena provide complementary constraints.

Fail condition. Conditional on the stated staircase calibration, the framework is falsified
if new stable modes appear in a way that is incompatible with Fibonacci-constrained batch
structure across uplifts, or if statistically significant new-mode onsets systematically avoid the
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calibrated threshold bands without an alternative calibrated rstep explanation within the stated
bounded family.

14.3 Independent quantitative rigidity and time-dictionary tests

14.3.1 P4: CP violation magnitude tied to a rigid phase-space volume

If CP violation is controlled by a CP-odd phase spaceMCP with fixed volume and multiplicity as
in (85), then CP-odd observables should exhibit rigid low-complexity signatures and constrained
drift patterns under protocol deformation.

Numerical rigidity target. Equation (85) provides a concrete normalization target for the
CKM Jarlskog invariant: Jgeo = 1/(11π7). Any protocol deformation model that claims to ex-
plain CP violation should either reproduce this rigidity signal or explain its systematic deviation
in a controlled, testable way.

Data channel. Global CKM fits and direct CP-odd observables that determine the Jarlskog
invariant under standard conventions provide the primary test channel.

Fail condition. If the experimentally inferred J converges to a value incompatible with the
rigid target 1/(11π7) under fixed CKM conventions (i.e. the mismatch cannot be represented as
a stable matching-layer factor comparable to the other closed normalizations in this paper), the
CP-volume normalization dictionary is falsified.

14.3.2 P5: discrete mixing predictions and quantified robustness

Beyond qualitative protocol narratives, the bounded-complexity closures used for CKM and
PMNS provide concrete discrete targets: Tables 83–85 record the CKM magnitude closure, the
induced PDG-parameter reconstruction, and unitarity diagnostics, while Tables 88–92 record
the analogous PMNS closure together with the bounded-denominator Dirac phase selection
(Table 90). These are falsifiable as measurement precision improves: the candidate families are
finite, the minimizers are unique at the stated bounds, and the mismatches are reported in the
same log-norm used across the paper.

Quantified robustness. Appendix AE.7 reports minimizer stability rates under explicit per-
turbation models for the reference targets (Table 72). This provides an audit-level quantifica-
tion of how sensitive each discrete prediction is to plausible shifts in the quoted reference values
(PDG/global-fit or conservative stress-test scales), and it sharpens the distinction between a
rigid discrete selection and a fragile post-hoc match.

Data channel. Precision determinations of CKM/PMNS mixing parameters (magnitudes,
angles, and phases) directly test whether the reported minimizers remain the unique best can-
didates within the stated finite families.

Fail condition. If future measurements shift the reference targets such that, within the same
stated bounds, the reported minimizers cease to be unique/stable or are no longer the best
candidates in the declared finite families without enlarging the complexity budget, then the
low-complexity discrete closure claim fails as stated.
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14.3.3 P6: scattering delay as a measurable lapse proxy (interface)

If protocol overhead admits a direct operational proxy in terms of measurable delay, then scatter-
ing experiments provide a concrete test channel. In settings where a (nearly) unitary scattering
matrix S(ω) can be measured as a function of frequency, one can compute the Wigner–Smith
delay τWS(ω) = Tr

(
−iS†dS/dω

)
[20, 21]. Normalizing by a calibrated tick duration τ0 yields a

dimensionless overhead proxy κWS = τWS/τ0 and a lapse proxy NWS = κ0/κWS (Section Y).
The prediction is that, under any concrete platform identification that ties the measured scat-
tering channel to protocol-local degrees of freedom, delay-derived lapse ratios should behave like
redshift/clock-slowing ratios under the same identification, providing an independent falsifiabil-
ity route for the overhead–lapse dictionary.

Data channel. Platforms with measurable near-unitary scattering matrices (mi-
crowave/optical cavities, mesoscopic quantum transport, cold-atom scattering, nuclear/particle
scattering phase-shift analyses) provide channels where Wigner–Smith delay can be extracted
and compared across controlled conditions.

Fail condition. If delay-derived lapse ratios fail to correlate with independently measured
clock-rate/redshift proxies under the same platform identification (beyond stated experimen-
tal/systematic uncertainty), the overhead–lapse matching dictionary is disfavored.

14.3.4 P7: γ cross-observation consistency (interface/audit)

Appendix AD.13 records a deterministic, auditable multi-channel estimate of the single param-
eter γ that appears in the overhead-to-lapse and overhead-to-gravity dictionaries. The intended
falsifiability target is not that every channel yields the same point estimate at present preci-
sion, but that the same γ is not systematically forced into incompatible values by independent
operational proxies once the data protocol and counterfactual baselines are declared.

Data channel. Independent constraints from rotation-curve fits, lensing/delay proxies, and
redshift/clock-rate proxies, together with explicit uncertainty and stability sweeps, provide the
channel. The paper includes a small vendored audit subset and a deterministic script that
generates Table 64, Table 65, and Figure 7.

Fail condition. If, under declared protocol baselines and stated uncertainties, the per-channel
γ̂ estimates are mutually inconsistent beyond tolerance (e.g. a large χ2 with negligible p-value
and unstable conclusions under counterfactual baseline sweeps), then the single-parameter cross-
channel closure claimed by the overhead dictionary is disfavored as stated.

15 Limitations, scope, and relation to prior work

15.1 Mathematical results vs. physical identifications

The paper is organized around an auditable separation (Section 1.4). The folding statements at
(m,n) = (6, 3) (e.g. 64 → 21 and the 18 ⊕ 3 split) are mathematical-layer results with explicit
tables and reproducible scripts. By contrast, the physical identifications (gauge sectors, chirality,
antimatter, and CP violation) are recorded as interface statements stated in protocol language
(e.g. Proposition 8.1, Proposition 8.2, Definition 7.2, Definition 8.7). The finite combinatorics
alone is not a Lagrangian; the Standard Model interface is fixed here by explicit closure rules that
are stated at the protocol layer and are audited by finite searches. Concretely, the paper provides
a rigid finite substrate (X6 with intrinsic invariants) on which any identification must act,
closed auditable interface maps at the level of discrete assignments (e.g. the labeling closure in
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Section 9), and falsifiable protocol-level predictions that go beyond post-hoc parameter matching
(Section 14). Within the declared protocol class, the remaining selection freedom is closed
by deterministic bounded-complexity rules (Definition H.1) and by explicit refinement maps
(Appendix V); uniqueness/stability is recorded via rigidity certificates and stabilization tables
throughout. Appendix K records the resulting “no-new-input” dependency ledger in a compact
audit form, separating theorem-level consequences, finite protocol constructions, conditional
interface implications, and bounded-complexity closures.

15.2 On the CAP-selected anchor (m, n) = (6, 3)
For the chosen 2D Hilbert readout screen, the balanced coupling condition m = 2n is used
to match two independent finite cardinalities: the local readout alphabet size |Ωm| = 2m and
the number of sites on the Hilbert-addressed grid 4n (Section 4.1). This is a diagnostic con-
vention used to attach spatial statistics; it is not a theorem-level necessity for the folding core
(Remark 4.3). Other addressing dimensions correspond to m = dn rather than m = 2n (Re-
mark 4.2), and other space-filling curves can be used as alternative readout bases (Remark 5.1).
The choice (m,n) = (6, 3) is then the smallest nontrivial instance of this match: 26 = 43 = 64.
This choice is an anchor scale for an auditable finite model, not a claim that the dynamics
must select m = 6. On the physical identification layer, we record a CAP selection princi-
ple for this anchor: within the balanced family on the chosen 2D screen, the smallest pair for
which the deterministic holonomy diagnostic becomes nontrivial is (n,m) = (3, 6). Concretely,
the balanced-chain sweep in Table 30 shows that n = 1, 2 yield only trivial (identity) plaque-
tte holonomy while n = 3 is the first scale with nontrivial 3/4-cycle content. This provides a
low-complexity interface constraint whose compatibility with uplift and coarse-graining behav-
ior is audited and falsifiable. We partially control parameter sensitivity by recording m-sweeps
and balanced refinement chains (Appendix AE and Section 6), which show that several struc-
tural counts (Fibonacci admissible sizes, cyclic/boundary split) persist across m. To close the
energy↔m interface at the protocol layer, we fix a deterministic staircase selection rule meff(µ)
in Corollary 14.2, together with an auditable calibration of the step size rstep (Section 14.2.1).
At the purely mathematical level, the persistence statements are theorem-level: |Xm| = Fm+2
and |Xbdry

m | = Fm−2 for all m (Lemma 4.5 and Proposition 4.8), and the truncation map Foldm

is surjective onto Xm for all m ≥ 1 (Proposition 4.20).

15.3 Rigidity targets, look-elsewhere context, and counterfactual baselines

Several quantitative statements are presented as low-complexity rigidity targets (Section 11).
We do not interpret these as “agreement within experimental error bars” when the reference un-
certainties are far smaller than the quoted mismatches (e.g. α−1

em), but as matching-layer factors
between an idealized closed normalization and scheme/scale-dependent reference conventions.
To reduce the risk of numerology, we treat each target as a bounded-complexity closure with
an explicit finite candidate family and a fully specified tie-break rule (Definition H.1). Ap-
pendix AE records audit context beyond point estimates: candidate-domain sizes, second-best
gaps, distribution quantiles, stability under target perturbations, and deterministic counterfac-
tual baselines (Tables 70–74). These audits provide look-elsewhere information within stated
hypothesis classes; they are not a substitute for a complete statistical analysis over unrestricted
expression families.

Error control from protocol outputs to continuum fields. Several falsifiability channels
in this paper involve reconstructing a field χ(x) from discrete protocol statistics (Appendix AD.8)
and then applying derivative operators (e.g. χ′(r) or ∆χ) to form weak-field observables such as
ρeff (Appendix AD.7). Such steps are intrinsically noise-amplifying: finite differences can trade
O(h2) truncation bias against O(ϵ/h) or O(ϵ/h2) noise amplification, so any empirical use must
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declare the discretization/smoothing rules and report stability under explicit counterfactual
baselines. Appendix AD.9 records explicit concentration and propagation bounds in a self-
contained audit form (see, e.g., standard references [72–74]).

A minimal model-selection interpretation (within stated families). If one treats a
candidate family Θ as a discrete hypothesis class equipped with the uniform prior, then the
empirical frequency

p≤ϵ := N≤ϵ

|Θ|
in Table 70 gives the probability that a uniformly random candidate achieves minimax log-
mismatch E∞ ≤ ϵ. When the minimizer is unique, the probability that a uniformly random
candidate matches as well or better than the selected minimizer is 1/|Θ|. Multiple-comparison
adjustments across several simultaneously reported closures can be bounded conservatively (e.g.
Bonferroni), but we emphasize that our audit tables are intended to provide transparent within-
family look-elsewhere context, not a comprehensive search over unrestricted expression gram-
mars.

15.4 Rigidity constraints and why key interface choices are forced

Some parts of the physical identification layer are not yet derived from CAP beyond the audited
finite selection rules recorded here (Section 1.4); nevertheless, at the chosen anchor scale the
interface is subject to strong rigidity constraints that sharply limit admissible choices. This
subsection records, in audit language, the sense in which several design choices are “forced”
once one commits to the stated protocol primitives and to minimality.

(i) The (m,n)=(6,3) anchor is CAP-minimal for nontrivial holonomy on the chosen
2D screen (interface). The balanced rule m = 2n is the theorem-level cardinality match spe-
cialized to the 2D Hilbert addressing used for the explicit finite diagnostics in this paper, namely
2m = 4n (Lemma 4.1; see also Remark 4.2 for the d-dimensional general form). On the physical
identification layer, we require a closed-loop (plaquette) diagnostic with nontrivial transport, as
used in the holonomy constructions of Section 6. Within the balanced chain, Table 30 shows
that n = 1, 2 produce only identity plaquette holonomy (no 3/4-cycle content), while n = 3
is the first scale with nontrivial 3/4 cycles. Thus (n,m) = (3, 6) is selected as the minimal
balanced holonomy anchor for the non-abelian holonomy diagnostic on the chosen screen. Other
addressing dimensions would select different balanced relations m = dn (Remark 4.2 and Re-
mark 5.1). This is the precise sense in which the anchor is not arbitrary within the declared
protocol choices: it is the meeting point of the scan-bit budget, the chosen screen/dihedral audit
structure, and the minimal closed-loop diagnostic requirement.

(ii) The 18⊕3 split forces a minimal chiral/gauge allocation at m = 6. The π-channel
induces a canonical cyclic/boundary split Xcyc

6 ⊕Xbdry
6 with sizes 18⊕3 (Proposition 4.9). If one

insists that boundary types represent gauge-factor connection classes while cyclic types represent
matter multiplets (Proposition 8.2 and Definition 8.7), then the minimal chiral content compat-
ible with three generations is rigidly constrained by cardinality. Closing 18 cyclic labels with
the smallest anomaly-neutral extension forces the addition of νR with Y = 0 (Proposition 9.6),
because any charged extension would require further compensating matter by standard anomaly
constraints.

(iii) The three boundary labels admit a unique monotone gauge-factor assign-
ment. The boundary set has exactly three elements with distinct intrinsic values V (w) (Corol-
lary 4.9). The gauge factors {U(1), SU(2), SU(3)} have distinct Lie-algebra dimensions 1, 3, 8
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knob / input meaning status in this paper where audited

m (window length) readout resolution / admissible alphabet anchor m = 6; m-sweeps and refinement chains recorded Appendix AE (Tables 66–68)
n (Hilbert order) addressing resolution anchor n = 3 for the chosen 2D screen (via m = 2n); chirality sweep recorded Table 69
B (closure budget) finite search radius for bounded-complexity closures reported as a sweep; stabilization is recorded when it occurs e.g. Tables 76, 77, 82, 87, 94
Q (phase-denominator cap) bounded rational-angle candidate family for δ reported as a sweep Q = 1, . . . , 12 Table 90
denom = 2p dyadic phase register for holonomy diagnostics CAP-audited bounded family (phase-lift dictionary) Section 6 and associated scripts
reference conventions PDG/CODATA targets and scheme conventions explicit inputs (not fit); mismatch interpreted at matching layer Table 16 and scripts/common_constants.py
quark mass scheme MS/threshold conventions for quark references treated as matching input (diagnostic rows) Remark 13.6 and Table 18
NO/IO choice neutrino mass ordering used for reference targets treated as external input; sensitivity diagnostics recorded Table 17 and Table 89
orientation class discrete protocol initialization (mirror) via sgn(χ) not a continuous parameter; flips under mirror protocols Definition 7.2 and Definition 7.7

Table 22: Explicit “knobs” and inputs used in the protocol/interface layer. The purpose of this
table is to make clear that the paper does not hide continuous degrees of freedom: the remaining
choices are either fixed by declared primitives, treated as explicit matching inputs, or audited
by finite sweeps with recorded stabilization.

(Lemma 9.3). Among the 3! = 6 possible assignments, the monotonicity requirement “larger
intrinsic boundary value ↔ larger gauge-sector complexity” selects a unique assignment (Theo-
rem 9.17). This eliminates a common source of post-hoc freedom.

(iv) The mass-depth template is rigid within the minimal invariant language. At
(m,n) = (6, 3), the intrinsic stable-type invariants available for all w ∈ X6 are discrete and
low-entropy: (V (w), g(w), |w|1, Dπ(w)) with V ∈ {0, . . . , 20} and g ∈ {2, 3, 4} (Definition 8.9).
Requiring that a depth assignment be built only from these invariants and be auditable as a
bounded-integer closure leads naturally to the integer ansatz (89), whose coefficients are rigidly
selected as (2, 5, 1) under the stated objective and tie-break rules (Proposition AG.1). This is
the precise, checkable meaning of “mass is forced by rigidity” within the declared hypothesis
class.

(v) Phase registers and holonomy diagnostics are closed in CAP audit form. The
dyadic phase-register family Z2p enters only through the finite phase-lift dictionary: the phase
denominator denom = 2p and the low-complexity index-map family τ are fixed as explicit
bounded candidate sets, and their influence is audited by deterministic sweeps (Section 6 and
Appendix AE). Thus, although the holonomy diagnostics are physical-layer constructs, they are
not free-form: the permitted choices are enumerated, tie-breaks are explicit, and sensitivity is
reported.

15.5 Status of the channel-to-gauge identification and anomaly constraints

The strongest theorem-level statements in the paper are finite combinatorial and operator facts
about admissibility and projection (Sections 2 and 4). The mapping from the three stability
channels to the Standard Model gauge factors is an interface closure (Proposition 8.2): it is
CAP-minimal within explicit compactness and factorization assumptions, but it is not used as
a premise for the theorem-level folding core. What the present paper supplies at the technical
level is: (i) a closed, computable labeling of the 21 stable types into 18 fermion multiplets
and 3 gauge-factor classes (Section 9), (ii) explicit finite connection/holonomy diagnostics that
realize a non-abelian transport structure at minimal resolution (Section 6), and (iii) audit-level
consistency checks against standard constraints such as anomaly cancellation and hypercharge
sum rules (Lemma 8.8 and Proposition 9.6). In this framework, anomaly cancellation is treated
as a non-negotiable interface consistency requirement: any candidate identification of X6 with
chiral matter must satisfy the standard anomaly sums [1,2]. Appendix W further records inverse
diagnostics that probe to what extent quantum-number patterns can be recovered from intrinsic
invariants by bounded-complexity rules (not used as premises).

Scalar sectors and symmetry breaking. The present paper closes a minimal chiral labeling
interface at (m,n) = (6, 3) and does not provide a stable-type label for the Higgs doublet
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(Remark 9.1). When a renormalizable EFT embedding is recorded, the Higgs is introduced as
an additional field (Appendix T). The corresponding scalar-sector closure in protocol language
(parity-even scalar observables by coarse graining/uplift, together with a standard EFT coupling
dictionary) is recorded in Proposition 8.12.

15.6 Scheme dependence and renormalization-group flow

Several reported quantities are scheme and scale dependent (e.g. α(µ) and sin2 θW (µ)), and the
paper therefore treats deviations as matching-layer effects rather than as direct “within-error”
claims (Section 11 and Section 13). At present, the paper does not derive Standard Model
β-functions from the finite combinatorics. Instead, standard one-loop running is used only as
an interpretive dictionary: an additive mismatch in α−1 corresponds to a logarithmic scale shift
(Remark AF.18). The intrinsic protocol flow law used in this paper is fixed explicitly as a
discrete uplift/coarse-graining flow together with the RG dictionary in the Fibonacci resolution
coordinate (Definition 8.16 and Proposition 8.17).

15.7 Open problems (audit-tagged)

The following items are not closed by the present paper’s theorem-level folding core and are
recorded as explicit open problems. Each item identifies where the gap enters, what additional
input would be required to close it, and what would count as a satisfactory closure. Appendix K
mirrors these as [Open] items.

(OP1) Gauge-group uniqueness beyond the stated candidate family. The paper closes
a conditional gauge-factor identification by CAP within an explicit compact three-factor fam-
ily (Proposition 8.2). What remains open is deriving the candidate family itself (compactness,
factorization into three commuting redundancies, and the complexity label) from a deeper mi-
croscopic scan/readout architecture, and proving uniqueness without relying on a hand-declared
bounded family. Within the stated family, the particular choice of common low-complexity la-
bels is less fragile than it may appear: Appendix AI shows the minimizer persists under several
alternative labels in a bounded sweep, and Proposition AI.1 gives a short classification-based
reason for this robustness for the most natural labels. Closing this would require either: (i)
a theorem-level derivation that any admissible local redundancy group must lie in the stated
family under the tick-only primitives, or (ii) a universality theorem showing that alternative
admissible redundancy realizations coarse-grain to the same effective gauge triple.

(OP2) Uniqueness/inevitability of the folding map family. The truncation map Foldm

used here is an explicit, deterministic bridge from dyadic indices to Zeckendorf-admissible digits
(Definition (14) and Remark 4.13). Appendix Q shows that alternative deterministic dyadic→
Xm bridges exist and can change fiber statistics. Within the bounded counterfactual family
audited there, the additional natural fixed-point constraint F (V (w)) = w for all w ∈ X6 selects
the Zeckendorf-truncation map uniquely (Proposition Q.2); this is a partial closure inside the
audited family. More generally, within the natural shifted Zeckendorf-window family Fold(s)

m

(Definition 4.21), the same value-consistency condition forbids all nonzero shifts and selects
the unshifted digit window (Proposition 4.23). What remains open is a principled selection
theorem: either derive Foldm as uniquely forced by tick + CAP under a stated notion of protocol
locality/implementability, or prove an (ε, δ)-universality statement that makes low-resolution
predictions insensitive to the choice of bridge.

(OP3) Continuum Yang–Mills/EFT emergence from the finite connection. The pa-
per constructs a fully finite non-abelian transport/holonomy diagnostic at (m,n) = (6, 3) (Sec-
tion 6), but it does not derive the continuum Yang–Mills action or renormalizable EFT dynamics
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from this finite skeleton. Closing this would require a controlled continuum limit/renormalization
argument: showing that a family of finite protocols (increasing m with suitable coarse graining)
converges to a local gauge field theory with the correct degrees of freedom, and that the observed
couplings/mixing data arise as stable low-energy parameters.

(OP4) Global model-selection / look-elsewhere control across families. Within each
stated bounded candidate family, the paper records full audit context (domain sizes, gaps,
counterfactual baselines) (Appendix AE and Tables 70–74). What remains open is a theory-level
prior/description-length principle that compares different candidate families fairly (e.g. different
invariant sets, different expression grammars, different complexity labels), and quantifies the
overall look-elsewhere effect. Closing this would require an explicit global prior (or MDL-style
penalty) and a combined evidence calculation across closures.

(OP5) Scalar/Yukawa sector and RG-running closure. At the anchor, the stable-type
contract closes a minimal chiral labeling and does not allocate a primitive stable label to
the Higgs (Remark 9.1); scalar behavior is treated as uplift/coarse-graining dependent (Ap-
pendix AH). The paper also does not derive SM β-functions from the finite combinatorics
(above). Closing the full Standard Model would require a protocol-level mechanism that gener-
ates scalar/Yukawa structures and reproduces RG flow, including scheme/threshold conventions
as explicit matching-layer outputs rather than inputs.

15.8 Falsifiability beyond parameter matching

While parts of the quantitative interface are expressed as parameter targets, the paper also
records nontrivial protocol-level predictions that are not reducible to retrodictive match-
ing: chirality-domain defects and parity-odd statistical signatures (Section 14.1.2), Fibonacci-
structured resolution-threshold batches (Section 14.2.1), and a finite holonomy diagnostic pro-
gram that produces distributional outputs rather than a single fitted number (Section 6). Each
prediction is accompanied by an explicit observable channel in standard language: mixing and
CP observables are compared directly to PDG/global-fit targets (Sections 11 and 12), reso-
lution uplifts are tied to energy thresholds by the calibrated staircase and the deterministic
map meff(µ) (Corollary 14.2), and delay/lapse proxies are expressed via Wigner–Smith and GR
reference dictionaries (Section Y).

15.9 Role of the e-channel at minimal resolution

At m = 6, admissibility is already enforced by the φ-grammar and the π-split, so the e-channel
is not used to further reduce X6 (Remark 4.12). Its technical role at minimal resolution is to
fix a standard analytic stability template (Artin–Mazur zeta, Abel normalization) and thereby
fix the use of an Abel/pole-barrier viewpoint when defining resolution-flow coordinates and
exponentially small weights. At higher resolution, weighted/pressure-like variants can make the
analytic channel genuinely constraining beyond a single forbidden-word predicate.

15.10 Self-containment within the declared input set

This paper is written to be closed under its declared protocol primitives and interface inputs
(Table 25 and Appendix K). For audit clarity, we emphasize that no theorem-level results are
imported from companion manuscripts: every protocol primitive and every finite closure used
here is defined explicitly in the main text and appendices, and all tables are reproduced by
deterministic scripts (Appendix AJ).

For reader navigation, the following table indicates where the main components that may
also appear in companion manuscripts are located inside this paper :
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topic (in this paper) where it is closed and audited here

scan orbit, window projection, Weyl-pair
viewpoint

Sections 2.1 and 2.2; Appendix B

phase registers Z2p and Z128 label Section 1.8; Section 6.5; Appendix B
folding core and uplift template (φ–π–e) Sections 4 and 4.5; Appendix AE and Appendix V
CAP as bounded-complexity closure with de-
terministic tie-breaks

Axiom 1.5 and Definition H.1; Appendix H

connection/holonomy finite diagnostics Section 6; Appendix AE
closed normalizations and rigidity audits (α,
sin2 θW , J)

Section 11; Appendix AE

time/mass delay dictionaries (matching
layer)

Section Y

Table 23: Internal closure map: where the main protocol ingredients and audit templates are
contained within this paper.

Companion manuscripts in the same repository remain useful as extended context and al-
ternative presentations [3–11], but they are not required to follow the finite constructions and
audited closures in the present paper.

15.11 Related discrete approaches and standard constraints

Several mature lines of work share the broad goal of extracting continuum physics from discrete
or finite data: classical and quantum lattice gauge theory [42,43,54], quantum cellular automata
models for relativistic equations [75], and causal-set approaches to discrete spacetime structure
[76]. More recently, tensor-network and holographic-code frameworks provide discrete models
in which geometry, error correction, and coarse graining are structurally linked [77–79]. The
present work differs in emphasis: it treats finite readout (window projection plus protocol audit)
as the primitive, and records explicit finite invariants and closure rules at a minimal scale. On
the combinatorics/number-theory side, there is also a large literature on generalized Zeckendorf
decompositions, digit statistics, and structural classifications beyond the classical Fibonacci case;
see, e.g., [33–35].

On the Standard Model side, the interface claims are constrained by standard consistency
requirements such as anomaly cancellation and scheme/scale dependence (Sections 9 and 13).
For modern high-precision discussions of scheme conventions and the extraction of Standard
Model parameters in a fixed MS prescription, see, e.g., [80]. For CP-violation constraints be-
yond mixing observables, electric-dipole-moment bounds provide an important complementary
diagnostic; see, e.g., [81]. For modern treatments of flavor invariants in extended Standard
Model settings, see, e.g., [82]. For electroweak mixing, it is also useful to keep in view the
standard grand-unification benchmark sin2 θW = 3/8 at a unification scale in minimal SU(5)-
type models [83, 84]. Our electroweak targets are stated at the Z scale and are interpreted as
matching-layer normalizations rather than unification-scale relations.

Open closures (ledger-aligned; not used in proofs)
[Audit]The authoritative compact list of open problems is recorded in Appendix K.7 (within
Appendix K). For discussion and pointers, see Section 15.7 and Appendix AK.

• [Audit]Gauge-group uniqueness beyond the stated bounded family.

• [Audit]Uniqueness/inevitability of the folding map beyond bounded counterfactual families.

• [Audit]Continuum Yang–Mills/EFT emergence from finite connections.

• [Audit]Global model selection / look-elsewhere across families.
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• [Audit]Scalar/Yukawa sector and RG-running closure from the finite protocol.

16 Conclusion
We proposed a tick-first reformulation of Standard Model structure within the HPA scan–
projection paradigm. In this framing, the only primitives are time as tick (scan iteration count)
and CAP as the bounded-complexity closure rule, while finite observability appears through
window projection and stability filtering (Section 3 and Section 2). At the CAP-selected anchor
on the chosen 2D screen, (m,n) = (6, 3), the provable folding core at m = 6 compresses 64
microstates to 21 stable types with a canonical 18 ⊕ 3 cyclic/boundary split (Section 4). Lo-
cality language is then introduced as a derived display structure by an addressing basis, whose
minimality at the anchor is made explicit and auditable (Table 5). On the physical identification
layer, we recorded interface hypotheses: gauge fields as defect-compensating connections; chiral-
ity as protocol selection among orientation classes; antimatter as conjugate readout under scan
reversal; and mass/scale as time dictionaries in a Fibonacci log-time coordinate. We provided
auditable scripts and generated tables that reproduce the finite folding statistics, the addressing
and chirality diagnostics, and the quantitative closures, and we stated falsifiable predictions for-
mulated directly in the protocol language (Section 14). In addition, we closed two main interface
components at (m,n) = (6, 3): a unique field-level labeling of the 21 stable types, and a closed
mass-spectrum depth formula with a bounded-complexity rigidity signal.

Summary.
• Theorem-level anchor. At (m,n) = (6, 3) the folding core yields 64 → 21 and the

canonical split 21 = 18⊕ 3 (Section 4).

• Closed interfaces. We close a unique SM labeling map LSM (Theorem 9.17) and a closed
mass-depth template (Definition 13.3, Table 18).

• Audited normalizations and mixing. Coupling/CP targets and mixing closures are
recorded as bounded-complexity CAP selections with explicit audits (Section 11 and Ap-
pendix AF).

• Falsifiability. Protocol-level predictions and test channels are summarized in Section 14.

• Ledger. A compact dependency and input ledger is recorded in Appendix K.

Closing (interface shorthand). [Interface]In the tick-first framing, time is the update count,
space is a derived addressing/locality dictionary, and matter/scale are protocol-stability and
overhead dictionaries anchored at m = 6.

Part VIII

Recursive closure: self-read/write, active
renormalization, Wish update
17 Final synthesis: self-readout, active renormalization, and la-

tency unification (interface)
[Interface]This section closes, at the protocol interface, the apparent tension between scan-first
language (Axiom 1.1) and the experimental fact that high-energy structure is accessed by engi-
neered devices such as colliders.
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A tick-first recap. The only primitive input in the present framing is the tick (scan iteration
count), and the only primitive closure rule is CAP. Space is a derived display graph induced
by an addressing basis, and at the minimal anchor the addressing choice is made explicit and
auditable (Table 5). Mass and scale are time dictionaries in a Fibonacci log-time coordinate,
with operational test channels through delay and lapse proxies (Section 10 and Appendix Y).

17.1 Observer as a self-read/write head

In the present framework, an “observer” is not identified with a human subject. Operationally,
an observer is any interacting subsystem that (i) couples to the readout stream and (ii) induces
a stable, auditable record in a chosen locality dictionary. In this sense, observation is not an
external act imposed on a passive substrate: it is a protocol event realized by interaction. This
is consistent with the layered audit rule stated in Section 1.1: theorem-level folding statements
are static finite facts, while “measurement language” belongs to the physical identification layer.

The slogan “self-read/write head” summarizes the consequence: once interaction is treated as
readout, the universe contains its own read/write events. Local subsystems act as read heads for
each other whenever they exchange constraints, because the very notion of a recorded outcome
is the existence of a stabilized readout relation.

17.2 Colliders as forced zoom: active renormalization

In the same protocol language, a collider is an engineered way to concentrate energy density
and thereby force a localized transition in effective resolution. The relevant object is not a
literal creation of new ontic degrees of freedom, but a change in the local readout budget: as
the interaction region is driven across calibrated thresholds, the deterministic selection of the
effective window length jumps (Corollary 14.2). This is why high-energy physics can be phrased
as an act of active renormalization (Section 14.2.1): the experiment forces the protocol to
render latent high-complexity structure that is otherwise inaccessible at the m = 6 ground-state
readout.

On this viewpoint, “new particles” are not imported as new axioms of the mathematical
layer. They correspond to stable-mode capacity made available by a resolution uplift in the
same folding framework (Section 4), together with the chosen matching dictionary that connects
the protocol depth coordinate to laboratory scales.

17.3 Latency unification: micro delay and macro lapse

The same interface dictionary also unifies two operational notions of “time slowing” as a single
phenomenon of overhead. At the micro level, delay can be measured directly in scattering as
a Wigner–Smith time delay (Section Y). At the macro level, time dilation is encoded by a
lapse factor and redshift relations in the standard GR dictionary (Appendix Z). In the protocol
interpretation, both are instances of a local overhead field κ and its associated clock-rate factor
N = κ0/κ (Section Y.4).

This provides a concrete closing of the “mass as latency” interface: the same obstruc-
tion/complexity that increases stabilization overhead in the readout (depth, degeneracy, match-
ing shifts) also induces operational delays (scattering) and reduced effective clock rates
(lapse/redshift) when translated into standard measurement language.

Wish update (programmatic; not used in proofs)
[Audit]The paper’s closed finite invariants and audited interface closures can be read program-
matically as updating the admissible target set of protocol-stable data (“Wish”) and the corre-
sponding audit objective (“Motive”). This programmatic loop is recorded as a forward-looking
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interface statement and is not used as a premise in theorem-level proofs. For a compact list of
open closures and next-step audits, see Appendix AK.

Interpretive unification: complex exponentials and unitary
spheres (not used in proofs)
[Audit]The following remarks provide a compact unifying language for three interface themes that
appear separately in the paper: (i) memoryless semigroup weights (arrow of update time), (ii)
phase/frequency-first dictionaries (unitary rotations), and (iii) screen-based renderings of the
tick stream. None of this material is used as a premise in theorem-level proofs.

Real versus imaginary exponents. For parameters λ ∈ R and ω ∈ R, the complex expo-
nential splits as

e(λ+iω)t = eλt eiωt.

[Audit]In the protocol language, the real factor eλt is the canonical continuous representative
of a memoryless semigroup weight (Appendix D), while the phase factor eiωt is the canonical
representative of a unitary rotation at frequency ω (Appendix AD.10).

Unitary spheres as a representation choice. In the standard quantum interface, states
may be represented as unit vectors in a complex Hilbert space, so unitary evolution preserves the
norm and acts as a trajectory on the unit sphere. [Audit]We use this only as a compact language
for the readout/POVM interface; we do not promote “the universe is literally a Hilbert sphere”
to an additional axiom.

Scan trajectories and additional assumptions. Visual renderings of the tick stream on a
screen (e.g. Section 5 and the golden-angle phyllotaxis overlay in Part II) can suggest intuitive
statements about uniform coverage or ergodicity. [Audit]Any claim of density/ergodicity requires
additional dynamical assumptions and is outside the closed folding chain; such statements, if
used, must be recorded explicitly as [Audit]or as [Open] in Appendix K.

A Symbols and objects (summary)
This appendix records a compact list of the primary objects used in the paper.

• Weyl pair. A pair of unitaries (U, V ) satisfying UV = e2πiαV U (Definition B.1), used as
an algebraic encoding of scan shift and phase.

• Rotation algebra and Morita equivalence (optional notes). The rotation algebra
Aα is the C∗-algebra generated by a Weyl pair at irrational slope α ∈ R \ Q. Morita
equivalence classes are acted on by SL2(Z) via α 7→ (aα+ b)/(cα+ d); a Fourier transform
exchanges scan shift and phase multiplication (Appendix AC).

• Scan orbit. Given an irrational slope α and seed x0 ∈ R/Z,

xn = x0 + nα (mod 1), zn = e2πixn ∈ T.

• Window readout. For a window W ⊂ T,

wn = 1{zn ∈W} ∈ {0, 1}.

• Finite windows. At window length m, Ωm = {0, 1}m is the microstate alphabet, and
Hm = ℓ2(Ωm) its linearization.
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• Wish and Motive (reader-facing; not used in proofs). Appendix C records a
template interface object W = (m, Im, Cm, ε) (Wish), a finite candidate family F , an
auditable objective functional J : F → R (Motive), and the CAP-selected minimizer
f⋆ = arg minF J with deterministic tie-break rules.

• Zeckendorf admissible set. Xm ⊂ Ωm is the forbidden-word admissible set (no adjacent
ones), equivalently the φ-stable sector.

• Golden base. φ = (1 +
√

5)/2 and logφ x := log x/ logφ.

• Resolution coordinate and exponential map. For a mass scale µ, r(µ) = logφ(µ/me)
and µ(r) = meφ

r (Section 13).

• Stable-type invariants at (m,n) = (6, 3). For w ∈ X6, V (w) is the Zeckendorf value,
|w|1 is Hamming weight, g(w) = |Fold−1

6 (w)| is the folding degeneracy, and Dπ(w) is the
cyclic/boundary tag (Definition 8.9).

• Depth and matching shifts. r∗(w) = V (w) + n(g(w) − 2) at (m,n) = (6, 3) (Defini-
tion 9.9); the normalized depth r̂ and mismatch ∆r = r − r̂ are defined in Section 13.

• Defect channels. Dφ detects the forbidden substring “11”; Dπ detects cyclic wrap-
around violation w1 = wm = 1; the e-channel is expressed via the normalized zeta function
ζe(r) = ζ(r/φ).

• Dyadic phase registers. Phases are modeled by Z2p with the embedding k 7→ e2πik/2p

(Appendix B); Z128 is the baseline choice at p = 7 (Section 1.8).

• Abel path and pole barrier. An Abel-normalized sum is F (ρ) = ∑
n≥0 anρ

n with the
Abel path ρ ↑ 1 (Definition B.3); the first singularity that obstructs analytic continuation
along this path is the pole barrier (Appendix B and Section 4.5).

• Abel finite part. If an Abel generating function admits an expansion c−1/(1−r)+c0+· · ·
as r ↑ 1, the Abel finite part is the constant term FPr↑1(·) = c0 (Appendix E).

• Folding map. Foldm maps integers (microstate indices) to stable types by Zeckendorf
digits and truncation; Fold6 gives the 64→ 21 stable projection.

• Hilbert addressing. Hn : {0, . . . , 4n − 1} → {0, . . . , 2n − 1}2 is a locality-preserving
address map with a dihedral layout family D4.

• Hilbert chirality index. For the Hilbert path points pk = Hn(k), χ is the net signed
turning index defined by (15).

• Compton clock dictionary (matching layer). ωC(µ) = µc2/ℏ and τC(µ) = 1/ωC(µ)
(Section Y).

• Frequency (tick units). ω = ∆θ/∆t denotes phase advance per tick (Definition AA.1);
this is the primary ratio-level bridge to energy/mass/temperature in the frequency-first
closure (Appendix AA).

• Wigner–Smith delay (operational proxy). Q(ω) = −iS(ω)†dS/dω and τWS(ω) =
TrQ(ω) (Section Y).

• Continuum representative (CAP-closed). Seff denotes the CAP-selected continuum
action skeleton (Appendix AD.4); varying it yields Einstein–Yang–Mills–χ equations (Ap-
pendix AD.5).
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• Overhead, χ, and lapse. κ(x) denotes a local overhead and χ(x) = log(κ/κ0); N(x) =
e−γχ(x) is the lapse proxy in the overhead-to-gravity closure (Appendix AD.7).

• χ reconstruction protocol. An executable Hilbert-binning → window-word → folding-
statistics pipeline reconstructs χ(x) from data/simulations (Appendix AD.8).

• Born probabilities (quantum readout). Finite-resolution readout is modeled by
POVMs with probabilities Pk = Tr(ρEk) and instrument updates in Kraus form (Ap-
pendix AD.10).

• RG in the r coordinate. Running in scale is expressed in r by dg/dr = (logφ)β(g)
(Appendix AD.11).

• Cosmology as resolution flow. Stable/hidden fractions are fstab(m) = Fm+2/2m and
fhid(m) = 1− fstab(m); mean degeneracy is dm = 2m/Fm+2 (Appendix AD.12).

• Gauss map (optional mother-space notes). The Gauss map is G(ξ) = {1/ξ} on
(0, 1); its invariant Gauss measure and digit law provide a canonical dynamical source for
continued fractions (Appendix AB).

• Hecke operators and prime skeleton (optional notes). Hecke operators Tn act
on modular forms and satisfy multiplicative relations and prime-power recursions; primes
generate the Hecke algebra and Euler products factorize into prime local factors (Ap-
pendix AD).

• Thermodynamic closure objects. S denotes a coarse-grained entropy (state-
count/channel-count); T is the conjugate temperature scale; F = E − TS is a free-energy
functional used in CAP closure form (Appendix AD.6).

• Black-hole scales (external targets). Rs = 2GM/c2, A = 4πR2
s, ℓ2P = Gℏ/c3, and

SBH = kBA/(4ℓ2P ); TH denotes the Hawking temperature (Appendix X).

• Isotropic radius and inversion (external template). For Schwarzschild exterior
geometry, ρ > 0 denotes the isotropic radius with throat radius ρh = Rs/4 and inversion
I(ρ) = ρ2

h/ρ (Proposition X.6).

• Wormhole-like pointer jump (protocol-level). A directed (or undirected) pointer
link a ptr−−→ b on the scan index set defines a wormhole-like shortcut channel in the readout
protocol (Definition X.7).

B Protocol primitives and regularization conventions
This appendix records, in one place, a compact set of protocol primitives and analytic conven-
tions that are used throughout the paper. It introduces no new axioms or assumptions beyond
the declared input set in the main text; it only restates standard definitions and short supporting
lemmas.

B.1 A Weyl pair viewpoint for scan dynamics

The scan orbit xn = x0 + nα (mod 1) can be encoded algebraically by a Weyl pair. One
convenient realization is on L2(T) with the shift and multiplication operators.

Definition B.1 (Weyl pair). Fix α ∈ R. A Weyl pair is a pair of unitary operators (U, V )
satisfying

UV = e2πiα V U.
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Remark B.2 (A canonical realization). On L2(T) with coordinate x ∈ R/Z, define

(Uf)(x) := f(x+ α), (V f)(x) := e2πixf(x).

Then U and V are unitary and satisfy the Weyl relation in Definition B.1. This algebraic
encoding is used only as a bookkeeping device for “shift” and “phase” operations consistent with
Axiom 1.1.

B.2 Window projection as a readout map

Given a window W ⊂ T, define the indicator kernel KW : T → {0, 1} by KW (z) = 1{z ∈ W}.
The (deterministic) binary readout induced by W is

wn = KW (zn) = 1{e2πixn ∈W} ∈ {0, 1}.

Finite observability at window length m is the restriction to words w = w1 · · ·wm ∈ Ωm =
{0, 1}m.

B.3 Zeckendorf admissibility and the golden branch

On the golden branch, admissibility is enforced by the forbidden word “11”:

Xm = {w ∈ Ωm : w contains no adjacent ones}.

Equivalently, if ck ∈ {0, 1} are Zeckendorf digits, the admissibility constraint is ckck+1 = 0. The
Fibonacci count |Xm| = Fm+2 (Lemma 4.5) is the combinatorial backbone of the φ-channel.

B.4 Dyadic phase registers

For a phase resolution parameter p ≥ 1, we model phases by the finite ring

Z2p = Z/2pZ,

equipped with the embedding into T given by

k 7−→ e2πik/2p
.

In the holonomy diagnostics, denominators of the form denom = 2p and the low-complexity
phase-map family are treated in CAP audit form: we fix explicit bounded candidate families
and report deterministic sweeps and counterfactual baselines, rather than allowing implicit con-
tinuous tuning (Section 6 and Appendix AE). The label Z128 is the baseline choice at p = 7
(Section 1.8).

B.5 Abel normalization and pole barriers

The e-channel uses an Abel-type viewpoint: one studies an analytic generating function on the
open unit disk and takes a limit along the Abel path ρ ↑ 1 with ρ ∈ (0, 1). This isolates the
location of the first singularity (the “pole barrier”) that obstructs extending the analytic object
to the boundary.

Definition B.3 (Abel-normalized sum). Let (an)n≥0 be a complex sequence and define, for
ρ ∈ (0, 1),

F (ρ) :=
∑
n≥0

anρ
n,

whenever the series converges. If the limit exists (finite or infinite), the Abel limit is

lim
ρ↑1

F (ρ).
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Lemma B.4 (Root-test pole barrier). Let (an) be a sequence with

λ := lim sup
n→∞

|an|1/n ∈ [0,∞].

Then F (ρ) = ∑
n≥0 anρ

n converges absolutely for 0 ≤ ρ < 1/λ (with the convention 1/0 = ∞)
and diverges for ρ > 1/λ. In particular, if λ > 1 then the Abel path ρ ↑ 1 necessarily encounters
a singularity barrier at ρ = 1/λ < 1.

Proof. This is the standard root test applied to the power series with coefficients an. For ρ < 1/λ,
one has lim supn |anρ

n|1/n = ρλ < 1, so the series converges absolutely. For ρ > 1/λ, the limsup
exceeds 1, so the terms do not tend to zero and the series diverges.

Remark B.5 (Connection to the e-channel language). In this paper, the phrase “Abel pole
barrier” refers to the first singularity that obstructs analytic continuation along the Abel path
in the relevant generating function (Section 4.5). The Artin–Mazur zeta framework supplies a
canonical class of such generating functions in symbolic dynamics and provides a standard way
to encode stability information through analyticity and singularity structure [30–32].

C Wish and Motive as auditable interface objects (template)
Scope and status. [Audit]This appendix records a reader-facing template that formalizes the
terms Wish and Motive as interface/audit objects used to organize the narrative. They introduce
no additional axioms beyond tick and CAP, and they are not used as premises in theorem-level
proofs.

C.1 Wish: protocol-stable target data

Definition C.1 (Wish (protocol-stable target data)). [Interface]A Wish is a protocol-stable target
datum/structure specified as a finite list of invariants and admissibility predicates that an ob-
server wishes to reproduce under a fixed readout protocol. Concretely, a Wish can be represented
by a tuple

W :=
(
m, Im, Cm, ε

)
,

where m is the window length, Im is a finite set of computable invariants on finite observables
(e.g. stable-type statistics on Xm), Cm is a finite set of admissibility/consistency predicates (e.g.
cross-site constraints on a chosen display graph), and ε is an explicit tolerance budget for audit
comparison.

Audit note. [Audit]Status: [Interface]. Depends on: the tick-first dictionary (Section 3) and
the declared audit discipline (Appendix H, Appendix K). If: Wish is treated as a data-structure
specification (invariants + predicates + tolerance) rather than as a new physical axiom.

C.2 Motive: auditable objective functional

Definition C.2 (Motive (auditable objective functional)). [Interface]Given a Wish W =
(m, Im, Cm, ε) and a finite candidate family F of protocol choices/closures, a Motive is an ex-
plicitly declared objective functional

J : F → R, J = Jmismatch + λJcost + η Jrobust,

where Jmismatch quantifies violation of the Wish tolerance (mismatch certificate), Jcost quanti-
fies bounded implementation/description cost, and Jrobust optionally quantifies stability under
a bounded counterfactual family. The coefficients λ, η ≥ 0 are declared as part of the audit
specification.
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Audit note. [Audit]Status: [Audit] + [Interface]. Depends on: an explicitly declared finite can-
didate family F , objective decomposition, and deterministic tie-break rules (Appendix H). If:
all reported selections are CAP-closures over explicit finite families with deterministic tie-breaks;
external targets enter only at the matching layer.

C.3 CAP closure of Motive (template)

Definition C.3 (CAP closure (finite family)). [Audit]Let F be a finite candidate family and let
J : F → R be an auditable objective functional. The CAP-closed output is the unique minimizer

f⋆ := arg min
f∈F

J(f),

with deterministic tie-break rules specified when the minimum is degenerate.
Remark C.4 (Programmatic reading (not used in proofs)). [Audit]One may read the paper’s
audited interface closures as a sequence of CAP-closed choices in explicit finite families, each
of which can be interpreted as minimizing a Motive induced by a Wish. This programmatic
interpretation is reader-facing only and is not used as a premise in theorem-level proofs.

C.4 A generic teleological dynamics statement (template)

Scope. [Audit]This subsection records a generic Lyapunov-type template that is often used to
connect an explicit objective functional to an arrow of update time in a parameter space. It is
included for reuse and is not used as a premise in the theorem-level folding core.
Proposition C.5 (Generic Lyapunov monotonicity (template)). [Math]Let U : Rd → R be
continuously differentiable and consider the gradient flow

θ̇(t) = −∇U(θ(t)).

Then along any solution one has
d
dtU(θ(t)) = −∥∇U(θ(t))∥2 ≤ 0,

so U is non-increasing and serves as a Lyapunov certificate for the induced arrow of update
time.
Proof. By the chain rule,

d
dtU(θ(t)) = ∇U(θ(t)) · θ̇(t) = ∇U(θ(t)) ·

(
−∇U(θ(t))

)
= −∥∇U(θ(t))∥2 ≤ 0.

D Semigroup and exponential kernels (arrow-of-time template)
[Audit]This appendix records a standard functional-equation template that connects a one-way
additive time law on ticks to exponential weights. It is included as a reusable mathematical
note; it introduces no additional axioms and is not used as a premise in theorem-level folding
proofs.

D.1 Discrete semigroup weights on ticks

Proposition D.1 (Memoryless weights on N0 are exponential). [Math]Let (wt)t∈N0 be real weights
with w0 = 1 and

wt+s = wtws for all t, s ∈ N0.

Then wt = rt for all t ∈ N0, where r := w1.
Proof. Taking s = 1 gives wt+1 = wtw1 = r wt for all t ∈ N0. By induction, wt = rtw0 = rt.
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D.2 Continuous representative and the Cauchy exponential equation

Proposition D.2 (Continuous semigroup weights are exponentials). [Math]Let w : [0,∞) →
(0,∞) be continuous and satisfy

w(t+ s) = w(t)w(s) for all t, s ≥ 0, w(0) = 1.

Then there exists λ ∈ R such that w(t) = exp(λt) for all t ≥ 0.

Proof. Define a(t) := logw(t), which is well-defined and continuous because w(t) > 0. Then
a(t+ s) = a(t) + a(s) for all t, s ≥ 0 and a(0) = 0. By the standard Cauchy functional equation
result under continuity, a(t) = λt for some λ ∈ R. Exponentiating gives w(t) = exp(λt).

D.3 Calibration constants and matching-layer inputs

[Interface]Exponential laws determine a shape but not an absolute origin: when one solves a
linear update law (discrete or continuous), an initial-condition constant remains. For example,
the differential equation x′(t) = λx(t) has solutions x(t) = C exp(λt), and the constant C is
equivalent to a choice of time origin or amplitude normalization. In the audit discipline of
this paper, such constants are treated as matching-layer conventions (units, calibration targets,
reference scales) rather than as theorem-level outputs.

D.4 Abel-first weights and the r ↑ 1 path

[Math]The discrete exponential family rt with 0 < r < 1 is the canonical “Abel-first” convergence
weight: it suppresses late-time contributions while preserving the semigroup law rt+s = rtrs.
The standard Abel path is the limit process r ↑ 1 (Conventions). In this paper, Abel-first
conventions appear as a disciplined way to discuss finite parts and controlled limits; they do not
add new premises to the finite folding core.

E Abel finite parts and unit-disk analyticity (notes)
[Audit]This appendix records a standard Abel-first/finite-part template used as an analytic sta-
bility discipline: one replaces infinite-horizon expressions by holomorphic generating functions
on the unit disk and defines renormalized values by a canonical constant-term extraction along
the Abel path. It introduces no new axioms and is not used as a premise in theorem-level folding
proofs.

E.1 Abel generating functions and holomorphy on the unit disk

Let (at)t≥0 be a bounded complex sequence: |at| ≤M . Define its Abel generating function

Aa(r) :=
∑
t≥0

atr
t, |r| < 1.

[Math]This is holomorphic for |r| < 1 and satisfies the estimate

|Aa(r)| ≤ M

1− |r| .

In particular, for bounded protocol traces, the only universal singular behavior compatible with
absolute convergence occurs on the boundary as r ↑ 1.
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E.2 Finite-part extraction along the Abel path

If Aa(r) admits an asymptotic expansion of the form

Aa(r) = c−1
1− r + c0 + c1(1− r) + · · · (r ↑ 1),

then the Abel finite part is defined by

FPr↑1Aa(r) := c0.

This is the canonical constant-term prescription used whenever an Abel-first finite part is refer-
enced. For classical Abelian summation and finite-part asymptotics, see [85,86].

E.3 Rotation resolvent formula and a canonical pole subtraction

We record a self-contained template for irrational rotations, which clarifies why the Abel-first
viewpoint is naturally stable under protocol-level changes that preserve a bounded Fourier kernel
class.

Let α ∈ (0, 1) \ Q and let xt = x0 + tα (mod 1). Let f : R/Z → C have an absolutely
summable Fourier series

f(x) =
∑
m∈Z

f̂(m) e2πimx,
∑
m∈Z

∣∣∣f̂(m)
∣∣∣ <∞.

Define the Abel orbit sum
Sf (r) :=

∑
t≥0

rtf(xt), |r| < 1.

Proposition E.1 (Fourier–resolvent representation and universal pole). [Math]For every |r| < 1,

Sf (r) =
∑
m∈Z

f̂(m) e2πimx0 1
1− r e2πimα

.

In particular, one has the decomposition

Sf (r) = f̂(0)
1− r +Hf (r),

where Hf is holomorphic on |r| < 1 and extends continuously to r ↑ 1.

Proof. Absolute summability of f̂(m) implies uniform convergence of the Fourier series, allowing
termwise summation of the geometric series ∑t≥0(r e2πimα)t = 1/(1− r e2πimα) for |r| < 1. The
m = 0 term equals f̂(0)/(1 − r). For m ̸= 0, irrationality of α implies e2πimα ̸= 1, hence the
denominators do not vanish at r = 1; uniform convergence then yields holomorphy on |r| < 1
and continuity at r ↑ 1.

Corollary E.2 (Finite part exists and is scheme-stable within the admissible class). [Math]Under
the hypotheses of Proposition E.1, the Abel finite part exists and equals Hf (1):

FPr↑1Sf (r) = Hf (1).

Moreover, if one modifies the subtraction by a function g(r) that is holomorphic in a neighborhood
of r = 1, then

lim
r↑1

(
Sf (r)− f̂(0)

1− r − g(r)
)

= Hf (1)− g(1),

so the only ambiguity is an explicit additive constant determined by the declared counterterm
g(1).
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F Holomorphy versus interior poles: a pole-barrier rigidity tem-
plate (notes)

[Audit]This appendix records an abstract rigidity motif used repeatedly in Abel-first analytic sta-
bility arguments: if a protocol object is defined as a holomorphic function on the unit disk, then
any competing representation that would force an interior pole is incompatible. The template
is included for reuse and is not used as a premise in theorem-level folding proofs.

F.1 Exponential modes force interior poles

Lemma F.1 (Interior pole from an off-stable exponential mode). [Math]Let λ ∈ C with Re(λ) > 0
and define the mode generating function

Mλ(r) :=
∞∑

t=0
rt eλt, |r| < e− Re(λ).

Then Mλ has the meromorphic closed form

Mλ(r) = 1
1− r eλ

,

with a pole at rλ = e−λ satisfying |rλ| = e− Re(λ) < 1. In particular, any expression that contains
a nonzero multiple of Mλ cannot extend to a holomorphic function on the full unit disk {|r| < 1}.

Proof. The series is geometric with ratio r eλ and therefore sums to 1/(1−r eλ) on its domain of
absolute convergence. The pole occurs where the denominator vanishes, at r = e−λ. Its modulus
is e− Re(λ) < 1 when Re(λ) > 0.

F.2 Holomorphic–meromorphic incompatibility at a pole

Lemma F.2 (Holomorphic–meromorphic incompatibility). [Math]Let U ⊂ C be open and let
r0 ∈ U . If F is holomorphic on U and G is meromorphic on U with a pole at r0, then F ̸= G
on U \ {r0}.

Proof. Assume for contradiction that F = G on U \ {r0}. On a small disk centered at r0, F has
a Taylor series while G has a Laurent expansion with a nontrivial principal part. Equality on
the punctured disk forces the principal part to vanish, contradicting that G has a pole.

F.3 How the template is used in this paper

[Audit]In this paper, the Abel-first viewpoint enters in two concrete places: (i) the e-channel
analytic stability template via Artin–Mazur zeta and Abel normalization (Section 4.5 and Ap-
pendix B), and (ii) canonical finite-part prescriptions for bounded traces and orbit sums (Ap-
pendix E). The lemmas above formalize the generic obstruction: any representation that would
require an interior pole is incompatible with the closed-layer holomorphy requirement on the
unit disk.

G Tick + CAP derivation spine: from the sole input to all in-
terface outputs

This appendix records the full “tick + CAP” derivation spine in one place. It introduces no
additional axioms or independent physical inputs beyond: (i) tick as the sequential update index
(Axiom 1.1), and (ii) CAP as the universal closure/selection rule on explicit finite candidate
families (Axiom 1.5 and Appendix H). All other ingredients used throughout the paper are
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either theorem-level definitions/proofs in the finite model, or CAP-closed interface components
whose candidate families and tie-break rules are explicit and audited by deterministic scripts.
External reference conventions (PDG/CODATA targets, renormalization schemes, threshold
choices) enter only at the matching layer as comparison inputs and are never used as premises
for theorem-level folding statements.

Two-axiom spine (reader contract). Within this paper, “physics” means the executed
protocol outputs of a run. The only primitive input to that execution is the tick stream, and
the only primitive rule for closing otherwise underdetermined interface components is CAP.
Accordingly, every nontrivial interface component below is recorded in one of two forms: a
theorem-level finite construction, or a CAP-closure over an explicitly declared bounded candidate
family with deterministic tie-break rules.

G.1 Reading guide and dependency convention

We use the following status tags consistently:

• [Tick] definitional use of the sequential tick stream and finite window records.

• [Math] theorem-level finite constructions (counts, maps, explicit tables).

• [CAP] bounded-complexity closure: explicit finite candidate family + deterministic
objective/tie-break.

• [Match] matching-layer comparison to external conventions (PDG/CODATA,
scheme/scale).

Appendix K provides a compact ledger of these dependencies; the present appendix expands
each nontrivial CAP-closure step in full audit form (candidate family, objective, tie-break, and
where it is reproduced).

G.2 Tick to finite observables: words

[Tick] Finite observability is windowed. Given the tick stream (Axiom 1.1), finite obser-
vation at resolution m is represented by binary words w ∈ Ωm = {0, 1}m obtained by window
projection (Section 2 and Appendix B). This fixes the basic data type used throughout: (tick,
word).

G.3 CAP selection of the golden branch and the Fibonacci base

[CAP] Candidate family. At the scan layer one may choose an irrational slope α ∈ (0, 1) \
Q in the Kronecker orbit. Within the audited proxy class of finite-depth continued-fraction
complexity at depth m,

Cm(α) :=
m∑

k=0
ak+1 for α = [0; a1, a2, . . . ],

CAP selects the unique minimizer at every depth.

[CAP] Objective and tie-break. Minimize Cm(α) at each depth m; the tie-break is trivial
because the minimizer is unique.

[CAP] Result (rigidity). Proposition 2.5 shows that α = φ−1 = [0; 1, 1, 1, . . . ] is the unique
minimizer at every finite depth. This rigidly closes the symbolic/arithmetic bridge to the Zeck-
endorf/Fibonacci digit system used downstream (Section 2).
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[Math] Consequence: Fibonacci grammar and counts. On the golden branch, admissi-
ble digit strings satisfy the forbidden-word grammar (no adjacent ones), yielding the Fibonacci
stable-sector sizes |Xm| = Fm+2 (Lemma 4.5) and the canonical π-channel split (Proposition 4.8).

G.4 CAP selection of a locality screen and an addressing basis

[CAP] Screen dimension. Closed-loop transport diagnostics require cycles. In a one-
dimensional display graph there are no plaquettes, hence no holonomy; therefore the minimal
screen dimension that supports the finite holonomy diagnostics of Section 6 is 2. Accordingly,
CAP selects a 2D screen as the minimal choice that admits an auditable loop-based diagnostic.

[CAP] Addressing basis on the chosen screen. Given a 2D screen, an addressing basis
is a bijection from a finite tick prefix to grid sites. We treat the choice of addressing basis as a
CAP-closed selection in an explicit finite counterfactual family:

• candidates: Hilbert vs. row-major on the same 8× 8 screen at the anchor;

• objectives: protocol-internal locality/overhead metrics (scan-path jump quantiles, neigh-
bor fiber-matching overhead quantiles, phase-lift computability failure rate);

• tie-break: lexicographic ordering of the objective vector.

The resulting comparison and the deterministic selection are recorded in Table 5 and reproduced
by scripts/exp_addressing_selection.py.

G.5 CAP selection of balanced coupling and of the anchor (n, m) = (3, 6)
[CAP] Balanced coupling as minimal overhead. On a fixed screen, attaching spatial
diagnostics requires assigning microstate labels to sites. CAP selects the bijective coupling
(Remark 4.3): on the 2D screen, 2m = 4n (equivalently m = 2n) so that each site carries exactly
one m-bit microstate label and no additional mapping conventions are required.

[CAP] Anchor selection by minimal nontrivial holonomy. Within the balanced chain
m = 2n, CAP selects the smallest n for which the deterministic finite connection yields nontrivial
plaquette holonomies (3/4 cycles) and a nonzero phase-lift signal. The balanced-chain sweep in
Table 30 shows that n = 1, 2 yield only trivial (identity) holonomy, while n = 3 is the first scale
with nontrivial 3/4-cycle content. Therefore the anchor on the chosen screen is (n,m) = (3, 6).

G.6 The folding core and stable types at the anchor

[Math] Folding is a finite theorem-level layer. Given the golden-branch grammar and the
explicit Foldm projection, the folding core is a finite combinatorial statement: at m = 6 one has
64 → 21 with the canonical split 21 = 18⊕ 3 (Section 4). No additional physical identification
is used as a premise.

G.7 CAP derivation of bulk dimension from the anchor bit budget

[CAP] Rigid-frame coarse-lock as a finite interface criterion. At the protocol inter-
face, “bulk dimension” enters only when one defines what it means to display a localized rigid
frame and compare poses across sites. Under the minimal two-bin-per-parameter coarse-lock
convention, a single m-bit window can coarse-lock a rigid frame in dimension d only if

m ≥ dimSE(d) = d(d+ 1)
2

(Definition 3.6).
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[CAP] Objective. At fixed anchor m = 6, CAP selects the maximal bulk dimension d com-
patible with the coarse-lock budget.

[CAP] Result. Proposition 3.7 shows that d = 3 is the unique maximal admissible dimension
at m = 6 under the minimal convention. Thus the 3D rigid-frame dictionary is not an external
input: it is a CAP output of the anchor budget.

G.8 CAP tie-break for the orientation-class bit (chirality sign)

[CAP] Candidate family. On the 2D Hilbert screen, the global layout family is D4 and
splits into two orientation classes (Section 5). Reflection swaps the two classes and flips the sign
of the discrete chirality index χ (Proposition 5.4).

[CAP] Tie-break. Because the two orientation classes are symmetry-related and cost-
degenerate under the locality diagnostics, CAP fixes a canonical representative by determin-
istic tie-break: the forward-traversal layout at n = 3 is chosen so that χ < 0 (Definition 7.2;
Appendix AE). The reflected layout defines the mirror protocol.

G.9 CAP-closed phase-register and phase-map dictionary (holonomy lift)

[CAP] Baseline closure. Phases are represented by a dyadic register Z2p and the phase
lift uses denom = 2p together with a low-complexity index map τ (Section 6.5). The baseline
choices are fixed by CAP as canonical minimal-description representatives coherent with the
anchor window:

• choose denom = 2m (anchor-coherent dyadic denominator);

• choose τ = τid (identity map as the minimal bit-level transform).

[CAP] Audited bounded counterfactual families. The dyadic refinement chain and the
bounded phase-map family are not hidden knobs: their influence is recorded by deterministic
sweeps and counterfactual baselines. In particular, the denominator sweep is reported in Table 11
and the phase-map family sweep is reported in Tables 45–46, all reproduced by scripts listed in
Appendix AJ.

G.10 CAP-closed coupling/CP normalizations from phase-volume data

[CAP] Electromagnetic normalization. Section AF.1 fixes the three-stratum impedance
template and closes the phase-volume dictionary by CAP within an explicit finite primitive
family (Definitions AF.2–AF.4). This yields the closed geometric impedance value α−1

emgeo =
4π3 + π2 + π (Theorem AF.9).

[CAP] Electroweak normalization. At the Z scale, the electroweak normalization is closed
by CAP from discrete weights already fixed by the closed labeling at the anchor (Defini-
tion AF.12), yielding α−1(µZ) = 13π2 and sin2 θW (µZ) = 3/13 (Theorem AF.14).

[CAP] CP normalization. The CP-odd phase space is CAP-closed within the same primitive
family (Definition AF.20 and Proposition AF.24), yielding the closed normalization target Jgeo =
1/(11π7) (equation (85)).
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[Match] External comparisons are not premises. CODATA/PDG values enter only to
report mismatch sizes, stability under perturbations, and within-family look-elsewhere context
(Appendix AE); they are not used as premises for the theorem-level folding core or for the
CAP-closed normalization dictionaries above.

G.11 Gauge fields as compensating connections (from fiber mismatch)

[Tick, Math] Cross-site comparison forces extra transport data. At any fixed window
length m, a stable label w ∈ Xm stands for an entire microstate fiber Fold−1

m (w). Therefore,
if the protocol requires comparing or transporting stable labels across neighboring sites in a
display graph, then stable labels alone are insufficient: one must choose how the endpoint fibers
are matched. This necessity is finite and intrinsic to window projection and stability folding.
Proposition 8.1 formalizes the point and shows that, after a deterministic padding to a uniform
slot size r = maxw∈Xm |Fold−1

m (w)|, each edge transport is represented by a permutation in Sr,
with local relabelings acting by conjugation (a finite gauge redundancy).

[Math] Deterministic discrete holonomy at the anchor. At the CAP-minimal anchor
m = 6 one has r = 4, and the paper provides a deterministic S4 edge-connection construction
together with plaquette holonomy diagnostics (Section 6). This is the finite, protocol-internal
origin of the connection/holonomy language used throughout.

[CAP] Three commuting channels close a three-factor compensation structure. The
folding template isolates three commuting defect channels (φ, π, e). If compensation is defined
only up to independent local basis changes associated with each channel, then the minimal
redundancy factorizes into three independent components (Proposition 8.3).

[CAP] Gauge-factor closure (bounded family, objective, tie-break). To pass from
the finite graph connection to a continuum dictionary, we treat gauge redundancy as internal
and unitary (hence compact at the group level), and we restrict to three-factor products with
one abelian phase sector and two inequivalent compact simple non-abelian factors. Within the
explicit bounded family

U(1)×G2 ×G3,

with G2 and G3 compact, simple, non-abelian and non-isomorphic, we use dim(g) as the intrin-
sic complexity label and apply CAP as lexicographic minimization of (dim g2, dim g3) (Propo-
sition 8.2). The unique minimizer is U(1) × SU(2) × SU(3) (up to finite quotients), by the
compact Lie classification and Lemma 9.4.

G.12 Closed Standard Model labeling as a CAP-minimal rank matching

[Math] The 18⊕ 3 target cardinalities are fixed at the anchor. At (m,n) = (6, 3) the
stable sector is X6 = Xcyc

6 ⊔ Xbdry
6 with |Xcyc

6 | = 18 and |Xbdry
6 | = 3 (Section 4). Any SM

identification at the anchor must respect this split.

[CAP] Minimal closure of the cyclic target set. On the SM side we require 18 chiral
multiplets (field-level labels) to match the 18 cyclic stable types. Within the bounded family
of minimal extensions of the SM fermion content at fixed three generations, CAP selects the
anomaly-neutral minimal addition that closes the cardinality: a sterile singlet νR with Y = 0
(Proposition 9.6). This closes FSM to 18 multiplets without changing anomaly sums or intro-
ducing new charged matter.
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[CAP] Candidate family and objective for the labeling map. Consider the finite family
of split-compatible maps

LSM : X6 → FSM ⊔ GSM,

where GSM = {U(1), SU(2), SU(3)} are the three gauge-factor connection classes. CAP closes
the map by minimizing ordering mismatch subject to split compatibility:

• cyclic sector: fix a deterministic intrinsic order ≺X on Xcyc
6 using only stable-type

invariants (Definitions 9.9 and 9.11), and fix a deterministic SM-side order ≺F on FSM
using only discrete quantum-number invariants (Definition 9.12);

• objective: minimize the number of inversions between the induced pairing and the target
orders (equivalently: enforce order preservation);

• tie-break: deterministic rank matching (order isomorphism) on the cyclic sector; and on
the boundary sector, monotone matching of intrinsic boundary value V (w) to gauge-sector
complexity dim(g) (Lemma 9.3 and Remark 9.18).

[Math] Result (uniqueness). Theorem 9.17 shows that the minimizer is unique: the cyclic
assignment is the unique order isomorphism between two finite total orders, and the boundary
assignment is the unique monotone permutation among 3! = 6 candidates. The explicit labeling
table is recorded in Table 15 and reproduced by scripts/exp_sm_labeling_solver.py.

G.13 Mass as latency: CAP-closed integer depth ansatz and rigidity

[Tick] Mass/energy are time-scale ratios in a log-time coordinate. The Fibonacci
resolution coordinate

r(µ) = log(µ/me)
logφ

is used because it linearizes multiplicative time-scale ratios (Section 10). In tick-first language, a
depth mismatch ∆r is a multiplicative mismatch of Compton-clock period and can be compared
to operational delay proxies (Remark 10.1 and Appendix Y).

[Math] Intrinsic stable-type invariants supply a discrete cost basis. At the anchor,
each stable type carries intrinsic invariants (V (w), g(w), |w|1) (Definition 8.9). The degener-
acy g(w) = |Fold−1

6 (w)| measures residual microstate uncertainty under window projection
(Lemma 13.1) and is therefore the protocol-native discrete overhead term in a protocol-cost
dictionary.

[CAP+Match] Bounded integer closure for the depth map. To make the depth as-
signment auditable as a low-complexity closure, we restrict to the explicit bounded family of
integer-linear depth maps

r̂(w) = a∆V + b∆g + c∆|w|1, a, b, c ∈ Z, |a|, |b|, |c| ≤ B

(Appendix AG, equation (89)). The objective is evaluated on the scheme-stable charged-lepton
anchors {µ, τ} in the resolution coordinate r(µ), with deterministic lexicographic tie-break rules;
an extended quark set is recorded as a diagnostic.

[CAP+Match] Result (rigidity). Proposition AG.1 shows that the unique minimizer stabi-
lizes at (a, b, c) = (2, 5, 1) by B = 5 and remains constant up to B = 20 (Table 94), reproduced
by scripts/exp_mass_depth_rigidity.py. Once the coefficients are fixed, the closed tem-
plate mass prediction is µpred(f) = me φ

r̂(f) (Definition 13.3), and all remaining deviations are
recorded explicitly as matching-layer shifts ∆r (Section 13 and Appendix AG).
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G.14 Resolution staircase: CAP-closed calibration and deterministic selec-
tion

[CAP+Match] Candidate family for the step size. To close the energy↔m interface
at the protocol layer, we fix a deterministic staircase template µth(m) whose only free discrete
choice is the step size rstep (Section 14.2.1). We restrict to the explicit bounded family

rstep = kπ, 1 ≤ k ≤ 10,

audited by deterministic sweeps.

[CAP+Match] Objectives and tie-break. Two deterministic calibration objectives are
recorded:

• single-anchor: match the electroweak anchor by minimizing | log(µth(10)/mZ)| over the
candidate family (Table 20);

• two-anchor minimax: minimize the maximum absolute mismatch across (m = 10,mZ)
and (m = 8, µQCD) with deterministic tie-break rules (Table 21).

[CAP+Match] Result. Proposition 14.4 records that rstep = 2π is the unique minimizer
under both audited objectives within the stated bounded family. With rstep fixed, the effective
resolution map meff(µ) is selected deterministically by least discrepancy (Corollary 14.2).

G.15 Frequency-first continuum representative: equivalence, action, and
equations

[Iface] Equivalence semantics fixes what counts as “the same physics”. Appendix AA
records the semantic quotients already used throughout the paper (tick-origin shift, projection-
fiber equivalence, local basis relabeling/gauge, coarse-graining preorder, and action equivalence).
In particular, frequency is treated as a primary derived quantity in tick units via phase advance
ω = ∆θ/∆t (Definition AA.1).

[Iface+CAP] CAP-closed action representative on a finite family. To obtain a contin-
uum dynamical representative without introducing new primitives, we treat the choice of action
as a CAP closure:

• candidates: a finite term-type dictionary of local covariant invariants (gravity, gauge,
information/overhead sector, matter placeholder) together with a bounded rational coef-
ficient box (Appendix AD.4);

• objective: lexicographic minimality in derivative order and description complexity, com-
patible with the equivalence semantics and coarse-graining monotonicity;

• tie-break: deterministic complexity key (term count, denominator height, and declared
group-dimension keys where applicable).

The resulting CAP-minimal action skeleton is recorded in Proposition AD.1.

[Math] Field equations by standard variation. Once the representative action is fixed,
the dynamical equations are the Euler–Lagrange equations of that action. Appendix AD.5
records the resulting Einstein equation with total stress (Theorem AD.2), Yang–Mills equations
(Proposition AD.5), and the χ-sector amplitude equation (Proposition AD.6), together with the
weak-field Poisson template (Section AD.5.6).
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G.16 Thermodynamics as coarse-graining and CAP free-energy closure

[Iface+CAP] Entropy/temperature and entropic force. Appendix AD.6 records a ther-
modynamic closure compatible with the same equivalence semantics: entropy is defined by
coarse-grained state counting (or boundary channel capacity), temperature is the conjugate fre-
quency scale, and equilibrium selection is a CAP closure on a finite family (Proposition AD.8).
Force is treated as a response functional (free-energy/action gradient), aligning the entropic-force
dictionary with the weak-field gravitational potential dictionary.

G.17 Overhead-to-gravity closure and a data protocol for χ

[Iface] Overhead and lapse dictionaries. Appendix AD.7 records a minimal overhead-to-
lapse closure: define χ = log(κ/κ0) and set N = e−γχ as the lapse proxy (Definition AD.9). In a
static gauge, set g00 ≈ −N2 and identify the weak-field potential by g00 ≈ −(1+2Φ/c2), yielding
Φ = −γc2(χ−χ0). This closes a weak-field Poisson source template ρeff ∝ −∆χ (equation (68))
with a single calibration parameter γ.

[Prot] χ(x) reconstruction protocol. Appendix AD.8 records an executable pipeline:
Hilbert binning → window words → folding statistics ḡm (or defect proxies) → χ(x) =
log(ḡm/ḡ0). Given χ(x), γ can be fit by rotation curves, lensing, or delay/redshift proxies.

G.18 Quantum readout and Born-probability rigidity

[Iface] POVM readout. Appendix AD.10 records finite-resolution readout by POVMs and
instruments, giving Born probabilities Pk = Tr(ρEk).

[Iface] Closure routes for Born weights. Two complementary closures are recorded: (i)
a projection-induced counting template compatible with the finite fiber semantics of this paper
(Theorem AD.21), and (ii) a mature uniqueness theorem (Gleason–Busch; Theorem AD.22) that
forces the Born form under noncontextual additivity.

G.19 Running couplings and cosmology as resolution flow (self-contained in-
terfaces)

[Iface] RG in the r coordinate. Appendix AD.11 records the chain-rule form dg/dr =
(logφ)β(g) and standard one-loop templates, together with threshold matching as discrete uplifts
in the protocol flow.

[Iface] Cosmology as resolution initialization and capacity growth. Appendix AD.12
records a minimal cosmology interface: big bang as resolution bootstrapping, inflation as expo-
nential growth of stable capacity |Xm| ∼ φm under approximately linear m(t), and a discrete
energy-budget matching hypothesis on the stable fraction fstab(m) = Fm+2/2m.

H CAP closures: deterministic audit template
This appendix collects a single, reusable audit template for bounded-complexity closures under
the Computational Action Principle (Axiom 1.5). It introduces no new axioms or independent
inputs beyond those declared in the main text; it only makes explicit the finite selection logic
already used throughout the paper.
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H.1 Selection on a finite candidate family

The core reason the audit program is well-posed is finiteness: for each bound B, the candidate
family Θ(B) is a finite set by construction (Definition H.1).

Definition H.1 (Bounded-complexity closure (audit form)). Fix reference targets xref
i > 0 and

a candidate family xi(θ) > 0 indexed by discrete parameters θ. For a bound B ∈ N, let Θ(B) be
a finite domain of admissible parameters (the “complexity box”). Define the log-mismatch vector

ei(θ) := log
(
xi(θ)
xref

i

)
,

and the summary objectives

E∞(θ) := max
i
|ei(θ)|, E1(θ) :=

∑
i

|ei(θ)|.

A bounded-complexity closure is the selection of a unique θB ∈ Θ(B) by lexicographic minimiza-
tion: first minimize E∞, then E1, then any stated secondary criteria (e.g. coefficient sum), with
a fully specified tie-break rule.

Remark H.2 (Why log-mismatch is used). The log mismatch is dimensionless and symmetric
under inversion: log(x/xref) = − log(xref/x). It also linearizes multiplicative matching factors:
if x = s xref , then log(x/xref) = log s. For small deviations, | log(x/xref)| ≈ |x− xref |/xref .

Proposition H.3 (Deterministic closure map). Fix a bound B ∈ N and a finite candidate family
Θ(B). Let (E∞(θ), E1(θ), T (θ)) be a triple of real-valued diagnostics on Θ(B), where T denotes
any fully specified secondary tie-break key (possibly vector-valued with a fixed lexicographic order).
Then the lexicographic minimization rule

θB ∈ argmin
θ∈Θ(B)

(
E∞(θ), E1(θ), T (θ)

)
selects a nonempty minimizer set and defines a deterministic selection function once T is chosen
so that ties are fully resolved.

Proof. Because Θ(B) is finite, the set of triples {(E∞(θ), E1(θ), T (θ)) : θ ∈ Θ(B)} is finite, hence
admits at least one lexicographic minimum. If the tie-break key T is defined so that equality of
the full triple can occur for at most one element, the selected minimizer is unique and the rule
becomes deterministic.

H.2 Audit outputs beyond point estimates

For each closure, the paper reports additional finite statistics that quantify within-family look-
elsewhere context and stability under perturbations (Section 1.6 and Appendix AE). Two fre-
quently used diagnostics are the candidate-domain size and a uniqueness gap.

Definition H.4 (Rigidity certificate). A closure is called rigid on a tested range B ∈
{1, . . . , Bmax} if the minimizer is unique at each B and stabilizes: there exists B∗ ≤ Bmax
such that θB = θB∗ for all B∗ ≤ B ≤ Bmax.

Definition H.5 (Domain size and uniqueness gap). Let Θ be a finite candidate family and let
J(θ) be an objective (e.g. E∞(θ)). Define the domain size as |Θ|. If the minimizer is unique,
define the uniqueness gap as

∆J := J(θ(2))− J(θ(1)),
where θ(1) is the minimizer and θ(2) is the best competitor under the same tie-break ordering
restricted to J .
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category status in this paper

protocol primitive the tick (scan iteration count) and window observables (Axiom 1.1; Section 3)
derived protocol structures admissible languages Xm, folding maps Foldm, and intrinsic invariants (Sec-

tions 2–4)
audited discrete closures explicit finite candidate families selected by CAP (e.g. bounded-complexity bud-

get B, phase denominator denom = 2p, bounded rationals for mixing/phases,
staircase step rstep; Section 1.6)

external reference conventions PDG/CODATA targets and scheme/scale choices treated as inputs at the match-
ing layer (not fit)

Table 24: Audit contract: what is fixed, what is swept under explicit finite bounds, and what is
treated as an external reference convention.

H.3 Reference implementation sketch (audit form)

The following pseudocode summarizes the selection logic implemented by the deterministic
scripts in this repository. It is intended as an audit aid (not as a new modeling premise).

Input:
- finite candidate set Theta(B)
- reference targets x_ref[i] > 0
- candidate map x(theta)[i] > 0 for theta in Theta(B)
- objective: E_inf(theta) = max_i |log(x_i(theta)/x_ref[i])|

E_1(theta) = sum_i |log(x_i(theta)/x_ref[i])|
- tie-break key T(theta) (fully specified; lexicographic)

Algorithm:
best <- None
for theta in Theta(B):

compute e_i(theta) = log(x_i(theta)/x_ref[i]) for all i
compute (E_inf(theta), E_1(theta), T(theta))
if best is None or (E_inf, E_1, T) is lexicographically smaller than

best:↪→

best <- (E_inf, E_1, T, theta)
output theta_B = best.theta

Audit outputs (in addition to theta_B):
- |Theta(B)| (domain size)
- best/second-best gaps for E_inf and E_1 where feasible
- quantiles of E_inf over Theta(B) for large domains
- robustness under explicit target perturbations
- counterfactual baselines within stated families

Remark H.6 (Why this does not add hidden knobs). The only discretionary content in a closure
is the explicit declaration of the finite family Θ(B), the objectives, and the tie-break key T . Once
declared, the selection is a deterministic function of these finite inputs (Proposition H.3). This
is the operational meaning of the paper’s “no-hidden-knobs” audit contract (Table 24).

I Rigidity-bridge certificates and mainline checklist (audit)
[Audit]This appendix records a compact checklist for “rigidity bridges”: auditable certificate forms
that turn a narrative step into a verifiable implication with an explicit minimal input set. It is
reader-facing audit infrastructure and is not used as a premise in theorem-level folding proofs.

I.1 Certificate forms (RB-A/B/C/D)

We use four certificate templates:
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• RB-A (finite-family minimization). A finite candidate family F , an explicit objective
functional J : F → R, and a deterministic tie-break rule; the output is a unique (or
near-unique with a gap) minimizer f⋆ = arg minF J .

• RB-B (incompatibility / obstruction). A “bad” structure would force an obstruction
(e.g. an interior pole) that is incompatible with an established analytic domain or stability
certificate; hence the bad structure is excluded.

• RB-C (counting/classification rigidity). A finite classification, counting identity, or
image–preimage structure forces a unique decomposition (e.g. 64→ 21, 18⊕ 3).

• RB-D (gap-stability / robustness). A quantitative gap or sensitivity bound shows that
the conclusion persists under bounded counterfactual families or perturbations, upgrading
“accidental alignment” to a robust closure.

I.2 Mainline checklist (where each bridge is realized in this paper)

mainline jump closure output RB form minimal inputs where in this paper

Tick → CAP deterministic finite-
family closure rule

RB-A tick + bounded com-
plexity + tie-break

Axioms 1.1, 1.5; Appendix G;
Appendix H

CAP → golden branch finite-depth least-
discrepancy selection
of α = φ−1

RB-A/RB-D continued-fraction
proxy + audited
discrepancy bound

Proposition 2.5; Subsubsec-
tion 2.3.1; Appendix N

golden branch → φ-
grammar

admissible set Xm

with |Xm| = Fm+2

RB-C Zeckendorf admissibil-
ity

Lemma 4.5; Appendix B

φ-grammar → π-
closure

cyclic/boundary split
and 18 ⊕ 3 at m = 6

RB-C wrap-around con-
straint + Fibonacci
counts

Proposition 4.8; Corollary 4.9

(φ, π) → e stability zeta/Abel normaliza-
tion and pole-barrier
template

RB-B/RB-D unit-disk holomorphy
+ Abel path conven-
tions

Section 4.5; Appendix B; Ap-
pendix E; Appendix F

π-closure → anchor minimal explicit
screen anchor
(m, n) = (6, 3) and
audited addressing
choice

RB-A/RB-C finite screen family +
cardinality match +
tie-break

Section 4; Remark 4.3; Ta-
ble 5

anchor →
gauge/holonomy

finite connec-
tion/holonomy in-
variants modulo local
relabeling

RB-C/RB-D local fiber relabeling
+ loop invariants +
bounded families

Section 6; Appendix S

gauge → SM label-
ing/mass

bounded-family label-
ing closures at the an-
chor

RB-A/RB-D explicit candi-
date families +
gap/robustness audits

Section 9; Appendix AE; Ap-
pendix AF

overhead → grav-
ity/dynamics

overhead-to-
lapse/potential
closure with error
control

RB-B/RB-D error budget + coun-
terfactual regulariza-
tion sweeps

Appendix AD.7; Ap-
pendix AD.9

I.3 A minimal workflow for upgrading intuition to audit statements

[Audit]When adding an interface intuition, we recommend the following minimal workflow:

• Step 0 (decide the layer). Decide whether the target sentence belongs to the theo-
rem layer ([Math]), the operational dictionary ([Interface]), external calibration ([Match]), or
audit/provenance ([Audit]).

• Step 1 (objectify and constrain). Replace narrative words (“stable”, “unique”, “mem-
oryless”) by explicit objects and constraints (functional equation, finite minimization,
counting identity, or obstruction).
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item status where defined audit / falsifiability channel

tick-only primitive Axiom 1.1 Section 1.1; Section 3 Fold6 checks; Appendix AJ
CAP closure rule Axiom 1.5, Defini-

tion H.1
Section 1.6; Appendix H audit tables; Appendix AE

dyadic phase registers Z2p CAP-audited
bounded closure
(phase-lift dictionary)

Section 1.8 and Section 6.5;
Appendix B

denom/map-family audits; Sec-
tion 6

addressing basis (screen) CAP-audited counter-
factual closure

Section 5; Section 3.5 Table 5; Appendix AJ

rigid-frame display anchor interface dictionary
(derived localization
criterion)

Section 1.3; Section 3 resolution staircase; Section 14

Hilbert orientation class CAP tie-break (one-
bit canonical repre-
sentative)

Section 7.2; Definition 7.2 χ sign flips; Proposition 5.4;
Prediction P2

three channels ↔ three gauge
factors

Proposition 8.2 Section 8.1 closed labeling; Theorem 9.17;
holonomy diagnostics; Section 6

geometric normalization dic-
tionaries

CAP-closed dictionar-
ies (bounded families)

Section 11 rigidity targets and audits; Ta-
ble 16; Appendix AE

Table 25: Audit-facing interface contract: tick and CAP as the primitive inputs; all other
interface components are CAP-closed within explicit finite candidate families and audited by
the listed channels.

• Step 2 (choose a certificate form). Record which RB form (A/B/C/D) certifies the
step, and state the minimal inputs used.

• Step 3 (separate matching inputs). Move unit choices, reference scales, and external
targets into [Match]and/or the inference ledger, never as premises.

• Step 4 (audit hooks). Record the candidate family, objective, tie-break, and reproduc-
tion script entry points when applicable.

J Audit overview: contract and inference map (supplement)
This appendix records two reader-facing audit summaries used throughout the main text: the
audit-facing interface contract and the inference map.

K Inference ledger: what is implied within the declared input
set

This appendix answers a compact audit question that arises repeatedly in the HPA–Ω program: if
one does not introduce any additional axioms or free continuous inputs beyond what is explicitly
declared in the main text, what physically meaningful conclusions can be inferred, and what is
their dependency status? We summarize the answer as a layered ledger. The purpose is not
to add new claims, but to make explicit which statements are (i) theorem-level consequences
of finite combinatorics, (ii) finite protocol constructions, (iii) conditional interface implications
under stated dictionaries, and (iv) bounded-complexity closures with reported mismatch factors.
Appendix G provides the expanded tick + CAP derivation spine (candidate families, objectives,
and tie-breaks); the present ledger is the compact status summary.

Notation for status tags. We use five audit-facing tags:

• [Math] theorem-level statement in the mathematical layer (finite definitions and proofs).
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Primitive axiom (tick input).
Readout sequentiality: time as tick (Axiom 1.1).
Tick-first dictionary (Section 3).

Primitive axiom (CAP closure).
Computational Action Principle (Axiom 1.5) in-
stantiated as bounded-complexity closure and
deterministic tie-breaks (Definition H.1).

CAP-closed interface components.
Rigid-frame display dictionary and derived bulk
dimension (Section 1.3; Proposition 3.7).
Orientation-class bit (CAP tie-break; Defini-
tion 7.2).
CAP-minimal gauge-factor closure (Proposi-
tion 8.2).
CAP-closed phase-volume dictionaries for nor-
malization targets (Section 11).

Mathematical layer (finite constructions).
Folding core and invariants (Section 4).
At (m, n) = (6, 3): 64 → 21 and 18 ⊕ 3 (Sec-
tion 4).

Closed interface maps / audited closures.
Closed SM labeling LSM (Section 9).
Mass-depth closure and rigidity certificates (Sec-
tion 13).
Coupling/angle/CP rigidity targets (Section 11).
Resolution staircase selection and calibration
(Section 14).

Protocol-level predictions and tests.
Falsifiability statements P1–P6 (Section 14) and
audit tables (Appendix AE).

Figure 5: Inference map of the paper under the two-axiom spine (tick input and CAP closure).
Solid: theorem-level; dashed: interface dictionaries in protocol language; dotted: CAP-audited
selection.

• [Prot] finite protocol construction (explicit algorithm on a finite model; no continuum
limit assumed).

• [Iface] physical identification statement (a dictionary/closure declaration stated in proto-
col language).

• [CAP] bounded-complexity closure (finite candidate family + deterministic tie-break
rules).

• [Open] explicitly recorded open problem (not closed within the declared input set).

Matching-layer dictionaries (units, scheme dependence, threshold conventions) are recorded ex-
plicitly as such in the main text; they are not treated as new premises here.

K.1 Declared inputs (minimal list)

The paper’s declared protocol primitives are recorded in Table 25 and Figure 5. In the strict
tick-only program pursued here, the only primitive inputs are:

• Tick (scan iteration count) as the time variable (Axiom 1.1; Section 3).

• CAP as the universal selection/closure rule within declared finite candidate families (Ax-
iom 1.5; Definition H.1; Appendix H).

All other items that appear throughout the paper (golden-branch slope, addressing basis, anchor
selection, orientation-class tie-break, phase-register choices, and coupling/CP normalizations)
are treated either as theorem-level definitions in the finite model, or as CAP-closed interface
components within explicitly declared finite candidate families with deterministic tie-break rules;
matching-layer reference conventions (PDG/CODATA, scheme/scale) are recorded explicitly
and are not counted as premises.
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Audit reading. Whenever the main text reports a “closed” numerical value for a physical
quantity, the intended status is [Iface] (a dictionary/normalization choice) together with [CAP]
(closure within a stated finite hypothesis class), and any residual deviation from PDG/CODATA
conventions is interpreted as a matching-layer factor rather than as a theorem-level claim.

K.2 Mathematical-layer consequences (no physical identification needed)

Stable-sector grammar and counts.

• [Math] Fibonacci admissible counts. For every m ≥ 1, the φ-admissible set Xm ⊂ Ωm

(forbidden substring “11”) satisfies |Xm| = Fm+2 (Lemma 4.5). In particular, |X6| = 21.

• [Math] Canonical π-split. Form ≥ 4, the wrap-around predicateDπ induces a canonical
cyclic/boundary split Xm = Xcyc

m ⊔ Xbdry
m with |Xbdry

m | = Fm−2 and |Xcyc
m | = Fm+2 −

Fm−2 (Proposition 4.8). At m = 6 this is 21 = 18 ⊕ 3 with explicit boundary words
(Corollary 4.9).

• [Math] Fold surjectivity. The truncation folding map Foldm : {0, . . . , 2m− 1}↠ Xm is
surjective for every m ≥ 1 (Proposition 4.20), and in particular Fold6 : {0, . . . , 63} ↠ X6
(Lemma 4.16).

• [Math] Canonical integer labeling of X6. The Zeckendorf-value map V : X6 →
{0, . . . , 20} is a bijection (Proposition 4.15).

Hilbert-path chirality sign law.

• [Math] Parity and traversal reversal flip χ. For the discrete Hilbert chirality index
χ defined in (15), any reflection and traversal reversal flip its sign, while orientation-
preserving rigid motions preserve it (Proposition 5.4).

K.3 Finite protocol constructions (computable, no continuum limit assumed)

Discrete connection/holonomy skeleton at (m,n) = (6, 3).

• [Prot] A deterministic S4 edge connection. At the m = 6 anchor, stable-type fibers
satisfy |P (w)| ∈ {2, 3, 4}. Padding to 4 slots and minimizing Hamming-cost matchings
yields a deterministic edge transport pa→b ∈ S4 (Lemma 6.4).

• [Prot] Gauge-invariant plaquette signatures. Under local relabelings of fiber slots,
plaquette holonomy transforms by conjugation, so its S4 cycle type is invariant (Proposi-
tion 6.6).

• [Prot] Dyadic phase-lift and a CP-odd invariant. Given a bounded low-complexity
phase map family τ and dyadic denominator denom = 2p, the phase-lifted edge transport
produces a finite holonomy model with an induced Jarlskog-type invariant J (Section 6.5).
The role of Z128 is explicit at p = 7 (Remark 6.11).

K.4 Interface-level implications (conditional on stated dictionaries)

Rigid-frame coarse-lock anchor and the vacuum sector.

• [Iface] Localization admissibility threshold. Under the rigid-frame display anchor
(Section 1.3), window lengths m < 6 are sub-admissible for single-window coarse rigid-
frame display and are treated as protocol-rejected as localized matter within this interface
dictionary (Section 1.3.1; see also Remark 1.4 for scope).
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• [Iface] Ghost-sector vacuum microstructure at fixed m. Even at fixed m, mi-
crostates outside the admissible grammar are protocol-unstable. At m = 6, the ghost-
sector size is |Ω6 \X6| = 64− 21 = 43 (Section P).

Gauge fields as compensating connections.

• [Iface] Compensation is forced by finite fibers. When stable labels have nontrivial
fibers, cross-site comparison requires an additional transport rule; local relabelings imply
a gauge redundancy (Proposition 8.1).

• [Iface]+[CAP] Three-factor closure and the SM gauge triple. If compensation
decomposes into three commuting classes and gauge factors are modeled as compact uni-
tary groups, then CAP-minimal selection within the stated factorization family yields
U(1)× SU(2)× SU(3) up to finite quotients (Proposition 8.2).

Chirality, antimatter, and CP-sign anchoring.

• [Iface] Parity as protocol change. Under the canonical orientation-bit convention, the
only physically distinguishable discrete choice in the D4 layout family is the orientation
class detected by sgn(χ) (Definition 7.2, Proposition 7.3).

• [Iface] Conjugation-as-reversal and antimatter dual. Phase conjugation of the scan
orbit corresponds to scan reversal up to an initial-phase flip (Lemma 7.5 and Lemma 7.6),
yielding a protocol antimatter dual by word reversal (Definition 7.9).

• [Iface] Chirality-anchored CP sign. Within a fixed protocol class and a fixed PDG
parameterization, CP-odd sign conventions are anchored by sgn(χ) (Definition 7.7).

Closed labeling and minimal chiral content.

• [Iface]+[CAP] Closed 21-type labeling at the anchor. Once one commits to the
split semantics (cyclic ↔ matter multiplets, boundary ↔ gauge-factor classes) and to the
stated deterministic ordering rules, the labeling map LSM is uniquely fixed (Theorem 9.17).

• [Iface] Anomaly-neutral closure forces a sterile νR. Closing the cyclic count to
18 with the smallest anomaly-neutral extension selects a sterile singlet νR with Y = 0;
anomaly cancellation is unchanged by adding νR (Proposition 9.6).

K.5 Quantitative rigidity targets and closures (within stated finite families)

The following are recorded in the main text as explicit low-complexity targets or bounded-
complexity selections, together with mismatch factors and audit context (Appendix AE):

• [Iface]+[CAP] Electromagnetic impedance target. α−1
emgeo = 4π3 +π2 +π under the

declared primitive phase-space family and serial aggregation dictionary (Theorem AF.9).

• [Iface]+[CAP] Electroweak volume target. α−1(µZ) = 13π2 and sin2 θW (µZ) = 3/13
under the weighted-volume dictionary fixed by discrete invariants (Theorem AF.14).

• [Iface]+[CAP] CP volume/multiplicity target. Jgeo = 1/(11π7) under the declared
CP-odd phase-space and multiplicity dictionary (equation (85) and Proposition AF.25).

• [CAP] Discrete mixing closures. CKM magnitudes (Proposition AF.27) and PMNS
mixing sines plus bounded-denominator δ closure (Proposition AF.30 and Table 90).
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• [CAP] Mass-depth rigidity. Within the bounded integer ansatz, the coefficients (2, 5, 1)
are rigidly selected (Proposition AG.1).

• [CAP] Resolution staircase calibration. Within the bounded family rstep = kπ (1 ≤
k ≤ 10), the calibration rstep = 2π is uniquely selected under the stated objectives against
fixed reference anchors (the Z scale, and optionally a conservative QCD-scale anchor),
which enter only as matching-layer comparison inputs (Proposition 14.4).

• [CAP] Scalar-sector uplift marker. The Higgs–Z depth offset closure ∆rHZ = 2/3
is selected within the stated bounded rational family (Proposition AH.1), consistent with
treating scalar behavior as uplift/coarse-graining dependent rather than as a new m = 6
stable type (Proposition 8.12).

K.6 Continuum representatives: action, field equations, and thermodynam-
ics (frequency-first)

Equivalence semantics and the frequency-first dictionary.

• [Iface] Physical objects as equivalence classes. Appendix AA formalizes the se-
mantic quotients already used throughout the paper (tick-origin shifts, projection-fiber
equivalence, local relabelings/gauge, coarse-graining preorder, and action equivalence).

• [Iface] Frequency as a primary derived quantity. Frequency in tick units is defined
by phase advance ω = ∆θ/∆t (Definition AA.1) and tied to mass/energy/temperature
dictionaries (Appendix AA and Appendix Y).

CAP-closed continuum action skeleton.

• [Iface]+[CAP] CAP-minimal covariant action representative. Appendix AD.4
records a finite candidate family of local covariant term types and a bounded rational
coefficient box, and states a CAP-minimal action skeleton Seff (Proposition AD.1).

Field equations from variation.

• [Math] Einstein–Yang–Mills equations (given the CAP-selected representa-
tive). Appendix AD.5 records the Euler–Lagrange equations obtained by varying the
representative action: Einstein equation with total stress (Theorem AD.2), Yang–Mills
equations (Proposition AD.5), and the χ-sector amplitude equation (Proposition AD.6).

Thermodynamics and entropic force.

• [Iface]+[CAP] Entropy as state counting and CAP as free-energy closure. Ap-
pendix AD.6 closes entropy/temperature in coarse-graining language and records a CAP
free-energy selection template on finite candidate families (Proposition AD.8), together
with the entropic-force response definition.

Overhead gravity and the χ reconstruction protocol.

• [Iface] Overhead-to-gravity closure (weak field). Appendix AD.7 records the dic-
tionary χ 7→ N 7→ g00 7→ Φ and the resulting weak-field source template ρeff ∝ −∆χ,
together with a one-parameter fit for γ.

• [Prot] Executable χ(x) reconstruction protocol. Appendix AD.8 records a Hilbert-
binning → window-word → folding-statistics pipeline that reconstructs χ(x) from data or
simulations.
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Quantum readout and Born probabilities.

• [Iface] POVM/instrument interface. Appendix AD.10 records POVM readout and
instrument update rules as the minimal quantum interface for finite observers.

• [Iface] Born-probability rigidity. Appendix AD.10 records two closure routes: a count-
ing template aligned with projection-induced degeneracies and the Gleason–Busch unique-
ness theorem.

Running couplings and cosmology as resolution flow.

• [Iface] RG dictionary in the r coordinate (self-contained). Appendix AD.11 records
the r-flow form of RG equations and the semantics of threshold matching as discrete uplifts.

• [Iface] Cosmology as resolution initialization/flow. Appendix AD.12 records the
capacity-growth (inflation-like) mechanism from |Xm| ∼ φm and a discrete background
energy-budget matching hypothesis.

Connection to falsifiability. The falsifiability statements P1–P6 in Section 14 are phrased
entirely in this protocol language: they depend on the declared interface items above and on
audited finite constructions, and they do not add new theorem-level premises beyond the stated
input set. In particular, the staircase-threshold locations in P3 are conditional on the stated
rstep calibration and its reference anchors, while P1/P2/P4/P5/P6 do not require that numerical
calibration to be stated.

K.7 Open problems (not closed within the declared input set)

The following gaps are explicitly acknowledged as [Open]. They are not implied by the tick-only
primitives or by the finite folding core, and closing them would require additional theorem-level
inputs or a stronger universality framework. For discussion and pointers, see Section 15.7.

• [Open] Gauge-group uniqueness beyond the stated bounded family. The paper
closes U(1) × SU(2) × SU(3) only conditionally under compactness/factorization and a
declared finite candidate family (Proposition 8.2). Deriving the candidate family from mi-
croscopic scan/readout architecture remains open; within the stated family, the minimizer
is robust under several natural label choices (Appendix AI and Proposition AI.1).

• [Open] Uniqueness/inevitability of the folding map. Alternative deterministic
dyadic→ Xm bridges exist and can change fiber statistics (Appendix Q). Within the
bounded counterfactual family audited at m = 6, the natural value-consistency condition
F (V (w)) = w selects the Zeckendorf-truncation map uniquely (Proposition Q.2). More
generally, within the natural shifted Zeckendorf-window family Fold(s)

m the same condition
forbids all nonzero shifts (Proposition 4.23). Global uniqueness beyond such bounded
families remains open. More generally, a principled uniqueness theorem for Foldm, or an
operational universality theorem making predictions bridge-insensitive at readout scale,
remains open.

• [Open] Continuum Yang–Mills/EFT emergence from finite connections. The
finite S4 holonomy diagnostic is closed at the protocol layer (Section 6), but deriving
continuum gauge dynamics and EFT running from the finite skeleton is not done here.

• [Open] Global model selection / look-elsewhere across families. Within-family
audits are provided (Appendix AE), but a global prior/MDL principle comparing different
hypothesis families and quantifying the overall look-elsewhere effect remains open.
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• [Open] Scalar/Yukawa sector and RG-running closure. The anchor closes a min-
imal chiral labeling and treats scalar behavior as uplift/coarse-graining dependent (Ap-
pendix AH); deriving Yukawa structures and SM β-functions from the finite protocol is
open.

L Sturmian readouts: factor complexity and entropy-rate
bounds

This appendix closes a small proof gap used implicitly in Remark 2.3 of Section 2: for the
canonical two-interval window partition associated with an irrational rotation, the induced bi-
nary readout is Sturmian and has linear factor complexity p(n) = n + 1, hence zero entropy
rate. The argument is elementary and is included here to keep the paper self-contained at the
theorem level.

L.1 Mechanical words as canonical interval codings

Fix an irrational slope α ∈ (0, 1) \ Q and an intercept ρ ∈ R. Let Rα : T → T be the rotation
Rα(x) = x + α (mod 1), and write xn := ρ + nα (mod 1). Consider the canonical half-open
window of length α,

Wα := [1− α, 1) ⊂ T. (24)

Define the binary readout by
wn := 1{xn ∈Wα} ∈ {0, 1}. (25)

Proposition L.1 (Window coding as a mechanical word). For every n ∈ Z one has

wn =
⌊
(n+ 1)α+ ρ

⌋
−
⌊
nα+ ρ

⌋
. (26)

Proof. Write {t} := t − ⌊t⌋ for the fractional part. Then xn = {nα + ρ}. One has wn = 1 iff
xn ∈ [1 − α, 1), i.e. iff {nα + ρ} ≥ 1 − α, which is equivalent to {nα + ρ} + α ≥ 1. This last
condition holds iff ⌊nα+ ρ+ α⌋ = ⌊nα+ ρ⌋+ 1, which is exactly the stated difference-of-floors
identity.

Remark L.2 (Why the window length matters). The reduction of the factor complexity to
p(n) = n+1 hinges on the canonical choice that the window length equals the rotation slope. For
a general interval window W of arbitrary length, the coding 1{xn ∈W} is still a rotation coding,
but it need not be Sturmian. The present paper uses only the canonical two-interval partition
determined by α (equivalently, a length-α window or its complement).

L.2 Factor complexity p(n) = n + 1
For a bi-infinite binary sequence w = (wn)n∈Z and n ≥ 1, let Ln(w) denote the set of length-n
factors (contiguous subwords)

Ln(w) := {wkwk+1 · · ·wk+n−1 : k ∈ Z} ⊂ {0, 1}n,

and define the factor complexity by p(n) := |Ln(w)|.

Theorem L.3 (Canonical rotation window coding is Sturmian). Let α ∈ (0, 1) \ Q and let
wn = 1{ρ+ nα ∈ Wα} with Wα = [1− α, 1) as above. Assume ρ ̸≡ −kα (mod 1) for all k ∈ Z
(so the orbit never lands exactly on the window boundary). Then w is aperiodic and satisfies

p(n) = n+ 1 for all n ≥ 1. (27)

Equivalently, w is Sturmian in the standard complexity sense.

112



Proof. Step 1: p(n) ≤ n + 1 (a partition by n+1 breakpoints). Fix n ≥ 1 and define the
length-n block map

Fn : T→ {0, 1}n, Fn(x) :=
(
1{x ∈Wα},1{x+ α ∈Wα}, . . . ,1{x+ (n− 1)α ∈Wα}

)
.

For each j = 0, . . . , n− 1, the indicator 1{x+ jα ∈Wα} can change only when x+ jα crosses a
boundary point of Wα, namely 0 or 1− α. Thus Fn is locally constant on T away from the set
of breakpoints

Bn :=
n−1⋃
j=0

(
{−jα} ∪ {1− α− jα}

)
⊂ T.

Because 1− α− jα ≡ −(j + 1)α (mod 1), one has

Bn = {−kα : k = 0, 1, . . . , n},

which has exactly n+1 distinct points since α /∈ Q. These points partition T into n+1 half-open
intervals I0, . . . , In on each of which Fn is constant. Therefore the image Fn(T) contains at most
n+ 1 distinct length-n words, so p(n) ≤ n+ 1.
Step 2: p(n) ≥ n + 1 (every interval is realized). Since α is irrational, the rotation Rα

is minimal: the orbit {xk}k∈Z is dense in T. Because the orbit avoids the finite breakpoint set
Bn by assumption, it intersects the interior of each interval Ir. For any r ∈ {0, . . . , n} choose
kr with xkr ∈ int(Ir). Then Fn(xkr ) ∈ Ln(w) is the length-n factor starting at kr. Moreover, if
r ̸= r′ then xkr and xkr′ lie in different intervals on which Fn is constant. At each breakpoint
bk = −kα ∈ Bn, at least one coordinate of Fn changes across bk (indeed bk is a boundary point
for the j = k or j = k−1 coordinate, within 0 ≤ j ≤ n−1), so adjacent intervals yield distinct
words. Hence Fn(xkr ) ̸= Fn(xkr′ ). Thus at least n+ 1 distinct factors occur, so p(n) ≥ n+ 1.
Combining Step 1 and Step 2 gives p(n) = n+ 1.
Step 3: aperiodicity. If w were periodic with period q ≥ 1, then 1{xk ∈Wα} = 1{xk + qα ∈
Wα} for all k ∈ Z, i.e. the sets Wα and Wα − qα have identical membership on the dense orbit
{xk}. If Wα ̸= Wα − qα as subsets of T, then their symmetric difference contains a nonempty
open arc (both are half-open intervals). By density, that arc would contain some orbit point xk,
contradicting the membership equality above. Hence Wα = Wα − qα. For a nontrivial interval
Wα this implies qα ≡ 0 (mod 1), contradicting α /∈ Q. Therefore w is aperiodic.

L.3 Zero entropy rate

The linear factor bound p(n) = n + 1 immediately implies that Sturmian readouts carry infor-
mation in correlations but have vanishing entropy rate.

Corollary L.4 (Topological entropy). Let w be as in Theorem L.3. Then the topological entropy
of its factor language is zero:

htop := lim
n→∞

1
n

log p(n) = lim
n→∞

1
n

log(n+ 1) = 0.

Corollary L.5 (Block Shannon entropy bound). Let (X,σ) be the shift-orbit closure of w, and let
µ be any shift-invariant probability measure on X. Let Pn(u) := µ([u]) denote the µ-probability
of the cylinder set of a word u ∈ {0, 1}n. Then the block entropy

Hn(µ) := −
∑

u∈{0,1}n

Pn(u) logPn(u)

satisfies
Hn(µ) ≤ log p(n) = log(n+ 1), hence lim sup

n→∞

Hn(µ)
n

= 0.
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Proof. Only words u ∈ Ln(w) can have Pn(u) > 0, so the sum is supported on at most p(n)
terms. Any probability distribution supported on at most p(n) points has Shannon entropy
at most log p(n), with equality only for the uniform distribution. Using p(n) = n + 1 from
Theorem L.3 gives the claimed bound.

M Sturmian readout language vs. golden-mean admissible lan-
guage

The main text uses two closely related but different symbolic objects:

• the Sturmian word produced by a scan–projection readout (Section 2 and Appendix L),
and

• the Zeckendorf-admissible digit language Xm (Section 4), equivalently the length-m block
language of the golden-mean shift.

This appendix records the precise relationship and resolves a common point of confusion: a
Sturmian readout has zero entropy rate, while the golden-mean admissible language has expo-
nential growth with rate logφ. There is no contradiction because the Sturmian factor language
is a strict subset of the golden-mean admissible block language.

M.1 Golden-mean shift and its block language

Definition M.1 (Golden-mean shift). Let

ΣGM := {x ∈ {0, 1}Z : xixi+1 = 0 ∀i ∈ Z},

and let σ : ΣGM → ΣGM be the left shift (σx)i = xi+1.

Definition M.2 (Block language). For n ≥ 1, define the length-n block language of ΣGM by

Ln(ΣGM) := {xixi+1 · · ·xi+n−1 : x ∈ ΣGM, i ∈ Z}.

Equivalently, Ln(ΣGM) is the set of all length-n binary words containing no adjacent 1’s.

Lemma M.3 (Identification with Xn and Fibonacci growth). For every n ≥ 1 one has

Ln(ΣGM) = Xn, |Xn| = Fn+2.

In particular, the topological entropy of ΣGM is htop(ΣGM) = logφ.

Proof. The identification Ln(ΣGM) = Xn is immediate from the forbidden-adjacency defini-
tion. The Fibonacci count is Lemma 4.5. Finally, htop(ΣGM) = limn→∞

1
n log |Ln(ΣGM)| =

limn→∞
1
n logFn+2 = logφ by Binet asymptotics (Remark 10.2).

M.2 A Sturmian representative inside the golden-mean shift

Definition M.4 (Fibonacci word (substitution fixed point)). Let τ be the substitution on {0, 1}
given by

τ(0) = 01, τ(1) = 0.

Starting from 0 and iterating τ yields a nested sequence of finite words τk(0). Their limit in the
product topology is a one-sided infinite word f = f0f1f2 · · · , called the Fibonacci word.

Lemma M.5 (No adjacent ones; no triple zeros). The Fibonacci word f contains no adjacent
ones. Moreover, it contains no factor 000.
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Proof. No adjacent ones. In τ(0) = 01 the symbol 1 is always followed by 0, and τ(1) = 0
contains no 1 at all. Therefore, in every iterate τk(0) any occurrence of 1 is followed by 0, so
the factor 11 never appears. Passing to the limit preserves forbidden factors, hence f contains
no 11.
No triple zeros. Every 0 in τk(0) is either the image of a 1 (namely τ(1) = 0) or the first
symbol of τ(0) = 01. In particular, every 0 produced as the first symbol of τ(0) is immediately
followed by a 1. Thus a run of zeros can only arise from a pattern where a 1-image 0 is adjacent
to the initial 0 of some τ(0) block, creating at most two consecutive zeros. Since 11 never
occurs, two 1-images cannot be adjacent, so runs of zeros have length at most 2 and 000 is
impossible.

Corollary M.6 (Strict language inclusion). Let Ln(f) denote the set of length-n factors of the
Fibonacci word f . Then for every n ≥ 1,

Ln(f) ⊆ Xn,

and the inclusion is strict for all n ≥ 3.

Proof. By Lemma M.5, f contains no 11, hence every factor of length n contains no 11 and
therefore lies in Xn. For strictness at n ≥ 3, the word 000 is in X3 but is not a factor of f by
Lemma M.5, so L3(f) ̸= X3 and hence Ln(f) ̸= Xn for all n ≥ 3.

M.3 Two entropies and what log φ means here

The Fibonacci word is Sturmian (it is the canonical characteristic word on the golden branch),
so its factor complexity satisfies |Ln(f)| = n + 1 and its entropy rate is zero (Appendix L). In
contrast, the full admissible block language Xn grows as Fn+2 and defines a positive topological
entropy logφ (Lemma M.3).
In this paper, the base φ in the resolution coordinate is tied to the capacity/growth rate of
the admissible stable-type language Xn (Remark 10.2), not to the Shannon entropy rate of the
Sturmian time-series readout.

N Discrepancy certificates from continued fractions
(Ostrowski/Denjoy–Koksma)

This appendix makes explicit the quantitative link used in Section 2.3.1: continued-fraction
data of the scan slope α yield deterministic finite-N discrepancy bounds for the Kronecker orbit
xn = x0 +nα (mod 1). We keep the discussion in the one-dimensional setting relevant to window
counts, where the key estimate reduces to interval indicators.

N.1 Star discrepancy and a rational baseline

For a finite point set PN = {x0, . . . , xN−1} ⊂ [0, 1), the one-dimensional star discrepancy is

D∗
N (PN ) := sup

a∈[0,1]

∣∣∣∣ 1
N

#{0 ≤ n ≤ N − 1 : xn < a} − a
∣∣∣∣ .

Lemma N.1 (Equally spaced points have discrepancy 1/N). Let yn = {y0 + n/N} for n =
0, . . . , N − 1. Then D∗

N ({y0, . . . , yN−1}) = 1/N .

Proof. The set {yn} is a translate of the uniform grid {j/N}N−1
j=0 , and star discrepancy is trans-

lation invariant on the circle. For the grid, for any a ∈ [0, 1] the count #{j/N < a} equals either
⌊Na⌋ or ⌈Na⌉ − 1, so the normalized error differs from a by at most 1/N . Taking a = j/N
shows the bound is attained, hence D∗

N = 1/N .
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N.2 Continued fractions and convergents

Let α ∈ (0, 1) \Q with continued fraction α = [0; a1, a2, . . .] and convergents pk/qk. We use the
standard recurrences

q−1 = 0, q0 = 1, qk+1 = ak+1qk + qk−1 (k ≥ 0),

and similarly for pk.

Lemma N.2 (Best-approximation error of convergents). For every k ≥ 0,∣∣∣∣α− pk

qk

∣∣∣∣ < 1
qkqk+1

≤ 1
q2

k

.

Proof. This is a standard continued-fraction property; see, e.g., [27, Ch. 10] or [28].

N.3 A discrepancy bound at convergent lengths

Let xn = {x0 + nα} be the scan orbit. At convergent lengths N = qk, the orbit is uniformly
close to the rational orbit with step pk/qk. This yields a simple O(1/N) discrepancy bound with
an explicit constant.

Lemma N.3 (Convergent-length discrepancy bound). Fix k ≥ 0 and set N := qk. Let PN (α) =
{x0, . . . , xN−1} with xn = {x0 + nα}. Then

D∗
N (PN (α)) ≤ 8

N
.

Proof. Let β := pk/qk and define the rational reference points yn := {x0 + nβ}. Since
gcd(pk, qk) = 1, the set {yn}N−1

n=0 is exactly an equally spaced grid (a permutation of {x0 +j/N}),
so by Lemma N.1 one has D∗

N ({yn}) = 1/N .
By Lemma N.2, δ := |α − β| < 1/N2. For each n ∈ {0, . . . , N − 1}, the points xn and yn

differ by the rotation n(α− β) on the circle, so their circular distance obeys

dT(xn, yn) ≤ n δ < 1
N
, dT(u, v) := min{|u− v|, 1− |u− v|}.

Fix a ∈ [0, 1] and compare the counts Cx(a) := #{0 ≤ n ≤ N − 1 : xn < a} and Cy(a) :=
#{0 ≤ n ≤ N − 1 : yn < a}. If xn and yn fall on different sides of the interval boundary of
[0, a), then yn must lie within circular distance < 1/N of one of the two boundary points {0, a}
(otherwise a < 1/N perturbation cannot change membership in the half-open interval). Since
the yn are 1/N -spaced, there are at most 3 indices n within circular distance < 1/N of each
boundary point, hence |Cx(a)− Cy(a)| ≤ 6 for every a.

Hence ∣∣∣∣Cx(a)
N

− a
∣∣∣∣ ≤ ∣∣∣∣Cy(a)

N
− a

∣∣∣∣ + |Cx(a)− Cy(a)|
N

≤ 1
N

+ 6
N

= 7
N
,

uniformly over a. Taking the supremum gives D∗
N (PN (α)) ≤ 7/N . We state the slightly looser

constant 8/N for a clean margin.

N.4 Ostrowski decomposition and a general finite-N bound

The convergent-length bound uplifts to arbitrary N using the Ostrowski representation, which
decomposes N into a sum of convergent denominators.
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Definition N.4 (Ostrowski representation (statement)). Let α = [0; a1, a2, . . .] be irrational
with convergent denominators qk. Every integer N ≥ 1 admits a (unique) representation

N =
m∑

k=0
bkqk, 0 ≤ bk ≤ ak+1,

with the usual local admissibility constraint bk = ak+1 ⇒ bk−1 = 0 for k ≥ 1.

Proposition N.5 (Digit-sum discrepancy bound). Let xn = {x0 + nα} and let PN (α) =
{x0, . . . , xN−1}. Write N = ∑m

k=0 bkqk in Ostrowski form. Then

D∗
N (PN (α)) ≤ 8

N

m∑
k=0

bk.

Proof. Decompose the prefix {0, 1, . . . , N − 1} into consecutive blocks of lengths qk, repeated bk

times for each k (largest k to smallest). For each such block of length qk, apply Lemma N.3 with
the intercept shifted to the block start (i.e. replace x0 by xt for the corresponding start index t).
This bounds the star discrepancy of each length-qk block by 8/qk, equivalently its count error
(unnormalized) by at most 8. Summing count errors over all blocks yields a total count error
bounded by 8∑k bk uniformly in the threshold a. Dividing by N and taking the supremum in
the definition of D∗

N gives the stated bound.

N.5 Bounded type and why the golden branch is minimax

Corollary N.6 (Bounded-type logarithmic rate). Assume α has bounded partial quotients: ak ≤
A for all k. Then for every N ≥ 1,

D∗
N (PN (α)) ≤ 8A

N

(
4 + logφN

)
, EN := ND∗

N (PN (α)) ≤ 8A (4 + logφN).

Proof. Let N = ∑m
k=0 bkqk be the Ostrowski representation. Since bk ≤ ak+1 ≤ A, one has∑m

k=0 bk ≤ A(m+ 1).
Next, since ak+1 ≥ 1 for all k, the denominators satisfy qk+1 = ak+1qk + qk−1 ≥ qk + qk−1.

With q0 = 1 and q1 ≥ 1, this implies qm ≥ Fm+1 for all m ≥ 1. By Binet’s formula, Fm+1 ≥
φm−1/

√
5 for m ≥ 1, hence if qm ≤ N then

m− 1 ≤ logφ(
√

5N) ≤ 2 + logφN.

Therefore m+ 1 ≤ 4 + logφN .
Combining with Proposition N.5 yields

D∗
N (PN (α)) ≤ 8

N

m∑
k=0

bk ≤
8A(m+ 1)

N
≤ 8A

N

(
4 + logφN

)
,

and multiplying by N gives the bound on EN .

Remark N.7 (Golden branch as a minimax bounded-type choice). The constant in Corol-
lary N.6 depends monotonically on the bound A on continued-fraction digits. The golden branch
is characterized by ak ≡ 1, i.e. it is the unique irrational of constant type with the minimal
possible bound A = 1. Thus, within the bounded-type class, it is the canonical minimax choice
for discrepancy certificates at finite N : it gives the smallest explicit worst-case upper bound in
the audited family of certificates derived from digit sums.
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O Folding-core proofs and technical details (supplement)
This appendix collects longer proofs and technical details underlying the folding core in Sec-
tion 4. It is intended to keep the main narrative short while preserving a fully explicit, auditable
mathematical layer.

Scope. All proofs in this appendix refer to the folding map and admissible language as defined
in Section 4 (in particular the Zeckendorf-truncation definition of Fold6). The paper does not
claim invariance of the reported fiber statistics under arbitrary alternative maps from {0, . . . , 63}
to X6; a bounded counterfactual sensitivity sweep is recorded separately in Appendix Q.

O.1 Defect operators and relaxation dynamics (optional interface semantics)

Definition O.1 (Defect operators on ℓ2(Ωm)). Given a nonnegative defect function D : Ωm →
R≥0, define the associated defect operator (still denoted D) on Hm = ℓ2(Ωm) by pointwise
multiplication:

(Dψ)(w) := D(w)ψ(w), ψ ∈ ℓ2(Ωm), w ∈ Ωm.

If D1, D2 are defect functions, then the corresponding operators commute.

Definition O.2 (Defect relaxation on ℓ2(Ωm)). Fix m and consider the nonnegative φ-defect
operator Dφ (Definition O.1). Define the defect-relaxation semigroup by the auxiliary-time evo-
lution

d
dτ ψ(τ) = −Dφ ψ(τ), ψ(0) = ψ0 ∈ ℓ2(Ωm), (28)

where τ ≥ 0 indexes stabilization steps rather than scan iteration time.

Proposition O.3 (Attractor: convergence to the admissible sector). The solution of (28) is
given pointwise by

ψ(τ)(w) = e−τDφ(w)ψ0(w).

Consequently ψ(τ) → Pφψ0 in ℓ2(Ωm) as τ → ∞, where Pφ is the orthogonal projection onto
ℓ2(Xm). Moreover the mismatch functional M(τ) := ∥Dφψ(τ)∥22 obeys the explicit decay law

M(τ) = e−2τM(0).

Proof. SinceDφ is a multiplication operator, (28) decouples on the basis {δw}w∈Ωm and yields the
stated closed form. Because Dφ(w) ∈ {0, 1}, one has e−τDφ(w) → 1{Dφ(w) = 0} = 1{w ∈ Xm}
as τ →∞, which is exactly the action of Pφ on basis vectors and therefore gives ℓ2 convergence.
Finally, Dφψ(τ) = e−τDφψ0, so M(τ) = e−2τM(0).

Remark O.4 (Relation to least-discrepancy dynamics (context)). Equation (28) is the minimal
linear relaxation that suppresses defect support and makes the admissible sector an attractor.
More general least-discrepancy dynamics can be formulated at the protocol layer as gradient
flows on bounded parameter families, trading discrepancy certificates against implementation
costs; see, e.g., [4–7]. In the present paper we use (28) only as a dynamical semantics for the
static folding constraint and do not treat it as an additional premise for any theorem-level count.

O.2 Full proofs and auxiliary tables for Fold6

Full proof of Proposition 4.15. By Zeckendorf’s theorem [25], every integer M ∈ N admits a
unique expansion

M =
∑
k≥1

ckFk+1, ck ∈ {0, 1}, ckck+1 = 0.
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For 0 ≤ M ≤ 20, this expansion uses no Fibonacci weight beyond F7 = 13, hence the digit
vector (c1, . . . , c6) is well-defined and belongs to X6, and satisfies V (c1 · · · c6) = M . This proves
that V is surjective onto {0, 1, . . . , 20}.

For the range bound, if w ∈ X6 has no adjacent ones, then the maximal value of V (w) is
attained by the alternating pattern w = 010101, giving

V (010101) = 2 + 5 + 13 = 20,

so indeed V (X6) ⊂ {0, 1, . . . , 20}. Finally, the Zeckendorf expansion is unique, so the digit vector
(and therefore the word in X6) realizing a given M is unique, hence V is injective.

Full proof of Lemma 4.17. Let N ∈ {0, . . . , 63} and write its Zeckendorf digits as N =∑
k≥1 ckFk+1. Since 63 < F11 = 89, one has ck = 0 for all k ≥ 10, so

N =
9∑

k=1
ckFk+1 :=

6∑
k=1

ckFk+1 + 21 c7 + 34 c8 + 55 c9.

If Fold6(N) = w, then ck = wk for k = 1, . . . , 6, hence ∑6
k=1 ckFk+1 = V (w) = v and

N = v + 21 c7 + 34 c8 + 55 c9.

The Zeckendorf admissibility constraint is ckck+1 = 0. Thus if w6 = 1 then c6 = 1 forces c7 = 0;
and since v ≥ 13 in this case, one also has v + 55 > 63, so c9 = 0. The remaining admissible
choices are c8 ∈ {0, 1}, giving N ∈ {v, v + 34}.

If w6 = 0 then c6 = 0 imposes no restriction on c7. The admissible one-hot tail choices
(c7, c8, c9) ∈ {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)} produce the four candidates v, v + 21, v + 34,
v + 55. The candidate with c9 = 1 is valid if and only if v + 55 ≤ 63, i.e. v ≤ 8. If 9 ≤ v ≤ 12,
then v+55 > 63, so only the first three candidates lie in {0, . . . , 63}. All listed candidates satisfy
Zeckendorf admissibility (no adjacent ones), hence their Zeckendorf digits have the same first
six digits, so they map to w under Fold6.

Full proof of Theorem 4.18. Surjectivity follows from Lemma 4.16. The explicit fiber description
in Lemma 4.17 shows that |Fold−1

6 (w)| ∈ {2, 3, 4} for every w ∈ X6. Moreover, |Fold−1
6 (w)| =

2 holds exactly when w6 = 1. The number of admissible length-6 words ending with 1 is
|X4| = F6 = 8 (fix the last two digits as 01 and choose any admissible 4-bit prefix), hence
|V2| = 8. Among the remaining 13 words with w6 = 0, Lemma 4.17 gives preimage size 4
exactly when V (w) ≤ 8, i.e. for v ∈ {0, . . . , 8}, yielding |V4| = 9 by Proposition 4.15. The
remaining 4 values v ∈ {9, 10, 11, 12} yield preimage size 3, hence |V3| = 4. Finally, for each
boundary word w listed in Corollary 4.9 one has w6 = 1 and V (w) ∈ {14, 17, 19}, so Lemma 4.17
gives the stated boundary-sector preimages. Appendix AE records the full table; the script
scripts/exp_fold6_stats.py deterministically reproduces the same finite enumeration and
writes the corresponding LATEX fragments (Appendix AJ).

Preimage size |Fold−1
6 (w)| number of types

2 8
3 4
4 9

Table 26: Degeneracy histogram for Fold6 : {0, . . . , 63} ↠ X6. Rows are reproduced
by a deterministic enumeration over N ∈ {0, . . . , 63} implementing the definition of Fold6
(scripts/exp_fold6_stats.py).
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P The vacuum sector: ontology of protocol-unstable states
This section records diagnostics for the protocol-unstable complement Ωm\Xm (the ghost sector)
across window lengths. For the protocol-level vacuum interpretation and the relation of the ghost
sector to the folding core, see Section 1.3.1 and Remark 4.7.

A minimal instability witness. As a minimal instability witness on the full alphabet, define
the adjacent-ones count

N11(w) := #{ i ∈ {1, . . . ,m− 1} : wi = wi+1 = 1 }.

Then Xm = {w ∈ Ωm : N11(w) = 0} and the protocol-unstable complement (ghost sector) is
Ωm \Xm.

Table 27 records the ghost-sector size together with the distribution mass in the first few
violation bins and the mean violation count restricted to Ωm \Xm. Rows are reproduced by the
deterministic script scripts/exp_ghost_sector_violation_stats.py.

m |Xm| |Ωm \ Xm| frac N11 = 1 N11 = 2 N11 = 3 N11 ≥ 4 mean N11 (ghost)

6 21 43 0.671875 20 13 7 3 1.8605
7 34 94 0.734375 38 29 16 11 2.0426
8 55 201 0.785156 71 60 39 31 2.2289
9 89 423 0.826172 130 122 86 85 2.4208

10 144 880 0.859375 235 241 187 217 2.6182
11 233 1815 0.886230 420 468 392 535 2.8209
12 377 3719 0.907959 744 894 806 1275 3.0288
13 610 7582 0.925537 1308 1686 1624 2964 3.2414
14 987 15397 0.939758 2285 3144 3222 6746 3.4583
15 1597 31171 0.951263 3970 5807 6304 15090 3.6793
16 2584 62952 0.960571 6865 10636 12189 33262 3.9039

Table 27: Vacuum-sector diagnostics in the adjacent-violation count N11 for the protocol-
unstable complement Ωm \Xm. The column “frac” is the fraction |Ωm \Xm|/|Ωm|.

Distance to admissibility. As an additional diagnostic, we define a minimal repair cost
c(w) as the minimum number of bit flips 1→ 0 required to remove all adjacent-ones violations.
Equivalently, if a word contains maximal runs of consecutive ones of lengths L, then c(w) =∑
⌊L/2⌋. Table 28 summarizes the repair-cost distribution for the same m-sweep. Rows are

reproduced by the deterministic script scripts/exp_ghost_sector_repair_cost_stats.py.

m |Xm| |Ωm \ Xm| frac c = 1 c = 2 c = 3 c = 4 c ≥ 5 mean c (ghost)

6 21 43 0.671875 30 12 1 0 0 1.3256
7 34 94 0.734375 58 31 5 0 0 1.4362
8 55 201 0.785156 109 73 18 1 0 1.5572
9 89 423 0.826172 201 162 54 6 0 1.6809

10 144 880 0.859375 365 344 145 25 1 1.8102
11 233 1815 0.886230 655 707 361 85 7 1.9433
12 377 3719 0.907959 1164 1416 850 255 34 2.0804
13 610 7582 0.925537 2052 2778 1918 701 133 2.2209
14 987 15397 0.939758 3593 5358 4184 1806 456 2.3647
15 1597 31171 0.951263 6255 10188 8880 4425 1423 2.5113
16 2584 62952 0.960571 10835 19139 18422 10415 4141 2.6605

Table 28: Vacuum-sector diagnostics in the minimal repair cost c(w) to reach admissibility (no
consecutive ones) for the protocol-unstable complement Ωm \ Xm. The column “frac” is the
fraction |Ωm \Xm|/|Ωm|.
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Q Folding-map counterfactuals at the m = 6 anchor
This appendix records a bounded counterfactual family of deterministic maps from the dyadic
microstate index set {0, . . . , 63} to the admissible set X6. The purpose is audit clarity: it
makes explicit which finite combinatorial properties of the 64 → 21 folding picture are tied
to the specific folding map adopted in the paper, and which properties survive under nearby
low-complexity alternatives.

Q.1 A bounded counterfactual family

At the m = 6 anchor we identify microstates with a dyadic register {0, . . . , 26 − 1} and identify
stable types with admissible words X6 (no adjacent ones). The main text fixes the folding map
Fold6 by truncating Zeckendorf digits (Section 4). To provide look-elsewhere context at the
level of the folding map itself, we compare Fold6 to a small explicit family of counterfactual
deterministic maps of comparable discrete description complexity:

• FoldZ: the baseline Zeckendorf-truncation map Fold6 as defined in (12);

• FoldZ-shift: a one-digit shift of the Zeckendorf digit window (still a Zeckendorf substring);

• FoldZ-rev: reversal of the baseline output word (preserves admissibility as a word gram-
mar);

• Bin-repair: a direct dyadic-word repair rule that removes each occurrence of the substring
“11” by deterministically flipping the right bit in each offending pair.

Explicit definitions (self-contained). Let N ∈ {0, . . . , 63} and let (ck)k≥1 be its Zeckendorf
digits.

• FoldZ. FoldZ(N) := (c1, . . . , c6) (Definition (12)).

• FoldZ-shift. FoldZ-shift(N) := (c2, . . . , c7), padding by zeros if needed (i.e. set ck := 0
for k beyond the Zeckendorf expansion length).

• FoldZ-rev. FoldZ-rev(N) := rev(FoldZ(N)) where rev(w1 · · ·w6) := w6 · · ·w1.

• Bin-repair. Write the dyadic word of N as b(N) = b1 · · · b6 ∈ {0, 1}6. Scan left-to-right
and whenever a substring bibi+1 = 11 occurs, flip the right bit bi+1 ← 0. The resulting
repaired word lies in X6 by construction.

For each map we record: the image size (how many stable types are realized), whether
the image equals X6, and the induced preimage-size histogram over {0, . . . , 63}. Rows are
generated by scripts/exp_fold_family_sensitivity.py. Since the map family is defined
explicitly above, the script serves only as a deterministic reproducer of the same finite sweep
(audit artifact generation), not as an additional premise.

map |Im| surj. onto X6 gmin gmax degeneracy histogram status

FoldZ 21 yes 2 4 2:8,3:4,4:9 OK
FoldZ-shift 21 yes 1 6 1:3,2:8,3:2,4:4,5:1,6:3 OK
FoldZ-rev 21 yes 2 4 2:8,3:4,4:9 OK
Bin-repair 21 yes 1 8 1:2,2:9,4:9,8:1 OK

Table 29: Bounded counterfactual sweep of deterministic folding maps at m = 6. Here g(w) :=
|Fold−1(w)| is the preimage size over {0, . . . , 63} for each map, and the histogram is reported as
a compact list “g : #types”. This table is an audit artifact: it shows which finite invariants are
map-dependent within the stated small family.
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Interpretation. Within this bounded family, surjectivity onto X6 is not unique. What varies
across maps is the induced fiber structure (the support and distribution of g(w)), which is
the protocol-native input for later compensation/connection constructions. The main text fixes
Fold6 by the Zeckendorf-truncation definition and therefore fixes a specific fiber statistics package
(Section 4 and Appendix O).

A partial closure: a natural fixed-point property selects FoldZ in this family. Define
the Zeckendorf value map V : X6 → {0, . . . , 20} by Definition 4.14.

Definition Q.1 (Value consistency at the anchor). A deterministic map F : {0, . . . , 63} → X6
is value-consistent if

F (V (w)) = w for all w ∈ X6.

Proposition Q.2 (Within the bounded family, value consistency selects FoldZ). Within the
four-map family {FoldZ,FoldZ-shift,FoldZ-rev,Bin-repair}, the unique value-consistent map
(Definition Q.1) is FoldZ.

Proof. Lemma 4.16 shows FoldZ(V (w)) = w for all w ∈ X6, hence FoldZ is value-consistent.
To rule out the other three maps, take w = 100000 ∈ X6. Then V (w) = 1 by (13).

The Zeckendorf digits of 1 satisfy c1 = 1 and ck = 0 for k ≥ 2. Therefore FoldZ-shift(1) =
(c2, . . . , c7) = 000000 ̸= 100000, so FoldZ-shift is not value-consistent. Also FoldZ-rev(1) =
rev(FoldZ(1)) = 000001 ̸= 100000, so FoldZ-rev is not value-consistent. Finally, b(1) = 000001
and Bin-repair leaves it unchanged, hence Bin-repair(1) = 000001 ̸= 100000, so Bin-repair is not
value-consistent.

Scope. All theorem-level statements in Section 4 and Appendix O apply to the folding map
as defined there. This appendix does not claim invariance under arbitrary map changes; it only
records sensitivity within an explicit bounded counterfactual family.

R Forced interface lemmas under the tick + CAP spine
This appendix records several short interface lemmas in a form suitable for audit. It introduces
no new axioms beyond the two declared primitives of the paper: tick as the executed input
stream (Axiom 1.1) and CAP as the unique closure/selection rule on explicit finite candidate
families (Axiom 1.5). The purpose is to make explicit the sense in which several “interface
conventions” used in the main text are forced (or uniquely selected as minimal nontrivial choices)
once one commits to the tick + CAP discipline.

R.1 Minimal coarse locking: one bit per independent parameter

Lemma R.1 (Minimal nontrivial coarse binning forces one bit per independent parameter).
Let a protocol claim to coarsely distinguish k independent parameters in a single observation,
in the minimal nontrivial sense that for each parameter there exist at least two disjoint bins
whose membership is distinguishable in the readout. Then any single-shot readout alphabet that
supports such a coarse distinction must have size at least 2k. In particular, if the single-shot
readout alphabet is binary length-m words Ωm = {0, 1}m, then necessarily m ≥ k.

Proof. For each parameter choose two distinguishable bins and label them by {0, 1}. Inde-
pendence means that all 2k bin-combinations are admissible joint coarse states. Therefore
the readout alphabet must have at least 2k distinct outcomes. If the alphabet is Ωm, then
|Ωm| = 2m ≥ 2k, so m ≥ k.
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Corollary R.2 (Single-window coarse rigid-frame budget). In a rigid-frame display dictionary
in bulk dimension d, a pose is an element of the Euclidean group SE(d) with

dimSE(d) = d(d+ 1)
2 .

Under the minimal nontrivial coarse-binning convention of Lemma R.1, a single length-m win-
dow can support a single-shot coarse rigid-frame display only if

m ≥ dimSE(d) = d(d+ 1)
2 .

Proof. Apply Lemma R.1 with k = dimSE(d). The dimension formula for SE(d) is standard;
see, e.g., [18].

Relation to the main text. Section 1.3 uses exactly this minimal nontrivial convention at
the anchor m = 6 and then applies CAP to select the maximal admissible bulk dimension,
yielding d = 3 (Proposition 3.7). The quantization/metric-entropy scaling used there for finer
accuracy is standard [16,17].

R.2 Unitarity forces compact internal redundancy groups

Proposition R.3 (Probability-preserving internal redundancy is compact (finite-dimensional
case)). Assume a continuum modeling dictionary in which local internal redundancy acts on a
finite-dimensional complex Hilbert space by transformations that preserve transition probabilities
between rays. Then the connected component of the internal redundancy group is (projectively)
unitary and is therefore compact (up to finite quotients).

Proof. By Wigner’s theorem, any bijection of rays preserving transition probabilities is im-
plemented by a unitary or antiunitary operator on the underlying Hilbert space, uniquely
up to phase [48, 49, 87]. Antiunitary operators form a disconnected component, so any con-
nected internal redundancy group is represented (projectively) by unitary operators. Thus
the redundancy group embeds as a (closed) subgroup of the compact projective unitary group
PU(N) = U(N)/U(1), hence is compact.

Relation to the main text. In the interface language of this paper, “gauge redundancy”
is the freedom to relabel local readout bases without changing observable overlap/probability
data. Under a standard continuum dictionary that represents this freedom by internal unitary
rotations, compactness is therefore not an extra primitive but a consequence of probability
preservation in finite-dimensional local descriptions. This is the compactness input used in
Proposition 8.2.

R.3 Three commuting channels force a three-factor redundancy structure

Lemma R.4 (Independent local redundancy across commuting channels factorizes). Assume
protocol mismatch certificates decompose into three commuting channel components and that, in
the interface dictionary, each channel admits an independent local basis redundancy. Then the
minimal local redundancy group factorizes as a direct product of three channelwise redundancies.

Proof. Since channels commute, a mismatch certificate can be compared channel-by-channel. If
the basis redundancy is independent in each channel, local gauge changes act independently on
each component. Therefore the channelwise covariance law is a direct-product action, and the
minimal redundancy group is the direct product of the three channel groups.
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Relation to the main text. This is the structural content of Proposition 8.3 in Section 8.1.
Once a three-factor structure is fixed, CAP-minimal selection within the compact-factor can-
didate family yields the Standard Model triple up to finite quotients under the declared factor
complexity label (Proposition 8.2 and Lemma 9.4); a bounded sensitivity sweep across alterna-
tive labels is recorded in Appendix AI.

R.4 Why the minimal chiral closure selects a sterile νR

Proposition R.5 (Minimal anomaly-neutral one-multiplet-per-generation closure forces a ster-
ile singlet). Work under the PDG convention Q = T3 + Y . Consider extending the Standard
Model chiral fermion multiplet content by adding exactly one additional chiral multiplet per gen-
eration, with the requirement that: (i) local gauge and mixed gravitational anomalies remain
canceled, and (ii) the global SU(2) consistency condition is preserved. Then the added multiplet
must be a gauge singlet with hypercharge Y = 0. Equivalently (up to charge conjugation), the
unique minimal closure is a sterile right-handed neutrino νR per generation.

Proof. The Standard Model anomaly-cancellation identities under Q = T3 + Y are standard
[1, 2, 56]. If the added multiplet carries nontrivial SU(3) charge, it contributes to SU(3)3 and
SU(3)2U(1) anomaly sums; with only one added multiplet per generation there is no compen-
sator, so anomaly cancellation forces it to be an SU(3) singlet.

If the added multiplet is an SU(2) doublet (or any half-integer isospin representation), the
parity of the number of SU(2) doublets changes and can violate the global SU(2) anomaly con-
straint [57]. With only one additional multiplet per generation and no compensator, preserving
the global consistency condition forces the added multiplet to be an SU(2) singlet.

Thus the only remaining possible charge is hypercharge. The mixed gravitational–
hypercharge anomaly is proportional to ∑Y and the cubic U(1)3

Y anomaly to ∑Y 3 over left-
handed Weyl fields with multiplicities; the Standard Model sums vanish per generation [1, 56].
Adding a single SU(3) × SU(2) singlet multiplet contributes Y and Y 3. To preserve both
anomaly cancellations without additional compensating matter, one must have Y = 0.

Relation to the main text. Section 9 uses νR as the minimal anomaly-neutral closure of the
18 cyclic field-level targets and treats it as an interface choice audited by standard consistency
constraints (Proposition 9.6). Proposition R.5 records the stronger uniqueness statement within
the explicit minimal candidate family “one extra multiplet per generation”.

R.5 Scalar absence at the minimal alphabet is forced by the closed 21-type
contract

Proposition R.6 (No additional primitive stable type remains for a Higgs label at m = 6). At
the anchor (m,n) = (6, 3), the stable sector splits as X6 = Xcyc

6 ⊔Xbdry
6 with |Xcyc

6 | = 18 and
|Xbdry

6 | = 3. Under the closed interface contract adopted in this paper—cyclic types label the 18
field-level chiral multiplets and boundary types label the three gauge-factor connection classes—
there is no remaining element of X6 that can be assigned as an additional primitive stable-type
label for a Higgs-like scalar. Accordingly, any scalar sector must enter either as (i) an EFT-level
completion field in the continuum dictionary, or (ii) a protocol-emergent observable supported
by resolution uplift and coarse graining.

Proof. The split cardinalities are theorem-level facts at m = 6 (Section 4). The closed labeling
map assigns the 18 cyclic types to the 18 chiral multiplets and assigns the 3 boundary types to
the three gauge factors (Theorem 9.17). Therefore all 21 stable types are already consumed by
the closed chiral/gauge interface at the anchor, leaving no unused stable label in X6.
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n m plaquettes 1 2 2 × 2 3 4 mean |J | (3/4) mean J (3/4) failures

1 2 1 1 0 0 0 0 0 +0 0
2 4 9 9 0 0 0 0 0 +0 0
3 6 49 24 19 1 3 2 0.0470847 +0.0207138 0
4 8 225 126 44 3 42 10 0.0284115 +0.0101108 0
5 10 961 619 198 24 95 25 0.0325905 +0.00800293 0
6 12 3969 2512 788 82 378 209 0.0191774 +0.00111322 0
7 14 16129 11566 2623 268 1210 462 0.0104386 +0.000145988 0
8 16 65025 50323 10731 1420 1781 770 0.00748166 +0.000270661 0

Table 30: Balanced-chain sweep for the holonomy and phase-lifted CP signal across
(n,m) ∈ {(1, 2), (2, 4), (3, 6), (4, 8), (5, 10), (6, 12), (7, 14), (8, 16)}. Rows are generated by
scripts/exp_holonomy_balanced_chain_sweep.py.

Relation to the main text. This is the audit-level content behind the Higgs-status remarks
in Section 9 (Remark 9.1) and the scalar-sector closure statements in Section 8.4.

S Extended holonomy sweeps and robustness diagnostics (sup-
plement)

This appendix records extended finite sweeps and robustness variants for the protocol-connection
holonomy diagnostics of Section 6. The main text focuses on definitions and representative
diagnostics at the minimal anchor; the material below provides additional evidence across refined
balanced pairs (n,m) and across bounded-complexity variant families.

Audit note (bounded scans, not free-form fitting). All tables in this appendix are pro-
duced by deterministic bounded scans over explicitly specified finite families (loop sizes, phase
denominators, phase-map families, and global relabelings), with deterministic tie-break rules.
The accompanying scripts write the resulting LATEX fragments for reproducibility; they do not
introduce new degrees of freedom beyond the stated bounded families.

S.1 Balanced-chain sweep across (n, m) = (1, 2), (2, 4), (3, 6), (4, 8), (5, 10), (6, 12), (7, 14), (8, 16)
To probe how the finite connection/holonomy statistics behave under a minimal balanced re-
finement, we sweep the chain m = 2n for n ∈ {1, 2, 3, 4, 5, 6, 7, 8}. At each scale we build the
same deterministic S4-valued edge transport by truncating/padding each Foldm fiber to rank 4
and selecting the minimum-cost bijection under Hamming distance on m-bit microstates. We
then summarize plaquette holonomy cycle types and the phase-lifted CP-odd signal at the phase
denominator denom = 2m.

Balanced-chain permutation-robust mixing fits. Using the same phase-lifted holonomy
extraction at each (n,m) in the balanced chain, we can apply the same global S3×S3 relabeling
fit to PMNS- and CKM-style target sines. Tables 31 and 32 report the resulting best fits at each
scale.

Loop-scale sweep (k×k square holonomies). The unit-plaquette holonomy is the small-
est closed loop. As an additional finite-resolution diagnostic, we can compute phase-lifted
holonomies around k × k square loops (for small k) and repeat the same 3/4-cycle restriction
and S3 × S3 permutation-robust mixing fits. Tables 33–40 summarize the resulting cycle-type
counts and PMNS/CKM fit objectives for k ∈ {1, 2, 3} on the n = 3 grid.
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n m plaquettes best (σr, σc) s12 s23 s13 E∞ E1 mean |J |

3 6 49 (2, 0, 1)/(1, 2, 0) 0.7387 0.8513 0.1546 0.288 0.476 0.00480456
4 8 225 (0, 2, 1)/(1, 0, 2) 0.8434 0.8706 0.1895 0.420 0.835 0.0068287
5 10 961 (1, 2, 0)/(0, 1, 2) 0.8658 0.9017 0.1881 0.446 0.889 0.00420356
6 12 3969 (1, 2, 0)/(0, 1, 2) 0.8721 0.9011 0.1730 0.454 0.811 0.00289537
7 14 16129 (1, 2, 0)/(0, 1, 2) 0.9114 0.9485 0.1116 0.498 1.028 0.00110661
8 16 65025 (0, 2, 1)/(1, 0, 2) 0.9318 0.9331 0.0879 0.520 1.272 0.00031132

Table 31: Balanced-chain permutation-robust fit to PMNS target sines (finite diagnostic). Rows
are generated by scripts/exp_holonomy_balanced_chain_perm_fit.py.

n m plaquettes best (σr, σc) s12 s23 s13 E∞ E1 mean |J |

3 6 49 (2, 1, 0)/(2, 1, 0) 0.4036 0.2930 0.1546 3.670 6.195 0.00480456
4 8 225 (2, 1, 0)/(2, 1, 0) 0.2964 0.3150 0.1612 3.712 6.000 0.0068287
5 10 961 (2, 1, 0)/(2, 1, 0) 0.2309 0.2424 0.1774 3.807 5.584 0.00420356
6 12 3969 (2, 1, 0)/(2, 1, 0) 0.2205 0.2398 0.1575 3.688 5.443 0.00289537
7 14 16129 (2, 1, 0)/(2, 1, 0) 0.1381 0.1643 0.0859 3.082 4.926 0.00110661
8 16 65025 (0, 1, 2)/(0, 1, 2) 0.1283 0.1247 0.0879 3.105 4.747 0.00031132

Table 32: Balanced-chain permutation-robust fit to CKM target sines (finite diagnostic). Rows
are generated by scripts/exp_holonomy_balanced_chain_perm_fit.py.

Single-loop best fits (bounded scan). Finally, instead of averaging over a loop family,
one can select a single loop together with a bounded phase denominator and a global S3 × S3
relabeling to best fit a target triple of sines. Table 36 reports the best single-loop fits for PMNS-
and CKM-style targets over a bounded search space.

Two-loop chains (bounded composition). One can also form a bounded family of effective
holonomies by composing two selected loops (allowing inverses) before extracting the sines.
Table 37 reports the best two-loop chain fits over a finite search family built from 3/4-cycle
square loops.

Two-loop chains with mixed cycle types. If one enlarges the admissible loop pool to
include additional nontrivial holonomy cycle types (e.g. 2-cycles and 2 × 2 cycles), one can
obtain a substantially improved CKM-style fit within a still finite, auditable search box. Table 38
reports the best two-loop chain fits under a restricted phase family and a mixed-cycle loop pool.

Angle/CP trends under phase-denominator refinement. Finally, we can sweep the
phase denominator denom = 2p and record the induced mean angles (s12, s23, s13) and mean |J |
on the nontrivial holonomy subset (3/4 cycles), together with the log mismatch to Jgeo. Table 41
reports this diagnostic sweep.

A bounded-denominator PMNS fit (finite diagnostic). As an illustrative closure-style
diagnostic, we can select denom = 2p to fit representative PMNS sines (s12, s23, s13) using
the same 3/4-cycle aggregated mean angles. Table 42 reports the candidate sweep and the
minimax/sum objectives.

Permutation-robust fits (global relabeling search). The mapping from an effective 3×3
unitary matrix to PDG angles depends on how row/column indices are identified with fla-
vor/mass labels. As a bounded-complexity diagnostic, we therefore allow a global relabeling by
a pair of permutations in S3 × S3 and select the best pair for each denominator by the same
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k loops 1 2 2 × 2 3 4 other

1 49 24 19 1 3 2 0
2 36 10 17 1 3 5 0
3 25 7 10 1 6 1 0
4 16 2 9 2 2 1 0
5 9 1 3 0 5 0 0
6 4 0 2 0 0 2 0
7 1 0 0 0 0 1 0

Table 33: Cycle-type counts of S4 holonomy permutations for k × k square loops on the n = 3
grid. Rows are generated by scripts/exp_holonomy_loop_scale_sweep.py.

k 3/4 loops mean angle [deg] min [deg] max [deg]

1 5 108.000 90.000 120.000
2 8 101.250 90.000 120.000
3 7 115.714 90.000 120.000
4 3 110.000 90.000 120.000
5 5 120.000 120.000 120.000
6 2 90.000 90.000 90.000
7 1 90.000 90.000 90.000

Table 34: Loop-scale sweep of rotation angles in the sign-twisted standard SO(3) ⊂
SU(3) representation bridge, restricted to 3/4-cycle holonomies. Rows are generated by
scripts/exp_holonomy_loop_scale_su3_angle_sweep.py.

minimax objective on (s12, s23, s13). Tables 43 and 44 report the resulting denominator sweeps
for PMNS- and CKM-style target sines.

Phase-map family sweep (low-complexity index transforms). The phase lift attaches
a discrete phase to each microstate index. To bound look-elsewhere freedom, we restrict to a
small explicit family of low-complexity bit transforms τ (identity, Gray map, bit reversal, and
complement) and rerun the bounded-denominator fits. Tables 45 and 46 report, for each map
in a fixed small family, the best (denom, σr, σc) under the same objective, together with the log
mismatch of the resulting mean |J | (3/4 cycles) to Jgeo.

S.2 A soft transport variant (temperature-like smoothing)

The strict minimum-cost matching rule produces a discrete S4 transport on edges. As an
optional robustness diagnostic, one can form a soft transport matrix from the full 4 × 4 cost
matrix between padded fibers, weighted by a temperature-like parameter β via exp(−β cost),
and then deterministically orthonormalize columns to obtain a unitary edge transport. Sweeping
β interpolates between a highly mixed transport (β → 0) and a sharp near-minimum transport
(large β). Tables 47 and 48 report permutation-robust fits to PMNS- and CKM-style target
sines under this soft transport, together with the mean |J | on the resulting effective holonomies.

T Protocol EFT embedding (supplement)
This appendix collects a concrete local field-theoretic embedding whose purpose is consistency
and translation to standard continuum language. The finite folding and labeling results of the
paper remain theorem-level statements in finite readout language; the present section is an
interface/matching supplement.
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k 3/4 loops mean W min W max W mean 1 − W

1 5 0.318352 0.168535 0.428145 0.681648
2 8 0.182942 -0.00151624 0.428145 0.817058
3 7 0.186643 0 0.377409 0.813357
4 3 0.117196 -0.0883019 0.441406 0.882804
5 5 0.399583 0 0.642398 0.600417
6 2 0.102449 -0.0017954 0.206693 0.897551
7 1 -0.00151624 -0.00151624 -0.00151624 1.00152

Table 35: Loop-scale Wilson-loop style diagnostics W = ℜ(tr(Q))/3 from phase-lifted
effective holonomies, restricted to 3/4-cycle loops [42, 43]. Rows are generated by
scripts/exp_holonomy_wilson_loop_sweep.py.

target map denom k (x, y) cycle best (σr, σc) s12 s23 s13 |J | E∞ E1 E
(2)
∞ ∆

PMNS gray 64 4 (1,0) 2 (0, 1, 2)/(2, 0, 1) 0.6159 0.8334 0.164866 1.12757e-17 0.121 0.337 0.121 0.000
CKM gray 512 3 (3,0) 2 (1, 0, 2)/(1, 0, 2) 0.1137 0.0804 0.00457281 1.79584e-19 0.679 1.473 0.706 0.027

Table 36: Best single-loop fits to PMNS/CKM target sines under a bounded scan over k × k
loops (k ≤ 7), phase denominators denom = 2p (6 ≤ p ≤ 18), and global relabelings in S3 × S3.
Rows are generated by scripts/exp_holonomy_single_loop_bestfit.py.

T.1 A minimal effective field theory embedding (protocol EFT)

This subsection records a concrete field-theoretic embedding whose purpose is consistency, not
a full derivation from the folding layer. It answers a minimal technical question: given the
three-channel stable-sector template and the closed labeling of Section 9, what is a well-defined
local action whose gauge structure is SU(3)×SU(2)×U(1), whose matter content matches the
18 cyclic labels, and for which anomaly cancellation holds in the standard sense?

Fields. Let {ψf}f∈FSM denote the 18 left-handed Weyl fermion multiplets in one-to-one cor-
respondence with the cyclic labels of Theorem 9.17, with quantum numbers (SU(3), SU(2))Y

as recorded in Table 15. Let Gµ = GA
µT

A be an SU(3) gauge field, Wµ = W a
µτ

a an SU(2)
gauge field, and Bµ a U(1) gauge field. Optionally (to form the usual renormalizable SM EFT),
include a complex scalar Higgs doublet H with (SU(3), SU(2))Y = (1, 2)1/2. In the present
paper, this Higgs field is included only at the level of a standard EFT completion (Remark 9.1);
it is not asserted to correspond to a distinct stable type at the minimal window length. The
corresponding protocol-level scalar-sector closure (scalar observables by coarse graining/uplift
and an EFT coupling dictionary) is recorded in Proposition 8.12.

Gauge-invariant action. With standard normalizations [1,2,48], define the local Lagrangian
density

Lprot-EFT = −1
4G

A
µνG

A µν − 1
4W

a
µνW

a µν − 1
4BµνB

µν

+
∑

f∈FSM

ψ†
f iσ̄µDµψf

+ (DµH)†(DµH)− V (H) + LYuk(H,ψ) , (29)

where the covariant derivative is

Dµ = ∂µ − ig3G
A
µT

A − ig2W
a
µτ

a − ig1 Y Bµ, (30)
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target |Θ| map denom loop 1 loop 2 best (σr, σc) s12 s23 s13 |J | E∞ E1 E
(2)
∞ ∆

PMNS 7195968 gray 256 (7,0,0,4,-) (2,5,4,4,+) (2,1,0)/(2,1,0) 0.5512 0.7422 0.149208 0.0262604 0.011 0.021 0.011 0.000
CKM 7195968 id 512 (6,0,1,4,-) (4,2,3,3,+) (1,2,0)/(2,1,0) 0.3490 0.0353 0.00287544 3.21877e-05 0.442 0.934 0.442 0.000

Table 37: Best two-loop chain fits to PMNS/CKM target sines under a bounded scan
over a finite family: (i) choose two square loops whose underlying S4 holonomy is a 3/4-
cycle, allowing inverses; (ii) choose a phase map (id/gray/bitrev/not) and denominator
denom = 2p (6 ≤ p ≤ 18); (iii) choose a global relabeling in S3 × S3. Rows are generated
by scripts/exp_holonomy_two_loop_chain_bestfit.py.

target |Θ| map denom loop 1 loop 2 best (σr, σc) s12 s23 s13 |J | E∞ E1 E
(2)
∞ ∆

PMNS 7962624 gray 256 (7,0,0,4,-) (2,5,4,4,+) (2,1,0)/(2,1,0) 0.5512 0.7422 0.149208 0.0262604 0.011 0.021 0.011 0.000
CKM 7962624 gray 512 (1,3,4,2,+) (2,3,5,3,+) (2,1,0)/(1,2,0) 0.2776 0.0374 0.00445891 3.40912e-05 0.213 0.459 0.213 0.000

Table 38: Best two-loop chain fits to PMNS/CKM target sines under a bounded scan over
mixed-cycle square loops (cycle types in {2,2x2,3,4}), with a restricted phase family (map
{id,gray}, denom ∈ {256, 512, 1024}) and a global relabeling in S3 × S3. Rows are generated
by scripts/exp_holonomy_two_loop_chain_mixed_cycles_bestfit.py.

with TA and τa the generators in the representation appropriate to the field and Y its hyper-
charge. The Yukawa sector LYuk is included only if one wishes to match the renormalizable
Standard Model EFT; its detailed structure is not needed for the finite folding claims of this
paper.

Equations of motion (standard). Varying (29) yields the standard gauge and matter field
equations [1, 2, 48]. For the non-abelian sectors one obtains the Yang–Mills equations with
currents determined by the chiral matter and (optionally) the Higgs field,

(DµGµν)A = g3 J
A
ν , (DµWµν)a = g2 J

a
ν , (31)

while the abelian hypercharge sector satisfies

∂µBµν = g1 J
Y
ν . (32)

The fermions obey the chiral Dirac equations iσ̄µDµψf = ∂LYuk/∂ψ
†
f , and, when included, the

Higgs satisfies a covariant Klein–Gordon equation DµDµH+∂V/∂H† = −∂LYuk/∂H
†. Thus the

protocol EFT provides an explicit dynamical embedding in standard field-theory language; the
folding layer enters only through the finite stable-sector selection and labeling that determine
which degrees of freedom are retained at the anchor.

Electroweak symmetry breaking and the Higgs mode (standard). If one chooses the
usual Mexican-hat potential V (H) = −µ2H†H + λ(H†H)2 with µ2 > 0 and λ > 0, then the
vacuum selects ⟨H⟩ ≠ 0 and breaks SU(2)× U(1) to U(1)em. In unitary gauge one may write

H(x) = 1√
2

(
0

v + h(x)

)
,

so that three would-be Goldstone modes are absorbed as the longitudinal polarizations of W±

and Z, while h is the physical spin-0 Higgs excitation. This standard mechanism supplies gauge-
boson masses through (DµH)†(DµH) and fermion masses through LYuk, but it is not used as a
premise for any of the finite-resolution folding or labeling statements in this paper.
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k loops 3/4 loops best (σr, σc) s12 s23 s13 E∞ E1 mean |J |

1 49 5 (1, 2, 0)/(2, 0, 1) 0.5890 0.7457 0.3389 0.831 0.902 0.0470847
2 36 8 (1, 2, 0)/(2, 0, 1) 0.5673 0.7137 0.3252 0.790 0.847 0.0350064
3 25 7 (1, 0, 2)/(2, 0, 1) 0.4841 0.7469 0.3028 0.718 0.865 0.0304645
4 16 3 (2, 1, 0)/(1, 2, 0) 0.6599 0.7382 0.2988 0.705 0.880 0.0172157
5 9 5 (2, 1, 0)/(2, 1, 0) 0.5003 0.7064 0.4070 1.014 1.160 0.0154748
6 4 2 (0, 1, 2)/(1, 0, 2) 0.5569 0.9274 0.1825 0.228 0.445 0.0281961
7 1 1 (2, 1, 0)/(1, 2, 0) 0.3556 0.8503 0.1623 0.443 0.679 0.0200472

Table 39: Permutation-robust fit to PMNS target sines for k × k square
holonomies (finite diagnostic), restricted to 3/4-cycle loops. Rows are generated by
scripts/exp_holonomy_loop_scale_sweep.py.

k loops 3/4 loops best (σr, σc) s12 s23 s13 E∞ E1 mean |J |

1 49 5 (1, 0, 2)/(2, 0, 1) 0.5890 0.6378 0.3389 4.455 8.136 0.0470847
2 36 8 (1, 0, 2)/(2, 0, 1) 0.5673 0.6476 0.3252 4.413 8.072 0.0350064
3 25 7 (1, 2, 0)/(2, 0, 1) 0.4841 0.6172 0.3028 4.342 7.794 0.0304645
4 16 3 (2, 0, 1)/(1, 2, 0) 0.6599 0.6368 0.2988 4.329 8.122 0.0172157
5 9 5 (2, 0, 1)/(2, 1, 0) 0.5003 0.6676 0.4070 4.638 8.201 0.0154748
6 4 2 (0, 2, 1)/(1, 0, 2) 0.5569 0.3740 0.1825 3.836 6.927 0.0281961
7 1 1 (2, 0, 1)/(1, 2, 0) 0.3556 0.5264 0.1623 3.718 6.703 0.0200472

Table 40: Permutation-robust fit to CKM target sines for k × k square
holonomies (finite diagnostic), restricted to 3/4-cycle loops. Rows are generated by
scripts/exp_holonomy_loop_scale_sweep.py.

Where the φ–π–e channels enter. The folding layer provides three commuting defect pred-
icates/operators at finite window length (Section 4). In this EFT embedding, the three channels
enter as protocol constraints that restrict which local readout modes are treated as light degrees
of freedom:

• the φ-channel selects admissible words (no adjacent ones), yielding a stable subspace of
dimension |Xm| = Fm+2 at window length m (Lemma 4.5);

• the π-channel further splits the stable space into cyclic/boundary sectors, with |Xcyc
m | ⊕

|Xbdry
m | given by Proposition 4.8;

• the e-channel records the standard analytic normalization of the golden-mean shift via its
Artin–Mazur zeta function (Lemma 4.10 and Lemma 4.11).

Operationally, one may view (29) as the low-energy EFT after this selection: the fields ψf

represent the cyclic stable labels, and the three boundary labels select the three gauge-factor
classes (Section 9). This does not yet constitute a derivation of the SM gauge group from the
finite combinatorics; it is an explicit consistent embedding compatible with the interface axioms.

Anomaly cancellation. Because the gauge sector is chiral, the EFT is consistent only if
gauge and mixed anomalies cancel. For the Standard Model hypercharge assignments under
Q = T3 + Y , the anomaly sums vanish per generation [1, 2, 56]. In our labeling closure, adding
νR with Y = 0 does not affect these sums (Proposition 9.6), so (29) is anomaly-free with the
stated matter content.

Remark T.1 (Status). The purpose of the protocol EFT is to make the “compensating connec-
tions” claim mathematically precise at the level of a local gauge-invariant action with the correct

130



denom p mean s12 (3/4) mean s23 (3/4) mean s13 (3/4) mean |J | (3/4) log(mean/Jgeo) | · |

64 6 0.6836 0.8197 0.4799 0.0470847 +7.355 7.355
128 7 0.6934 0.7867 0.4642 0.034465 +7.043 7.043
256 8 0.7156 0.8792 0.4045 0.0221376 +6.601 6.601
512 9 0.7186 0.8895 0.3655 0.010419 +5.847 5.847

1024 10 0.7194 0.8916 0.3463 0.00511243 +5.135 5.135
2048 11 0.7196 0.8921 0.3366 0.00254376 +4.437 4.437
4096 12 0.7196 0.8922 0.3316 0.00127032 +3.743 3.743
8192 13 0.7196 0.8923 0.3291 0.000634963 +3.049 3.049

16384 14 0.7196 0.8923 0.3279 0.000317457 +2.356 2.356
32768 15 0.7196 0.8923 0.3272 0.000158725 +1.663 1.663
65536 16 0.7196 0.8923 0.3269 7.93623e-05 +0.970 0.970

131072 17 0.7196 0.8923 0.3268 3.96811e-05 +0.276 0.276
262144 18 0.7196 0.8923 0.3267 1.98406e-05 -0.417 0.417

Table 41: Phase-denominator sweep for mean extracted angles and mean |J | on 3/4-cycle pla-
quettes at n = 3 (finite diagnostic), together with the log mismatch to Jgeo. Rows are generated
by scripts/exp_holonomy_phase_lift_angles_denom_sweep.py.

denom p s12 (3/4) s23 (3/4) s13 (3/4) E∞ E1

64 6 0.6836 0.8197 0.4799 1.179 1.493
128 7 0.6934 0.7867 0.4642 1.146 1.433
256 8 0.7156 0.8792 0.4045 1.008 1.438
512 9 0.7186 0.8895 0.3655 0.906 1.353

1024 10 0.7194 0.8916 0.3463 0.853 1.302
2048 11 0.7196 0.8921 0.3366 0.824 1.275
4096 12 0.7196 0.8922 0.3316 0.809 1.260
8192 13 0.7196 0.8923 0.3291 0.802 1.253

16384 14 0.7196 0.8923 0.3279 0.798 1.249
32768 15 0.7196 0.8923 0.3272 0.796 1.247
65536 16 0.7196 0.8923 0.3269 0.795 1.246

131072 17 0.7196 0.8923 0.3268 0.794 1.245
262144 18 0.7196 0.8923 0.3267 0.794 1.245

best/second p = 18/17 − − − 0.794/0.794 ∆ = 0.000

Table 42: Bounded-denominator fit to representative PMNS mixing sines using the
phase-lifted holonomy angle extraction (finite diagnostic). Rows are generated by
scripts/exp_holonomy_phase_lift_pmns_denom_fit.py.

group structure and anomaly constraints. Within the stated interface rules (three compensa-
tion classes, dimension-as-complexity for gauge factors, and the auditable ordering closure), the
gauge-factor assignment and the chiral representation content are uniquely fixed at the minimal
anchor: the Lie-algebra factor dimensions (1, 3, 8) pin the compact factors to u(1)⊕su(2)⊕su(3)
(Lemma 9.4), and the matter multiplet assignment is the unique closed labeling map (Theo-
rem 9.17). Accordingly, (29) is recorded here as a closed EFT embedding consistent with those
uniquely fixed interface identifications and with standard anomaly constraints.

U Interface isomorphisms: stable sectors, mismatch certifi-
cates, and active correction

This appendix records a shared protocol-level template in the HPA–Ω program: finite-resolution
scan–projection readout induces symbolic words and coarse observables; stability/consistency
constraints select a compressed visible sector; and sustained low-entropy structure requires either
passive compensation (connections enforcing consistency) or active correction (feedback control
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denom p best (σr, σc) s12 s23 s13 E∞ E1

64 6 (1, 2, 0)/(2, 0, 1) 0.5890 0.7457 0.3389 0.831 0.902
128 7 (1, 0, 2)/(2, 1, 0) 0.5263 0.7071 0.4583 1.133 1.227
256 8 (1, 2, 0)/(2, 0, 1) 0.5279 0.6661 0.2715 0.609 0.760
512 9 (1, 2, 0)/(2, 0, 1) 0.5273 0.6690 0.1979 0.293 0.441

1024 10 (1, 2, 0)/(2, 0, 1) 0.5271 0.6693 0.1752 0.171 0.319
2048 11 (1, 2, 0)/(2, 0, 1) 0.5270 0.6693 0.1688 0.134 0.282
4096 12 (1, 2, 0)/(2, 0, 1) 0.5270 0.6693 0.1672 0.124 0.273
8192 13 (1, 2, 0)/(2, 0, 1) 0.5270 0.6693 0.1668 0.122 0.270

16384 14 (1, 2, 0)/(2, 0, 1) 0.5270 0.6693 0.1667 0.121 0.269
32768 15 (1, 2, 0)/(2, 0, 1) 0.5270 0.6693 0.1667 0.121 0.269
65536 16 (1, 2, 0)/(2, 0, 1) 0.5270 0.6693 0.1667 0.121 0.269

131072 17 (1, 2, 0)/(2, 0, 1) 0.5270 0.6693 0.1667 0.121 0.269
262144 18 (1, 2, 0)/(2, 0, 1) 0.5270 0.6693 0.1667 0.121 0.269

best/second − − − − − 0.121/0.121 ∆ = 0.000

Table 43: Permutation-robust bounded-denominator fit to PMNS target sines using a global
S3×S3 relabeling. Rows are generated by scripts/exp_holonomy_phase_lift_perm_fit.py.

denom p best (σr, σc) s12 s23 s13 E∞ E1

64 6 (1, 0, 2)/(2, 0, 1) 0.5890 0.6378 0.3389 4.455 8.136
128 7 (1, 2, 0)/(2, 1, 0) 0.5263 0.6556 0.4583 4.756 8.352
256 8 (1, 0, 2)/(2, 0, 1) 0.5279 0.6576 0.2715 4.233 7.835
512 9 (1, 0, 2)/(2, 0, 1) 0.5273 0.6469 0.1979 3.916 7.501

1024 10 (1, 0, 2)/(2, 0, 1) 0.5271 0.6448 0.1752 3.795 7.375
2048 11 (1, 0, 2)/(2, 0, 1) 0.5270 0.6443 0.1688 3.758 7.338
4096 12 (1, 0, 2)/(2, 0, 1) 0.5270 0.6441 0.1672 3.748 7.328
8192 13 (1, 0, 2)/(2, 0, 1) 0.5270 0.6441 0.1668 3.746 7.325

16384 14 (1, 0, 2)/(2, 0, 1) 0.5270 0.6441 0.1667 3.745 7.325
32768 15 (1, 0, 2)/(2, 0, 1) 0.5270 0.6441 0.1667 3.745 7.324
65536 16 (1, 0, 2)/(2, 0, 1) 0.5270 0.6441 0.1667 3.745 7.324

131072 17 (1, 0, 2)/(2, 0, 1) 0.5270 0.6441 0.1667 3.745 7.324
262144 18 (1, 0, 2)/(2, 0, 1) 0.5270 0.6441 0.1667 3.745 7.324

best/second − − − − − 3.745/3.745 ∆ = 0.000

Table 44: Permutation-robust bounded-denominator fit to CKM target sines using a global
S3×S3 relabeling. Rows are generated by scripts/exp_holonomy_phase_lift_perm_fit.py.

reducing mismatch).

U.1 A shared interface template

We use the same auditable layering rule adopted in the main text: a mathematical layer (finite-
resolution definitions and computable statements) and a physical identification layer (interfaces
and falsifiable mapping hypotheses). Within the operational layer, a broad class of problems
can be organized by the following interface objects:

• Readout alphabet. A finite word alphabet Ωm = {0, 1}m (or a finite outcome set for a
POVM-like instrument) obtained by window projection [24].

• Stability/mismatch mechanism. Either (i) explicit stability predicates/defect func-
tions that select a stable subset Xm ⊂ Ωm, or (ii) computable mismatch certificates com-
paring finite readout statistics to an ideal reference (e.g. discrepancy-based certificates).

• Coarse-graining and degeneracy. Many-to-one maps from microstates to stable types
(or from microscopic configurations to discrete outputs) generate degeneracy distributions
that trade resolution for robustness.

132



map denom p best (σr, σc) s12 s23 s13 E∞ E1 log(mean|J |/Jgeo)

id 262144 18 (1, 2, 0)/(2, 0, 1) 0.5270 0.6693 0.1667 0.121 0.269 -0.417
gray 262144 18 (1, 2, 0)/(2, 0, 1) 0.5270 0.6693 0.1667 0.121 0.269 +0.013
bitrev 262144 18 (1, 2, 0)/(2, 0, 1) 0.5270 0.6693 0.1667 0.121 0.269 -0.245
not 262144 18 (1, 2, 0)/(2, 0, 1) 0.5270 0.6693 0.1667 0.121 0.269 -0.417

Table 45: Phase-map family sweep for the PMNS target sines. Rows are generated by
scripts/exp_holonomy_phase_lift_map_family_sweep.py.

map denom p best (σr, σc) s12 s23 s13 E∞ E1 log(mean|J |/Jgeo)

id 262144 18 (1, 0, 2)/(2, 0, 1) 0.5270 0.6441 0.1667 3.745 7.324 -0.417
gray 262144 18 (1, 0, 2)/(2, 0, 1) 0.5270 0.6441 0.1667 3.745 7.324 +0.013
bitrev 262144 18 (1, 0, 2)/(2, 0, 1) 0.5270 0.6441 0.1667 3.745 7.324 -0.245
not 262144 18 (1, 0, 2)/(2, 0, 1) 0.5270 0.6441 0.1667 3.745 7.324 -0.417

Table 46: Phase-map family sweep for the CKM target sines. Rows are generated by
scripts/exp_holonomy_phase_lift_map_family_sweep.py.

• Correction/compensation. Consistency can be enforced passively by compensating
connections (a protocol-geometric bookkeeping of local rephasing/transport) or actively
by feedback that reduces mismatch relative to a passive baseline.

• Audit closure under bounded complexity. Quantitative claims are framed as de-
terministic selections from finite candidate families under explicit complexity bounds, to-
gether with rigidity/stabilization diagnostics (cf. Definitions H.1–H.4).

The measurement-theoretic notion of coarse readout as a finite-outcome instrument is stan-
dard in quantum information [24]. The feedback-control viewpoint on active mismatch reduc-
tion is standard in control theory, and the physical cost of logically irreversible operations has
a canonical lower bound in the Landauer principle [14,15].

U.2 Isomorphism dictionary (stable sectors ↔ AEC)

Table 49 summarizes a protocol-level correspondence between (a) stable-sector constructions
in finite-resolution readout models and (b) predictive AEC mechanisms that suppress readout-
induced mismatch.

U.3 Transferable falsifiable problems

The interface dictionary yields cross-domain falsifiability questions that do not rely on post-hoc
freedom:

• Degeneracy–robustness link. Do observed many-to-one code degeneracies correlate
with reduced mismatch certificates under matched protocols, at the expected energetic
cost?

• Anti-locking selection. Under an operational tolerance δ, do inferred coupling ratios
exhibit an upward shift in Qδ relative to baselines that preserve sampling/noise structure?

• Thresholded sector growth. If effective window length changes with environment
or scale, do stable-type counts and splits change in constrained batches dictated by the
underlying grammar/stability channel?
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β plaquettes best (σr, σc) s12 s23 s13 E∞ E1 mean |J | failures

0 25 (0, 1, 2)/(0, 2, 1) 0.5151 0.7661 0.4074 1.015 1.125 0.0246486 64
0.25 25 (2, 0, 1)/(1, 2, 0) 0.6468 0.8308 0.4101 1.022 1.294 0.0351224 64
0.5 25 (2, 0, 1)/(2, 1, 0) 0.6458 0.8254 0.3966 0.988 1.253 0.0271959 64

1 25 (2, 0, 1)/(2, 1, 0) 0.6283 0.7472 0.4718 1.162 1.299 0.0372322 64
2 25 (0, 2, 1)/(0, 1, 2) 0.6554 0.6738 0.4933 1.206 1.466 0.0296337 64
4 15 (0, 1, 2)/(1, 0, 2) 0.6508 0.7486 0.4525 1.120 1.295 0.0267211 93

Table 47: Soft-transport β sweep with permutation-robust fit to PMNS target sines (robustness
diagnostic). Rows are generated by scripts/exp_holonomy_soft_transport_beta_sweep.py.

β plaquettes best (σr, σc) s12 s23 s13 E∞ E1 mean |J | failures

0 25 (0, 2, 1)/(0, 2, 1) 0.5151 0.5440 0.4074 4.639 8.026 0.0246486 64
0.25 25 (2, 1, 0)/(1, 2, 0) 0.6468 0.5017 0.4101 4.645 8.180 0.0351224 64
0.5 25 (2, 1, 0)/(2, 1, 0) 0.6458 0.4799 0.3966 4.612 8.100 0.0271959 64

1 25 (2, 1, 0)/(2, 1, 0) 0.6283 0.5826 0.4718 4.785 8.440 0.0372322 64
2 25 (0, 1, 2)/(0, 1, 2) 0.6554 0.6457 0.4933 4.830 8.630 0.0296337 64
4 15 (0, 2, 1)/(1, 0, 2) 0.6508 0.5703 0.4525 4.744 8.412 0.0267211 93

Table 48: Soft-transport β sweep with permutation-robust fit to CKM target sines (robustness
diagnostic). Rows are generated by scripts/exp_holonomy_soft_transport_beta_sweep.py.

• Cost slopes. Does maintenance power admit a lower-envelope slope consistent with a
computational temperature scale when regressed against a protocol-matched mismatch-
rate estimator?

V Functorial refinement under window uplift
This appendix records a minimal, auditable notion of functorial refinement of the field-level
labeling map under window uplift m 7→ m′.

Audit note (tables as deterministic checks). All tabulated refinement multiplicities and
refinement-index catalogs below are theorem-level consequences of the prefix-projection defi-
nition together with Zeckendorf admissibility. Scripts referenced in captions reproduce these
deterministic counts and write LATEX fragments; they do not introduce additional free choices
beyond the stated definitions.

V.1 Prefix projection and a functorial lift

For m ≥ 6, define the truncation (prefix) projection

πm→6 : Xm → X6, πm→6(w1 · · ·wm) := w1 · · ·w6.

Lemma V.1 (Well-definedness and surjectivity of πm→6). For every m ≥ 6, the map πm→6 is
well-defined and surjective.

Proof. If w ∈ Xm has no adjacent ones, then any prefix has no adjacent ones, hence πm→6(w) ∈
X6 and the map is well-defined. For surjectivity, given any u ∈ X6, the word u0 · · · 0 ∈ Xm

(padding with m− 6 zeros) satisfies πm→6(u0 · · · 0) = u.

Given the closed labeling map LSM : X6 → FSM ⊔ GSM (Section 9), we define its functorial
lift to window length m by composition:

Lm := LSM ◦ πm→6 : Xm → FSM ⊔ GSM.
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Interface object Stable-sector language AEC/biological language

finite readout alphabet window words w ∈ Ωm = {0, 1}m discretized outcomes from finite-
resolution sensors/thresholds

stability selection admissible/stable subset Xm ⊂
Ωm defined by protocol constraints

viable operating region of the
agent under implementation and
readout constraints

mismatch/defect quantifier defect predicates D(·) certifying
protocol inconsistency

discrepancy/mismatch certificates
D∗

N , EN certifying readout bias ac-
cumulation

coarse graining many-to-one folding Ωm ↠ Xm

with degeneracy
many-to-one coding (e.g. genetic
degeneracy) increasing robustness
under readout noise

consistency enforcement compensating connections
(protocol-local bookkeeping of
transport/rephasing)

feedback control and repair redi-
recting dissipation into waste
channels

resource accounting implementation cost as an audit
constraint (bounded-complexity
closure)

Landauer-scale and architecture-
dependent costs bounding sustain-
able correction

observable signatures rigid finite counts/histograms and
thresholded spectrum changes

statistical biases/scaling laws in
Qδ, EN , Σ under matched proto-
cols

Table 49: A protocol-level isomorphism dictionary: stable-sector constructions and predictive
AEC can be viewed as two realizations of the same interface template (finite readout, mis-
match/stability, correction, and bounded-complexity audit).

This definition makes the refinement under successive truncations explicit: for m ≥ k ≥ 6, one
has πm→6 = πk→6 ◦ πm→k, hence Lm = Lk ◦ πm→k.

V.2 Deterministic refinement multiplicities

Although Lm uses only the first six digits to assign an SM label, each base type in X6 admits
multiple higher-window extensions in Xm. This yields a computable refinement multiplicity per
base label.

Proposition V.2 (Extension counts depend only on the last bit). Fix m ≥ 6 and u = u1 · · ·u6 ∈
X6. Let

Extm(u) := {w ∈ Xm : πm→6(w) = u}.

Then |Extm(u)| depends only on u6:

|Extm(u)| =
{
Fm−4, u6 = 0,
Fm−5, u6 = 1,

where (Fk) are Fibonacci numbers with F1 = F2 = 1.

Proof. Let L := m − 6 be the extension length. If u6 = 1, the next bit must be 0, and the
remaining L − 1 bits form an admissible word in XL−1, so |Extm(u)| = |XL−1| = F(L−1)+2 =
Fm−5 by Lemma 4.5. If u6 = 0, there is no forced initial 0 and the L extension bits form an
admissible word in XL, so |Extm(u)| = |XL| = FL+2 = Fm−4.
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base type u ∈ X6 label LSM(u) u6 |Ext8(u)| |Ext10(u)| |Ext12(u)| |Ext14(u)| |Ext16(u)|

000000 ν
(1)
R 0 3 8 21 55 144

100000 L
(1)
L 0 3 8 21 55 144

010000 e
(1)
R 0 3 8 21 55 144

001000 Q
(1)
L 0 3 8 21 55 144

101000 d
(1)
R 0 3 8 21 55 144

000100 u
(1)
R 0 3 8 21 55 144

100100 ν
(2)
R 0 3 8 21 55 144

010100 e
(2)
R 0 3 8 21 55 144

000010 u
(2)
R 0 3 8 21 55 144

100010 L
(2)
L 0 3 8 21 55 144

010010 Q
(2)
L 0 3 8 21 55 144

001010 ν
(3)
R 0 3 8 21 55 144

101010 L
(3)
L 0 3 8 21 55 144

000001 d
(2)
R 1 2 5 13 34 89

100001 U(1) 1 2 5 13 34 89
010001 e

(3)
R 1 2 5 13 34 89

001001 Q
(3)
L 1 2 5 13 34 89

101001 SU(2) 1 2 5 13 34 89
000101 d

(3)
R 1 2 5 13 34 89

100101 SU(3) 1 2 5 13 34 89
010101 u

(3)
R 1 2 5 13 34 89

Table 50: Functorial refinement multiplicities under the prefix lift Lm = LSM ◦ πm→6. Proposi-
tion V.2 predicts that each base type has 2 or 3 lifts at m = 8, 5 or 8 lifts at m = 10, 13 or 21
lifts at m = 12, 34 or 55 lifts at m = 14, and 89 or 144 lifts at m = 16, depending only on the
last bit u6. Rows are generated by scripts/exp_labeling_lift_consistency.py.

V.3 A canonical suffix index for lift refinement

The lift multiplicities in Table 50 depend only on the adjacency constraint between the prefix last
bit u6 and the first extension bit. To obtain a concrete refinement of the coarse lift Lm (beyond
counting multiplicities), it is useful to attach a deterministic index to each lift in Extm(u).

Definition V.3 (Free suffix index). Fix m ≥ 6 and a base type u ∈ X6. Write any lift w ∈
Extm(u) as w = u s, where s is the length-(m − 6) suffix. If u6 = 0, define the free suffix to
be t := s. If u6 = 1, admissibility forces s to begin with 0, and we define the free suffix to be
t := s2 · · · sm−6 (drop the forced leading 0). Define the free suffix index

ρ(w) := VZ(t),

where VZ is the Zeckendorf/Fibonacci value computed from the binary word t using the standard
Fibonacci weights (starting at F2 = 1).

At fixed (m,u6), the possible free suffixes form an admissible set and the index ρ enumerates
them deterministically. Table 51 records the explicit suffix catalog for the balanced-coupling
uplifts m = 8 and m = 10.
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m u6 full suffix s free suffix t ρ last bit sm−6

8 0 00 00 0 0
8 0 10 10 1 0
8 0 01 01 2 1
8 1 00 0 0 0
8 1 01 1 1 1

10 0 0000 0000 0 0
10 0 1000 1000 1 0
10 0 0100 0100 2 0
10 0 0010 0010 3 0
10 0 1010 1010 4 0
10 0 0001 0001 5 1
10 0 1001 1001 6 1
10 0 0101 0101 7 1
10 1 0000 000 0 0
10 1 0100 100 1 0
10 1 0010 010 2 0
10 1 0001 001 3 1
10 1 0101 101 4 1

Table 51: Canonical suffix catalog for the free suffix index ρ in Definition V.3 at m ∈ {8, 10}.
Rows are generated by scripts/exp_labeling_lift_refinement_indices.py.

V.4 Boundary subsets under the π-channel wrap-around defect

The π-channel boundary predicate on Xm is w1 = wm = 1. Since w1 = u1 is fixed by the base
type, the boundary subset within Extm(u) is determined by whether the last suffix bit equals 1.
Table 52 records the boundary-lift subsets in the ρ index language for m = 8 and m = 10.

base type u label LSM(u) u1 u6 boundary ρ at m = 8 boundary ρ at m = 10

000000 ν
(1)
R 0 0 ∅ ∅

100000 L
(1)
L 1 0 {2} {5, 6, 7}

010000 e
(1)
R 0 0 ∅ ∅

001000 Q
(1)
L 0 0 ∅ ∅

101000 d
(1)
R 1 0 {2} {5, 6, 7}

000100 u
(1)
R 0 0 ∅ ∅

100100 ν
(2)
R 1 0 {2} {5, 6, 7}

010100 e
(2)
R 0 0 ∅ ∅

000010 u
(2)
R 0 0 ∅ ∅

100010 L
(2)
L 1 0 {2} {5, 6, 7}

010010 Q
(2)
L 0 0 ∅ ∅

001010 ν
(3)
R 0 0 ∅ ∅

101010 L
(3)
L 1 0 {2} {5, 6, 7}

000001 d
(2)
R 0 1 ∅ ∅

100001 U(1) 1 1 {1} {3, 4}
010001 e

(3)
R 0 1 ∅ ∅

001001 Q
(3)
L 0 1 ∅ ∅

101001 SU(2) 1 1 {1} {3, 4}
000101 d

(3)
R 0 1 ∅ ∅

100101 SU(3) 1 1 {1} {3, 4}
010101 u

(3)
R 0 1 ∅ ∅

Table 52: Boundary-lift subsets expressed in the free suffix index ρ (Definition V.3) un-
der the π-channel wrap-around defect predicate w1 = wm = 1. Rows are generated by
scripts/exp_labeling_lift_refinement_indices.py.
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V.5 Audit: contiguity and Fibonacci boundary blocks

For completeness, Table 53 records a compact audit of the free suffix index. The audit is per-
formed at m ∈ {8, 10, 12, 14, 16}. The index enumerates the admissible free suffixes contiguously
and the “ends in 1” subset occupies the top Fibonacci block of indices.

m u6 free length ℓ |Θ| ρ range boundary ρ block status

8 0 2 3 0 . . . 2 {2} PASS
8 1 1 2 0 . . . 1 {1} PASS

10 0 4 8 0 . . . 7 {5, . . . , 7} PASS
10 1 3 5 0 . . . 4 {3, . . . , 4} PASS
12 0 6 21 0 . . . 20 {13, . . . , 20} PASS
12 1 5 13 0 . . . 12 {8, . . . , 12} PASS
14 0 8 55 0 . . . 54 {34, . . . , 54} PASS
14 1 7 34 0 . . . 33 {21, . . . , 33} PASS
16 0 10 144 0 . . . 143 {89, . . . , 143} PASS
16 1 9 89 0 . . . 88 {55, . . . , 88} PASS

Table 53: Audit checks for the free suffix index ρ (Definition V.3) at
m ∈ {8, 10, 12, 14, 16} and both cases u6 ∈ {0, 1}. Rows are generated by
scripts/exp_audit_label_lift_refinement.py.

V.6 High-m invariants inside lift fibers

Beyond the purely combinatorial lift multiplicities and the suffix index ρ, the window length m
provides additional intrinsic invariants on Xm. As a minimal refinement diagnostic, Table 54
summarizes two such invariants inside each prefix fiber Extm(u): (i) the Foldm degeneracy
gm(w) = |Fold−1

m (w)| over N ∈ {0, . . . , 2m − 1}, and (ii) the π-channel cyclic/boundary split on
Xm.

Table 54: Intrinsic invariant summaries inside lift fibers at m ∈
{8, 10, 12, 14, 16}. The g histogram reports the Foldm degeneracy counts
within Extm(u), while the Vm range reports the minimum and max-
imum Zeckendorf values among the lifts. Rows are generated by
scripts/exp_labeling_lift_highm_invariants.py.

m base type u label |Extm(u)| cyc bdry gmin gmax g histogram Vm range

8 000000 ν
(1)
R 3 3 0 3 6 3:1, 6:2 0..34

8 100000 L
(1)
L 3 2 1 3 6 3:1, 6:2 1..35

8 010000 e
(1)
R 3 3 0 3 6 3:1, 5:1, 6:1 2..36

8 001000 Q
(1)
L 3 3 0 3 6 3:1, 5:1, 6:1 3..37

8 101000 d
(1)
R 3 2 1 3 6 3:1, 5:1, 6:1 4..38

8 000100 u
(1)
R 3 3 0 3 6 3:1, 5:1, 6:1 5..39

8 100100 ν
(2)
R 3 2 1 3 6 3:1, 5:1, 6:1 6..40

8 010100 e
(2)
R 3 3 0 3 6 3:1, 5:1, 6:1 7..41

8 000010 u
(2)
R 3 3 0 3 6 3:1, 5:1, 6:1 8..42

8 100010 L
(2)
L 3 2 1 3 6 3:1, 5:1, 6:1 9..43

8 010010 Q
(2)
L 3 3 0 3 6 3:1, 5:1, 6:1 10..44

8 001010 ν
(3)
R 3 3 0 3 6 3:1, 5:1, 6:1 11..45

8 101010 L
(3)
L 3 2 1 3 6 3:1, 5:1, 6:1 12..46

8 000001 d
(2)
R 2 2 0 3 6 3:1, 6:1 13..47

8 100001 U(1) 2 1 1 3 6 3:1, 6:1 14..48

8 010001 e
(3)
R 2 2 0 3 6 3:1, 6:1 15..49

8 001001 Q
(3)
L 2 2 0 3 6 3:1, 6:1 16..50

8 101001 SU(2) 2 1 1 3 6 3:1, 6:1 17..51

8 000101 d
(3)
R 2 2 0 3 6 3:1, 6:1 18..52
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m base type u label |Extm(u)| cyc bdry gmin gmax g histogram Vm range

8 100101 SU(3) 2 1 1 3 6 3:1, 6:1 19..53

8 010101 u
(3)
R 2 2 0 3 6 3:1, 6:1 20..54

10 000000 ν
(1)
R 8 8 0 5 9 5:3, 8:2, 9:3 0..123

10 100000 L
(1)
L 8 5 3 5 9 5:3, 8:2, 9:3 1..124

10 010000 e
(1)
R 8 8 0 5 9 5:3, 8:2, 9:3 2..125

10 001000 Q
(1)
L 8 8 0 5 9 5:3, 8:3, 9:2 3..126

10 101000 d
(1)
R 8 5 3 5 9 5:3, 8:3, 9:2 4..127

10 000100 u
(1)
R 8 8 0 5 9 5:3, 8:3, 9:2 5..128

10 100100 ν
(2)
R 8 5 3 5 9 5:3, 8:3, 9:2 6..129

10 010100 e
(2)
R 8 8 0 5 9 5:3, 8:3, 9:2 7..130

10 000010 u
(2)
R 8 8 0 5 9 5:3, 8:3, 9:2 8..131

10 100010 L
(2)
L 8 5 3 5 9 5:3, 8:3, 9:2 9..132

10 010010 Q
(2)
L 8 8 0 5 9 5:3, 8:3, 9:2 10..133

10 001010 ν
(3)
R 8 8 0 5 9 5:3, 8:3, 9:2 11..134

10 101010 L
(3)
L 8 5 3 5 9 5:3, 8:3, 9:2 12..135

10 000001 d
(2)
R 5 5 0 5 9 5:2, 8:2, 9:1 13..136

10 100001 U(1) 5 3 2 5 9 5:2, 8:2, 9:1 14..137

10 010001 e
(3)
R 5 5 0 5 9 5:2, 8:2, 9:1 15..138

10 001001 Q
(3)
L 5 5 0 5 9 5:2, 8:2, 9:1 16..139

10 101001 SU(2) 5 3 2 5 9 5:2, 8:2, 9:1 17..140

10 000101 d
(3)
R 5 5 0 5 9 5:2, 8:2, 9:1 18..141

10 100101 SU(3) 5 3 2 5 9 5:2, 8:2, 9:1 19..142

10 010101 u
(3)
R 5 5 0 5 9 5:2, 8:2, 9:1 20..143

12 000000 ν
(1)
R 21 21 0 8 13 8:8, 12:4, 13:9 0..356

12 100000 L
(1)
L 21 13 8 8 13 8:8, 12:4, 13:9 1..357

12 010000 e
(1)
R 21 21 0 8 13 8:8, 12:4, 13:9 2..358

12 001000 Q
(1)
L 21 21 0 8 13 8:8, 12:4, 13:9 3..359

12 101000 d
(1)
R 21 13 8 8 13 8:8, 12:5, 13:8 4..360

12 000100 u
(1)
R 21 21 0 8 13 8:8, 12:5, 13:8 5..361

12 100100 ν
(2)
R 21 13 8 8 13 8:8, 12:5, 13:8 6..362

12 010100 e
(2)
R 21 21 0 8 13 8:8, 12:5, 13:8 7..363

12 000010 u
(2)
R 21 21 0 8 13 8:8, 12:5, 13:8 8..364

12 100010 L
(2)
L 21 13 8 8 13 8:8, 12:5, 13:8 9..365

12 010010 Q
(2)
L 21 21 0 8 13 8:8, 12:5, 13:8 10..366

12 001010 ν
(3)
R 21 21 0 8 13 8:8, 12:5, 13:8 11..367

12 101010 L
(3)
L 21 13 8 8 13 8:8, 12:5, 13:8 12..368

12 000001 d
(2)
R 13 13 0 8 13 8:5, 12:3, 13:5 13..369

12 100001 U(1) 13 8 5 8 13 8:5, 12:3, 13:5 14..370

12 010001 e
(3)
R 13 13 0 8 13 8:5, 12:3, 13:5 15..371

12 001001 Q
(3)
L 13 13 0 8 13 8:5, 12:3, 13:5 16..372

12 101001 SU(2) 13 8 5 8 13 8:5, 12:3, 13:5 17..373

12 000101 d
(3)
R 13 13 0 8 13 8:5, 12:3, 13:5 18..374

12 100101 SU(3) 13 8 5 8 13 8:5, 12:3, 13:5 19..375

12 010101 u
(3)
R 13 13 0 8 13 8:5, 12:3, 13:5 20..376

14 000000 ν
(1)
R 55 55 0 12 20 12:21, 19:18, 20:16 0..966

14 100000 L
(1)
L 55 34 21 12 20 12:21, 19:18, 20:16 1..967

14 010000 e
(1)
R 55 55 0 12 20 12:21, 19:18, 20:16 2..968

14 001000 Q
(1)
L 55 55 0 12 20 12:21, 19:19, 20:15 3..969

14 101000 d
(1)
R 55 34 21 12 20 12:21, 19:19, 20:15 4..970

14 000100 u
(1)
R 55 55 0 12 20 12:21, 19:19, 20:15 5..971

14 100100 ν
(2)
R 55 34 21 12 20 12:21, 19:19, 20:15 6..972

14 010100 e
(2)
R 55 55 0 12 20 12:21, 19:19, 20:15 7..973

14 000010 u
(2)
R 55 55 0 12 20 12:21, 19:19, 20:15 8..974

14 100010 L
(2)
L 55 34 21 12 20 12:21, 19:19, 20:15 9..975

14 010010 Q
(2)
L 55 55 0 12 20 12:21, 19:19, 20:15 10..976

14 001010 ν
(3)
R 55 55 0 12 20 12:21, 19:19, 20:15 11..977

14 101010 L
(3)
L 55 34 21 12 20 12:21, 19:19, 20:15 12..978
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m base type u label |Extm(u)| cyc bdry gmin gmax g histogram Vm range

14 000001 d
(2)
R 34 34 0 12 20 12:13, 19:12, 20:9 13..979

14 100001 U(1) 34 21 13 12 20 12:13, 19:12, 20:9 14..980

14 010001 e
(3)
R 34 34 0 12 20 12:13, 19:12, 20:9 15..981

14 001001 Q
(3)
L 34 34 0 12 20 12:13, 19:12, 20:9 16..982

14 101001 SU(2) 34 21 13 12 20 12:13, 19:12, 20:9 17..983

14 000101 d
(3)
R 34 34 0 12 20 12:13, 19:12, 20:9 18..984

14 100101 SU(3) 34 21 13 12 20 12:13, 19:12, 20:9 19..985

14 010101 u
(3)
R 34 34 0 12 20 12:13, 19:12, 20:9 20..986

16 000000 ν
(1)
R 144 144 0 18 30 18:55, 29:7, 30:82 0..2563

16 100000 L
(1)
L 144 89 55 18 30 18:55, 29:7, 30:82 1..2564

16 010000 e
(1)
R 144 144 0 18 30 18:55, 29:7, 30:82 2..2565

16 001000 Q
(1)
L 144 144 0 18 30 18:55, 29:7, 30:82 3..2566

16 101000 d
(1)
R 144 89 55 18 30 18:55, 29:8, 30:81 4..2567

16 000100 u
(1)
R 144 144 0 18 30 18:55, 29:8, 30:81 5..2568

16 100100 ν
(2)
R 144 89 55 18 30 18:55, 29:8, 30:81 6..2569

16 010100 e
(2)
R 144 144 0 18 30 18:55, 29:8, 30:81 7..2570

16 000010 u
(2)
R 144 144 0 18 30 18:55, 29:8, 30:81 8..2571

16 100010 L
(2)
L 144 89 55 18 30 18:55, 29:8, 30:81 9..2572

16 010010 Q
(2)
L 144 144 0 18 30 18:55, 29:8, 30:81 10..2573

16 001010 ν
(3)
R 144 144 0 18 30 18:55, 29:8, 30:81 11..2574

16 101010 L
(3)
L 144 89 55 18 30 18:55, 29:8, 30:81 12..2575

16 000001 d
(2)
R 89 89 0 18 30 18:34, 29:5, 30:50 13..2576

16 100001 U(1) 89 55 34 18 30 18:34, 29:5, 30:50 14..2577

16 010001 e
(3)
R 89 89 0 18 30 18:34, 29:5, 30:50 15..2578

16 001001 Q
(3)
L 89 89 0 18 30 18:34, 29:5, 30:50 16..2579

16 101001 SU(2) 89 55 34 18 30 18:34, 29:5, 30:50 17..2580

16 000101 d
(3)
R 89 89 0 18 30 18:34, 29:5, 30:50 18..2581

16 100101 SU(3) 89 55 34 18 30 18:34, 29:5, 30:50 19..2582

16 010101 u
(3)
R 89 89 0 18 30 18:34, 29:5, 30:50 20..2583

W Inverse interface diagnostics: recovering quantum number
patterns from invariants

This appendix records inverse identification diagnostics on the physical identification layer: given
the closed labeling map and the intrinsic invariants available at window length 6, to what extent
can Standard Model quantum-number patterns be recovered by bounded-complexity rules built
from those invariants? These diagnostics are not premises for any result in the main text.
Because the cyclic sector consists of exactly the 18 fermion multiplets (three generations of
six chiral multiplets), the induced target class frequencies are fixed a priori. In particular,
chance/majority baselines are 1/6 for the six-class targets (6Y )2 and Ynum = 6Y , 1/2 for sign(Y )
and dim(SU(3)), 2/3 for dim(SU(2)), and 1/3 for the generation index.

Audit note (diagnostics vs. premises). All classifier searches reported below are determin-
istic bounded sweeps over explicit integer boxes (as stated in each subsection), and all reported
“best/second-best” rows are computed with deterministic tie-break rules. Scripts referenced in
table captions reproduce these bounded sweeps and write LATEX fragments; the inverse diagnos-
tics are post-hoc audits and are not used as premises anywhere in the main argument.

140



W.1 A bounded-complexity classifier for (6Y )2

Under the PDG convention Q = T3 + Y , the chiral fermion multiplets in one generation take
hypercharges with (6Y )2 ∈ {0, 1, 4, 9, 16, 36}. Using the closed labeling LSM (Section 9), we can
treat (6Y )2 as a supervised target on the cyclic stable types and ask whether a low-complexity
rule built from intrinsic invariants can recover it.

We test the simplest linear-score family on cyclic stable types:

S(w) = a V (w) + b g(w) + c |w|1 + d, a, b, c, d ∈ Z,

and predict (6Y )2 by snapping S(w) to the nearest allowed value in {0, 1, 4, 9, 16, 36} with
a deterministic tie-break rule. Table 55 reports the best and second-best solutions under a
bounded search box together with the accuracy gap.

search box best (a, b, c, d) accuracy second gap complexity
∑
|ai| notes

|a|, |b|, |c|, |d| ≤ 8 (0,−1, 5, 0) 0.389 (0,−2, 4, 5) 0.000 6 {0, 1, 4, 9, 16, 36}

Table 55: Bounded-complexity inverse diagnostic for the hypercharge-squared class (6Y )2

from intrinsic invariants on cyclic stable types at m = 6. Rows are generated by
scripts/exp_inverse_hypercharge_fit.py.

W.2 Recovering the sign of hypercharge

The previous classifier targets (6Y )2 and therefore ignores the sign of Y . As a complementary
diagnostic, one can attempt to recover sign(Y ) ∈ {−1, 0,+1} from intrinsic invariants using
a bounded linear score and a two-threshold rule. Table 56 reports the best result in a fixed
bounded search box.

search box target best parameters errors accuracy

|a|, |b|, |c| ≤ 4 sign(Y ) (a, b, c, t1, t2, π) = (1, 3,−4, 11, 12, (−1, 0, 1)) 6 0.667

Table 56: Bounded-complexity inverse diagnostic for sign(Y ) from intrin-
sic invariants on cyclic stable types at m = 6. Rows are generated by
scripts/exp_inverse_hypercharge_sign_fit.py.

W.3 Recovering the full hypercharge numerator

As a stricter test, one can attempt to recover the full hypercharge numerator Ynum = 6Y ∈
{−6,−3,−2, 0, 1, 4} from intrinsic invariants by searching for bounded score families and pro-
jecting to the nearest allowed value. Table 57 compares multiple bounded families, including
affine scores in (V, g,wt), affine scores on a fixed subset of word bits, a shallow bit-decision
tree with leaf labels chosen by deterministic majority vote, and an optimal bounded-depth bit-
decision tree computed by dynamic programming.
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search box target best parameters errors accuracy

|a|, |b|, |c|, |d| ≤ 6 Ynum (V,g,wt) (a, b, c, d) = (2, 0,−5, 0) 11 0.389
|ci| ≤ 3 Ynum (bits 1..5) (c1, . . . , c5, d) = (−3, 2, 1, 3,−1, 0) 6 0.667
depth = 3 Ynum (bit tree) bits = (2, 1, 0, 0, 4, 4, 4), leaf = (−2,−3,−6, 1, 1, 0,−2,−3) 5 0.722
DP, depth ≤ 6 Ynum (bit tree) depth = 6, nodes = 27, bits = (0, 1, 2, 3, 4, 5) 0 1.000

Table 57: Bounded-complexity inverse diagnostic for the full hypercharge numerator Ynum =
6Y from intrinsic invariants on cyclic stable types at m = 6. Rows are generated by
scripts/exp_inverse_hypercharge_full_fit.py.

W.4 Recovering representation dimensions

As a simpler inverse diagnostic, one can ask whether the representation dimensions
dim(SU(3)) ∈ {1, 3} and dim(SU(2)) ∈ {1, 2} can be recovered from the same intrinsic in-
variants by a low-complexity rule. Table 58 reports a bounded linear-threshold fit for each
target.

search box target best parameters errors accuracy

|a|, |b|, |c|, |d| ≤ 6 dim(SU(3)) (a, b, c, d, T ) = (1, 4,−3,−6, 11) 3 0.833
|a|, |b|, |c|, |d| ≤ 6 dim(SU(2)) (a, b, c, d, T ) = (−1,−4, 4, 0,−14) 4 0.778

Table 58: Bounded-complexity inverse diagnostics for gauge-representation dimensions
from intrinsic invariants on cyclic stable types at m = 6. Rows are generated by
scripts/exp_inverse_rep_dim_fit.py.

W.5 Recovering the generation index

The closed fermion ordering in Definition 9.12 is organized by a generation index g. As em-
phasized in Remark 9.16, this index is a bookkeeping convention for the three copies of the
same gauge-quantum-number pattern (fixed here by the downstream mass-template anchor).
Accordingly, the following inverse diagnostic is conditional on that convention: it asks whether
the assigned g ∈ {1, 2, 3} can be recovered from a simple intrinsic scalar score on w ∈ X6 using
a two-threshold rule. Table 59 reports best thresholds for a small set of candidate scores.

score S(w) best thresholds errors accuracy

V (w) (t1, t2) = (5, 10) 1 0.944
r∗(w) = V (w) + 3(g(w)− 2) (t1, t2) = (11, 13) 1 0.944
S(w) = aV (w) + b deg(w) + cwt(w) (best) (a, b, c, t1, t2) = (1, 0, 3, 10, 16) 0 1.000

Table 59: Bounded-complexity inverse diagnostic for the generation index from intrinsic scores
on cyclic stable types at m = 6 using a two-threshold classifier. Rows are generated by
scripts/exp_inverse_generation_fit.py.

W.6 High-m inverse diagnostic from lift-fiber invariants

The inverse diagnostics above use only intrinsic invariants at window length m = 6. To probe
whether additional structure becomes available under window uplift, we can build supervised
targets on the cyclic base types u ∈ Xcyc

6 and attach to each u a small set of intrinsic invariants
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computed inside its lift fiber

Extm(u) := {w ∈ Xm : πm→6(w) = u}.

As a minimal example, we test an affine score on a small lift-fiber feature set (fiber size, boundary
count, Foldm degeneracy extrema, and the Zeckendorf range width) and attempt to recover the
hypercharge-squared class (6Y )2 by the same nearest-class projection rule. Table 60 reports the
best and second-best solutions at several uplift values.

m features search box best coeffs accuracy second gap complexity

8 ext,bdry,gmin,gmax,Vwidth |ai| ≤ 4 (0, −1, 0, 2, 0, 1) 0.333 (0, −2, 0, 2, 0, 1) 0.000 4
8 ext,bdry,gmin,gmax,Vmin,Vmax |ai| ≤ 3 (0, 0, 0, 0, 1, 0, −1) 0.333 (0, 1, 0, 0, 1, 0, −1) 0.000 2
8 ext,bdry,Vmin,Vmax |ai| ≤ 4 (0, 0, 1, 0, −1) 0.333 (0, 1, 1, 0, −1) 0.000 2

10 ext,bdry,gmin,gmax,Vwidth |ai| ≤ 4 (−1, 2, 0, 1, 0, 0) 0.389 (−1, 2, 0, 1, 0, 1) 0.000 4
10 ext,bdry,gmin,gmax,Vmin,Vmax |ai| ≤ 3 (−1, 2, 0, 1, 0, 0, 0) 0.389 (−1, 2, 0, 1, 0, 0, 1) 0.000 4
10 ext,bdry,Vmin,Vmax |ai| ≤ 4 (−2, 4, 1, 0, 3) 0.389 (4, −3, −1, 0, −2) 0.000 10
12 ext,bdry,gmin,gmax,Vwidth |ai| ≤ 4 (−1, 2, 2, 0, 0, 0) 0.389 (−1, 2, 2, 0, 0, 1) 0.000 5
12 ext,bdry,gmin,gmax,Vmin,Vmax |ai| ≤ 3 (−1, 2, 2, 0, 0, 0, 0) 0.389 (−1, 2, 2, 0, 0, 0, 1) 0.000 5
12 ext,bdry,Vmin,Vmax |ai| ≤ 4 (0, 0, 1, 0, −1) 0.333 (0, 1, 0, 0, 1) 0.000 2
14 ext,bdry,gmin,gmax,Vwidth |ai| ≤ 4 (0, −1, 1, 1, 0, 0) 0.333 (0, −1, −1, 2, 0, 0) 0.000 3
14 ext,bdry,gmin,gmax,Vmin,Vmax |ai| ≤ 3 (0, −1, 1, 1, −2, 0, 0) 0.389 (0, −1, 1, 1, −2, 0, 1) 0.000 5
14 ext,bdry,Vmin,Vmax |ai| ≤ 4 (0, 0, 1, 0, −1) 0.333 (1, −2, 0, 0, −1) 0.000 2
16 ext,bdry,gmin,gmax,Vwidth |ai| ≤ 4 (0, −1, 2, 1, 0, 0) 0.333 (0, −1, 0, 2, 0, 2) 0.000 4
16 ext,bdry,gmin,gmax,Vmin,Vmax |ai| ≤ 3 (0, −1, 2, 1, −2, 0, 0) 0.389 (1, −2, −3, 1, −2, 0, 1) 0.000 6
16 ext,bdry,Vmin,Vmax |ai| ≤ 4 (0, 0, 1, 0, −1) 0.333 (0, 0, 1, 0, 0) 0.056 2

Table 60: High-m inverse diagnostic for the hypercharge-squared class (6Y )2 from lift-
fiber invariants inside Extm(u) for cyclic base types u ∈ Xcyc

6 . Rows are generated by
scripts/exp_inverse_highm_hypercharge_fit.py.

W.7 High-m inverse diagnostic for sign(Y )
Using the same lift-fiber invariants, we can attempt to recover the sign class sign(Y ) ∈
{−1, 0,+1} by a bounded linear score and a two-threshold rule, analogous to Table 56 at m = 6.
Table 61 reports the selected best models at several uplifts.

m features search box best parameters errors accuracy

8 ext,bdry,gmin,gmax,Vwidth |ai| ≤ 2 (a, . . . , t1, t2, π) = (−1, 1, 1, 0, 0, 0, 0, 1, (1, −1, 0)) 7 0.611
8 ext,bdry,Vmin,Vmax |ai| ≤ 2 (a, . . . , t1, t2, π) = (−1, 1, 0, 0, 2, −1, 0, (1, −1, 0)) 7 0.611

10 ext,bdry,gmin,gmax,Vwidth |ai| ≤ 2 (a, . . . , t1, t2, π) = (−1, 1, 1, 0, 0, 0, −3, 0, (1, −1, 0)) 7 0.611
10 ext,bdry,Vmin,Vmax |ai| ≤ 2 (a, . . . , t1, t2, π) = (−1, 2, 1, 0, −2, 0, 2, (1, 0, −1)) 7 0.611
12 ext,bdry,gmin,gmax,Vwidth |ai| ≤ 2 (a, . . . , t1, t2, π) = (−1, 1, 0, 1, 0, 0, −8, 0, (1, −1, 0)) 7 0.611
12 ext,bdry,Vmin,Vmax |ai| ≤ 2 (a, . . . , t1, t2, π) = (2, −2, 1, 0, −2, 42, 50, (−1, 1, 0)) 4 0.778
14 ext,bdry,gmin,gmax,Vwidth |ai| ≤ 2 (a, . . . , t1, t2, π) = (−1, 1, 0, 2, 0, 0, −15, 6, (1, −1, 0)) 7 0.611
14 ext,bdry,Vmin,Vmax |ai| ≤ 2 (a, . . . , t1, t2, π) = (1, −1, 1, 0, −2, 47, 63, (−1, 1, 0)) 5 0.722
16 ext,bdry,gmin,gmax,Vwidth |ai| ≤ 2 (a, . . . , t1, t2, π) = (−1, 1, 2, 2, 0, 0, −48, 7, (1, −1, 0)) 7 0.611
16 ext,bdry,Vmin,Vmax |ai| ≤ 2 (a, . . . , t1, t2, π) = (1, −1, 2, 2, −2, 5276, 5308, (−1, 1, 0)) 4 0.778

Table 61: High-m inverse diagnostic for sign(Y ) from lift-fiber invariants in-
side Extm(u) for cyclic base types u ∈ Xcyc

6 . Rows are generated by
scripts/exp_inverse_highm_hypercharge_sign_fit.py.

W.8 High-m inverse diagnostic for the full hypercharge numerator

Finally, we can attempt to recover the full hypercharge numerator Ynum = 6Y using bounded-
complexity affine scores on lift-fiber invariants and the same nearest-allowed projection rule as in
Table 57. Here Ynum ∈ {−6,−3,−2, 0, 1, 4}. Table 62 records the resulting best and second-best
solutions together with an accuracy gap.
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m features search box best coeffs errors accuracy second gap complexity

8 ext,bdry,gmin,gmax,Vwidth |ai| ≤ 3 (1, −2, −1, 0, 0, −1) 11 0.389 (−3, 1, 1, 0, 0, 1) 0.000 5
8 ext,bdry,Vmin,Vmax |ai| ≤ 3 (0, −3, 1, 0, −1) 12 0.333 (−2, 3, 0, 0, −1) 0.000 5

10 ext,bdry,gmin,gmax,Vwidth |ai| ≤ 3 (0, 1, −1, 0, 0, −1) 12 0.333 (0, 2, 0, −1, 0, 0) 0.000 3
10 ext,bdry,Vmin,Vmax |ai| ≤ 3 (1, −2, −1, 0, 3) 11 0.389 (0, −2, 1, 0, 0) 0.056 7
12 ext,bdry,gmin,gmax,Vwidth |ai| ≤ 3 (0, −2, 0, 1, 0, 0) 12 0.333 (0, −1, −1, 1, 0, 0) 0.000 3
12 ext,bdry,Vmin,Vmax |ai| ≤ 3 (1, 0, −2, 0, 0) 12 0.333 (−1, 2, 0, 0, 1) 0.000 3
14 ext,bdry,gmin,gmax,Vwidth |ai| ≤ 3 (0, 1, −2, 0, 0, 0) 12 0.333 (0, −1, 0, 1, 0, −2) 0.000 3
14 ext,bdry,Vmin,Vmax |ai| ≤ 3 (0, 0, 1, 0, −1) 13 0.278 (0, −1, 1, 0, −1) 0.000 2
16 ext,bdry,gmin,gmax,Vwidth |ai| ≤ 3 (−1, 2, 0, 1, 0, 0) 12 0.333 (0, 1, 0, −2, 0, 1) 0.000 4
16 ext,bdry,Vmin,Vmax |ai| ≤ 3 (0, 0, 1, 0, −1) 13 0.278 (0, −1, 1, 0, −1) 0.000 2

Table 62: High-m inverse diagnostic for the full hypercharge numerator Ynum = 6Y from
lift-fiber invariants inside Extm(u) for cyclic base types u ∈ Xcyc

6 . Rows are generated by
scripts/exp_inverse_highm_hypercharge_full_fit.py.

X Black holes and wormhole-like channels: rigidity beyond the
Standard Model (interface pointer)

This paper focuses on the minimal stable sector and the Standard Model interface at (m,n) =
(6, 3). However, the same HPA–Ω rigidity philosophy extends naturally to gravitational and
strong-field questions once one adopts the overhead/lapse dictionary (Section Y) and treats
boundaries as readout screens. To keep the present manuscript self-contained, we also record
(i) a minimal overhead-to-gravity closure and (ii) an executable χ(x) reconstruction protocol in
Appendices AD.7 and AD.8. For an extended treatment of a dynamical gravity interface in the
same programmatic language (routing overhead and deterministic closure), see the companion
CAP-II manuscript [5]. We record here, as a pointer, two established rigidity targets.

X.1 Black-hole area law as boundary channel counting (external input, rigid
interface)

Black-hole thermodynamics provides a well-established link between boundary geometry and
entropy: semiclassically,

SBH = kBA

4ℓ2P
,

where A is horizon area and ℓ2P = Gℏ/c3 [41,70,88–90]. This is consistent with the holographic
principle viewpoint that gravitational degrees of freedom admit an effective boundary description
[39–41]. In the HPA interface language, a boundary screen is a finite-resolution readout cut with
a maximal outcome count N∂(A, r), and the channel-count entropy is S = kB logN∂ [17, 61].
Under the covariant entropy bound and saturation, the area law is the saturation of boundary
channel capacity [41]. This viewpoint is consistent with the present paper’s emphasis on finite
alphabets and stable-sector compression: horizons are extreme instances of “boundary-stable”
readout where channel counting dominates.

X.2 Einstein–Rosen throat and inversion continuation (wormhole-like chan-
nel)

In isotropic coordinates, the Schwarzschild exterior admits an inversion symmetry and a
minimal-surface throat on the time-symmetric slice, giving the classical Einstein–Rosen bridge
template [71, 91, 92]. For a minimal explicit formula package (coordinate map, metric form,
and inversion), see Proposition X.6. Conceptually, throat/bridge geometries are aligned with
modern organizing principles that relate entanglement, horizons, and wormhole geometries (e.g.
ER=EPR in appropriate settings) [93].
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X.3 Why these extensions are “forced” once rigidity is assumed (interface
logic)

The purpose of this appendix is not to import a full gravitational derivation into the present
paper, but to record the sense in which certain gravitational structures become the standard
rigid templates (and, in limited senses, unavoidable) once one adopts the same rigidity discipline
used throughout this manuscript:

• Boundary entropy is channel capacity. If horizons are treated as readout screens
and entropy is treated as log of a finite channel count (channel-count entropy), then the
covariant entropy bound supplies a canonical capacity bound, and saturation yields the
area law coefficient 1/4 as the rigid leading term (cf. [41]).

• Exterior geometry is unique under standard symmetry assumptions. In spher-
ically symmetric vacuum regions, the Schwarzschild exterior is the standard unique tem-
plate up to diffeomorphism (Birkhoff-type uniqueness; see, e.g., [71]), so any rigid “black-
hole sector” that aims to reproduce classical tests has essentially no freedom in the exterior
once the mass parameter is fixed.

• Endpoint avoidance naturally uses the Einstein–Rosen/Kruskal throat tem-
plate. The maximal analytic extension of Schwarzschild contains an Einstein–Rosen
bridge on a time-symmetric slice [71, 91, 92]. If one seeks a minimal continuation that
removes coordinate endpoint pathology while preserving the exterior, then using the
throat/inversion structure as a gluing/continuation template is the most economical geo-
metric move.

• Wormhole-like channels are topological shortcuts in readout geometry. In a
protocol where boundary transport can be impedance-limited (delay) while bulk access can
provide chord-like shortcuts, “wormhole-like” behavior can be interpreted as a controlled
bulk-to-boundary interaction channel rather than as a violation of locality. This viewpoint
is compatible with standard wormhole terminology in GR [94,95].

X.4 Interface closure statements (audit form)

For completeness, we record the preceding logic in a compact “input ⇒ output” form, sepa-
rating standard external inputs from interface identifications. In addition to entropy bounds,
we also use standard kinematic delay/lapse templates as external targets at the matching layer:
Section Y records the operational Wigner–Smith proxy and the GR reference formulas (47) and
(49). Within this paper, the protocol-level overhead-to-gravity bridge that interprets these tem-
plates is recorded explicitly in Appendix AD.7, and an executable data protocol to reconstruct
χ(x) is recorded in Appendix AD.8.

Proposition X.1 (Area law as boundary channel saturation (standard input)). Assume (i)
boundary entropy is channel-count entropy S = kB logN∂ for a screen of area A, (ii) the co-
variant entropy bound S ≤ kBA/(4ℓ2P ) holds, and (iii) horizons saturate this bound at leading
order. Then the Bekenstein–Hawking area law holds at leading order,

SBH = kBA

4ℓ2P
, N∂(A) = exp

(
A

4ℓ2P

)
.

Proof. This is the covariant entropy bound together with the channel-count definition of entropy;
see, e.g., [41].

Remark X.2 (Bekenstein bound route to the coefficient 1/4 (standard)). The Bekenstein
bound states S ≤ 2πkBER/(ℏc) for a system of energy E contained in radius R [96]. For
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a Schwarzschild black hole, take E = Mc2 and R = Rs = 2GM/c2, and recall A = 4πR2
s [71].

Then
S ≤ 2πkB

(Mc2)(2GM/c2)
ℏc

= 4πkBGM
2

ℏc
= kB

A

4ℓ2P
,

where ℓ2P = Gℏ/c3. Equality is attained (at leading order) for black holes.

Proposition X.3 (Bekenstein bound in the r-coordinate (matching form)). Let µ be a mass
scale and define the resolution coordinate r(µ) = logφ(µ/me) as in (19) (equivalently (43)). Let
λC,e := ℏ/(mec) be the electron Compton wavelength. Then the Bekenstein bound can be written
as

S ≤ 2πkB
R

λC,e
φ r(µ).

For a Schwarzschild black hole with µ = M and R = Rs = 2GM/c2, this reproduces the leading
area-law scaling S ∝ φ2r(M) and is equivalent to the kBA/(4ℓ2P ) form.

Proof. By the Bekenstein bound [96], S ≤ 2πkBER/(ℏc). With E = µc2, this is S ≤
2πkB(µcR/ℏ) = 2πkB(R/λC(µ)), where λC(µ) = ℏ/(µc). Using µ = meφ

r(µ) and λC(µ) =
λC,e (me/µ), one obtains

R

λC(µ) = R

λC,e

µ

me
= R

λC,e
φr(µ).

For µ = M and R = 2GM/c2, the bound becomes S ≤ 4πkBGM
2/(ℏc) = kBA/(4ℓ2P ) as in the

preceding remark.

Remark X.4 (Schwarzschild thermodynamic scaling in the r-coordinate (external)). For a
Schwarzschild black hole, SBH ∝M2 while the Hawking temperature scales as TH ∝ 1/M [70,71].
Therefore, in the r-coordinate one has the linear log-laws

logφ SBH = 2 r(M) + const, logφ TH = − r(M) + const.

This highlights why a logarithmic mass coordinate is a canonical matching language across mi-
crophysical scales and gravitational thermodynamics.

Proposition X.5 (Schwarzschild exterior as the rigid spherically symmetric vacuum template
(standard)). In a spherically symmetric vacuum region, the Lorentzian metric is locally isometric
to the Schwarzschild exterior (Birkhoff-type uniqueness), hence classical weak-field tests in such
a region have no additional functional freedom beyond the mass parameter.

Proof. Standard; see, e.g., [71].

Proposition X.6 (Einstein–Rosen throat and inversion symmetry in isotropic radius (stan-
dard)). Let Rs := 2GM/c2 denote the Schwarzschild radius of a mass M . Here r denotes the
Schwarzschild areal radius coordinate (not the resolution coordinate r(µ) = logφ(µ/me) used
elsewhere in this paper). Introduce the isotropic radius ρ > 0 by the standard change of variables

r = ρ

(
1 + Rs

4ρ

)2
. (33)

Then the Schwarzschild exterior metric can be written in isotropic form as

ds2 = −
(

1− Rs
4ρ

1 + Rs
4ρ

)2

c2 dt2 +
(

1 + Rs

4ρ

)4 (
dρ2 + ρ2 dΩ2

)
, (34)

where dΩ2 := dθ2 + sin2 θ dϕ2. Define ρh := Rs/4 and the inversion map

I : ρ 7→ ρ2
h

ρ
. (35)
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Then r(ρ) = r(I(ρ)), and the isotropic form (34) is invariant under ρ 7→ I(ρ). The horizon
r = Rs corresponds to ρ = ρh, and the isotropic chart covers the exterior region r ≥ Rs. In
particular, the time-symmetric spatial slice admits a two-ended completion with asymptotically
flat ends (ρ→∞ and ρ→ 0) glued at the minimal surface ρ = ρh (the Einstein–Rosen throat),
rather than a coordinate chart of the Lorentzian black-hole interior.

Proof. The coordinate transform (33) and the isotropic form (34) are standard; see, e.g., [71].
The inversion identity r(ρ) = r(ρ2

h/ρ) follows by direct substitution into (33). Under ρ = ρ2
h/ρ̃,

one has dρ2 + ρ2dΩ2 = (ρ4
h/ρ̃

4)(dρ̃2 + ρ̃2dΩ2) and (1 +Rs/(4ρ))4 = (ρ̃+ ρh)4/ρ4
h, so the spatial

conformal factor in (34) is invariant. The throat statement is the classical Einstein–Rosen bridge
template on the time-symmetric slice; see [71,91,92].

Definition X.7 (Wormhole-like channel as a pointer jump (protocol-level)). Fix a Hilbert order
n and a locality-preserving address map Hn : {0, . . . , 4n − 1} → {0, . . . , 2n − 1}2 (Section 5). A
wormhole link is a directed (or undirected) pointer

a
ptr−−−→ b, a, b ∈ {0, . . . , 4n − 1},

interpreted as an additional readout-level shortcut channel that bypasses the nearest-neighbor
scan traversal between indices a and b induced by the Hilbert path. Equivalently, it explicitly
relaxes the scan adjacency constraint by augmenting the protocol with a nonlocal pointer edge in
index space.

Remark X.8 (Traversability is not assumed in the present paper). Classical traversable worm-
holes in Lorentzian GR require additional conditions and are typically associated with violations
of standard energy conditions; see, e.g., [94, 95]. Accordingly, the “wormhole-like channel” lan-
guage used here is protocol-level and refers to a controlled bulk–boundary interaction/shortcut
template in readout geometry, not to a claim of a traversable Lorentzian wormhole in vacuum
GR. In particular, the only concrete object fixed in this paper is the protocol-level pointer-jump
model of Definition X.7, together with the delay/overhead dictionaries used for matching (Sec-
tion Y).

Remark X.9 (Topological censorship constraint (standard)). Under standard global assump-
tions and energy conditions (e.g. the null energy condition), topological censorship theorems
constrain macroscopic traversable wormholes connecting asymptotically flat regions in classical
GR; see, e.g., [97,98]. This provides an additional reason to keep the present paper’s “wormhole-
like” language explicitly at the protocol/interface level.

For the present paper, the role of this pointer is conservative: it indicates that the same
rigidity discipline used here (finite alphabets, auditable closures, explicit mismatch/overhead
proxies) can be extended beyond the Standard Model interface to strong-field geometry, while
keeping the theorem-level folding layer clean of continuum assumptions.

Y Time and mass as delay: scattering and relativistic lapse
dictionaries (interface)

This section records the matching-layer dictionaries underlying the mass-as-delay discussion
in Section 10.1.1. It connects protocol-level cost/overhead coordinates to standard measurable
proxies (scattering delay, redshift/lapse) and to standard kinematic relations (special and general
relativity), while keeping these statements at the interface layer rather than as theorem-level
consequences of the folding core.
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Y.1 Unified phase–delay dictionary (phase advance, frequency, and group
delay)

Two complementary derivatives. [Interface]Frequency is the canonical “phase per tick”
quantity in the frequency-first spine: Definition AA.1 fixes ω = ∆θ/∆t in tick units. Time
delay is the complementary “phase per frequency” quantity: in any setting where a complex
response has a measurable phase δ(ω) as a function of angular frequency ω, the group-delay
observable is the phase derivative

τ(ω) := dδ
dω .

These are inverse-facing dictionaries built from the same primitive object (phase as a readout).

Scattering as a phase-response interface. [Interface]In scattering platforms one measures
complex S-parameters as functions of frequency. When scattering is (nearly) unitary over a
stated band, the phase response is the most stable observable and the delay τ(ω) provides a
direct operational bridge from phase to time. The Wigner–Smith construction below is precisely
the multi-channel, basis-invariant generalization of this group-delay dictionary.

Y.2 Scattering delay as an operational proxy: Wigner–Smith

In platforms where a scattering description is available, delays are directly measurable from
complex S-parameters as functions of frequency. Let S(ω) be a unitary scattering matrix (lossless
elastic scattering) at angular frequency ω. The Wigner–Smith time-delay matrix is defined
by [20,21]

Q(ω) := −iS(ω)† dS
dω , (36)

and a common scalar summary is the total delay

τWS(ω) := TrQ(ω). (37)

In a one-channel setting S(ω) = eiδ(ω), (36) reduces to the group/phase derivative

τWS(ω) = dδ
dω . (38)

Trace/logdet identity and basis invariance (unitary case). [Interface]For unitary S(ω)
one has S−1 = S†, hence

TrQ(ω) = −i d
dω log detS(ω).

Writing detS(ω) = eiΘ(ω) yields τWS(ω) = dΘ/dω, so the WS trace is the derivative of a
total scattering phase. Moreover, under any energy-independent channel basis change S′(ω) =
U S(ω)U † with U unitary, one has Q′(ω) = U Q(ω)U †; therefore TrQ and the eigenvalues of Q
are basis-invariant scalar observables in multi-channel settings.

Non-unitarity, losses, and calibration. [Interface]In realistic settings absorption and imper-
fect calibration can make S non-unitary; one should then either restrict to frequency bands
where unitarity holds to a stated tolerance or adopt an explicit loss model and treat τWS as an
effective delay proxy. A minimal auditable measurement pipeline is recorded in Remark Z.1 and
Appendix Z.1.
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Y.3 Phase shifts and cross sections (interface note)

[Interface]Phase information is simultaneously an interface for cross sections and for time delays.
For example, in standard elastic partial-wave conventions one writes Sℓ(E) = e2iδℓ(E); then the
same phase shifts δℓ determine both the elastic cross sections (via sin2 δℓ) and the corresponding
one-channel delays (via energy/frequency derivatives of the phase). The WS one-channel formula
(38) applies once the phase convention is fixed: if the measured phase is argSℓ(E) = 2δℓ(E),
then the delay is τℓ(E) = d(argSℓ)/dω = 2 dδℓ/dω (equivalently τℓ(E) = 2ℏdδℓ/dE under
E = ℏω). Thus, phase-shift datasets provide a unified operational channel where “scattering
cross section” and “scattering time delay” are two facets of the same measured phase response.

Y.4 From delay to overhead and lapse (clock-rate dictionary)

Fix a reference tick duration τ0 > 0 that defines one unit of baseline protocol time in physical
units (seconds). We compress delay into a dimensionless overhead proxy

κWS(ω) := τWS(ω)
τ0

, (39)

and define an associated lapse proxy by

NWS(ω) := κ0
κWS(ω) , (40)

where κ0 is a chosen reference overhead (a normalization convention). Operationally, larger
delay corresponds to larger overhead and hence to a smaller lapse proxy.

This matches the general “computational lapse” dictionary used elsewhere in the HPA–Ω
series: a local overhead field κ induces a clock-rate factor N = κ0/κ so that local proper time
satisfies

dτloc(x) = N(x) dt. (41)

In this paper, we use the dictionary only as a matching layer: it is not used as a premise for any
folding or labeling theorem.

Relation to the χ-based gravity dictionary (the γ map). [Interface]Appendix AD.7 defines
s = κ/κ0, χ = log s and a one-parameter lapse family N = e−γχ = (κ0/κ)γ . Therefore, given a
delay-derived overhead proxy κWS(ω) one can form

χWS(ω) := log
(
κWS(ω)
κ0

)
, N(ω) = e−γχWS(ω) = NWS(ω)γ ,

so (40) corresponds to the special case γ = 1 (the base overhead ratio). This makes clear
how scattering-delay lapse ratios can be compared to redshift/time-delay data under the same
calibrated γ used in the weak-field gravity dictionary.

Y.5 Mass as a time scale: Compton clocks and the depth coordinate

Independently of any specific dynamics, a mass scale defines a frequency scale by combining the
standard relations E = mc2 and E = ℏω [24, 58]. Define the Compton angular frequency and
time scale

ωC(µ) := µc2

ℏ
, τC(µ) := 1

ωC(µ) = ℏ
µc2 . (42)

Because the present paper works primarily with ratios relative to me, the constants c and ℏ
cancel:

ωC(µ)
ωC(me) = µ

me
,

τC(µ)
τC(me) = me

µ
.
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Consequently the resolution coordinate used in the mass-spectrum closure (Section 13) can be
read equally as a log-frequency or log-time coordinate:

r(µ) = logφ

(
µ

me

)
:= logφ

(
ωC(µ)
ωC(me)

)
= − logφ

(
τC(µ)
τC(me)

)
. (43)

This gives a strong interface meaning to “mass as depth”: it is also “mass as a clock-rate
coordinate” in the standard Compton sense.

Relativistic reference formulas (supplement). General-relativity lapse/redshift and
Shapiro-delay formulas, as well as special-relativity time dilation/dispersion reference relations,
are recorded in Appendix Z.

Z Relativistic delay and lapse reference formulas (supplement)
This appendix records standard SR/GR reference relations and optional scattering-delay bench-
marks used as external matching-layer targets in the interface dictionaries of Section Y.

Z.1 Wigner–Smith delay: calibration and a one-channel resonance bench-
mark

Remark Z.1 (Calibration and losses). The definition (36) is standard for unitary S. In realistic
settings, absorption and imperfect calibration can make S non-unitary; one should then either
restrict to frequency bands where unitarity holds to a stated tolerance or adopt an explicit loss
model and treat τWS as an effective delay proxy [20, 21]. An auditable measurement pipeline
can be implemented by phase unwrapping, finite differencing, and explicit stability checks under
smoothing and step-size variation.

One-channel resonance check (Breit–Wigner). As a minimal analytic benchmark, con-
sider a one-channel exactly unitary resonance model

S(ω) = ω − ω0 − iΓ/2
ω − ω0 + iΓ/2 , (44)

whose phase rises by π across the resonance. Writing S(ω) = eiδ(ω), one obtains the Lorentzian
delay profile

τWS(ω) = dδ
dω := Γ

(ω − ω0)2 + (Γ/2)2 , (45)

and, at resonance,
τWS(ω0) = 4

Γ . (46)

Thus the dimensionless overhead proxy (39) is proportional to the inverse linewidth, κWS(ω0) =
4/(Γ τ0). This is the simplest concrete instance of the interface slogan “stable obstruction ⇒
additional delay” and provides an experimentally extractable handle (linewidth from phase-jump
width) [20,21].

Z.2 General relativity reference: lapse and Shapiro delay (external target)

In a 3+1 decomposition, the relativistic lapse N(x) relates coordinate time to proper time of
static observers by dτ = N dt [71]. Thus, identifying N(x) = κ0/κ(x) is a direct interface map
between overhead and GR clock rates.
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Proposition Z.2 (Static redshift law in lapse form (standard)). In a static spacetime with lapse
N(x), the frequency ratio of the same signal measured by two static observers at xemit and xobs
satisfies

ωobs
ωemit

= N(xemit)
N(xobs)

.

Equivalently, under the interface identification N = κ0/κ, one has ωobs/ωemit =
κ(xobs)/κ(xemit).

Proof. This is the standard gravitational redshift law for static observers in a static metric with
gtt = −N2c2; see, e.g., [71, 99].

Schwarzschild lapse. In Schwarzschild coordinates, a static clock at radius r satisfies

dτ =
√

1− 2GM
rc2 dt, (47)

so N(r) =
√

1− 2GM/(rc2) [71]. Under the interface identification κ(r)/κ0 = 1/N(r), one
obtains

κ(r)
κ0

=
(

1− 2GM
rc2

)−1/2
:= 1 + GM

rc2 +O

(
G2M2

r2c4

)
. (48)

Shapiro delay. For light propagation past a gravitating body, the Shapiro time delay for a
radar signal is, at leading post-Newtonian order,

∆tShapiro ≈
2GM
c3 log

(4r1r2
b2

)
, (49)

for endpoints at radii r1, r2 and impact parameter b [99, 100]. These standard formulas provide
external operational targets for any scan-based identification of additional protocol overhead
with effective delay/clock slowing.

Z.3 Special relativity reference: kinematic time dilation and dispersion

In special relativity, proper time and coordinate time relate by the Lorentz factor

dτ = dt
γ
, γ = 1√

1− v2/c2 , (50)

and a relativistic particle satisfies the dispersion relation

E2 = p2c2 +m2c4, (51)

with group velocity v = dE/dp = pc2/E [58, 101]. In a scan/protocol interpretation, (50) is
treated as a matching dictionary: once a locality basis and a baseline signal speed c are fixed
(Remark 2.1), any additional protocol overhead that reduces the available local update bud-
get can be encoded as an effective γ-factor or lapse factor. This provides a clean place to
connect the discrete cost coordinates used in the present paper (depth, fiber multiplicity, con-
nection/holonomy overhead) to standard relativistic observables without importing relativistic
axioms into the folding layer.
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AA Equivalence semantics and the frequency-first dictionary
(protocol ⇔ physics)

This appendix upgrades a recurring narrative claim in the HPA–Ω program into an audit-facing
contract: physical-language statements are to be read as statements about explicit mathemat-
ical objects, modulo declared equivalence relations, and all additional closure choices are to be
performed by CAP on explicit finite candidate families. It introduces no new axioms beyond
the two declared primitives: tick as the executed input stream (Axiom 1.1) and CAP as the
unique deterministic closure/selection rule (Axiom 1.5).

Why an “equivalence appendix” is needed. The main text already uses several invariance
doctrines (tick-origin shift, local fiber relabelings, holonomy cycle-type invariance, log-mismatch
invariance under unit changes), but they are distributed across sections. Here we collect them
as a single semantic layer so that later continuous dynamical closures (Appendices AD.4–AD.6)
can be stated as mathematical closures on equivalence classes rather than as informal matching
dictionaries.

AA.1 Physical objects as equivalence classes

Protocol objects. [Math]At fixed window length m, protocol microstates are m-bit words in
Ωm = {0, 1}m and stable readout labels are stable types w ∈ Xm (Sections 2–4). At fixed Hilbert
order n on the chosen screen, locality is represented by the display graph Gn (Definition 3.2).

Semantic contract. [Interface]A physical object in this paper is an equivalence class of protocol
objects under declared equivalence relations that capture representational freedom (e.g. choice of
origins, basis relabelings, coarse-graining maps). A physical observable is an invariant functional
on these equivalence classes, or (when coarse graining is included) a functional that is monotone
under the declared coarse-graining preorder.

AA.2 Minimal equivalence relations used implicitly in the main text

We record the minimal equivalence relations that are already used (often implicitly) throughout
the paper. Each item below is a semantic quotient: it does not add new dynamical assumptions;
it fixes what is meant by “the same physics”.

(E1) Tick-origin shift. [Interface]Since protocol observables depend on tick differences, t ∼
t+ t0 is a coordinate convention (Section 3.2).

(E2) Projection-fiber equivalence (finite observability). [Math]At fixed m, microstates
k, k′ ∈ {0, . . . , 2m − 1} are observationally equivalent if they project to the same stable type:
k ∼m k′ iff Foldm(k) = Foldm(k′). This is the formal core of finite observability and is the origin
of degeneracy/fiber data.

(E3) Local fiber-slot relabelings (finite gauge redundancy). [Math]In the padded-fiber
connection model (Section 6), relabeling local fiber slots at a vertex is gx ∈ Sr and acts by
conjugation on loop products (Definition 6.5). Therefore, loop holonomy is physical only through
conjugacy invariants (e.g. cycle type; Proposition 6.6).
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(E4) Coarse graining (stochastic/Markov morphisms). [Interface]Any finite observer in-
duces a coarse-graining preorder: one readout description is less informative if it is obtained
from another by a stochastic map (a Markov morphism). This is the semantic input behind
monotonicity requirements used when selecting canonical statistical quadratic forms (cf. Cěncov
uniqueness in the CAP action closure; Appendix AD.4).

(E5) Action equivalence (boundary terms and field redefinitions). [Interface]When we
speak of “an action” at the continuum closure level, the physical content is the induced equations
of motion. Accordingly, actions related by adding a boundary term, or by invertible local field
redefinitions, are treated as physically equivalent. CAP selection is applied to equivalence classes
(by choosing canonical representatives under a stated tie-break) rather than to raw coordinate
expressions.

AA.3 Frequency as a primary derived quantity (frequency-first spine)

Motivation. [Interface]In a tick-first ontology, the most primitive quantitative notion is count-
ing. The next forced notion is a rate of change per tick. Frequency is the canonical rate: it
is dimensionless in tick units and becomes the universal bridge to energy, mass, temperature,
redshift, and delay once matching dictionaries are chosen.

Definition AA.1 (Frequency from phase advance (tick units)). Let θ(t) be a phase variable
taking values in a circle R/2πZ (or in a dyadic phase register Z2p embedded into T). For t1 ̸= t2,
define the (average) angular frequency in tick units by

ω(t1, t2) := ∆θ
∆t with ∆t := t2 − t1,

where ∆θ denotes the phase increment in a chosen unwrapping convention (or in the discrete
register).

Remark AA.2 (Operator-spectrum and DFT viewpoints (equivalent dictionaries)). Frequency
can also be defined as a spectral parameter: time translation by one tick is represented by a shift
operator whose eigenphases define frequencies (Weyl-pair viewpoint; Appendix B). Operationally,
for any tick-indexed observable q(t) on a finite horizon, a discrete Fourier transform yields a
finite spectrum; dominant peaks define effective frequencies. In the present paper we treat these
as equivalent interface dictionaries once a specific readout/phase convention is fixed.

AA.4 Concept index: physical quantities as invariants/closures

Table 63 records an audit-facing concept map. Each physical-language quantity is assigned (i)
an invariant mathematical object, and (ii) the section(s) where it is defined/closed within the
tick + CAP discipline.

Table 63: Concept index (frequency-first): physical quanti-
ties as invariants or CAP-closed outputs.

concept mathematical object (invari-
ant / closure output)

where fixed/closed operational proxy
(matching layer)

time tick t ∈ Z (differences only) Axiom 1.1; Section 3 laboratory clock
ticks after calibra-
tion
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concept mathematical object (invari-
ant / closure output)

where fixed/closed operational proxy
(matching layer)

phase dyadic register Z2p and em-
bedding eiθ

Appendix B; Sec-
tion 1.8

phase readout / in-
terferometry / com-
plex S-parameters

frequency ω = ∆θ/∆t in tick units
(Definition AA.1)

Appendix AA spectral peaks; clock
ratios; redshift

space (display) addressing map An and
graph Gn

Section 5; Defini-
tion 3.2

locality graph used
for audits

distance dn (graph metric) Definition 3.3 hop count / minimal
transport steps

velocity v = ∆d/∆t (tick units) Definition 3.4 propagation rate; c
after calibration

gauge connection edge transports modulo local
relabeling

Section 6 Wilson/plaquette
statistics

curvature (finite) holonomy conjugacy invari-
ant (cycle type)

Proposition 6.6 loop/plaquette
statistics

metric (contin-
uum)

Lorentzian metric represen-
tative gµν (CAP-closed fam-
ily)

Appendix AD.4 redshift/lensing/clock-
rate templates

curvature (con-
tinuum)

Rµνρσ, Gµν from gµν Appendix AD.5 weak-field/PPN lim-
its; classical tests

gauge curvature Fµν (field strength / curva-
ture of connection)

Appendix AD.5 scattering/transport;
effective couplings

mass/energy
scale

frequency/clock ratio;
r(µ) = logφ(µ/me)

Section 10.1; Ap-
pendix Y

Compton clock; scat-
tering delay

lapse / redshift N = κ0/κ from overhead κ Appendix Y redshift; Shapiro de-
lay templates

action (contin-
uum)

CAP-selected action class [S]
on a finite candidate family

Appendix AD.4 effective-field fit /
coarse-grained cost

equations of mo-
tion

Euler–Lagrange / Einstein–
Yang–Mills equations from S

Appendix AD.5 dynamical response;
weak-field tests

stress-energy Tµν (including informa-
tion/overhead sector)

Appendix AD.5 energy density, pres-
sure, fluxes

entropy channel-count / coarse-
grained state-count func-
tional

Appendix AD.6 log counts; thermo-
dynamic entropy

temperature conjugate to entropy via
free-energy closure

Appendix AD.6 kBT scale;
noise/thermal spec-
tra

force response functional (e.g.
−∇ of effective free en-
ergy/action)

Appendix AD.6; Ap-
pendix AD.5

acceleration; pres-
sure/gradient forces

overhead proxy χ = log(κ/κ0) and lapse
N = e−γχ

Appendix AD.7 redshift/time de-
lay/clock slowdown

effective po-
tential (weak
field)

Φ = −γc2(χ− χ0) Appendix AD.7 Newtonian potential
proxies

effective density
(weak field)

ρeff ∝ −∆χ Appendix AD.7 lensing/dynamical
mass comparisons
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concept mathematical object (invari-
ant / closure output)

where fixed/closed operational proxy
(matching layer)

χ reconstruction
protocol

Hilbert binning → window
words → folding stats →
χ(x)

Appendix AD.8 surveys / simulations
/ lab arrays

Born probabili-
ties

Pk = Tr(ρEk) (POVM) Appendix AD.10 empirical outcome
frequencies

RG / running in
r

dg/dr = (logφ)β(g) Appendix AD.11 running couplings /
threshold matching

cosmology as res-
olution flow

fstab(m) = Fm+2/2m, dm =
2m/Fm+2

Appendix AD.12 energy-budget fits;
capacity growth

Remark on scope. [Audit]The table focuses on the quantities required for the frequency-first
dynamical closure. Standard external unit conventions (ℏ, c, kB) are treated as matching-layer
calibration inputs, not as additional primitives of the tick + CAP spine.

AA.5 Curvature as loop invariants (finite and continuum)

Finite curvature from holonomy. [Math]In the finite protocol language, curvature is de-
fined operationally by loop transport: the plaquette holonomy p□ is a loop product of edge
transports, and its conjugacy invariants (cycle type) are gauge invariant under local relabelings
(Proposition 6.6). This is the minimal, fully finite analogue of “curvature is holonomy”.

Continuum curvature as an interface limit. [Interface]In a continuum dictionary where a
(gauge or Levi–Civita) connection one-form A is available, holonomy around an infinitesimal
loop is controlled by the curvature two-form F = dA+A∧A. In that dictionary, the finite-loop
invariant above is interpreted as a coarse-grained proxy for curvature flux through the loop.
Appendix AD.5 records the resulting continuum field equations after CAP closes a minimal
action family.

AA.6 Force as response: gradients of action and free energy

Response definition (action). [Interface]Once a continuum representative action S is fixed
(as a CAP-closed output; Appendix AD.4), “force” is defined as the response of S (or an effective
reduced action Seff) to a displacement/boundary perturbation, e.g.

Fi := − ∂Seff
∂xi

,

in any setting where a coordinate xi is part of the chosen continuum representative. This is
an equivalence-class notion: adding a boundary term changes S but not its Euler–Lagrange
equations, so “force” is to be read as an invariant of the equations-of-motion class rather than
of a raw action expression.

Response definition (free energy / entropic force). [Interface]In a thermodynamic closure,
an effective free energy functional F is defined on coarse-grained state variables, and force is
likewise a response

Fi = −∂F
∂xi

.

When F = E − TS is used, this yields the standard decomposition into energetic and entropic
components. Appendix AD.6 records the corresponding CAP closure and the frequency-first
thermodynamic dictionary.
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AA.7 Entropy as state counting under equivalence and coarse graining

Counting viewpoint. [Interface]Under finite observability, an observed stable label w ∈ Xm

represents a whole microstate fiber P (w) = Fold−1
m (w). The simplest protocol-level entropy

associated with this residual uncertainty is therefore a counting entropy

Sfib(w) := log |P (w)|,

optionally scaled by kB in physical units. More generally, any coarse-graining map induces
macrostates as equivalence classes; entropy is the logarithm of the macrostate multiplicity, or of
an effective channel capacity in boundary settings (Appendix X).

Second-law semantics. [Interface]A key reason “irreversibility” can be discussed without
adding a new axiom is that the map from microscopic histories to observable records is many-
to-one (Section 3.2): coarse graining and stability folding discard information, so entropy in
the counting sense is naturally nondecreasing along protocol time when described only at the
coarse level. Appendix AD.6 makes this monotonicity precise in the CAP closure language used
throughout the paper.

AB Modular geodesic flow and Gauss-map renormalization
(notes)

[Audit]This appendix records standard “mother space” facts connecting continued fractions to
modular dynamics. It provides a canonical source for the continued-fraction/Ostrowski struc-
tures that appear throughout the golden-branch layer (Section 2.3 and Appendix N). These
results are not used as premises in theorem-level folding proofs; they serve as an audit-facing
justification for why the continued-fraction module is not an ad hoc digitization.

AB.1 Modular surface and the Gauss map

Let H = {τ ∈ C : Im(τ) > 0} be the upper half-plane. The modular group is generated by

T : τ 7→ τ + 1, S : τ 7→ −1
τ
,

and the modular surface is the quotient orbifold

M := PSL2(Z)\H.

The geodesic flow on M admits a classical symbolic coding whose base map is the Gauss map

G(ξ) =
{1
ξ

}
, ξ ∈ (0, 1),

and whose symbols are the continued-fraction digits of ξ = [0; a1, a2, . . .].

Theorem AB.1 (Series suspension model (classical)). [Math]There exists a Poincaré cross-
section for the geodesic flow on M whose first-return map is conjugate to the Gauss map G on
(0, 1). Moreover, the geodesic flow is measurably isomorphic to the suspension flow over G with
roof function

r(ξ) = −2 log ξ.

In particular, the continued-fraction digits of ξ arise as the symbolic itinerary of successive
returns.

Remark AB.2. See [102,103] for standard constructions and proofs.
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AB.2 Invariant Gauss measure and digit law

Theorem AB.3 (Gauss invariant measure and digit distribution (classical)). [Math]The Gauss
map G(ξ) = {1/ξ} preserves the probability measure

dµ(ξ) = 1
log 2

dξ
1 + ξ

, ξ ∈ (0, 1),

and is ergodic with respect to µ. Writing ξ = [0; a1, a2, . . .], the first digit satisfies

µ(a1 = k) = log2

(
1 + 1

k(k + 2)

)
(k ≥ 1).

Remark AB.4. See [104] for proofs and further quantitative results.

AB.3 Gauss–Kuzmin convergence (finite-time relaxation)

Theorem AB.5 (Gauss–Kuzmin exponential convergence (classical)). [Math]Let ν be a prob-
ability measure on (0, 1) that is absolutely continuous with respect to Lebesgue measure with a
density of bounded variation. Then there exist constants C > 0 and 0 < ρ < 1 such that for all
n ≥ 0,

sup
x∈(0,1)

|ν(Gn(ξ) ≤ x)− µ((0, x])| ≤ C ρn,

where µ is the Gauss invariant measure from Theorem AB.3. The optimal ρ is known as the
Gauss–Kuzmin–Wirsing constant (numerically ρ ≈ 0.30366).
Remark AB.6. See [104] for proofs and numerical constants.

AB.4 Relation to Ostrowski numeration used in the paper

[Audit]The modular-geodesic origin above provides a canonical meaning to the continued-fraction
digits of a boundary irrational parameter. In the present paper, the scan slope α is such a
boundary irrational (Section 2.1), and the Ostrowski/Zeckendorf module used for discrepancy
certificates (Appendix N) is the corresponding canonical integer coordinate system built from
the continued fraction of α. This appendix does not identify the scan orbit with geodesic flow;
it records that, once the modular stage is adopted, the digit module is not an arbitrary choice.

AC Modular scale exchange, Morita equivalence, and Fourier
exchange (notes)

[Audit]This appendix records standard symmetry/equivalence structures that strengthen the
“equivalence semantics” viewpoint (Appendix AA). It introduces no new axioms beyond tick
and CAP and is not used as a premise in theorem-level folding proofs.

AC.1 Modular inversion as a scale-exchange template

Consider the upper half-plane H = {τ = x+ iy : y > 0} and the modular generators

T : τ 7→ τ + 1, S : τ 7→ −1
τ
.

Writing τ = x+ iy, one has

S(τ) = − x− iy
x2 + y2 , Im(S(τ)) = y

x2 + y2 .

[Interface]Thus, away from large |x|, the transformation S exchanges large and small imaginary
parts (height) at the level of scale magnitude. On the modular curve X(1), the cusp orbit
is unique, so 0 and ∞ represent the same cusp in the quotient; the involution S provides a
canonical endpoint exchange on the quotient.
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AC.2 Morita equivalence of rotation algebras and the SL2(Z) action

Let Aα be the (irrational) rotation algebra generated by unitaries U, V with

UV = e2πiαV U, α ∈ R \Q.

There is a canonical SL2(Z) action on the slope parameter

α′ = aα+ b

cα+ d
, γ =

(
a b
c d

)
∈ SL2(Z).

Theorem AC.1 (Morita equivalence classification for noncommutative tori (standard)).
[Math]For irrational parameters α, β ∈ R \ Q, the rotation algebras Aα and Aβ are (strongly)

Morita equivalent if and only if there exists γ =
(
a b
c d

)
∈ SL2(Z) such that

β = aα+ b

cα+ d
.

Remark AC.2. See [105–107] for proofs and further structure (projective modules and K-theory
invariants).

[Audit]In the scan algebra language of this paper, the parameter α controls the commutation
phase between shift and multiplication (Definition B.1). Morita equivalence provides a hard
mathematical mechanism for treating different α as “the same geometry” once the equivalence
class is declared.

AC.3 Fourier exchange: swapping scan shift and phase multiplication

We record a concrete scan–readout exchange for the canonical Weyl-pair model.

Proposition AC.3 (Fourier exchange for the covariant Weyl pair). [Math]Let H = L2(R/Z)
and define, for fixed α ∈ R,

(Uψ)(x) = ψ(x+ α), (V ψ)(x) = e2πixψ(x).

Let F : H → ℓ2(Z) be the Fourier transform

(Fψ)(k) =
∫ 1

0
ψ(x) e−2πikx dx.

Then on ℓ2(Z) one has

FUF−1 : ψ̂(k) 7→ e2πikαψ̂(k), FV F−1 : ψ̂(k) 7→ ψ̂(k − 1).

In particular, translation (scan shift) becomes phase multiplication in Fourier space, while phase
multiplication becomes an index shift, realizing a concrete scan–readout exchange.

Proof. For the first identity,

(FUψ)(k) =
∫ 1

0
ψ(x+ α)e−2πikx dx = e2πikα

∫ 1

0
ψ(u)e−2πiku du = e2πikα(Fψ)(k),

using the substitution u = x+ α and periodicity on R/Z. For the second identity,

(FV ψ)(k) =
∫ 1

0
e2πixψ(x)e−2πikx dx =

∫ 1

0
ψ(x)e−2πi(k−1)x dx = (Fψ)(k − 1).
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AD Hecke operators and the prime skeleton (notes)
[Audit]This appendix records a standard arithmetic “prime skeleton” template: a commuting fam-
ily of symmetry-preserving operators generated by primes and constrained by rigid multiplicative
relations. It is included as an optional mathematical backbone for cross-scale consistency dis-
cussions; it introduces no new axioms and is not used as a premise in theorem-level folding
proofs.

AD.1 Hecke operators on q-expansions

Let Mk denote a space of modular forms of weight k (for PSL2(Z) or a congruence subgroup).
If

f(τ) =
∑
m≥0

amq
m, q = e2πiτ ,

then the Hecke operator Tn is defined on q-expansions by

(Tnf)(τ) :=
∑
m≥0

 ∑
d|(m,n)

dk−1 amn/d2

 qm. (52)

Hecke operators preserve modular symmetry and, on standard cusp-form subspaces with Pe-
tersson inner product, form a commuting family that can be simultaneously diagonalized;
see [108,109].

AD.2 Prime generation and multiplicative relations

The “prime skeleton” is not a restriction to primes; it is the statement that primes generate the
full Hecke algebra. Two standard relations are:

TmTn =
∑

d|(m,n)
dk−1 Tmn/d2 , (53)

and, for prime powers,
Tpr+1 = TpTpr − pk−1Tpr−1 . (54)

Thus the full family {Tn}n≥1 is determined by the prime-indexed generators {Tp} together with
these relations [108,109].

AD.3 Eigenforms and Euler products

If f is a normalized simultaneous eigenform, then for all n ≥ 1,

Tnf = λnf,

and in standard normalizations one has λn = an. The associated Dirichlet series

L(f, s) =
∑
n≥1

an

ns

admits an Euler product whose local factors are determined by primes. For level 1 one has the
standard shape

L(f, s) =
∏
p

(
1− app

−s + pk−1−2s
)−1

, (55)

see [108,109].
[Audit]In protocol language, this provides a canonical model of “cross-scale stability under

symmetry-preserving coarse operations”: commuting generators indexed by primes propagate
rigid constraints to all composite scales via the multiplicative relations above.
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AD.4 CAP closure of a continuum action: from equivalence semantics to
dynamical field equations

This appendix records a single purpose: to make explicit how the familiar continuum “least-
action” machinery can be treated as a CAP-closed representative of the tick + CAP spine, rather
than as an extra ontic postulate. The output is an action skeleton whose terms are fixed by
declared equivalence semantics (Appendix AA) together with CAP minimality on an explicit
finite candidate family, in the audit form of Appendix H.

Status. [Interface]The continuum closure is an interface representative: it does not alter the
finite folding core. It is introduced so that frequency/lapse/holonomy diagnostics can be trans-
lated into standard continuum field equations in a way that is auditable (no hidden knobs) and
compatible with the paper’s layering doctrine.

AD.4.1 Closure problem statement

Input data (from the tick+CAP spine). [Interface]The protocol provides: (i) a tick-indexed
readout stream, (ii) finite stable-sector types with fibers under projection, (iii) a locality display
dictionary via addressing, and (iv) measurable overhead/delay proxies that act as clock-rate
dictionaries (Appendix Y). Appendix AA formalizes the semantic quotients (tick-origin, local
relabelings, coarse graining, action equivalence).

Desired output (continuum representative). [Interface]We seek a local covariant effective
description in which:

• frequency/clock-rate variation is represented by a lapse-like field (or equivalently by an
overhead field κ),

• compensating transport is represented by gauge connections with curvature,

• dynamics is specified by stationarity of a CAP-selected action within a bounded candidate
family.

AD.4.2 Candidate family: local covariant invariants under the equivalence seman-
tics

Finite candidate family requirement. [Audit]To keep CAP well-posed, we restrict to finite
families by construction (Appendix H). Concretely, we (i) restrict the list of admissible term
types, and (ii) discretize coefficient choices into a bounded rational box.

Term dictionary (types). [Interface]We restrict to local scalars built from fields and at most
two derivatives, consistent with minimal description complexity and with the operational mean-
ing of locality on the addressing graph. The candidate term types are:

• gravity sector: √−g, √−g R (cosmological constant and Einstein–Hilbert);

• gauge sector: √−gTr(FµνF
µν) for each compact gauge factor;

• information/overhead sector: a scalar amplitude χ ≥ 0 with a quadratic gradient
penalty √−g gµν(∇µχ)(∇νχ) and a local potential √−g V (χ2);

• matter sector: a placeholder √−gLm for additional effective degrees of freedom already
closed at the protocol interface (e.g. the SM labeling sector).
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Why these terms are “forced” (uniqueness inputs). We record three standard unique-
ness inputs, each aligned with an equivalence semantic already present in this paper.

• Diffeomorphism covariance as representation independence. [Interface]A contin-
uum representative should not depend on coordinate reparametrizations of the representa-
tive manifold; this is the continuum analogue of the “no privileged addressing coordinate”
stance (Appendix AA). Under the additional restriction to at most second derivatives, the
lowest-complexity gravitational scalar is R (Lovelock-type uniqueness in 4D; [110]).

• Probability preservation ⇒ compact internal redundancy. [Interface]Treating in-
ternal redundancy as probability preserving forces (projective) unitarity (Wigner; [87]),
hence compactness of the connected gauge redundancy (Proposition R.3). Given a com-
pact gauge group, the unique gauge-invariant local quadratic kinetic term is Tr(FµνF

µν)
(Propositions 8.4 and 8.5).

• Coarse-graining monotonicity ⇒ Fisher-type quadratic form. [Interface]Coarse
graining is modeled by stochastic maps (Appendix AA). On finite probability simplices,
Cěncov’s theorem implies that (up to overall scale) the Fisher information metric is the
unique Riemannian metric monotone under Markov morphisms [111]. Therefore the mini-
mal covariant quadratic penalty that measures spatial variation in statistical distinguisha-
bility is Fisher-like; we encode it by a scalar “Fisher amplitude” χ and a gradient term
gµν(∇µχ)(∇νχ).

AD.4.3 Coefficient discretization and CAP selection (audit form)

Finite coefficient box. [Audit]Fix a bound B ∈ N. Let coefficients be chosen from a bounded
rational set, e.g.

C(B) :=
{
p

q
: p, q ∈ Z, 1 ≤ |p| ≤ B, 1 ≤ q ≤ B

}
∪ {0}.

This makes the candidate action family finite once the term-type dictionary is finite.

Complexity key (tie-break). [Audit]We use a deterministic lexicographic complexity key that
prefers: (i) fewer derivatives, (ii) fewer distinct term types, (iii) smaller denominator/height in
C(B), (iv) smaller gauge-algebra dimensions when gauge-factor choice is still open. This mirrors
the “no hidden knobs” contract: every refinement is an explicit enlargement of a finite box.

AD.4.4 CAP-minimal action skeleton (closure output)

Proposition AD.1 (CAP-minimal covariant action skeleton (interface closure)). Adopt the
equivalence semantics of Appendix AA (tick-origin shift, local redundancy/gauge, coarse-graining
preorder, action equivalence). Restrict to local covariant term types with at most two derivatives
as in Section AD.4.2, and discretize coefficients into a finite box as in Section AD.4.3. Then
CAP selects a minimal representative action of the form

Seff =
∫

d4x
√
−g

[
R− 2Λ
16πG − λF g

µν(∇µχ)(∇νχ)− V (χ2) −
∑

a

1
4g2

a

Tr(F (a)
µν F

(a)µν) + Lm

]
,

(56)
where gµν is a Lorentzian metric representative, F (a)

µν are curvature tensors for each compact
gauge factor, and χ is a nonnegative scalar amplitude encoding coarse-grained distinguishabil-
ity/overhead.
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Proof sketch (audit viewpoint). The term-type dictionary is constructed precisely to list the
lowest-complexity local covariant invariants compatible with the equivalence semantics: the
gravitational sector contributes √−g and √−gR at the minimal derivative order; the gauge
sector contributes Tr(F 2) as the unique local quadratic gauge-invariant kinetic term; the coarse-
graining semantics forces a Fisher-type quadratic penalty for distinguishability variation, rep-
resented by χ. Discretizing coefficients makes the family finite; CAP then selects a canonical
representative under the stated lexicographic tie-break. Numerical values of (G,Λ, λF , ga) are
treated as matching/calibration data unless further protocol-level closures are imposed.

Frequency-first interpretation. [Interface]The field χ can be read as an information-density
amplitude and therefore as a proxy for local clock/frequency structure once a cost-to-clock
dictionary is fixed: overhead κ defines a lapse N = κ0/κ (Appendix Y), and frequency ratios
are primary observables (Appendix AA). Appendix AD.5 records the resulting field equations
obtained by varying (56).

AD.5 Field equations from variation (Einstein–Yang–Mills + information
sector)

This appendix records the standard variational consequences of the CAP-closed continuum ac-
tion skeleton in Appendix AD.4. The role here is not novelty in calculus, but audit alignment:
the dynamical equations used in later interface interpretations are explicitly the Euler–Lagrange
equations of the declared action class.

AD.5.1 Reference action

We take as reference representative (Appendix AD.4)

Seff =
∫

d4x
√
−g

[
R− 2Λ
16πG − λF g

µν(∇µχ)(∇νχ)− V (χ2) −
∑

a

1
4g2

a

Tr(F (a)
µν F

(a)µν) + Lm

]
.

(57)

AD.5.2 Metric variation: Einstein equation with gauge and information stress

Theorem AD.2 (Einstein equation with total stress tensor). Varying (57) with respect to the
metric yields

Gµν + Λgµν = 8πG
(
T (m)

µν + T (χ)
µν + T (YM)

µν

)
, (58)

where T
(m)
µν is the matter stress tensor, T (χ)

µν is the information/amplitude stress tensor, and
T

(YM)
µν is the gauge-field stress tensor.

Proof sketch. This is the standard metric variation of a diffeomorphism-invariant local action.
The Einstein–Hilbert term yields Gµν ; the constant term yields Λgµν . The remaining contribu-
tions are, by definition, the stress tensors obtained from varying the corresponding Lagrangian
densities with respect to gµν .

Proposition AD.3 (Information/amplitude stress tensor). The contribution of the χ-sector in
(57) is

T (χ)
µν = 2λF

(
∇µχ∇νχ−

1
2gµν(∇χ)2

)
− gµνV (χ2), (∇χ)2 := gαβ∇αχ∇βχ. (59)

Proposition AD.4 (Yang–Mills stress tensor (per factor)). For each gauge factor a, the cur-
vature term contributes

T (YM,a)
µν = 1

g2
a

Tr
(
F (a)

µα F
(a)
ν

α − 1
4gµνF

(a)
αβ F

(a)αβ
)
, (60)
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and T (YM)
µν = ∑

a T
(YM,a)
µν .

AD.5.3 Gauge variation: Yang–Mills equations

Proposition AD.5 (Yang–Mills equation (schematic)). Varying (57) with respect to the gauge
connection of factor a yields

∇µ

( 1
g2

a

F (a)µν
)

= J (a)ν , (61)

where J (a)ν is the matter current induced by Lm (and any explicit χ couplings, if present).

Remark. [Interface]Equation (61) is the continuum dictionary corresponding to the finite con-
nection/holonomy skeleton (Section 6), where “curvature” is read as loop holonomy and sources
correspond to persistent mismatch/defect sectors.

AD.5.4 Amplitude variation: the χ equation

Proposition AD.6 (Amplitude equation). Varying (57) with respect to χ yields

2λF □χ− dV
dχ = 0, □ := ∇µ∇µ. (62)

AD.5.5 Conservation and frequency-redshift semantics

Covariant conservation. [Math]By diffeomorphism invariance one has ∇µGµν = 0 (Bianchi
identity), hence (58) implies covariant conservation of the total stress:

∇µ
(
T (m)

µν + T (χ)
µν + T (YM)

µν

)
= 0, (63)

with exchange terms between sectors determined by explicit couplings in Lm.

Frequency-first interpretation (lapse/redshift). [Interface]In a static or adiabatic regime,
the lapse N (Appendix Y) can be identified with √−g00 in a suitable gauge. Then a primary
observable is the frequency ratio between two locations:

ωobs(x)
ωobs(y) = N(y)

N(x) ,

which is the continuum encoding of the tick-first idea that mass/energy and redshift are fre-
quency dictionaries.

AD.5.6 Weak-field limit: Poisson equation and a 1/r potential

Newtonian template. [Interface]In the weak-field, slow-motion regime one writes g00 ≈ −(1 +
2ϕ) with Newtonian potential ϕ. Keeping only leading order and taking the 00 component of
(58) yields a Poisson-type equation

∆ϕ = 4πGρeff ,

where ρeff is the effective energy density extracted from the total stress tensor. In vacuum outside
localized sources, ∆ϕ = 0 and the spherically symmetric exterior solution is ϕ(r) = −GM/r.

Relation to delay/lapse dictionaries. [Match]The standard GR lapse and Shapiro-delay
formulas used elsewhere in this paper as matching templates are recorded in Appendix Z. In
the frequency-first reading, these are equivalently statements about how clock rates and signal
frequencies vary in the weak-field potential.
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AD.6 Thermodynamics from equivalence: entropy, temperature, and en-
tropic force (frequency-first)

This appendix closes a thermodynamic dictionary compatible with the tick + CAP spine and
the equivalence semantics of Appendix AA. The goal is not to import thermodynamics as an
independent axiom set, but to record how the standard thermodynamic notions can be treated
as derived from: (i) finite observability (many-to-one coarse graining) and (ii) CAP selection of
minimal-cost macroscopic representatives.

AD.6.1 Entropy as coarse-grained state counting

Macrostate as an equivalence class. [Interface]Fix a coarse-graining map C from microscopic
protocol data to macroscopic descriptors. Two microdescriptions are macroscopically equivalent
if they map to the same coarse descriptor. This is the semantic content of the coarse-graining
equivalence in Section AA.2.

Counting entropy (finite). [Interface]For a macrostate M with microstate set Γ(M), define
the counting entropy

S(M) := log |Γ(M)|, (64)

optionally scaled to physical units by kB. At fixed window length m, the simplest instance is
the fiber-count entropy Sfib(w) = log |P (w)| for a stable type w ∈ Xm (Appendix AA.7).

Boundary/channel entropy. [Interface]In boundary-screen settings (black-hole or holographic
cuts), the same idea is channel capacity: if N∂ is the maximum number of distinguishable
boundary outcomes at a given resolution, then S = kB logN∂ (Appendix X).

AD.6.2 Energy and temperature as frequency dictionaries

Energy as frequency (ratio-first). [Interface]In the tick-first stance, a primary dimensionless
quantity is a frequency ratio. Mass/energy scales are therefore organized by the log-frequency
coordinate r(µ) = logφ(µ/me) (Section 10.1 and Appendix Y). In matching form one may use
E = ℏω and E = mc2 (Appendix Y), but the present program prefers ratios where constants
cancel.

Temperature as a frequency scale. [Interface]Temperature is the natural “frequency scale”
of coarse excitations: in thermal field theory one has Matsubara frequencies ωn = 2πnkBT/ℏ,
and in classical statistical mechanics kBT sets typical energy increments. Accordingly, in the
frequency-first dictionary we treat T as the scale conjugate to entropy, with the kB and ℏ
conversion treated as matching-layer calibration.

Definition AD.7 (Thermodynamic temperature (conjugate definition)). Let E(M) be an ef-
fective energy functional of macrostates and S(M) an entropy functional. In regimes where E
can be treated as a function of S along a one-parameter family, define temperature by

1
T

:= ∂S

∂E
.

AD.6.3 CAP as a free-energy principle

Free energy as CAP objective. [Interface]A standard thermodynamic closure defines a free
energy functional

F(M) := E(M)− T S(M),
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and asserts that equilibria minimize F subject to constraints. In the present program, this is read
as a CAP closure: among all coarse representatives compatible with the protocol constraints,
the realized representative minimizes a total cost that includes (i) mismatch/overhead and (ii)
residual uncertainty.

Proposition AD.8 (CAP free-energy closure (audit form)). Fix a finite coarse-graining family
{Cθ : θ ∈ Θ(B)} and a finite parameter family of macroscopic representatives M(θ). Define an
objective of the form

J(θ) = κE(M(θ)) + κS (−S(M(θ))) + κc Comp(θ),

with a deterministic tie-break key as in Appendix H. Then CAP selects a unique minimizer θB

and therefore a unique macroscopic representative M(θB) within the declared finite family.

Interpretation. [Interface]The minus sign in −S reflects the conventional role of entropy as a
stabilizing/typicality factor in equilibrium selection. Whether one writes the objective as E−TS
or as a weighted sum depends on which quantities are treated as fixed constraints and which as
adjustable parameters; the audit requirement is only that the candidate family is finite and the
tie-break is explicit.

AD.6.4 The three laws (protocol reading)

First law (bookkeeping identity). [Interface]Once an energy functional E is fixed at the
coarse level, the first law is a bookkeeping identity for how E changes under (i) changes of
macrostate multiplicity (heat) and (ii) changes of external constraints (work). In a frequency-
first description, the “internal energy” is a frequency/clock-rate functional, and work corresponds
to controlled changes in constraints that shift that functional.

Second law (monotonicity under coarse graining). [Interface]Irreversibility does not re-
quire a new axiom here: it follows from many-to-one projection and coarse graining. When only
macrovariables are tracked, information about microhistories is discarded (Section 3.2), and the
counting entropy (64) is naturally nondecreasing under refinement-forgetting operations. CAP
additionally selects representatives of minimal cost, giving a Lyapunov-style monotonicity for a
total objective (Proposition AD.8).

Third law (stability floor and unattainability). [Interface]In protocol terms, the third law
is a statement about the existence of a minimal stable background (a reference macrostate)
and about the cost of reaching lower-entropy configurations: as T → 0 (frequency scale of
fluctuations collapses), the reachable macrostates shrink toward a stable sector whose residual
entropy is determined by the remaining coarse-grained degeneracy (e.g. fiber multiplicities at
the anchor). In the CAP language, reaching strictly zero entropy would require eliminating all
residual equivalence-class multiplicity, which generally requires unbounded resources/resolution.

AD.6.5 Entropic force and the gravity/delay dictionary

Entropic force as response. [Interface]Given a free energy (or any CAP objective) depending
on a position-like parameter x, force is defined as the response

F (x) = −∇xF(x).

If E is approximately constant while S varies with x, this yields the entropic-force form

F (x) ≈ T ∇xS(x).
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Relation to lapse and delay. [Interface]The delay/lapse dictionary (Appendix Y) identifies
overhead with clock-rate slowdown, so spatial variation of overhead induces spatial variation of
local clock frequency. In the weak-field limit of Section AD.5.6, the same variation is encoded by
g00 ≈ −(1+2ϕ) and therefore by a potential ϕ. Thus, in a frequency-first language, “gravitational
force” is equivalently the response of frequency/clock-rate structure to spatial displacement,
consistent with the response definition above.

AD.7 Overhead-to-gravity closure: from κ/χ to lapse, potential, and weak-
field tests

This appendix makes the κ/χ → N → g00 → Φ chain fully explicit within this paper, so that
the weak-field gravity dictionary is no longer only a pointer to external companion manuscripts.
The logic is interface-level: it does not modify the finite folding core, but it closes a minimal,
testable mapping from protocol overhead to gravitational proxies.

AD.7.1 Overhead, lapse, and the χ field

Definition AD.9 (Routing/implementation overhead and lapse proxy). Let κ(x) denote a local
implementation overhead (e.g. routing/compilation depth) and fix a reference κ0 > 0. Define
the dimensionless overhead ratio and its logarithm,

s(x) := κ(x)
κ0

, χ(x) := log s(x),

and define a lapse-like factor

N(x) := e−γχ(x) = s(x)−γ , γ > 0, (65)

where γ is a dimensionless coupling constant.

Operational reading. [Interface]Larger overhead means fewer effective local logical updates per
unit tick budget, hence a slower local clock. Equation (65) is the minimal monotone dictionary
that turns an overhead proxy into a clock-rate factor. The exponent γ is a single-parameter
calibration to be constrained empirically (Section AD.7.4).

AD.7.2 Effective metric dictionary and weak-field potential

Metric representative (static gauge). [Interface]In a static or adiabatic regime, adopt the
standard continuum identification

g00(x) ≈ −N(x)2. (66)

This is the GR lapse dictionary written in protocol variables.

Weak-field expansion. [Interface]In the Newtonian limit one writes

g00 ≈ −(1 + 2Φ/c2),

where Φ is the Newtonian potential. Using (65)–(66) and expanding e−2γχ ≈ 1− 2γχ gives the
leading-order identification

Φ(x) = −γc2(χ(x)− χ0
)
, (67)

where χ0 is an arbitrary reference (constant shifts of χ do not change forces).
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AD.7.3 Closed weak-field source and Poisson template

Poisson form. [Interface]Taking ∆Φ = 4πGρeff as the standard weak-field template, (67) yields

ρeff(x) = − γc2

4πG ∆χ(x), (68)

so the overhead proxy χ defines an effective source through its Laplacian.

1/r exterior. [Interface]Outside compact sources, ∆Φ = 0 and the spherically symmetric exte-
rior solution is Φ(r) = −GM/r. In the present dictionary, this corresponds to χ(r) behaving
(up to constants) as a harmonic potential in the exterior region.

AD.7.4 Rotation curves and a one-parameter fit for γ

Circular velocity. For a static, spherically symmetric potential, the circular velocity satisfies

v2
c (r) = rΦ′(r).

Using (67), this becomes
v2

c (r) = −γc2 r χ′(r). (69)

Weighted least squares for γ. [Interface]Given measured (ri, vi, σi) and a reconstructed profile
χ(r) (Appendix AD.8), define yi := v2

i and xi := −c2riχ
′(ri). In the small-error regime, σy,i ≈

2viσi, and the one-parameter weighted least-squares estimator is

γ̂ =
∑

i(xiyi/σ
2
y,i)∑

i(x2
i /σ

2
y,i)

.

Uncertainty propagation (audit). [Audit]If one treats the xi as known (design-known model)
and assumes Var(yi) = σ2

y,i, then Appendix AD.9 records the standard WLS variance formula
Var(γ̂) = 1/∑i(x2

i /σ
2
y,i) (Proposition AD.19), yielding an immediate confidence interval under

an approximate normality heuristic. In the present application, however, xi depends on a nu-
merical derivative of χ; Appendix AD.9 makes explicit the corresponding bias–noise tradeoff
for χ′ estimation (Proposition AD.17). Audit-facing practice is therefore to declare the deriva-
tive/smoothing rule and to report the stability of γ̂ under counterfactual step/regularization
choices (Appendix AD.8).

Discrete Laplacian and noise amplification (audit). [Audit]When forming ρeff from a
reconstructed grid field χ̂h, one necessarily implements ∆χ by a discrete Laplacian ∆h. Ap-
pendix AD.9 records the standard second-order truncation bound |∆hχ − ∆χ| ≲ h2 (Theo-
rem AD.15) and the explicit noise amplification |∆hη| ≤ (4d/h2)ϵχ for bounded pointwise noise
(Corollary AD.16), yielding an auditable error budget for ρ̂eff (Corollary AD.18).

Relation to frequency-first observables. [Interface]Since N = e−γχ controls local clock
rate, the same γ is in principle constrained by redshift and time-delay data: frequency ratios
are primary observables in the tick-first semantics (Appendix AA and Appendix Z).

AD.8 Protocol to reconstruct an overhead proxy field χ(x) from data or
simulations

This appendix records an executable, audit-facing protocol for reconstructing an overhead proxy
field χ from data. It is written to be self-contained: the only inputs are (i) a spatial dataset
(survey, simulation, or laboratory array), and (ii) the folding vocabulary already defined in this
paper (windows, words, and the folding degeneracy proxy).
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AD.8.1 Step 0: choose resolution and addressing

Fix a spatial order n and a bounding box for the data. Discretize the region into a 2n × 2n grid
(for a 2D screen) or a 2n× 2n× 2n grid (for a 3D volume with a chosen space-filling curve). Use
Hilbert addressing (Section 5) to assign an index s to each cell. This produces a one-dimensional
sequence of cell-level statistics {xs} in Hilbert order.

AD.8.2 Step 1: window words from a thresholded statistic

Choose a window length m and define sliding windows Ws = (s, s + 1, . . . , s + m − 1) on the
Hilbert index axis. Choose a scalar statistic per cell, e.g. density contrast δs. Fix a threshold
τ (two common choices are τ = 0 or a fixed quantile to control sparsity), and define the m-bit
word

ws,j := 1{δs+j ≥ τ}, j = 0, . . . ,m− 1,

so that ws := ws,0 · · ·ws,m−1 ∈ Ωm. Map the word to an integer index Ns := intm(ws) (the
standard binary-to-integer map used throughout this paper).

AD.8.3 Step 2: folding statistics inside each window

For each window Ws, compute at least one of the following coarse statistics:

• Degeneracy proxy (primary). Define the folding degeneracy for an index N by

gm(N) :=
∣∣Fold−1

m (Foldm(N))
∣∣.

Within window Ws, define the local mean degeneracy proxy by an empirical average

ḡm(Ws) := 1
m

m−1∑
j=0

gm(Ns+j).

At m = 6, g6 is exactly computable from the finite Fold6 preimage table (Section 6 and the
generated tables appendix); at larger m one uses the corresponding Foldm computation
pipeline already used in the scripts in this repository.

• φ-defect proxy (fallback). If full gm evaluation is unavailable, compute the local
forbidden-word defect rate (adjacent-11 frequency) as a proxy for leaving the admissible
sector.

AD.8.4 Step 3: reconstruct χ and map back to space

Fix a baseline degeneracy ḡ0 > 0 (e.g. global mean or median over the dataset). Define the
overhead proxy on the index axis by

χ(s) := log ḡm(Ws)
ḡ0

. (70)

Map χ(s) back to a spatial field χ(x) by inverting the Hilbert indexing on the grid.

AD.8.5 Step 3b: uncertainty quantification and stability outputs (audit)

The reconstruction above is deterministic once the discrete choices (m,n), the threshold rule for
words, and the baseline ḡ0 are fixed. To make the output auditable as a quantitative protocol
object rather than as a visualization, one should also report (i) a statistical fluctuation scale for
ḡm and hence for χ, and (ii) stability under declared counterfactual baselines.
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A conservative high-probability fluctuation scale. [Audit]Let Z1, . . . , ZK denote the finite
sample of bounded folding-derived statistics used to form the local empirical mean ḡm (the exact
sampling rule should be stated explicitly; for example: non-overlapping subsampling vs. sliding
windows). Assume Zj ∈ [a, b] almost surely for known bounds a < b. If the sampling scheme
admits an effective sample size Keff ≤ K (exact under independence; otherwise justified by block
subsampling/mixing assumptions), then Appendix AD.9 gives the explicit bound

ϵḡ(δ) := (b− a)
√

log(2/δ)
2Keff

such that |ḡm−Eḡm| ≤ ϵḡ(δ) holds with probability at least 1−δ (Theorem AD.11). Propagating
through the log ratio then yields a conservative error bar for χ (Corollary AD.14). At the m = 6
anchor one may take (a, b) = (2, 4) for g6 (Remark AD.12).

Counterfactual stability outputs. [Audit]In addition to point estimates, the following dis-
crete choices should be reported and swept where feasible, in the same audit spirit as the rest
of this paper:

• (m,n) and the window stride / overlap rule (controls dependence and thus Keff);

• the threshold rule for words (e.g. τ = 0 vs. a fixed quantile), and the baseline definition
ḡ0;

• any smoothing / regularization used before computing spatial derivatives (needed for ∆χ
and χ′; see Appendix AD.9).

The output should include at least one stability metric, e.g. ∥χ(alt) − χ(base)∥∞ on the grid,
together with the induced stability of downstream quantities such as γ̂ and ρeff .

AD.8.6 Step 4: comparison tests and the γ fit

Use the reconstructed χ(x) as input to the overhead-to-gravity dictionary in Appendix AD.7:

N(x) = e−γχ(x), Φ(x) = −γc2(χ(x)− χ0), ρeff(x) = − γc2

4πG ∆χ(x).

Depending on available data, compare against:

• Rotation curves: fit γ using (69) and weighted least squares (Section AD.7.4).

• Lensing: compare the predicted convergence (a Laplacian of an integrated potential) to
reconstructed lensing maps; the prediction is linear in γ at fixed χ.

• Time delays / redshifts: compare frequency/clock-rate variations implied by N(x) to
time-delay proxies (Appendix Z).

Audit note. [Audit]The protocol above has only discrete choices (the pair (m,n), the threshold
rule for words, and the baseline ḡ0 definition) plus the single continuous fit parameter γ. All
discrete choices should be declared and swept as counterfactual baselines where feasible, in the
same audit spirit as the rest of this paper.

AD.9 Protocol-to-continuum error control: from discrete readout to stable
fields

This appendix closes a single audit gap flagged in theory_closure_tracker.md: an explicit
error-control bridge from protocol-level discrete reconstructions to continuum representative
fields. It is an interface-level module: it does not alter any theorem-level finite folding statement.
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Scope. [Interface]The objects whose uncertainty we track are the reconstructed overhead proxy
field χ̂(x) (Appendix AD.8) and its downstream weak-field representatives Φ̂(x) and ρ̂eff(x)
(Appendix AD.7). We separate: (i) statistical error from finite sampling / thresholded readout,
(ii) discretization error from mapping and finite differences, and (iii) interface/model error from
optional matching dictionaries (weak-field regime, choice of smoothing/regularization).

AD.9.1 Error objects and a minimal decomposition

Discrete estimator and continuum representative. [Prot] The reconstruction pipeline
outputs a grid field χ̂h at some addressing resolution (Hilbert order n) and word resolution m
(Appendix AD.8). To compare with a continuum representative χ (e.g. the smooth field entering
the action representative in Appendix AD.4), we treat χ̂h as a piecewise-constant or interpolated
field on a grid with spacing h.

Decomposition. [Interface]For any grid point x at spacing h, we decompose

χ̂h(x)− χ(x) =
(
χ̂h(x)− Eχ̂h(x)

)︸ ︷︷ ︸
statistical

+
(
Eχ̂h(x)− χh(x)

)︸ ︷︷ ︸
protocol bias

+
(
χh(x)− χ(x)

)︸ ︷︷ ︸
discretization/model

,

where χh denotes the grid restriction (or projection) of the continuum representative. The first
term is controlled by concentration inequalities; the last term is controlled by standard finite-
difference truncation bounds; the middle term captures thresholding and modeling choices and
must be addressed by explicit counterfactual sweeps (Appendix AD.8, Audit note therein).

AD.9.2 Concentration of window-level folding statistics

We state a concentration bound for the empirical folding statistic used in the χ reconstruction.

Assumption AD.10 (Bounded folding statistic and effective sample size). Fix a window length
m and a reconstruction rule that produces samples Z1, . . . , ZK of a folding-derived statistic (e.g.
Zj = gm(Nj) or any bounded proxy used in Appendix AD.8). Assume Zj ∈ [a, b] almost surely for
known bounds a < b. Assume further that the sampling scheme admits an effective sample size
Keff ≤ K such that a Hoeffding-type tail bound holds with Keff (this is exact under independence;
for dependent samples one may enforce it by non-overlapping subsampling or block methods, or
justify it under a mixing assumption; see [73,112]).

Theorem AD.11 (High-probability bound for the empirical folding statistic). Under Assump-
tion AD.10, let

Z := 1
K

K∑
j=1

Zj .

Then for any ϵ > 0,

P
(∣∣Z − EZ

∣∣ ≥ ϵ) ≤ 2 exp
(
− 2Keffϵ

2

(b− a)2

)
.

Equivalently, for any confidence level δ ∈ (0, 1), with probability at least 1− δ,

∣∣Z − EZ
∣∣ ≤ (b− a)

√
log(2/δ)

2Keff
.

Remark AD.12 (Specialization to the m = 6 anchor). At the (m,n) = (6, 3) anchor, the exact
folding degeneracy values satisfy g6 ∈ {2, 3, 4} (Definition 8.9), so one may take (a, b) = (2, 4)
when Zj = g6(Nj). At larger m, one can either compute (or upper bound) the range of the
chosen statistic from the audited Foldm tables/scripts, or replace gm by a bounded defect-rate
proxy (Appendix AD.8).
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AD.9.3 Propagation through the log-ratio: bounds for χ̂

Lemma AD.13 (Log-ratio perturbation bound). Let u, v, û, v̂ > 0. Then∣∣∣∣log û
v̂
− log u

v

∣∣∣∣ ≤ |û− u|
min{u, û} + |v̂ − v|

min{v, v̂} .

Proof. By the mean value theorem, | log û − log u| ≤ |û − u|/min{u, û} and similarly for v.
Subtract log(û/v̂)−log(u/v) = (log û−log u)−(log v̂−log v) and apply the triangle inequality.

Corollary AD.14 (A usable error bar for χ̂). In the reconstruction protocol of Appendix AD.8,
write

χ̂ = log Ẑ

Ẑ0
, χ⋆ = log Z

⋆

Z
⋆
0
,

where Ẑ is the empirical statistic (e.g. ḡm) computed on a local sample set and Ẑ0 is the base-
line statistic (global mean/median), while Z⋆

, Z
⋆
0 denote the corresponding population quantities

under a declared data-generating model. Assume Z
⋆
, Z

⋆
0 are bounded away from 0 and that

high-probability bounds |Ẑ − Z⋆| ≤ ϵ and |Ẑ0 − Z
⋆
0| ≤ ϵ0 hold. Then Lemma AD.13 yields the

deterministic bound
|χ̂− χ⋆| ≤ ϵ

min{Z⋆
, Ẑ}

+ ϵ0

min{Z⋆
0, Ẑ0}

.

In particular, one may take ϵ (and ϵ0) from Theorem AD.11 for the chosen statistic and declared
Keff .

AD.9.4 Finite differences: truncation error and noise amplification

The weak-field template ρeff ∝ −∆χ depends on spatial derivatives; these operations can amplify
protocol noise. We record standard, explicit bounds that make this amplification auditable.

Discrete Laplacian. Let d be the spatial dimension (typically d = 2 for a screen or d = 3 for
a volume) and let h > 0 be the grid spacing. Define the standard 2d+1 point Laplacian

(∆hf)(x) :=
d∑

k=1

f(x+ hek)− 2f(x) + f(x− hek)
h2 .

Theorem AD.15 (Second-order truncation error of the central-difference Laplacian). Assume
f ∈ C4 on a neighborhood of a grid point x. Then there exists a constant Cf (x) depending on
fourth derivatives of f near x such that

|(∆hf)(x)− (∆f)(x)| ≤ Cf (x)h2.

In particular, one may take

Cf (x) := 1
12

d∑
k=1

sup
|ξ−x|∞≤h

∣∣∂4
kf(ξ)

∣∣,
so that |(∆hf)(x) − (∆f)(x)| ≤ Cf (x)h2 holds pointwise. See, e.g., standard finite-difference
truncation analyses [72].

Corollary AD.16 (Noise amplification under ∆h). Let f̂ = f + η be a noisy grid field with
|η(x)| ≤ ϵ for all grid points in the stencil of x. Then

|(∆hf̂)(x)− (∆hf)(x)| ≤ 4d
h2 ϵ.

Proof. Expand ∆hη and bound each term by ϵ: for each k, |η(x+hek)−2η(x)+η(x−hek)| ≤ 4ϵ.
Sum over k and divide by h2.

171



First derivatives (for the γ fit). When fitting γ via rotation curves in Appendix AD.7, one
needs χ′(r). The following bound makes explicit the noise–resolution tradeoff.

Proposition AD.17 (Central-difference derivative error (bias–variance tradeoff)). Let f ∈ C3

in a neighborhood of r and define the central difference estimator

(Dhf)(r) := f(r + h)− f(r − h)
2h .

Assume the observed field is f̂ = f + η with |η(r ± h)| ≤ ϵ. Then

|(Dhf̂)(r)− f ′(r)| ≤ h2

6 sup
|ξ−r|≤h

|f (3)(ξ)| + ϵ

h
.

See, e.g., [72].

AD.9.5 Propagation to ρeff , Φ, and the γ fit

Discrete ρeff from reconstructed χ. [Interface]In practice, given a reconstructed grid field
χ̂h, one forms a discrete estimate

ρ̂eff(x) := − γ̂c2

4πG (∆hχ̂h)(x),

which is the direct discrete analogue of (68).

Corollary AD.18 (Error budget for ρ̂eff). Let χ̂h = χh + η with |η| ≤ ϵχ on the Laplacian
stencil, and let γ̂ = γ + δγ. Then at any grid point x,

∣∣ρ̂eff(x)− ρeff(x)
∣∣ ≤ c2

4πG
(
|γ| · |(∆hχh)(x)− (∆χ)(x)| + |γ| · |(∆hη)(x)| + |δγ| · |(∆hχ̂h)(x)|

)
,

where ρeff := −(γc2/(4πG))∆χ is the continuum representative. Using Theorem AD.15 and
Corollary AD.16, the first two terms are controlled as |(∆hχh) − (∆χ)| ≲ h2 and |(∆hη)| ≤
(4d/h2)ϵχ.

Φ from χ. Under the weak-field dictionary Φ = −γc2(χ−χ0) (equation (67)), constant shifts
χ 7→ χ + const do not affect forces. At the field level, the error propagation is immediate: for
Φ̂ = −γ̂c2(χ̂− χ̂0),

|Φ̂− Φ| ≤ c2
(
|δγ| · |χ̂− χ̂0| + |γ| · |χ̂− χ|

)
.

The γ fit: WLS variance and propagation. Appendix AD.7 uses the one-parameter
weighted least-squares estimator

γ̂ =
∑

iwixiyi∑
iwix2

i

, wi := σ−2
y,i , yi := v2

i , xi := −c2riχ
′(ri).

Proposition AD.19 (WLS variance in the ideal design-known model). Assume the model
yi = γxi + εi with Eεi = 0 and Var(εi) = σ2

y,i, and assume the design values xi are treated as
deterministic (known). Then γ̂ is unbiased and

Var(γ̂) = 1∑
iwix2

i

.

Moreover, under approximate normality (e.g. by a central limit heuristic), a (1 − δ) confidence
interval can be reported as γ̂ ± z1−δ/2

√
Var(γ̂) with the standard normal quantile z1−δ/2; see,

e.g., classical asymptotic theory [74].
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Remark AD.20 (When xi is estimated from χ̂). In the present application, xi depends on
a numerical derivative of χ and is therefore itself noisy. If one uses a central difference for
χ′(ri), Proposition AD.17 shows an explicit bias–noise tradeoff of order O(h2) + O(ϵχ/h). At
audit level, this is handled by: (i) declaring the derivative/smoothing rule, (ii) sweeping the
step/regularization scale, and (iii) reporting the stability of γ̂ under these counterfactual baselines
(Appendix AD.8). A fully corrected errors-in-variables treatment is possible but is beyond the
minimal self-contained scope here.

AD.10 Quantum readout and Born probabilities (self-contained interface clo-
sure)

This appendix records a minimal quantum interface package compatible with the tick + CAP
discipline: finite observers have an effective Hilbert space; readout is finite resolution; probabil-
ities are Born probabilities for that readout. We then record two complementary closure routes
for the Born rule: (i) a protocol-counting template aligned with projection-fiber semantics, and
(ii) a mature uniqueness theorem (Gleason–Busch) that characterizes quantum probabilities
from noncontextual additivity.

AD.10.1 Finite-resolution readout as POVMs and instruments

POVM readout. Let Heff be an effective observer sector and let ρ be a density operator on
Heff . Finite-resolution readout is modeled by a POVM {Ek}k with Ek ⪰ 0 and ∑k Ek = I,
giving Born probabilities

Pk = Tr(ρEk). (71)

Instruments and state update. An associated instrument can be written in Kraus form
ρ 7→ MkρM

†
k/Pk with Ek = M †

kMk. Any POVM can be realized by a dilation (system–ancilla
unitary followed by a projective measurement on the ancilla), by Naimark/Stinespring theorems;
see, e.g., [113–116].

AD.10.2 Born weights from projection-induced counting (protocol template)

Counting semantics. [Interface]Finite observability already induces equivalence classes: many
microdescriptions map to the same coarse outcome. If a coarse outcome label k corresponds to
a degeneracy class of nk admissible micro-realizations within a fine-grained protocol ensemble,
and if the induced micro-measure is uniform over admissible micro-realizations (a sharp-readout
symmetry hypothesis), then coarse probabilities are counting ratios Pk = nk/N .

Theorem AD.21 (Born weights as counting under a uniform micro-measure (template)). Let
|ψ⟩ = ∑

k ck|k⟩ be a normalized state. Assume a fine-grained realization in which each coarse
branch k corresponds to nk admissible micro-realizations in a finite ensemble of size Nmicro,
and assume the induced micro-measure is uniform on admissible micro-realizations. If |ck|2 ≈
nk/Nmicro in the fine-graining limit, then the induced coarse outcome probabilities satisfy

Pk = nk

Nmicro
≈ |ck|2,

and in the limit one obtains Pk = |ck|2.

Relation to z128 fibers. [Interface]In the z128 finite folding language, stable readout labels
already carry fibers P (w) = Fold−1

m (w). The counting template above is the quantum-probability
analogue: a coarse outcome corresponds to a multiplicity class in a fine-grained ensemble, and
probabilities arise as normalized multiplicities.
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AD.10.3 Born rule as the unique noncontextual probability rule (mature theorem)

Theorem AD.22 (Gleason–Busch characterization of quantum probabilities). Let H be a com-
plex Hilbert space. Suppose a probability assignment µ maps each orthogonal projector P to
µ(P ) ∈ [0, 1] and is finitely additive on orthogonal families: for any pairwise orthogonal pro-
jectors {Pi} with

∑
i Pi = I, one has

∑
i µ(Pi) = 1. If dimH ≥ 3, then there exists a unique

density matrix ρ such that

µ(P ) = Tr(ρP ) for all projectors P.

For dimH = 2, an analogous conclusion holds if one assumes the same additivity on the full set
of POVM effects (Busch’s extension).

Reference. See Gleason’s theorem [117] and Busch’s POVM extension [118].

Interpretation in the tick+CAP discipline. [Interface]The theorem can be read as a rigidity
statement: once one commits to noncontextual additivity for readout probabilities on an effective
Hilbert space (a natural semantic stance for finite observers), the Born form is forced. In that
sense, the Born rule is not an extra dynamical axiom but the unique probability rule compatible
with the declared readout semantics.

AD.11 Running couplings as resolution flow in the r coordinate (self-
contained interface)

This appendix makes the RG dictionary in the Fibonacci resolution coordinate r self-contained.
The main text already records the basic chain rule (Proposition 8.17); here we add the standard
one-loop templates and the semantics of threshold matching and scheme shifts, in a form aligned
with the tick + CAP stance (ratio-first, then matching).

AD.11.1 Scale map and chain rule

Resolution map. Work with the Fibonacci map

µ(r) = µ0 φ
r,

so that logµ = logµ0 + r logφ and therefore d/dr = (logφ) d/d logµ (Proposition 8.17).

RG in r. If a coupling g(µ) satisfies an RG equation

dg
d logµ = β(g),

then in the r coordinate,
dg
dr = (logφ)β(g). (72)

AD.11.2 One-loop QED running (leading log)

At one loop (mass-independent scheme, away from thresholds), QED running gives

α−1(µ) ≈ α−1(µ0)− b

2π log
(
µ

µ0

)
, b = 2

3
∑

f

N (f)
c Q2

f , (73)

so in the r coordinate one obtains a linear flow

α−1(r) ≈ α−1(0)− b logφ
2π r. (74)
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AD.11.3 One-loop QCD running and dimensional transmutation

For QCD, the beta function has the opposite sign; at one loop,

dαs

d logµ = − b0
2πα

2
s, b0 = 11− 2

3nf , (75)

so
αs(µ) = 2π

b0 log(µ/Λ) , (76)

where Λ is a scheme-dependent transmutation scale. In the r coordinate, a constant rescaling of
Λ is an additive shift of r, so “scheme dependence” becomes an explicit equivalence-class shift
rather than an uncontrolled knob.

AD.11.4 Threshold matching as discrete uplifts

[Interface]Effective-field-theory decoupling implies that charged fields contribute to running only
above their thresholds; across a threshold one matches schemes by a finite jump/offset. In the
protocol language, thresholds are resolution-uplift points: as meff(µ) changes discretely, effective
degrees of freedom appear/disappear and induce discrete changes in β-coefficients. This is the
semantic link between RG matching and the discrete staircase used elsewhere in this paper
(Section 14.2.1).

AD.12 Cosmology as resolution flow (self-contained interface extension)

This appendix records a minimal cosmology interface in the same protocol language used
throughout this paper. The central idea is that changing resolution parameters (m,n) is a
physical operation (a protocol flow step), and the growth laws of the stable sector |Xm| = Fm+2
and of the mean degeneracy 2m/|Xm| provide a quantitative capacity-growth backbone.

AD.12.1 Initialization: the big bang as resolution bootstrapping

[Interface]In a readout cosmology, the “big bang” is interpreted as resolution initialization of the
readout hardware: the system starts at small window length m and small addressing order n,
and rapidly enters a regime where nontrivial stable types exist and can be maintained under
projection. The balanced interface m = 2n provides a minimal coupling between a spatial grid
and a local readout alphabet, and the anchor (m,n) = (6, 3) supplies the smallest fully explicit
computable layer with nontrivial folding 64→ 21.

AD.12.2 Inflation as exponential growth of stable capacity

As window length increases by ∆m, the stable type count grows as

|Xm| = Fm+2 ∼
φm+2
√

5
,

so stable capacity grows exponentially inm. If an early epoch has approximately linear resolution
growth m(t) ≈ m0 + αt, then

|Xm(t)| ≍ φm(t) ≍ e(α log φ) t,

which provides a purely combinatorial capacity-growth analogue of an inflationary exponential
stage (no additional inflaton field is introduced at the protocol level).
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Figure 6: Discrete matching curve for fstab(m) = Fm+2/2m against the target Ωvis,0 used in the
text. The figure is generated by scripts/exp_cosmology_energy_budget_fit.py.

AD.12.3 Hidden-sector dominance at high resolution

The folding map compresses 2m microstates into Fm+2 stable types. Define the stable fraction
and hidden fraction at window length m by

fstab(m) := |Xm|
|Ωm|

= Fm+2
2m

, fhid(m) := 1− fstab(m),

and the mean degeneracy
dm := |Ωm|

|Xm|
= 2m

Fm+2
.

Since Fm+2 ≍ φm and φ < 2, one has fstab(m) → 0 and fhid(m) → 1 as m → ∞; equivalently
dm ≍ (2/φ)m grows exponentially.

AD.12.4 A discrete energy-budget fit (interface hypothesis)

Assumption AD.23 (Readout-occupancy energy accounting (interface)). Fix an effective win-
dow length m. Assume that, on sufficiently coarse scales, the fractional contribution of a sector
to the cosmic energy budget is proportional to long-time occupancy of the corresponding readout
microstate subset. Under a maximal-ignorance approximation at fixed resolution, this occupancy
is approximated by counting measure on Ωm, so that

Ωvis,0 ≈ fstab(m), Ωdark,0 ≈ fhid(m) = 1− fstab(m).

[Interface]Given a target present-day visible fraction Ωvis,0 (e.g. baryon fraction as a minimal
proxy), Assumption AD.23 selects an effective integer window length m∗ by discrete matching.
Because fstab(m) is strictly decreasing in m, this selection is unique once a target is fixed. In the
companion cosmology analysis in this program, the Planck-2018 baryon fraction Ωb,0 ≈ 0.0493
is matched near

F17
215 = 1597

32768 ≈ 0.0487,

suggesting m∗ ≈ 15 as a minimal discrete fit point. Figure 6 provides a direct visualization of
the discrete matching curve.
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Status and falsifiability. [Audit]The assumption is explicitly flagged as an interface hypoth-
esis. Its falsifiability route is to compare the implied hidden/stable ratio dm∗ − 1 with the
observed dark-to-baryon ratio, and to test whether the reconstructed overhead proxy fields (Ap-
pendix AD.8) show the predicted address-aware invariances and correlations.

AD.13 Gamma cross-observation consistency: lensing, delays, redshift, and
rotation curves (audit)

This appendix closes an interface-audit deliverable flagged in theory_closure_tracker.md: a
concrete multi-channel consistency test for the single parameter γ in the dictionary

N = e−γχ, Φ = −γc2(χ− χ0),

connecting a reconstructed overhead proxy field χ to clock-rate (lapse) and weak-field gravita-
tional proxies (Appendix AD.7 and Appendix Z).

Scope and status. [Interface]The purpose of this module is not to import external physics as
theorem-level premises. It is an audit-facing interface object: given declared data channels and a
declared reconstruction/matching pipeline, it produces a deterministic estimate (and a declared
uncertainty/stability envelope) for γ.

Reproducible artifact. [Audit]The estimates, stability sweeps, and figure in this appendix
are generated by the deterministic script scripts/exp_gamma_cross_observation.py
from a small vendored data subset under data/gamma_crossobs/. The script
writes the LaTeX fragments sections/generated/gamma_crossobs_rows.tex
and sections/generated/gamma_crossobs_stability_rows.tex and the figure
figures/gamma_crossobs_consistency.png.

AD.13.1 Channel-level estimators (summary)

Rotation curves (SPARC). [Interface]We implement the one-parameter weighted least-
squares estimator in Appendix AD.7: with yi = v2

i and xi = −c2riχ
′(ri), fit yi = γxi un-

der weights wi = σ−2
y,i with σy,i ≈ 2viσi. The χ field is reconstructed from an auxiliary scalar

profile (disk surface brightness) using a minimal 1D specialization of Appendix AD.8; the deriva-
tive/smoothing rule is declared and audited by a sweep (Appendix AD.9).

Lensing / time-delay / redshift matching proxies. [Interface]For compact vendored cross-
check channels, we use published summary parameters as small-footprint audit inputs. These
are treated as matching-layer constraints and are not premises for the folding core.

AD.13.2 Results and consistency diagnostics

AE Generated tables and finite checks
Audit note (deterministic generation). All fragments in this appendix are outputs of
deterministic finite enumerations or bounded sweeps over explicitly stated finite domains (e.g.
all words inXm for a fixedm, or all candidates in a bounded coefficient/denominator box). When
a caption says “rows are generated by” a script, the intended meaning is: the script implements
the stated finite enumeration/sweep and writes a LATEX fragment to avoid manual transcription
errors. No hidden continuous parameters, stochastic training, or non-audited optimization is
used in generating these rows.
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Table 64: Cross-observation γ estimates from the vendored audit channels. The “pull” is (γ̂ −
γ̂joint)/σ under the joint inverse-variance estimate.
Channel Dataset γ̂ ± σ Pull Notes
solar_system_lensing vlbi_deflection_2009 9.999000× 10−1 ± 1.500000× 10−4 +6665.43 map: gamma := (1+gamma_PPN)/2
solar_system_redshift galileo_redshift_2018 1.000002± 2.480000× 10−5 +40319.20 map: gamma := 1+alpha
solar_system_time_delay cassini_shapiro_2003 1.000011± 1.150000× 10−5 +86949.97 map: gamma := (1+gamma_PPN)/2
weak_lensing_maps planck2018_A_L 1.086278± 2.991868× 10−2 +36.30 map: A_L approx gamma squared (power-

spectrum amplitude)
strong_lensing_time_delay h0licow_xiii_flatlcdm 1.087537± 2.718895× 10−2 +40.00 map: time-delay H0 ratio (H0_td /

H0_Planck18)
rotation_curves_sparc combined 4.392135× 10−7 ± 9.619424× 10−8 -887.98 inverse-variance combine across galaxies
joint all 8.585745× 10−5 ± 9.619013× 10−8 +0.00 chi2=9231153947.08 dof=5

p=0 |z|max=86954.35 (so-
lar_system_time_delay/cassini_shapiro_2003
vs rotation_curves_sparc/combined)

Table 65: Stability under declared counterfactual baselines (Appendix AD.8) for the rotation-
curve pipeline, and leave-one-channel-out joint estimates.
Block Dataset γ̂ ± σ γmin γmax max |∆γ| Notes
rotation_curves_sparc combined 4.392135× 10−7 ± 9.619424× 10−8 9.083157× 10−8 6.346594× 10−7 3.483819× 10−7 sweep over m in 6,8, thr in median,q=0.65,

g0 in mean,median, smooth_k in 1,5,9
joint_LOO rotation_curves_sparc 1.000008± 1.040775× 10−5 leave-one-channel-out joint estimate
joint_LOO solar_system_lensing 8.544630× 10−5 ± 9.619015× 10−8 leave-one-channel-out joint estimate
joint_LOO solar_system_redshift 7.081468× 10−5 ± 9.619085× 10−8 leave-one-channel-out joint estimate
joint_LOO solar_system_time_delay 1.589533× 10−5 ± 9.619349× 10−8 leave-one-channel-out joint estimate
joint_LOO strong_lensing_time_delay 8.585744× 10−5 ± 9.619013× 10−8 leave-one-channel-out joint estimate
joint_LOO weak_lensing_maps 8.585744× 10−5 ± 9.619013× 10−8 leave-one-channel-out joint estimate

AE.1 Admissible set statistics for X6

Hamming weight |w|1 count in X6

0 1
1 6
2 10
3 4

|Xcyc
6 | |Xbdry

6 |

18 3

Boundary words: Xbdry
6 = {100001, 100101, 101001}.
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Figure 7: Visual summary of the vendored cross-observation γ estimates with the joint estimate
shown as a vertical band.

AE.2 Full Fold6 table

w ∈ X6 V (w) Fold−1
6 (w)

000000 0 {0, 21, 34, 55}
000001 13 {13, 47}
000010 8 {8, 29, 42, 63}
000100 5 {5, 26, 39, 60}
000101 18 {18, 52}
001000 3 {3, 24, 37, 58}
001001 16 {16, 50}
001010 11 {11, 32, 45}
010000 2 {2, 23, 36, 57}
010001 15 {15, 49}
010010 10 {10, 31, 44}
010100 7 {7, 28, 41, 62}
010101 20 {20, 54}
100000 1 {1, 22, 35, 56}
100001 14 {14, 48}
100010 9 {9, 30, 43}
100100 6 {6, 27, 40, 61}
100101 19 {19, 53}
101000 4 {4, 25, 38, 59}
101001 17 {17, 51}
101010 12 {12, 33, 46}

AE.3 Hilbert chirality index check at n = 3
For Hilbert order n = 3: χ(path) = −2, χ(reversed path) = 2, and χ(reflected path) = 2.

AE.4 Resolution uplift sweeps

This subsection records small sweeps that support the paper’s uplift and rigidity narrative. The
m-sweep (m = 6, . . . , 16) corresponds to increasing window length at fixed low resolution, and
it also contains the balanced-coupling chain m = 2n for n = 3, 4, 5, 6, 7, 8.
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m |Xm| |Xcyc
m | |Xbdry

m |

6 21 18 3
7 34 29 5
8 55 47 8
9 89 76 13

10 144 123 21
11 233 199 34
12 377 322 55
13 610 521 89
14 987 843 144
15 1597 1364 233
16 2584 2207 377

Table 66: Admissible-set sizes and π-channel cyclic/boundary split in an m-sweep.

m |Xm| mean |w|1 var |w|1 weight histogram

6 21 1.8095 0.6304 0:1, 1:6, 2:10, 3:4
7 34 2.0882 0.7275 0:1, 1:7, 2:15, 3:10, 4:1
8 55 2.3636 0.8132 0:1, 1:8, 2:21, 3:20, 4:5
9 89 2.6404 0.9044 0:1, 1:9, 2:28, 3:35, 4:15, 5:1

10 144 2.9167 0.9931 0:1, 1:10, 2:36, 3:56, 4:35, 5:6
11 233 3.1931 1.0829 0:1, 1:11, 2:45, 3:84, 4:70, 5:21, 6:1
12 377 3.4695 1.1721 0:1, 1:12, 2:55, 3:120, 4:126, 5:56, 6:7
13 610 3.7459 1.2617 0:1, 1:13, 2:66, 3:165, 4:210, 5:126, 6:28, 7:1
14 987 4.0223 1.3511 0:1, 1:14, 2:78, 3:220, 4:330, 5:252, 6:84, 7:8
15 1597 4.2987 1.4405 0:1, 1:15, 2:91, 3:286, 4:495, 5:462, 6:210, 7:36, 8:1
16 2584 4.5751 1.5300 0:1, 1:16, 2:105, 3:364, 4:715, 5:792, 6:462, 7:120, 8:9

Table 67: Hamming-weight statistics in an m-sweep of admissible sets Xm (no consecutive ones).
Rows are generated by scripts/exp_xm_weight_sweep.py.

m |Xm| |Im(Foldm)| gmin gmax degeneracy histogram

6 21 21 2 4 2:8, 3:4, 4:9
7 34 34 3 5 3:13, 4:16, 5:5
8 55 55 3 6 3:21, 5:11, 6:23
9 89 89 4 7 4:34, 6:9, 7:46

10 144 144 5 9 5:55, 8:52, 9:37
11 233 233 6 11 6:89, 10:70, 11:74
12 377 377 8 13 8:144, 12:85, 13:148
13 610 610 9 16 9:170, 10:63, 16:377
14 987 987 12 20 12:377, 19:340, 20:270
15 1597 1597 14 24 14:70, 15:540, 24:987
16 2584 2584 18 30 18:987, 29:140, 30:1457

Table 68: Foldm surjectivity and output degeneracy histograms in an m-sweep. Here g(w) =
|Fold−1

m (w)| over N ∈ {0, . . . , 2m − 1}.
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n points 4n χ(path) χ(rev) χ(ref)

3 64 -2 2 2
4 256 0 0 0
5 1024 -2 2 2
6 4096 0 0 0
7 16384 -2 2 2
8 65536 0 0 0

Table 69: Hilbert chirality index sweep across Hilbert orders n. The sign-flip identities of
Proposition 5.4 are verified at each n listed.

AE.5 Audit summary (pass/fail checks)

check expected observed status

|X6| 21 21 PASS
|Xcyc

6 | 18 18 PASS
|Xbdry

6 | 3 3 PASS
boundary words 100001,100101,101001 100001,100101,101001 PASS
|Im(Fold6)| 21 21 PASS
degeneracy hist 2:8, 3:4, 4:9 2:8, 3:4, 4:9 PASS
χ(path) -2 -2 PASS
χ(rev) +2 2 PASS
χ(ref) +2 2 PASS∑

(6Y )2 (1 gen) 120 120 PASS
anomaly tuple (0,0,0,0) (0,0,0,0) PASS
α−1

em simplex winner (4, 1, 1) (4, 1, 1) PASS
α−1(µZ) nπ2 winner 13 13 PASS
sin2 θW (µZ) p/q winner 3/13 3/13 PASS
J (a, n) winner (11, 7) (11, 7) PASS
rigidity winner at B = 20 (2, 5, 1) (2, 5, 1) PASS
rstep winner (1 anchor) 2π 2π PASS
rstep winner (2 anchors) 2π 2π PASS
plaquette holonomy cycle hist 1:24,2:19,2x2:1,3:3,4:2 1:24,2:19,2x2:1,3:3,4:2 PASS
phase-lift CP signal nonzero on 3/4 cycles |J| mean (1,2,3,4)=(1.25e-50,1.06e-17,0.0634,0.0226) PASS
PMNS perm-fit E∞ ≤ 0.2 0.121 PASS
loop-scale PMNS E∞ finite finite 0.228 PASS
loop-scale SO(3) angle range [0, 180] count=31, range=[90.0,120.0] PASS
Wilson W range [−1, 1] [-0.088,0.642] PASS
single-loop PMNS E∞ ≤ 0.25 0.121 PASS
single-loop CKM E∞ ≤ 1.0 0.679 PASS
two-loop PMNS E∞ ≤ 0.05 0.011 PASS
two-loop CKM E∞ ≤ 0.5 0.442 PASS
two-loop (mixed) PMNS E∞ ≤ 0.05 0.011 PASS
two-loop (mixed) CKM E∞ ≤ 0.3 0.213 PASS
inverse generation acc 1.000 1.000 PASS
inverse sign(Y) acc ≥ 0.6 0.667 PASS
inverse Ynum acc ≥ 0.6 1.000 PASS

AE.6 Audit metrics for bounded-complexity closures

For a positive reference target xref and a candidate prediction x(θ), we use the (dimensionless)
log-mismatch

e(θ) :=
∣∣∣∣log

(
x(θ)
xref

)∣∣∣∣ .
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For multi-target closures we report the minimax objective

E∞(θ) := max
i
ei(θ).

Tables 70 and 71 record candidate-domain sizes, uniqueness gaps, and (for large candidate
domains) distribution quantiles. For a fixed candidate family Θ equipped with the uniform
prior, the empirical frequency N≤ϵ/|Θ| can be read as the probability that a uniformly random
candidate achieves E∞ ≤ ϵ. When the minimizer is unique, the probability that a uniformly
random candidate matches as well or better than the reported minimizer is 1/|Θ|. These within-
family probabilities provide explicit look-elsewhere context for the stated hypothesis classes; they
do not claim a global significance over unrestricted expression grammars.
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closure candidate family |Θ| minimizer best E∞ second gap N≤0.01 N≤0.05

α−1
em aπ3 + bπ2 + cπ, a+b+c ≤ 10 285 (4, 1, 1) 2.22344e-06 0.0032491 0.00325 2 19

α−1(µZ) nπ2, 1 ≤ n ≤ 50 50 n = 13 0.00273049 0.0768385 0.0741 1 1
sin2 θW (µZ) p/q, 1 ≤ q ≤ 50 773 3/13 0.00195143 0.00577062 0.00382 4 19
J (CKM) 1/(aπn), a ≤ 50, n ≤ 20 1000 (11, 7) 0.0033087 0.0094142 0.00611 2 5
CKM magnitudes |Vus|=1/

√
d, |Vcb|=φ−k23/2, |Vub|=φ−k13/2 32000 (d, k23, k13) = (20, 13, 23) 0.0374582 0.0374582 0 0 3

PMNS sines s12=
√

p12/q12, s23=
√

p23/q23, s13=φ−k13/2 655360 (p12/q12, p23/q23, k13) = (4/13, 6/11, 8) 0.0119246 0.0119246 0 0 98
PMNS δ δ = kπ/q, 1 ≤ q ≤ 12 91 δ = 13π/12 0.010856 0.0739731 0.0631 0 1
mass depth (leptons) r̂ = a ∆V + b ∆g + c ∆|w|1, |a|, |b|, |c| ≤ 20 34460 (2, 5, 1) 0.0382687 0.0382687 0 0 5

Table 70: Audit metrics for bounded-complexity closures. E∞ is a minimax log-mismatch across the targets of each closure; for scalar targets it
reduces to the single absolute log mismatch.
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closure |Θ| min median p90 p99 max

CKM magnitudes (B = 20) 32000 0.0374582 3.57163 5.49648 6.4589 6.4589
PMNS sines (B = 20) 655360 0.0119246 3.1398 6.74889 7.71131 7.71131
mass depth (B = 20) 34460 0.0382687 55.8472 108.299 131.397 145.834

Table 71: Quantiles of the minimax log-mismatch E∞ over large candidate domains at B = 20
(for the CKM-magnitude, PMNS-sine, and mass-depth closures).

AE.7 Uncertainty robustness (minimizer stability under target perturba-
tions)

To stress-test how stable the selected minimizers are under perturbations of the reference tar-
gets, we sample reference values within explicit uncertainty models and recompute the min-
imizer under the same tie-break rules. The sampling is deterministic (fixed RNG seed) and
is intended as an audit-oriented robustness check. We use simple truncated-normal models de-
signed to keep targets in their admissible domains: for positive scalar targets xref > 0, we sample
x′ ∼ N (xref , σ) truncated to remain positive; for mixing-angle targets quoted as sin2 θ, we sam-
ple sin2 θ′ ∼ N (sin2 θ, σ) truncated to (0, 1) and then use s =

√
sin2 θ′; and for a phase reference

δ we sample δ′ ∼ N (δ, σδ) truncated to [0, 360] degrees. When a standard reference uncer-
tainty is explicitly quoted (e.g. PDG for J), we use it directly; otherwise (e.g. scheme-dependent
electroweak quantities and matching-layer anchors) the adopted σ values are recorded as con-
servative audit stress-test scales rather than as a statistical claim.
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closure reference uncertainty model samples baseline minimizer stability

α−1
em 137.035999084000 σ = 2.1 × 10−8 200 (4, 1, 1) 1.000

α−1(µZ) 127.955 σ = 10−2 200 n = 13 1.000
sin2 θW (µZ) 0.23122 σ = 3 × 10−5 200 3/13 1.000
J (CKM) 3.00 × 10−5 σ = 1.5 × 10−6 200 (11, 7) 0.120
CKM magnitudes (|Vus|, |Vcb|, |Vub|) = (0.2243, 0.0422, 0.00394) σ = (5, 8, 36) × 10−4 200 (d, k23, k13) = (20, 13, 23) 0.760
PMNS sines (sin2 θ12, sin2 θ23, sin2 θ13) = (0.307, 0.545, 0.0218) σ(sin2 θ) = (0.013, 0.021, 0.0007) 200 (p12/q12, p23/q23, k13) = (4/13, 6/11, 8) 0.025
PMNS δ (bounded denom.) δ = 195◦ σδ = 30◦ 200 δ = 195◦ 0.335
mass depth (leptons) (mµ, mτ ) = (0.10565838, 1.77686) GeV σ/µ = 5 × 10−4 200 (2, 5, 1) 1.000

Table 72: Minimizer stability rates under sampled target perturbations for selected closures, as generated by
scripts/exp_audit_uncertainty_robustness.py.
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AE.8 Resolution calibration robustness

We also stress-test the robustness of the resolution-step calibration minimizer (Section 14.2.1)
under explicit perturbations of the reference anchors.

calibration model uncertainty model samples baseline minimizer stability

single anchor (m = 10 → mZ) σZ = 0.1 GeV 500 k = 2 1.000
two anchors (m = 10 → mZ , m = 8 → µQCD) (σZ , σQ) = (0.1, 0.05) GeV 500 k = 2 1.000

Table 73: Minimizer stability rates for the resolution-step calibra-
tion under sampled anchor perturbations. Rows are generated by
scripts/exp_audit_resolution_calibration_robustness.py.

AE.9 Counterfactual baseline comparisons

To provide look-elsewhere context, we compare the best achievable mismatch under the struc-
tured candidate families used in the paper to simple counterfactual families of comparable dis-
crete complexity.

closure candidate family |Θ| minimizer best E∞

α−1
em aπ3 + bπ2 + cπ 285 (4, 1, 1) 2.22344e-06

α−1
em ae3 + be2 + ce 285 (5, 5, 0) 0.00245594

CKM magnitudes φ-family 32000 (d, k23, k13) = (20, 13, 23) 0.0374582
CKM magnitudes e-family 32000 (d, k23, k13) = (20, 6, 11) 0.165335
CKM magnitudes 2-family 32000 (d, k23, k13) = (20, 9, 16) 0.0461727
PMNS sines φ-family 16000 (3, 2, 8) 0.0430888
PMNS sines e-family 16000 (3, 2, 4) 0.0870773
PMNS sines 2-family 16000 (3, 2, 6) 0.166519
Holonomy PMNS perm-fit Hilbert addressing 468 (262144, (1, 2, 0), (2, 0, 1)) 0.121164
Holonomy PMNS perm-fit row-major addressing 468 (262144, (0, 2, 1), (1, 0, 2)) 0.611674
Holonomy single-loop PMNS Hilbert addressing 262080 (gray,64,4,(1,0),2,(0,1,2),(2,0,1)) 0.12128
Holonomy single-loop CKM Hilbert addressing 262080 (gray,512,3,(3,0),2,(1,0,2),(1,0,2)) 0.679211
Holonomy single-loop PMNS row-major addressing 262080 (gray,64,2,(0,2),3,(0,2,1),(2,0,1)) 0.110299
Holonomy single-loop CKM row-major addressing 262080 (gray,1024,1,(1,6),2,(1,0,2),(1,0,2)) 0.675787

Table 74: Counterfactual baseline comparisons for selected closures. Rows are generated by
scripts/exp_audit_counterfactual_baselines.py.

AE.10 A broader null baseline for α−1 from bounded π-polynomials

As an additional look-elsewhere diagnostic beyond the narrow candidate families used in the
main text, we also sweep a larger explicit grammar: integer polynomials in π of degree ≤ 3 with
bounded coefficients. This produces a finite hypothesis class that contains the specific closed
target α−1

geo = 4π3 + π2 + π as one point, while allowing many nearby expressions of comparable
syntactic form. Table 75 reports the best achievable log mismatch over the full domain together
with the counts of candidates below fixed mismatch thresholds.

target family |Θ| minimizer best e ties N≤0.01 N≤0.05

α−1
em (CODATA)

∑3
j=0 ajπj , aj ∈ [−10, 10] 194481 4π3 + π2 + π 2.22344e-06 1 820 4087

Table 75: Null baseline over bounded integer π-polynomials (degree ≤ 3 with coefficients in a
fixed box). Here e = | log(x/xref)| is the absolute log mismatch to the reference target. Rows
are generated by scripts/exp_audit_pi_polynomial_null.py.
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AE.11 Rigidity enumerations for closed constant targets

Remark AE.1 (Why the coefficient-sum bound is not vacuous (order-of-magnitude check)).
In the simplex search domain a, b, c ∈ Z≥0 with a+ b+ c ≤ S, one always has

aπ3 + bπ2 + cπ ≤ (a+ b+ c)π3 ≤ S π3.

Using the classical bound π < 22/7 gives π3 < (22/7)3 ≈ 31.1 and therefore S ≤ 4 ⇒ aπ3 +
bπ2 + cπ < 125. Since the reference electromagnetic inverse coupling satisfies α−1

em ≈ 137 > 125
(CODATA/PDG; Table 16), any nontrivial match requires a + b + c ≥ 5. Thus the bounded
search a+ b+ c ≤ 10 is small but already above the minimal order-of-magnitude threshold.

rank (a, b, c) candidate value |x − xref | rel. error | log(x/xref)|

1 (4, 1, 1) 4π3 + π2 + π 137.0363037759 3.047e-04 2.223e-06 2.223e-06
2 (4, 0, 4) 4π3 + 4π 136.5914773356 4.445e-01 3.244e-03 3.249e-03
3 (3, 4, 1) 3π3 + 4π2 + π 135.6388402988 1.397e+00 1.020e-02 1.025e-02
4 (3, 4, 2) 3π3 + 4π2 + 2π 138.7804329524 1.744e+00 1.273e-02 1.265e-02
5 (3, 3, 4) 3π3 + 3π2 + 4π 135.1940138585 1.842e+00 1.344e-02 1.353e-02
6 (4, 0, 5) 4π3 + 5π 139.7330699891 2.697e+00 1.968e-02 1.949e-02
7 (2, 7, 1) 2π3 + 7π2 + π 134.2413768218 2.795e+00 2.039e-02 2.060e-02
8 (4, 1, 2) 4π3 + π2 + 2π 140.1778964295 3.142e+00 2.293e-02 2.267e-02
9 (4, 1, 0) 4π3 + π2 133.8947111223 3.141e+00 2.292e-02 2.319e-02

10 (4, 0, 3) 4π3 + 3π 133.4498846820 3.586e+00 2.617e-02 2.652e-02

domain |Θ| = 285; best/second gap ∆e = 3.247e − 03

Table 76: Finite simplex search for α−1
em over aπ3 + bπ2 + cπ with a, b, c ∈ Z≥0 and a+ b+ c ≤ 10,

ranked by the audit-norm log mismatch e = | log(x/xref)| with deterministic tie-break rules.
Rows are generated by scripts/exp_alpha_coeff_rigidity.py.

Remark AE.2 (Why the integer-π2 sweep is effectively local (order-of-magnitude check)). Let
xref = α−1

PDG(µZ) be the reference value (Table 16). Any integer n for which nπ2 can compete
must satisfy n ≈ xref/π2. Using 9 < π2 < 10 gives the crude localization

xref

10 < n <
xref

9 .

Since xref ≈ 128, only n in a narrow band around 13 can be relevant; the sweep 1 ≤ n ≤ 50 is a
small explicit overbound that contains this band.

rank n nπ2 |x − xref | rel. error | log(x/xref)|

1 13 128.3048572142 3.499e-01 2.734e-03 2.730e-03
2 14 138.1744616153 1.022e+01 7.987e-02 7.684e-02
3 12 118.4352528131 9.520e+00 7.440e-02 7.731e-02
4 15 148.0440660163 2.009e+01 1.570e-01 1.458e-01
5 11 108.5656484120 1.939e+01 1.515e-01 1.643e-01
6 16 157.9136704174 2.996e+01 2.341e-01 2.104e-01
7 10 98.6960440109 2.926e+01 2.287e-01 2.596e-01
8 17 167.7832748185 3.983e+01 3.113e-01 2.710e-01
9 18 177.6528792196 4.970e+01 3.884e-01 3.282e-01

10 9 88.8264396098 3.913e+01 3.058e-01 3.650e-01

domain |Θ| = 50; best/second gap ∆e = 7.411e − 02

Table 77: Finite search for an integer-π2 approximation to α−1(µZ) over nπ2 with 1 ≤ n ≤ 50,
ranked by the audit-norm log mismatch e = | log(x/xref)| to the PDG reference value α−1

PDG(µZ)
with deterministic tie-break rules. Rows are generated by scripts/exp_ew_rigidity.py.
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Remark AE.3 (Why the bounded-denominator rational sweep is nonvacuous). For any real x
and any Q ≥ 1, Dirichlet’s approximation theorem implies the existence of a reduced rational
p/q with 1 ≤ q ≤ Q and ∣∣∣∣x− p

q

∣∣∣∣ < 1
qQ
≤ 1
Q2 .

Thus the choice Q = 50 guarantees (a priori) the existence of candidates within absolute error
≤ 4× 10−4 while keeping the hypothesis class finite and auditable.

rank p/q value |x − xref | | log(x/xref)|

1 3/13 0.2307692308 4.508e-04 1.951e-03
2 10/43 0.2325581395 1.338e-03 5.771e-03
3 11/48 0.2291666667 2.053e-03 8.920e-03
4 7/30 0.2333333333 2.113e-03 9.098e-03
5 8/35 0.2285714286 2.649e-03 1.152e-02
6 11/47 0.2340425532 2.823e-03 1.213e-02
7 5/22 0.2272727273 3.947e-03 1.722e-02
8 4/17 0.2352941176 4.074e-03 1.747e-02
9 7/31 0.2258064516 5.414e-03 2.369e-02

10 9/38 0.2368421053 5.622e-03 2.402e-02

domain |Θ| = 773; best/second gap ∆e = 3.819e − 03

Table 78: Finite search for a reduced rational approximation to sin2 θW (µZ) over p/q with
1 ≤ q ≤ 50, ranked by the audit-norm log mismatch e = | log(x/xref)| to the PDG ref-
erence value sin2 θW,PDG(µZ) with deterministic tie-break rules. Rows are generated by
scripts/exp_ew_rigidity.py.

Remark AE.4 (A nonvacuous magnitude window for the Jarlskog (a, n) box). Let Jref ≈
3 × 10−5 be the PDG-scale target used in the paper [2]. Within the bounded box 1 ≤ a ≤ 50, if
n ≤ 5 then

1
aπn

≥ 1
50π5 >

1
50(22/7)5 ≈ 6.5× 10−5,

so the entire n ≤ 5 slab is too large to match Jref even at maximal a. Thus any nontrivial
rigidity search with a ≤ 50 must include n ≥ 6; the chosen domain 1 ≤ a ≤ 50, 1 ≤ n ≤ 20
contains this minimal magnitude-viable window.

rank (a, n) value |x − xref | rel. error |x − xref |/σ | log(x/xref)|

1 (11, 7) 3.0099425471e-05 9.943e-08 3.314e-03 6.628e-02 3.309e-03
2 (35, 6) 2.9718899237e-05 2.811e-07 9.370e-03 1.874e-01 9.414e-03
3 (34, 6) 3.0592984509e-05 5.930e-07 1.977e-02 3.953e-01 1.957e-02
4 (36, 6) 2.8893374258e-05 1.107e-06 3.689e-02 7.378e-01 3.759e-02
5 (33, 6) 3.1520044645e-05 1.520e-06 5.067e-02 1.013e+00 4.943e-02
6 (37, 6) 2.8112472251e-05 1.888e-06 6.292e-02 1.258e+00 6.498e-02
7 (32, 6) 3.2505046040e-05 2.505e-06 8.350e-02 1.670e+00 8.020e-02
8 (12, 7) 2.7591140015e-05 2.409e-06 8.030e-02 1.606e+00 8.370e-02
9 (38, 6) 2.7372670350e-05 2.627e-06 8.758e-02 1.752e+00 9.165e-02

10 (10, 7) 3.3109368018e-05 3.109e-06 1.036e-01 2.073e+00 9.862e-02

domain |Θ| = 1000; best/second gap ∆e = 6.105e − 03

Table 79: Finite rigidity search for the Jarlskog invariant over the ansatz J = 1/(aπn)
with 1 ≤ a ≤ 50 and 1 ≤ n ≤ 20, ranked by the audit-norm log mismatch e =
| log(x/xref)| to the PDG central value with deterministic tie-break rules. Rows are generated
by scripts/exp_jarlskog_pi_rigidity.py.
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AF Closure audit details: couplings, mixing, and CP (supple-
ment)

This appendix collects the detailed finite constructions, bounded-complexity searches, and re-
construction tables underlying the coupling/CP normalizations and the CKM/PMNS closures
reported in Part IV.

This section records two interface points: (i) coupling constants as geometric normalization
costs, and (ii) CP violation as a CP-odd phase-space volume with discrete multiplicity. We treat
the closed expressions below as CAP-closed interface normalizations: they follow from explicitly
declared finite candidate families and canonical geometric data, and their mismatch to scheme-
/scale-dependent experimental conventions is recorded as a matching-layer factor. The same
normalization philosophy is pursued, in a broader constant-geometry context, in the companion
manuscript [8].

AF.1 Three-channel impedance and the fine-structure constant

The inverse fine-structure constant admits a closed three-stratum geometric impedance expres-
sion:

α−1
emgeo = 4π3 + π2 + π ≈ 137.0363037759. (77)

We make the interface closure declarations explicit.

Tick-first bridge: from periodic phase to geometric normalization cost. In the tick-
first dictionary (Section 3), the only primitive input is the sequential update count and the only
primitive closure rule is CAP. Any internal phase variable is therefore a periodic datum attached
to tick evolution, with the canonical low-complexity period 2π (circle normalization). When in-
dependent protocol constraints must be satisfied in series, their combined effect is multiplicative
at the level of weights and additive after the logarithmic readout map (Proposition AF.1). The
role of compact phase spaces and their canonical volumes in the definitions below is to supply
protocol-invariant, finite-description normalization costs for such periodic data, compatible with
ray-space Z2 identifications intrinsic to finite readout.

Proposition AF.1 (Serial composition and logarithmic impedance (interface)). If a readout
protocol must satisfy independent constraints in a fixed hierarchy (“strata”) in series, assign
each stratum j a multiplicative weight wj ∈ (0, 1] and define its log-cost Vj := − logwj [17, 61].
If the total weight is wtot = ∏

j wj, then the corresponding impedance is the additive cost

α−1
geo := − logwtot =

∑
j

Vj .

Proof. This is the identity − log
(∏

j wj

)
= ∑

j(− logwj).

Definition AF.2 (Geometric cost as canonical phase volume (CAP closure form)). For each
stratum j, letMj be a compact phase space drawn from a declared finite candidate family. Define
the cost as the canonical volume

Vj := Vol(Mj),

where Vol is computed using the standard bi-invariant metric on compact Lie groups together
with induced quotient metrics for projective Z2 identifications (Lemma AF.6). The choice of
Mj is treated as a bounded-complexity CAP closure within the stated family (Axiom 1.5 and
Definition H.1).

189



Remark AF.3 (Metric normalization and matching-layer rescaling). Throughout this section
we use the standard unit-radius normalizations for compact groups (Lemma AF.6), so that
SU(2) ∼= S3 has Vol(SU(2)) = 2π2. Any alternative overall metric rescaling on a stratum
rescales Vol(Mj) by a fixed factor and therefore shifts the corresponding impedance contribution
Vj by a matching-layer normalization change rather than introducing additional internal degrees
of freedom.

Definition AF.4 (Electromagnetic three-stratum phase spaces (CAP closure form)). For the
electromagnetic normalization channel, select the three strata within an explicit finite candidate
family built from the primitive set

P := {U(1), SU(2), SO(3),RP 1},

equipped with canonical volumes (Lemma AF.6) and with projective quotients encoding the ray-
space Z2 identification intrinsic to readout. At the m = 6 anchor, the CAP-minimal choice
yields

Mbulk ∼= U(1)× SU(2), Mboundary ∼= SO(3), Mline ∼= RP 1

(Proposition AF.7).

Remark AF.5 (Geometric meaning of the three electromagnetic strata). The three strata in
Definition AF.4 are chosen to align with three protocol-level geometric objects that are present
once one insists on finite-resolution readout and transport. The factor U(1) models phase, SU(2)
captures the spinorial double cover of rotations, SO(3) encodes the orientation of a local rigid
frame, and RP 1 ∼= U(1)/{±1} models the projective ray identification of a one-dimensional
phase degree of freedom [18,47]. The purpose of the definition is not to claim an ontic manifold,
but to fix a minimal closed normalization dictionary in which ray-space Z2 quotients are treated
explicitly rather than absorbed into conventions.

Lemma AF.6 (Canonical volumes of U(1), SU(2), SO(3), and RP 1). With the standard unit-
radius normalizations,

Vol(U(1)) = 2π, Vol(SU(2)) = Vol(S3) = 2π2.

Moreover, the Z2 quotients satisfy

Vol(SO(3)) = Vol(SU(2)/{±1}) = π2, Vol(RP 1) = Vol(U(1)/{±1}) = π.

Consequently, Vol(U(1)× SU(2)) = 4π3.

Proof. The first identity is the circumference of the unit circle. For SU(2) ∼= S3, integrating
the standard volume form on the unit 3-sphere gives Vol(S3) = 2π2 [18,47]. The quotient maps
SU(2) → SO(3) = SU(2)/{±1} and U(1) → RP 1 = U(1)/{±1} are two-sheeted Riemannian
coverings under the induced quotient metrics, so the quotient volumes are halved. The product
identity follows by multiplicativity of product volumes.

Proposition AF.7 (Primitive factorization rigidity for the electromagnetic strata). Fix the
primitive candidate set

P := {U(1), SU(2), SO(3),RP 1},

equipped with the canonical volumes of Lemma AF.6. Restrict the bulk stratum to be a product
of two primitives and restrict the boundary and line strata to be single primitives. Impose the
target scalings

Vol(Mbulk) = 4π3, Vol(Mboundary) = π2, Vol(Mline) = π.

Then, up to ordering, the strata are forced as

Mbulk ∼= U(1)× SU(2), Mboundary ∼= SO(3), Mline ∼= RP 1.
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aggregation rule value log(value/α−1
CODATA)

serial sum 137.0363037759 +2.22× 10−6

Euclidean 124.4568430929 −9.63× 10−2

max 124.0251067212 −9.98× 10−2

parallel 2.3381204994 −4.07
arithmetic mean 45.6787679253 −1.10
geometric mean 15.6670204088 −2.17

Table 80: Aggregation baselines for the three-stratum α−1
em impedance dictionary. The base-

line serial rule corresponds to Proposition AF.1; alternative rows are counterfactual aggregation
semantics and are included only as look-elsewhere context. Rows are reproduced by the deter-
ministic script scripts/exp_aggregation_baselines.py.

Proof. By Lemma AF.6, the one-factor values in P are 2π, 2π2, π2, and π. Any two-factor
product has the form 2mπk with m ∈ {0, 1, 2} and k ∈ {2, 3, 4}. The constraint Vol(Mbulk) =
4π3 forces exponent pattern (1, 2) and coefficient 4, hence the factors must be U(1) and SU(2).
For one-factor realizations, π2 occurs only for SO(3) and π occurs only for RP 1 in P, forcing
the boundary and line strata.

Remark AF.8 (Serial aggregation is not interchangeable). Under the serial semantics of Propo-
sition AF.1, the impedance is additive after the logarithmic readout map. For context, Table 80
records a small systematic baseline sweep over several standard alternative aggregation rules act-
ing on the three stratum costs Vbulk = 4π3, Vboundary = π2, and Vline = π, together with their log
mismatches to the CODATA reference.

Theorem AF.9 (Three-stratum geometric impedance for αem). Under Proposition AF.1 and
the CAP-closed phase-volume dictionary in Definitions AF.2–AF.4, one has

α−1
emgeo = Vol(U(1)× SU(2)) + Vol(SO(3)) + Vol(RP 1) = 4π3 + π2 + π,

hence (77).

Proof. By Proposition AF.1 and Definition AF.2, the impedance equals the serial sum of the
three stratum volumes. By Definition AF.4 and Lemma AF.6, Vol(U(1) × SU(2)) = 4π3,
Vol(SO(3)) = π2, and Vol(RP 1) = π. Summing gives (77).

This matches the philosophy of the present paper: coupling strength is not an arbitrary
input, but a normalization cost induced by finite-resolution readout and compensation.

Interface reading. If each defect channel induces a compensation “impedance” (a normaliza-
tion cost for maintaining protocol-consistent phase transport), then the electromagnetic coupling
is the effective cost seen after channel composition. In this sense, (77) is a numerical instance of
the same template as Proposition 8.1, specialized to a dimensionless normalization observable.

CODATA comparison and explicit mismatch size. Let α−1
CODATA denote the CODATA

recommended inverse fine-structure constant [59]. The mismatch in inverse impedance is:

∆α−1 := α−1
emgeo − α−1

CODATA ≈ 3.046× 10−4,
∆α−1

α−1
CODATA

≈ 2.22× 10−6. (78)

Since the CODATA uncertainty on α−1 is at the 10−8 level [59], the ppm-scale deviation in
(78) should be read as a protocol-level matching factor between a closed normalization target
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and a renormalized experimental convention, not as an “agreement within error bars” claim.
Equivalently, in the multiplicative weight variable w = exp(−α−1), the interface mismatch is a
single factor sα = exp(∆α−1) ≈ 1.0003046. Using the one-loop dictionary in Remark AF.18,
the additive mismatch ∆α−1 can be equivalently represented as a matching-layer scale ratio
µ∗/µ0 = exp(−(2π/b)∆α−1) at fixed one-loop coefficient b.

Rigidity at bounded coefficient complexity. At bounded coefficient complexity (small
nonnegative integers in the ansatz aπ3 + bπ2 + cπ), the triple (a, b, c) = (4, 1, 1) is rigidly singled
out as the unique best fit in a finite search domain in the audit log-mismatch norm.

Proposition AF.10 (Bounded-coefficient rigidity for α−1
em). Within the finite domain a, b, c ∈

Z≥0 with a+ b+ c ≤ 10, the unique minimizer of the absolute log mismatch

e(a, b, c) :=
∣∣∣∣∣log

(
aπ3 + bπ2 + cπ

α−1
CODATA

)∣∣∣∣∣
under deterministic tie-break rules (coefficient sum, then lexicographic (a, b, c)) is (a, b, c) =
(4, 1, 1).

Proof. This is a finite exhaustive enumeration over 286 triples in the simplex a+ b+ c ≤ 10 with
deterministic tie-break rules. The top candidates and runner-up gap are recorded in Table 76
and are reproducible by scripts/exp_alpha_coeff_rigidity.py.

Remark AF.11 (A broader π-polynomial null baseline). To provide look-elsewhere context
beyond the nonnegative-coefficient simplex used in Proposition AF.10, Appendix AE.10 reports a
larger sweep over the explicit grammar

∑3
j=0 ajπ

j with aj ∈ [−10, 10] (a domain of size 194,481).
Within this broader class, the unique best candidate is still 4π3+π2+π with absolute log mismatch
e ≈ 2.22× 10−6 (Table 75).

AF.2 Electroweak normalization and the Weinberg angle

At the Z scale, we record a closed-theory electroweak matching normalization:

sin2 θW (µZ) = 3
13 , (79)

and the gauge-sector normalizations can be written as

α−1
w (µZ) = 3π2, α−1

Y (µZ) = 10π2, α−1(µZ) = 13π2, (80)

under a canonical volume assignment consistent with the Standard Model relation between gauge
couplings and the electromagnetic coupling [1, 2, 119–121].

Definition AF.12 (Electroweak inverse couplings as weighted volumes (CAP closure form)).
At the matching scale µ = µZ , define the inverse couplings by weighted canonical volumes

α−1
w (µZ) = dim(su(2)) Vol(SO(3)), α−1

Y (µZ) =
( ∑

f∈SM
Y 2

f

)
Vol(SO(3)),

with hypercharge normalized by Q = T3 + Y . The normalization is treated as a CAP-closed
interface dictionary: the weights are discrete invariants already fixed by the closed labeling at
the anchor (Lemma 9.3 and Lemma 8.8), and the remaining numerical comparison to Z-scale
MS conventions is recorded as a matching-layer mismatch (Table 77 and Table 78).
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Remark AF.13 (Why the weight ∑Y 2 is canonical at the interface). In standard gauge theory,
the normalization of an abelian coupling is tied to the choice of charge generator, and the leading
vacuum-polarization/running coefficients depend on sums of squared charges (with multiplicities)
[1,2]. Thus the appearance of

∑
Y 2 as a discrete weight in Definition AF.12 is compatible with

the conventional role of hypercharge-squared sums in U(1) normalization and renormalization,
even though this paper treats the relation only as a matching-layer dictionary rather than as a
derived β-function statement [80].

Theorem AF.14 (Electroweak normalization and the Weinberg angle). Under Defini-
tion AF.12, one has (80) and, consequently, (79).

Proof. One has dim(su(2)) = 3 (Lemma 9.3) and ∑
f∈SM Y 2

f = 10 for three generations
(Lemma 8.8). With the canonical quotient metric, Vol(SO(3)) = π2 [47]. Thus α−1

w (µZ) = 3π2

and α−1
Y (µZ) = 10π2, giving α−1(µZ) = α−1

w + α−1
Y = 13π2. Finally, using the standard elec-

troweak identity sin2 θW = α/αw = α−1
w /α−1 [1, 2] yields sin2 θW (µZ) = 3/13.

Remark AF.15. We use αw as the SU(2) coupling (often denoted α2 in standard notation),
and αY as the hypercharge coupling.

Interface reading. The integer decomposition 13 = 3 + 10 in (80) aligns with the SU(2)
gauge-sector dimension 3 (Lemma 9.3) and the three-generation hypercharge-squared sum 10
(Lemma 8.8), providing a shared integer backbone across the labeling interface and the elec-
troweak normalization interface. Here it is recorded as a consistency check that the three-channel
template can support the SM electroweak mixing pattern.

PDG comparison (explicit deviations). The closed model gives

α−1(µZ) = 13π2 ≈ 128.3048572142, sin2 θW (µZ) = 3
13 ≈ 0.2307692308. (81)

PDG quotes α−1
PDG(µZ) ≈ 127.955 and sin2 θW,PDG(µZ) ≈ 0.23122 in the MS convention [2].

Thus,
13π2 − 127.955 ≈ 3.50× 10−1 (2.73× 10−3 relative), (82)

and
3
13 − 0.23122 ≈ −4.51× 10−4 (−1.95× 10−3 relative). (83)

Remark AF.16 (Unification-scale benchmarks vs. Z-scale conventions). The electroweak mix-
ing angle is scale dependent. In minimal SU(5)-type grand-unified models, one has the familiar
tree-level unification-scale relation sin2 θW = 3/8 [83, 84]. Running and threshold corrections
then relate unification-scale parameters to Z-scale MS conventions [1, 2]. Accordingly, our Z-
scale targets in (81) are recorded as matching-layer normalizations at µZ , not as unification-scale
relations.

Bounded-complexity rigidity. Within the finite search domain 1 ≤ n ≤ 50 in the ansatz
α−1(µZ) = nπ2, the coefficient n = 13 is the unique minimizer of the audit mismatch e(n) :=
| log((nπ2)/α−1

PDG(µZ))| (Table 77). Within the rational search domain 1 ≤ q ≤ 50 for reduced ra-
tionals p/q, the fraction 3/13 is the unique minimizer of e(p/q) := | log((p/q)/ sin2 θW,PDG(µZ))|
under the deterministic tie-break (q, p) (Table 78). Combining the two fixes yields α−1

w = 3π2

and α−1
Y = 10π2 by (80).

Proposition AF.17 (Integer and rational rigidity at the electroweak scale). Let α−1
PDG(µZ) ≈

127.955 and sin2 θW,PDG(µZ) ≈ 0.23122 be the PDG reference values [2]. Within the finite
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domains 1 ≤ n ≤ 50 in the ansatz α−1(µZ) = nπ2 and 1 ≤ q ≤ 50 in reduced rationals p/q for
sin2 θW (µZ), the unique choices are

α−1(µZ) = 13π2, sin2 θW (µZ) = 3
13 ,

and consequently α−1
w (µZ) = 3π2 and α−1

Y (µZ) = 10π2.

Proof. Finite exhaustive enumeration with deterministic tie-break rules; reproduced by
scripts/exp_ew_rigidity.py and recorded in Tables 77 and 78.

Remark AF.18 (One-loop scale shifts and additive mismatch). At one loop, gauge couplings
run logarithmically: in a standard normalization one has an affine dependence

α−1(µ) = α−1(µ0)− b

2π log
(
µ

µ0

)
+ · · · ,

where the coefficient b is fixed by the charged field content and convention [1, 48]. Therefore an
additive mismatch ∆α−1 can be equivalently represented as a multiplicative scale ratio

µ∗
µ0

= exp
(
−2π
b

∆α−1
)

at fixed one-loop coefficient. This is the sense in which we interpret ppm- to per-mille-level
deviations as matching-layer scale shifts rather than as “agreement within error bars” statements.

Remark AF.19 (RG flow expressed in the resolution coordinate). The paper uses the resolution
coordinate r(µ) = log(µ/me)/ logφ. Since logµ = logme + r logφ, derivatives convert as

d
dr = (logφ) d

d logµ.

Thus any standard renormalization-group equation dg/d logµ = β(g) becomes

dg
dr = (logφ)β(g).

In particular, the one-loop affine running of α−1 in Remark AF.18 corresponds to a constant
slope dα−1/dr = −(b logφ)/(2π). We use this only as a translation dictionary between standard
scheme-dependent running and the protocol resolution language; the paper does not derive β-
functions from the folding layer.

A Fibonacci-scale interface remark. Using the one-loop scale-shift dictionary in Re-
mark AF.18, the mismatch 13π2−α−1

PDG(µZ) can be phrased as a logarithmic scale ratio µ∗/µZ .

AF.3 A CP-odd phase space and the Jarlskog invariant

For quark mixing, a basis-independent measure of CP violation is the Jarlskog invariant J [45].
We record the resulting canonical closed value as a CAP-closed normalization dictionary.

Definition AF.20 (CP-odd phase space (CAP closure form)). Within the primitive candidate
set P = {U(1), SU(2), SO(3),RP 1} with canonical volumes (Lemma AF.6), define the CP-odd
readout sector by

MCP ∼= SO(3)× SO(3)× SO(3)× RP 1. (84)

This choice is CAP-closed within the stated family by the volume-factorization rigidity in Propo-
sition AF.24.
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multiplicity rule dCP J = 1/(dCPπ
7) log(J/JPDG)

dim(su(3)) + dim(su(2)) 11 3.009942547× 10−5 +3.31× 10−3

dim(su(3)) + dim(su(2)) + dim(u(1)) 12 2.759114001× 10−5 −8.37× 10−2

dim(su(3)) 8 4.138671002× 10−5 +3.22× 10−1

dim(su(2)) 3 1.103645601× 10−4 +1.30
dim(su(3)) + dim(u(1)) 9 3.678818669× 10−5 +2.04× 10−1

dim(su(2)) + dim(u(1)) 4 8.277342004× 10−5 +1.01

Table 81: Multiplicity baselines for the CP-odd normalization J = 1/(dCPπ
7) within the fixed

primitive phase-space choice Vol(MCP) = π7 (Lemma AF.22). The bold row is the paper’s
default dCP = 8 + 3; alternative rows are counterfactual multiplicity dictionaries. Rows are
reproduced by the deterministic script scripts/exp_aggregation_baselines.py.

Remark AF.21 (Structure of SO(3)3 × RP 1). In the PDG parameterization of a three-
generation mixing matrix, the real mixing degrees of freedom can be organized as three inde-
pendent rotations, while the physically relevant complex phase is defined only modulo rephasings
and discrete identifications. The factor SO(3)3 models the three rotation degrees of freedom, and
the RP 1 factor models a projective phase degree of freedom after the Z2 ray identification, con-
sistent with expressing CP violation through rephasing-invariant quantities such as the Jarlskog
invariant J [2, 45,47].

Lemma AF.22 (Canonical volume of MCP). Under the canonical quotient metrics,
Vol(MCP) = π7.

Proof. By Lemma AF.6, Vol(SO(3)) = π2 and Vol(RP 1) = π. Therefore Vol(MCP) = (π2)3·π =
π7.

dCP := dim(su(3)) + dim(su(2)) = 8 + 3 = 11, Jgeo := 1
dCP Vol(MCP) = 1

11π7 . (85)

Remark AF.23 (Why the multiplicity excludes the abelian factor). The nontrivial CP-odd
rephasing-invariant residue encoded by J is tied to genuinely non-abelian mixing structure in a
three-generation setting [2, 45]. Accordingly, in the low-complexity multiplicity count we weight
only the non-abelian gauge-sector dimensions 8 and 3; the abelian U(1) factor is treated as
part of the phase normalization already accounted for in the ray/projective quotient structure.
Table 81 records a small baseline sweep over alternative multiplicity counts within the same π7

phase-space normalization.

Proposition AF.24 (Primitive factorization rigidity for the CP-odd phase space). Fix the prim-
itive candidate set P = {U(1), SU(2), SO(3),RP 1} with canonical volumes as in Lemma AF.6.
Among products of primitives with Vol(M) = π7, the factorization is unique (up to ordering):

M∼= SO(3)× SO(3)× SO(3)× RP 1.

Proof. From Lemma AF.6, each primitive volume is one of 2π, 2π2, π2, π. Any product therefore
has the form 2mπk with m ∈ Z≥0. The constraint Vol(M) = π7 forces m = 0, hence no factor
can be U(1) or SU(2), and all factors must be chosen from {SO(3),RP 1}. To achieve exponent
7 with SO(3) contributing π2 and RP 1 contributing π, the only possibility is three SO(3) factors
and one RP 1 factor.
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The interpretation compatible with the present protocol picture is that attempting to “pull
back” CP (conjugation plus reflection) into a fixed readout protocol leaves an unavoidable
residual geometric phase (holonomy), whose magnitude is controlled by a CP-odd phase-space
volume and a discrete gauge-sector multiplicity.

Connection viewpoint. In the Standard Model, the CKM matrix is the unitary mixing
matrix for quarks, with CP violation originating from an irreducible complex phase (three gen-
erations) [2, 122, 123]. The protocol picture naturally expresses such phases as holonomy data
of a connection on a protocol parameter manifold. The CP-odd invariant is then a rephasing-
invariant residue of holonomy, consistent with the volume/multiplicity expression (85).

PDG comparison and rigidity signal. PDG quotes JPDG = (3.00± 0.15)× 10−5 [2]. The
closed reference value (85) gives

Jgeo = 1
11π7 ≈ 3.009942547× 10−5, (86)

with relative deviation ≈ 3.31×10−3 at the PDG central value. Numerically, Jgeo−JPDG,central ≈
9.94×10−8, corresponding to≈ 6.6×10−2σ under the quoted PDG uncertainty. Moreover, within
the bounded search domain 1 ≤ a ≤ 50 and 1 ≤ n ≤ 20 in the ansatz J = 1/(aπn), the pair
(a, n) = (11, 7) is uniquely selected by finite rigidity enumeration (Table 79).

Proposition AF.25 (Bounded-complexity rigidity for CKM CP violation). Let JPDG = 3.00×
10−5 be the PDG central value [2]. Within the finite domain 1 ≤ a ≤ 50 and 1 ≤ n ≤ 20 in the
ansatz J = 1/(aπn), the unique minimizer of the audit mismatch

e(a, n) :=
∣∣∣∣log

(1/(aπn)
JPDG

)∣∣∣∣
under deterministic tie-break rules (minimize a+n, then lexicographic (a, n)) is (a, n) = (11, 7),
yielding Jgeo = 1/(11π7).

Proof. Finite exhaustive enumeration with deterministic tie-break rules; reproduced by
scripts/exp_jarlskog_pi_rigidity.py and recorded in Table 79.

AF.4 CKM mixing magnitudes as bounded-complexity depths

The protocol interface naturally expresses small dimensionless amplitudes in the golden resolu-
tion coordinate

rmix(x) := − log x
logφ (x > 0), (87)

analogous to the mass-resolution coordinate used in Section 13. We test a minimal bounded-
complexity closure for the three small CKM magnitudes |Vus|, |Vcb|, and |Vub| (PDG conventions)
[2].

Candidate-family status (audit). [Audit]All “rigidity” and “uniqueness” statements in the
mixing closures of this paper are conditional: they hold within the explicitly declared finite can-
didate family and complexity bound, with deterministic tie-break rules (Definition H.1). The
candidate families used below are chosen to be protocol-native (normalization/equipartition
and golden depth) and to remain discrete and auditable; alternative families are not excluded
in principle and are treated, when needed, as counterfactual baselines in the audit tables (Ap-
pendix AE).
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Forcing rationale (normalization and depth). In the protocol viewpoint, mixing mag-
nitudes are overlap amplitudes between normalized readout modes. We restrict to a bounded
candidate family fixed by two protocol-native mechanisms: (i) normalization/equipartition in
an effective d-dimensional mixing subspace. For a Haar-uniform unitary matrix U ∈ U(d) one
has E|Uij |2 = 1/d, so the minimal-description overlap scale is |Uij | ∼ 1/

√
d [124, 125]. (ii)

golden-branch depth costs produce exponentially small weights with base φ; taking square roots
at the amplitude level yields half-depth factors φ−k/2 (cf. the zeta/Abel pole-barrier scaling in
Section 4.5). Accordingly, we treat CKM hierarchies as a bounded-complexity closure problem
in discrete depth/normalization variables rather than as free continuous parameters.

Candidate family. Let Vmax := maxw∈X6 V (w) = 20 at (m,n) = (6, 3). We consider the
bounded family

|Vus| =
1√
d
, 1 ≤ d ≤ Vmax, |Vcb| = φ−k23/2, |Vub| = φ−k13/2, k23, k13 ∈ N, (88)

and select coefficients by a bounded-complexity minimax search. Here d is a normalization-
dimension parameter (unrelated to the fixed window length m = 6 used elsewhere in the paper).

Remark AF.26 (Why d ≤ Vmax and why k ≤ 2B). The bound d ≤ Vmax ties the normalization
parameter to the intrinsic finite invariant range at (m,n) = (6, 3): by Proposition 4.15, V (w)
takes exactly the values {0, . . . , Vmax}, so Vmax = 20 is a protocol-intrinsic integer cutoff available
without importing external scales. For the depth exponents, the amplitudes are written in half-
depth form φ−k/2 (cf. (87)); therefore restricting k to a box of size O(B) makes the exponent
complexity comparable to the integer search radius B used for other closures. The choice k ≤ 2B
is a minimal symmetry between integer and half-integer depth budgets: it allows exponents up to
depth B in the amplitude-squared scale, while keeping the candidate domain finite and auditable.

Proposition AF.27 (Bounded-complexity rigidity for CKM magnitudes). Fix PDG reference
magnitudes |Vus|, |Vcb|, |Vub| [2]. For each bound B ∈ {1, . . . , 20}, minimize the objective

max
{∣∣log(|Vus|pred/|Vus|PDG)

∣∣, ∣∣log(|Vcb|pred/|Vcb|PDG)
∣∣, ∣∣log(|Vub|pred/|Vub|PDG)

∣∣},
over the finite domain 1 ≤ d ≤ min(B, Vmax) and 1 ≤ k23, k13 ≤ 2B, using lexicographic tie-break
rules (sum error, then coefficient sum, then (d, k23, k13)). At B = 20 the unique minimizer is

(d, k23, k13) = (20, 13, 23),

and, within the tested range B = 1, . . . , 20, the pair (k23, k13) stabilizes at B = 12 and remains
constant for all B with 12 ≤ B ≤ 20 (Table 82).

Proof. Finite exhaustive enumeration with deterministic tie-break rules; reproduced by the ac-
companying script.

Remark AF.28 (Candidate-domain size). At bound B, the search domain has size

|Θ(B)| = min(B, Vmax) · (2B)2.

At B = 20 and Vmax = 20, this is |Θ| = 20 · 402 = 32000 candidates.

Audit context. Candidate-domain size, best/second-best mismatch context, and distribution
quantiles are recorded in Appendix AE (Tables 70–71). Counterfactual baseline comparisons
are recorded in Table 74.
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B minimizer max abs. log mismatch sum abs. log mismatch

1 (d, k23, k13) = (1, 2, 2) 5.055363 9.234257
2 (d, k23, k13) = (2, 4, 4) 4.574151 7.925260
3 (d, k23, k13) = (3, 6, 6) 4.092939 6.760103
4 (d, k23, k13) = (4, 8, 8) 3.611727 5.653839
5 (d, k23, k13) = (5, 10, 10) 3.130515 4.579843
6 (d, k23, k13) = (6, 12, 12) 2.649304 3.526259
7 (d, k23, k13) = (7, 13, 14) 2.168092 2.727366
8 (d, k23, k13) = (8, 13, 16) 1.686880 2.179388
9 (d, k23, k13) = (9, 13, 18) 1.205668 1.639285

10 (d, k23, k13) = (10, 13, 20) 0.724456 1.105393
11 (d, k23, k13) = (11, 13, 22) 0.295823 0.576526
12 (d, k23, k13) = (12, 13, 23) 0.252318 0.292414
13 (d, k23, k13) = (13, 13, 23) 0.212296 0.252393
14 (d, k23, k13) = (14, 13, 23) 0.175242 0.215339
15 (d, k23, k13) = (15, 13, 23) 0.140746 0.180842
16 (d, k23, k13) = (16, 13, 23) 0.108476 0.148573
17 (d, k23, k13) = (17, 13, 23) 0.078164 0.118261
18 (d, k23, k13) = (18, 13, 23) 0.049585 0.089682
19 (d, k23, k13) = (19, 13, 23) 0.037458 0.062648
20 (d, k23, k13) = (20, 13, 23) 0.037458 0.043192

Table 82: Bounded-complexity minimax search for CKM magnitudes within the candi-
date family (88) at (m,n) = (6, 3). Each row reports the unique minimizer in the
domain 1 ≤ d ≤ min(B, Vmax) and 1 ≤ k23, k13 ≤ 2B under the objective and
tie-break rules of Proposition AF.27. Rows are reproduced by the deterministic script
scripts/exp_ckm_mixing_depth_rigidity.py.

AF.5 CKM matrix closure from three magnitudes and a Jarlskog anchor

To turn the magnitude closure of Table 83 into a fully specified 3× 3 mixing matrix, we use the
PDG standard CKM parameterization by three angles and one CP phase [2]. In this convention,

|Vub| = s13, |Vus| = s12c13, |Vcb| = s23c13,

and the Jarlskog invariant is
J = s12s23s13c12c23c

2
13 sin δ.

We therefore (i) extract (s12, s23, s13) from the magnitude triplet, (ii) solve for δ using a chosen
J normalization, and (iii) reconstruct the full CKM matrix.

Reference reconstruction. To avoid mixing incompatible PDG conventions for different
entries, we define a single “PDG reference reconstruction” by taking the PDG central values of
|Vus|, |Vcb|, |Vub|, and J used elsewhere in this paper, extracting (s12, s23, s13, δ) via the above
identities, and then generating all |Vij | from the PDG parameterization. The closed prediction
uses the bounded-complexity minimizer for (|Vus|, |Vcb|, |Vub|) and the rigid Jgeo value (85).

This section extends the bounded-complexity closure program to the lepton sector. We
record a minimal, auditable closure for the PMNS mixing angles and provide a corresponding
matrix reconstruction in the PDG standard parameterization. Majorana phases do not affect
oscillation probabilities and are not constrained by this minimal closure, so we ignore them
here [2].
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parameter PDG ref. value predicted form predicted value rmix log(pred/ref)

|Vus| 0.2243 1/
√

20 0.223606798 3.113 -0.003095
|Vcb| 0.0422 φ−13/2 0.0438107147 6.500 0.037458
|Vub| 0.00394 φ−23/2 0.00395040968 11.500 0.002639

Table 83: CKM-magnitude closure in the golden resolution coordinate (87) at (m,n) = (6, 3),
using the bounded-complexity minimizer at B = 20 in Proposition AF.27.

parameter PDG recon. value closed value mismatch

s12 0.224301741 0.223608543 -0.003095
s23 0.0422003276 0.0438110566 0.037458
s13 0.00394 0.00395040968 0.002639
δ [deg] 55.709284 53.010101 -2.699183
J 3× 10−5 3.00994× 10−5 0.003309

Table 84: Extraction of CKM angles and CP phase in the PDG standard parameterization from
a magnitude triplet and a Jarlskog anchor. For sij and J the mismatch is log(closed/ref); for δ
the mismatch is ∆δ in degrees.

AF.6 PMNS angles as bounded-complexity amplitudes

We use the same golden resolution coordinate for dimensionless amplitudes as in (87):

rmix(x) := − log x
logφ (x > 0).

Candidate-family status (audit). [Audit]As in the CKM closure (Section AF.4), all “rigidity”
and “uniqueness” statements below are conditional: they hold within the explicitly declared finite
candidate family and bound, with deterministic tie-break rules (Definition H.1). The family is
chosen to encode protocol-native motifs (normalization/equipartition and golden depth) while
keeping the search space discrete, finite, and reproducible.

Forcing rationale (normalization and depth). As in the CKM closure of Section AF.4,
we restrict to a bounded candidate family fixed by two protocol-native mechanisms: (i) nor-
malization/equipartition at the amplitude level. For Haar-uniform unitary mixing in an ef-
fective d-dimensional subspace, E|Uij |2 = 1/d, so the minimal-description overlap scale is
|Uij | ∼ 1/

√
d [124,125]. (ii) discrete golden-branch depth costs yield exponentially small weights

with base φ; taking square roots at the amplitude level yields half-depth factors φ−k/2. We
treat the resulting PMNS hierarchies as a bounded-complexity closure problem rather than as
free continuous inputs [2, 60]. For definiteness, the reference targets used by the accompany-
ing scripts are taken as representative normal-ordering global-fit central values under the PDG
convention [2, 60].

We define a simple candidate family for the three sines (s12, s23, s13) of the PMNS mixing
angles:

s12 =
√
p12
q12

, s23 =
√
p23
q23

, s13 = φ−k13/2,

with a bounded-complexity box

1 ≤ q12, q23 ≤ B, 1 ≤ p12 ≤ q12 − 1, 1 ≤ p23 ≤ q23 − 1,
gcd(pij , qij) = 1, 1 ≤ k13 ≤ 2B,
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element PDG recon. |Vij | closed |Vij | log(closed/ref)

|Vud| 0.974512179 0.974671429 0.000163
|Vus| 0.2243 0.223606798 -0.003095
|Vub| 0.00394 0.00395040968 0.002639
|Vcd| 0.224193254 0.223495378 -0.003118
|Vcs| 0.9736306 0.973719897 0.000092
|Vcb| 0.0422 0.0438107147 0.037458
|Vtd| 0.00796231328 0.00808837153 0.015708
|Vts| 0.0416288982 0.0432384402 0.037935
|Vtb| 0.999101414 0.999032039 -0.000069

Table 85: Full CKM magnitude table induced by the magnitude closure and the Jarlskog anchor,
compared to a PDG-consistent reference reconstruction (see text). Rows are reproduced by the
deterministic script scripts/exp_ckm_matrix_closure.py.

unitarity check PDG recon. value closed value

row 1 -1.110e-16 -1.110e-16
row 2 +0.000e+00 -2.220e-16
row 3 +0.000e+00 +0.000e+00
col 1 -1.110e-16 -1.110e-16
col 2 +0.000e+00 -2.220e-16
col 3 +0.000e+00 +0.000e+00

Table 86: Row/column unitarity diagnostics: ∑j |Vij |2 − 1 (rows) and ∑i |Vij |2 − 1 (columns)
for the reconstructed and closed CKM matrices.

and we select the unique minimizer by lexicographic minimization of the maximum absolute log
mismatch and then the sum mismatch (as in Definition H.1).

Remark AF.29 (Why the PMNS candidate box uses reduced rationals and k13 ≤ 2B). The
square-root rational forms s =

√
p/q encode the normalization motif directly at the amplitude

level while keeping the candidate family discrete and closed under bounded denominator. For the
depth exponent, writing s13 = φ−k13/2 makes the half-depth structure explicit in the same rmix
coordinate as in the CKM closure. Bounding k13 by 2B keeps the half-depth exponent budget
commensurate with the rational-denominator budget B without introducing higher-denominator
freedom.

Proposition AF.30 (Bounded-complexity rigidity for PMNS mixing sines). Fix represen-
tative global-fit reference values for (s12, s23, s13) under PDG conventions [2, 60]. For each
B ∈ {2, . . . , 20}, minimize the minimax log-mismatch objective over the candidate box described
above, using the same deterministic tie-break rules as in Definition H.1. At B = 20 the unique
minimizer is

(p12/q12, p23/q23, k13) = (4/13, 6/11, 8),

and, within the tested range B = 2, . . . , 20, the minimizer stabilizes at B = 13 and remains
constant for all B with 13 ≤ B ≤ 20 (Table 87).

Proof. Finite exhaustive enumeration with deterministic tie-break rules; reproduced by the ac-
companying script.

200



B minimizer max abs. log mismatch sum abs. log mismatch

2 (p12/q12, p23/q23, k13) = (1/2, 1/2, 4) 0.950499 1.237468
3 (p12/q12, p23/q23, k13) = (1/3, 1/2, 6) 0.469287 0.553524
4 (p12/q12, p23/q23, k13) = (1/3, 1/2, 8) 0.043089 0.096161
5 (p12/q12, p23/q23, k13) = (1/3, 1/2, 8) 0.043089 0.096161
6 (p12/q12, p23/q23, k13) = (1/3, 1/2, 8) 0.043089 0.096161
7 (p12/q12, p23/q23, k13) = (2/7, 4/7, 8) 0.035928 0.071529
8 (p12/q12, p23/q23, k13) = (2/7, 4/7, 8) 0.035928 0.071529
9 (p12/q12, p23/q23, k13) = (2/7, 5/9, 8) 0.035928 0.057444

10 (p12/q12, p23/q23, k13) = (3/10, 5/9, 8) 0.011925 0.033049
11 (p12/q12, p23/q23, k13) = (3/10, 6/11, 8) 0.011925 0.023874
12 (p12/q12, p23/q23, k13) = (3/10, 6/11, 8) 0.011925 0.023874
13 (p12/q12, p23/q23, k13) = (4/13, 6/11, 8) 0.011925 0.013468
14 (p12/q12, p23/q23, k13) = (4/13, 6/11, 8) 0.011925 0.013468
15 (p12/q12, p23/q23, k13) = (4/13, 6/11, 8) 0.011925 0.013468
16 (p12/q12, p23/q23, k13) = (4/13, 6/11, 8) 0.011925 0.013468
17 (p12/q12, p23/q23, k13) = (4/13, 6/11, 8) 0.011925 0.013468
18 (p12/q12, p23/q23, k13) = (4/13, 6/11, 8) 0.011925 0.013468
19 (p12/q12, p23/q23, k13) = (4/13, 6/11, 8) 0.011925 0.013468
20 (p12/q12, p23/q23, k13) = (4/13, 6/11, 8) 0.011925 0.013468

Table 87: Bounded-complexity minimax search for PMNS mixing sines in the candi-
date family described in the text. Rows are reproduced by the deterministic script
scripts/exp_pmns_mixing_depth_rigidity.py. Reference targets use representative global-
fit central values under PDG conventions [2, 60].

Remark AF.31 (Candidate-domain size). Let R(B) be the set of reduced fractions p/q with
1 ≤ q ≤ B, 1 ≤ p ≤ q − 1, and gcd(p, q) = 1. Then |R(B)| = ∑B

q=2 φE(q), where φE is Euler’s
totient function [27]. The PMNS candidate box has size

|Θ(B)| = |R(B)|2 · (2B),

corresponding to independent choices for (p12/q12), (p23/q23), and k13 ∈ {1, . . . , 2B}. At B = 20,
one has |R(20)| = 127 and therefore |Θ(20)| = 1272 · 40 = 645160.

Normal vs. inverted ordering (NO/IO) diagnostic. The PMNS closure above uses rep-
resentative normal-ordering (NO) reference targets. To assess sensitivity to the ordering choice,
we repeat the same bounded-complexity closure against a representative inverted-ordering (IO)
target triple and record the selected minimizers and mismatch metrics. This diagnostic is not
used as a premise; it is included only as an auditable robustness check.

Audit context. Candidate-domain size, best/second-best mismatch context, and distribution
quantiles for the PMNS-sine closure (and the bounded-denominator δ closure below) are recorded
in Appendix AE (Tables 70–71); uncertainty-robustness stress tests are recorded in Table 72,
and counterfactual baseline comparisons in Table 74.

AF.7 Matrix reconstruction and a discrete CP-phase closure

To reconstruct a full 3 × 3 mixing matrix, we use the PDG standard parameterization (three
angles plus one Dirac CP phase) [2]. We compare a single reference reconstruction (from repre-
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parameter reference predicted form predicted value rmix log(pred/ref)

s12 0.554076
√

4/13 0.554700196 1.225 0.001126
s23 0.738241

√
6/11 0.738548946 0.630 0.000417

s13 0.147648 φ−8/2 0.145898034 4.000 -0.011925

Table 88: PMNS mixing-angle closure in the golden resolution coordinate at (m,n) = (6, 3),
using the bounded-complexity minimizer at B = 20. Rows are reproduced by the deterministic
script scripts/exp_pmns_mixing_depth_rigidity.py.

ordering (sin2 θ12, sin2 θ23, sin2 θ13)ref minimizer (p12/q12, p23/q23, k13) max abs. log mismatch δ minimizer (Q = 12) E∞(|U |)

NO (0.307, 0.545, 0.0218) (4/13, 6/11, 8) 0.0119 δ = 13π/12 [195.0◦] 0.012
IO (0.307, 0.551, 0.0220) (4/13, 11/20, 8) 0.0165 δ = 13π/12 [195.0◦] 0.016

Table 89: NO/IO robustness diagnostic for the PMNS closures at (m,n) = (6, 3): we rerun the
bounded-complexity minimizers at B = 20 (angles) and Q = 12 (phase) against representative
normal- and inverted-ordering reference targets (PDG conventions). Rows are reproduced by
the deterministic script scripts/exp_pmns_no_io_stability.py.

sentative global-fit central values) to a closed prediction obtained from the bounded-complexity
angle minimizer together with a discrete protocol-level closure for the Dirac phase δ [60]. Be-
cause the PMNS magnitudes depend on cos δ while the CP-odd invariant depends on sin δ, we
use a bounded-denominator rational-angle candidate family

δ = kπ

q
, 1 ≤ q ≤ Q, 1 ≤ k ≤ 2q − 1, gcd(k, q) = 1,

and we select a unique minimizer by a CP-odd anchor rule: first require sgn(Jℓ) = sgn(χ)
as the chirality-anchored CP-sign convention (Definition 7.7), then minimize the mismatch
| log(|Jℓ|/|Jℓ,ref |)|, and finally break the remaining δ ↔ π − δ quadrant ambiguity (since
magnitudes depend on cos δ) by minimizing the maximum absolute log mismatch of the in-
duced PMNS magnitudes |Uij | against the same reference reconstruction. Ties are broken by
bounded-complexity order (q, k). Table 90 records the resulting bounded-denominator sweep
Q = 1, . . . , 12 and the stabilized minimizer.

Remark AF.32 (Status of the CP-sign anchor in the PMNS closure). The chirality-anchored
sign rule fixes a deterministic convention for selecting a quadrant of δ within a finite rational
candidate family. It does not introduce additional continuous freedom, and it is not used to tune
the angle magnitudes: the angle minimizer is selected independently by Proposition AF.30, while
the sign anchor only resolves the remaining δ ↔ π − δ ambiguity in a protocol-consistent way
(Remark 7.8).

AG Mass-depth rigidity audits and matching-layer details (sup-
plement)

This appendix collects audit tables and matching-layer bookkeeping details that support the
mass-spectrum closure of Section 13. The main text records the closed template and the spec-
trum table; the material below provides bounded-complexity evidence and quantized matching
summaries.
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Q minimizer δ [deg] sgn(Jℓ) vs. sgn(χ) E∞(|U |) Jℓ (closed) | log(|Jℓ|/|Jℓ,ref |)|

1 δ = 1π/1 180.0 FLIP 0.012 +4.01876e-18 35.298
2 δ = 3π/2 270.0 OK 0.292 -0.0328156 1.341
3 δ = 4π/3 240.0 OK 0.164 -0.0284192 1.197
4 δ = 5π/4 225.0 OK 0.099 -0.0232042 0.994
5 δ = 6π/5 216.0 OK 0.064 -0.0192886 0.809
6 δ = 7π/6 210.0 OK 0.043 -0.0164078 0.648
7 δ = 8π/7 205.7 OK 0.030 -0.0142382 0.506
8 δ = 9π/8 202.5 OK 0.021 -0.012558 0.380
9 δ = 10π/9 200.0 OK 0.015 -0.0112236 0.268

10 δ = 11π/10 198.0 OK 0.012 -0.0101406 0.166
11 δ = 12π/11 196.4 OK 0.012 -0.00924524 0.074
12 δ = 13π/12 195.0 OK 0.012 -0.00849331 0.011

Table 90: Bounded-denominator closure for the PMNS Dirac phase δ using a chirality-anchored
CP-sign convention (Definition 7.7) and a deterministic bounded-complexity tie-break. Here
E∞(|U |) := maxi,j | log(|Uij |closed/|Uij |ref)|| is the max abs. log mismatch of the induced PMNS
magnitudes against the reference reconstruction. Rows are reproduced by the deterministic
script scripts/exp_pmns_matrix_closure.py.

parameter reference value closed value mismatch

s12 0.554075807 0.554700196 0.001126
s23 0.738241153 0.738548946 0.000417
s13 0.147648231 0.145898034 -0.011925
δ [deg] 195.000000 195.000000 0.000000
Jℓ -0.00858602 -0.00849331 -0.010856

Table 91: PMNS angle/phase extraction and the induced leptonic Jarlskog invariant
Jℓ under the chosen conventions. Rows are reproduced by the deterministic script
scripts/exp_pmns_matrix_closure.py.

Audit note (finite exhaustive searches). Whenever this appendix reports a rigidity “win-
ner” inside a bounded coefficient box, it is obtained by an exhaustive enumeration over that
finite integer domain with deterministic tie-break rules (as stated near each table). The scripts
referenced in captions reproduce these finite enumerations and write LATEX fragments.

AG.1 Rigidity of the depth formula at bounded coefficient complexity

To make the integer depth assignment auditable as a low-complexity closure, we test a bounded-
coefficient ansatz for the depth map. Write the stable-type differences relative to the electron
reference we as

∆V := V (w)− V (we), ∆g := g(w)− g(we), ∆|w|1 := |w|1 − |we|1.

Consider the integer ansatz

r̂(w) = a∆V + b∆g + c∆|w|1, a, b, c ∈ Z, (89)

and measure its mismatch on the scheme-stable charged-lepton anchor set {µ, τ} by the depth
deviation in the resolution coordinate r(µ). As a diagnostic, we also record the same metrics on
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element reference |Uij | closed |Uij | log(closed/ref)

|Ue1| 0.823342335 0.823147051 -0.000237
|Ue2| 0.548003102 0.548764701 0.001389
|Ue3| 0.147648231 0.145898034 -0.011925
|Uµ1| 0.287059885 0.28831328 0.004357
|Uµ2| 0.620062595 0.618895453 -0.001884
|Uµ3| 0.730149985 0.730646201 0.000679
|Uτ1| 0.489595774 0.489187475 -0.000834
|Uτ2| 0.561440093 0.561983738 0.000968
|Uτ3| 0.667143913 0.666985676 -0.000237

Table 92: PMNS magnitude table induced by the bounded-complexity angle closure
and the discrete phase choice. Rows are reproduced by the deterministic script
scripts/exp_pmns_matrix_closure.py.

unitarity check reference value closed value

row 1 +0.000e+00 +2.220e-16
row 2 -1.110e-16 +2.220e-16
row 3 +0.000e+00 +2.220e-16
col 1 +0.000e+00 +2.220e-16
col 2 +0.000e+00 +2.220e-16
col 3 -1.110e-16 +0.000e+00

Table 93: Row/column unitarity diagnostics: ∑j |Uij |2 − 1 (rows) and ∑i |Uij |2 − 1 (columns)
for the reconstructed and closed PMNS matrices.

an extended fermion set including quark reference masses (scheme-dependent by convention).
Table 94 records the selected minimizers in the coefficient box |a|, |b|, |c| ≤ B for B = 1, . . . , 20
under a lexicographic minimization rule: first minimize the leptonic minimax deviation, then
the leptonic sum deviation, then the extended-set minimax and sum deviations, and finally
coefficient complexity.

Proposition AG.1 (Rigidity of the (2, 5, 1) coefficients at bounded complexity). In the bounded
search domain |a|, |b|, |c| ≤ 20, the unique minimizer of the leptonic objective (as defined above)
satisfies

(a, b, c) = (2, 5, 1).

Moreover, within the tested range B = 1, . . . , 20, the minimizer stabilizes at B = 5 and remains
constant for all B with 5 ≤ B ≤ 20.

Proof. This is a finite exhaustive enumeration over integer triples in the stated box with deter-
ministic tie-break rules; the resulting minimizers are listed in Table 94 and reproduced by the
accompanying script.

Leave-one-out stability of the coefficient choice. As an additional audit, we repeat the
B = 20 coefficient search while leaving out one anchor at a time from the finite anchor set
{u, d, s, c, b, t, µ, τ} used by the rigidity script, and record whether the selected minimizer changes
under the same lexicographic objective. Table 95 reports the resulting leave-one-out sweep.
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B (a, b, c) maxµ,τ sumµ,τ maxext sumext

1 (1,−1, 1) 5.079526 6.024227 10.246816 24.792808
2 (2, 2,−2) 3.079526 6.134824 7.277571 31.990963
3 (2, 3,−1) 2.079526 4.134824 6.277571 25.990963
4 (2, 4, 0) 1.079526 2.134824 5.277571 19.990963
5 (2, 5, 1) 0.079526 0.134824 4.277571 14.795234
6 (2, 5, 1) 0.079526 0.134824 4.277571 14.795234
7 (2, 5, 1) 0.079526 0.134824 4.277571 14.795234
8 (2, 5, 1) 0.079526 0.134824 4.277571 14.795234
9 (2, 5, 1) 0.079526 0.134824 4.277571 14.795234

10 (2, 5, 1) 0.079526 0.134824 4.277571 14.795234
11 (2, 5, 1) 0.079526 0.134824 4.277571 14.795234
12 (2, 5, 1) 0.079526 0.134824 4.277571 14.795234
13 (2, 5, 1) 0.079526 0.134824 4.277571 14.795234
14 (2, 5, 1) 0.079526 0.134824 4.277571 14.795234
15 (2, 5, 1) 0.079526 0.134824 4.277571 14.795234
16 (2, 5, 1) 0.079526 0.134824 4.277571 14.795234
17 (2, 5, 1) 0.079526 0.134824 4.277571 14.795234
18 (2, 5, 1) 0.079526 0.134824 4.277571 14.795234
19 (2, 5, 1) 0.079526 0.134824 4.277571 14.795234
20 (2, 5, 1) 0.079526 0.134824 4.277571 14.795234

Table 94: Bounded-coefficient rigidity search for the depth ansatz (89) over B = 1, . . . , 20. The
primary anchor set is {µ, τ}; the extended set includes quark reference masses as a diagnostic.
Rows are generated by scripts/exp_mass_depth_rigidity.py.

Audit context. Candidate-domain size, best/second-best mismatch context, and distribution
quantiles for the mass-depth closure are recorded in Appendix AE (Tables 70–71); uncertainty-
robustness stress tests are recorded in Table 72, and counterfactual baseline comparisons in
Table 74.

AG.2 A minimal matching layer: quantized depth shifts

In effective field theory, scheme and threshold conventions enter as multiplicative matching
factors. In the resolution coordinate, a matching factor is an additive shift: if µref is a reference
mass and µpred is a closed template value, then

∆r := r(µref)− r̂ = logφ

(
µref
µpred

)
,

µref
µpred

= φ∆r.

To make the matching layer auditable at bounded complexity, we record a minimal dyadic
quantization convention: matching shifts are summarized on the quarter-depth lattice ∆r ≈ k/4.
Table 97 reports ∆r, the nearest k/4, the residual ∆r−k/4, and the implied quantized matching
factor φk/4. Table 98 summarizes the residual sizes across the same rows. This does not change
the closed depth formula; it makes the scheme/matching correction explicit in the same discrete
language as the rest of the paper.

Remark AG.2 (Why a quarter-depth lattice is the minimal dyadic choice). Two structural fea-
tures of the present paper single out dyadic denominators as the protocol-native low-complexity
family for matching-layer summaries. First, phases are treated as dyadic registers Z2p and the
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leave-out (a, b, c) maxµ,τ sumµ,τ maxext sumext status

none (2, 5, 1) 0.079526 0.134824 4.277571 14.795234 SAME
-u (2, 5, 1) 0.079526 0.134824 4.277571 11.790788 SAME
-d (2, 5, 1) 0.079526 0.134824 4.277571 14.393098 SAME
-s (2, 5, 1) 0.079526 0.134824 4.277571 13.609571 SAME
-c (1, 1, 6) 0.079526 0.134824 3.402135 8.177093 DIFF
-b (2, 5, 1) 0.079526 0.134824 4.246816 10.517663 SAME
-t (2, 5, 1) 0.079526 0.134824 4.277571 13.251455 SAME
-mu (2, 5, 1) 0.055298 0.055298 4.277571 14.715708 SAME
-tau (2, 6, 1) 0.079526 0.079526 4.246816 11.281053 DIFF

Table 95: Leave-one-out robustness diagnostic for the depth-coefficient search at B = 20.
Each row removes one anchor from the finite anchor set and recomputes the selected min-
imizer under the same lexicographic objective as in Table 94. Rows are generated by
scripts/exp_mass_depth_leave_one_out.py.

tested leave-outs SAME DIFF fraction SAME DIFF cases

8 6 2 -c, -tau

Table 96: Compact summary of the leave-one-out robustness sweep in Table 95. The
baseline is (a, b, c) = (2, 5, 1) at B = 20 (Proposition AG.1). Rows are generated by
scripts/exp_mass_depth_leave_one_out.py.

holonomy diagnostics treat denominators of the form denom = 2p in CAP audit form (Re-
mark 6.11); thus dyadic refinement is the protocol-native notion of “one more bit” of resolution.
Second, several candidate families used for mixing amplitudes are square-root structured (e.g.
φ−k/2 and 1/

√
d in (88) and the analogous PMNS family), so half-depth exponents appear already

at the amplitude level. When such half-depth normalizations are composed with a logarithmic
matching dictionary (as in (19)), quarter-depth steps arise as the smallest dyadic lattice that can
express the resulting corrections without introducing higher-denominator freedom. Accordingly,
k/4 is used here as the minimal dyadic reporting lattice; finer dyadic lattices k/2s (s > 2) can
be adopted at higher complexity if one wishes to audit smaller residual structure. We emphasize
that we do not optimize the lattice denominator in this paper: 1/4 is chosen as the minimal
dyadic reporting convention, and the residuals in Tables 97–98 make the remaining mismatch
explicit.

AH Scalar-sector interface audits (supplement)
This appendix records scalar-sector interface audits used as supporting certificates for the main-
text scalar-sector closure statements (Section 8.4).

Audit note (bounded families and deterministic tie-breaks). All scalar-sector “rigid-
ity” statements in this appendix are formulated as deterministic selections from explicit bounded
rational/integer candidate families, with a fully specified tie-break rule. The accompanying
scripts reproduce the same finite sweeps and write LATEX fragments; they are not additional
premises beyond the stated bounded families and tie-breaks.
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field r(µ) r̂ ∆r nearest residual φk/4

e 0.000 0 +0.000 0/4 +0.000 1
µ 11.080 11 +0.080 0/4 +0.080 1
τ 16.945 17 -0.055 0/4 -0.055 1
u 2.996 6 -3.004 −12/4 -0.004 0.236068
d 4.598 5 -0.402 −2/4 +0.098 0.786151
s 10.814 12 -1.186 −5/4 +0.064 0.547981
c 16.247 12 +4.247 17/4 -0.003 7.73032
b 18.722 23 -4.278 −17/4 -0.028 0.129361
t 26.456 28 -1.544 −6/4 -0.044 0.485868
W 24.866 25 -0.134 −1/4 +0.116 0.886652
Z 25.128 25 +0.128 1/4 -0.122 1.12784
H 25.788 26 -0.212 −1/4 +0.038 0.886652

Table 97: Minimal matching-layer summary in the resolution coordinate. The “nearest”
column reports the closest quarter-step k/4 to the observed ∆r. Rows are generated by
scripts/exp_mass_matching_layer.py.

statistic value

entries 12
median |∆r − k/4| 0.050
p90 |∆r − k/4| 0.116
max |∆r − k/4| 0.122
N|·|≤0.01 3
N|·|≤0.05 6

Table 98: Residual-size summary for the quarter-step matching lattice in Table 97. Rows are
generated by scripts/exp_mass_matching_layer.py.

AH.1 Higgs–Z depth-offset rigidity at bounded denominator

Proposition AH.1 (Higgs–Z depth-offset rigidity at bounded denominator). Let mZ and mH

denote the PDG reference masses used elsewhere in this paper (Table 18). Define the resolution-
depth offset

∆rHZ := logφ

(
mH

mZ

)
.

Within the bounded candidate family of reduced rationals ∆r = p/q with 1 ≤ q ≤ 20 and
0 ≤ p ≤ q, selecting the unique minimizer of the absolute log mismatch

e(p/q) :=
∣∣∣∣∣log

(
mZ φ

p/q

mH

)∣∣∣∣∣
by deterministic tie-break rules yields the stabilized minimizer ∆r = 2/3 (Table 99). Concretely,
we minimize e and then break ties by choosing the smallest denominator q and then the smallest
numerator p (equivalently: lexicographic minimization of (e, q, p)), matching the generator script
scripts/exp_higgs_z_offset_rigidity.py. Equivalently, the Higgs scale is captured at low
complexity by the closed relation

mH ≈ mZ φ
2/3.
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Q minimizer ∆r mZ φ∆r [GeV] log(pred/mH) | · |

1 ∆r = 1/1 1.000000 147.545 +0.163819 0.163819
2 ∆r = 1/2 0.500000 115.992 -0.076787 0.076787
3 ∆r = 2/3 0.666667 125.678 +0.003415 0.003415
4 ∆r = 2/3 0.666667 125.678 +0.003415 0.003415
5 ∆r = 2/3 0.666667 125.678 +0.003415 0.003415
6 ∆r = 2/3 0.666667 125.678 +0.003415 0.003415
7 ∆r = 2/3 0.666667 125.678 +0.003415 0.003415
8 ∆r = 2/3 0.666667 125.678 +0.003415 0.003415
9 ∆r = 2/3 0.666667 125.678 +0.003415 0.003415

10 ∆r = 2/3 0.666667 125.678 +0.003415 0.003415
11 ∆r = 2/3 0.666667 125.678 +0.003415 0.003415
12 ∆r = 2/3 0.666667 125.678 +0.003415 0.003415
13 ∆r = 2/3 0.666667 125.678 +0.003415 0.003415
14 ∆r = 2/3 0.666667 125.678 +0.003415 0.003415
15 ∆r = 2/3 0.666667 125.678 +0.003415 0.003415
16 ∆r = 2/3 0.666667 125.678 +0.003415 0.003415
17 ∆r = 2/3 0.666667 125.678 +0.003415 0.003415
18 ∆r = 2/3 0.666667 125.678 +0.003415 0.003415
19 ∆r = 2/3 0.666667 125.678 +0.003415 0.003415
20 ∆r = 2/3 0.666667 125.678 +0.003415 0.003415

Table 99: Bounded-denominator rigidity sweep for the Higgs–Z depth offset in the φ-
resolution coordinate: for each Q we minimize e(p/q) = | log((mZφ

p/q)/mH)| over reduced
rationals p/q with 1 ≤ q ≤ Q and deterministic tie-break rules. Rows are generated by
scripts/exp_higgs_z_offset_rigidity.py.

AH.2 A minimal parity contrast by coarse graining at the anchor

AI Gauge-factor complexity-label sensitivity (supplement)
Proposition 8.2 closes the non-abelian gauge factors by CAP within an explicit compact-factor
candidate family. One audit concern is whether the output depends on a particular choice of
“intrinsic complexity label” (e.g. using dim(g) rather than rank or representation size). This
appendix (i) records a bounded sensitivity sweep across several natural discrete complexity labels
and (ii) notes a short theorem-level reason why the same minimizer persists for these labels.

AI.1 Candidate family and selection rule

We enumerate compact, connected, non-abelian simple Lie groups through their Lie algebras
within a bounded audit window, using the classical families together with low-dimensional ex-
ceptional cases. Within this finite list, we select a pair (G2, G3) of non-isomorphic simple factors
by the same CAP form used in Proposition 8.2: choose the lexicographically minimal pair under
a given factor complexity label, with a deterministic tie-break that refines by (dim, rank,name).

We compare the following factor labels:

• dim(g) (dimension-as-complexity, used in the main text);

• rank(g);

• dim(g) + rank(g);

• dmin, the minimal dimension of a faithful complex representation (up to finite quotients).

Rows are generated by scripts/exp_gauge_complexity_sensitivity.py. This script per-
forms the stated bounded enumeration inside the declared audit window and writes the resulting
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observable canonical reflected

χ (chirality index) −2 2
|w|1

(2×2)
µ = 1.671875, Var = 0.177490 µ = 1.671875, Var = 0.177490

V (w)(2×2)
µ = 8.343750, Var = 21.967773 µ = 8.343750, Var = 21.967773

Dπ(w)(2×2)
µ = 0.093750, Var = 0.030273 µ = 0.093750, Var = 0.030273

Table 100: A minimal parity contrast at (m,n) = (6, 3) on the n = 3 Hilbert grid: the chirality
index χ flips sign under reflection (parity-odd), while coarse-grained scalar summaries built
from intrinsic stable-type functionals are invariant under reflection up to pullback (parity-even).
Rows are generated by scripts/exp_scalar_coarse_grain.py.

LATEX fragment; it does not introduce additional modeling freedom beyond the finite list and
tie-break rule described above.

factor complexity label CAP-minimizer (G2, G3) key (k2, k3) tie-break / notes

dim(g) SU(2), SU(3) (3, 8) lex by (dim, rank, name)
rank(g) SU(2), SU(3) (1, 2) lex by (rank, dim, name)
dim(g) + rank(g) SU(2), SU(3) (4, 10) lex by (dim+rank, dim, name)
dmin SU(2), SU(3) (2, 3) lex by (d_min, dim, name)

Table 101: Sensitivity of the CAP-minimal two-factor non-abelian closure across several discrete
complexity labels, within the bounded audit window described above. In all rows, ki denotes
the label value of the selected factor Gi. The main text uses dim(g) as the factor label; this
appendix records that the same minimizer persists under alternative labels in the tested window.

AI.2 A short robustness proof for common labels

Proposition AI.1 (Robustness of the SU(2)× SU(3) minimizer across common labels). Con-
sider the CAP selection rule in Proposition 8.2, but replace the primary factor label dim(g) by
any one of the following labels on compact simple Lie algebras:

k ∈
{

dim(g), rank(g), dim(g) + rank(g), dmin
}
,

where dmin denotes the minimal dimension of a nontrivial complex representation of g (equiv-
alently: a faithful complex representation, since g is simple). Assume the same deterministic
tie-break refinement used in the sweep (refining by (dim, rank,name)). Then the unique lex-
icographic minimizer of (k(g2), k(g3)) over pairs of non-isomorphic compact simple factors is
(su(2), su(3)).

Proof. (1) First factor is always su(2). Among non-abelian compact simple Lie algebras, the
minimal possible values of

dim(g), rank(g), dmin(g)

are attained uniquely at su(2):

• dim(g) ≥ 3 with equality iff g ∼= su(2) (Lemma 9.4);

• rank(g) ≥ 1 with equality iff g ∼= su(2) (classification: rank-1 simple is A1; see, e.g., [18]);

• dmin(g) ≥ 2 with equality iff g ∼= su(2) (the fundamental 2-dimensional representation of
A1; see, e.g., [55]).
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Therefore, regardless of whether k is dim, rank, dim +rank, or dmin, the lexicographically mini-
mal first factor is su(2).

(2) Second factor is always su(3). The second factor must be non-isomorphic to su(2). We
check each label:

• If k = dim, then the minimal non-abelian simple dimension strictly larger than 3 is 8,
attained uniquely at su(3) (Lemma 9.4).

• If k = rank, then the minimal rank strictly larger than 1 is 2. The compact simple rank-2
Lie algebras are A2, B2 ∼= C2, and G2. Their dimensions are 8, 10, and 14, respectively,
so the tie-break by dim selects A2 = su(3).

• If k = dim +rank, then for any g ̸∼= su(2) one has dim(g) ≥ 8 and rank(g) ≥ 2, hence
k(g) ≥ 10. Equality k = 10 is attained by su(3) (dimension 8, rank 2). For the other
rank-2 cases, B2 has k = 12 and G2 has k = 16, and higher ranks only increase k. Thus
su(3) is the unique minimizer.

• If k = dmin, then dmin(su(3)) = 3 (the defining representation), while every other compact
simple Lie algebra not isomorphic to su(2) has dmin ≥ 4: for B2 ∼= C2 one has dmin = 4 (the
defining representation of C2), and for G2 one has dmin = 7; higher ranks only increase the
minimal nontrivial representation dimension in the classical families. Hence dmin selects
su(3).

This proves that for each listed label, the unique minimizer is (su(2), su(3)).

Relation to the sweep. Table 101 remains an audit artifact: it verifies by explicit enu-
meration (within a bounded window) that no implementation detail of the sweep changes the
minimizer under the tested labels. Proposition AI.1 explains why this stability is expected
already from low-rank classification facts.

AJ Reproducibility
This paper includes auditable scripts that reproduce the finite combinatorics, folding statistics,
and the Hilbert chirality-index checks. All scripts are written in Python and live under:

docs/papers/2025_z128_standard_model_stable_sector_hpa_omega/scripts/.

Some extended audit and plotting utilities use a small scientific stack recorded in requirements.
txt.

AJ.1 What is reproduced

The scripts reproduce:

• enumeration of X6 and verification |X6| = 21 (Lemma 4.5);

• Hamming-weight distribution of X6 and the 18⊕3 cyclic/boundary split (Proposition 4.9);

• computation of Fold6(N) for N = 0, . . . , 63, including surjectivity and the degeneracy
histogram (Theorem 4.18);

• generation of a complete Fold6 table (Appendix AE.2);

• a bounded counterfactual fold-family sensitivity sweep at m = 6 (Appendix Q).
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• computation of the Hilbert chirality index χ at order n = 3 and its sign flips under
reflection and traversal reversal (Proposition 5.4).

• an addressing-basis audit (Hilbert vs. a row-major counterfactual) that makes the tick-first
locality choice explicit at the minimal anchor (Table 5).

• a bounded sensitivity sweep for gauge-factor selection under alternative complexity labels
(Appendix AI).

• a coarse-grained scalar parity check on the n = 3 Hilbert grid that contrasts the parity-odd
chirality index with parity-even block-averaged intrinsic observables (Table 100).

• reproduction of the closed 21 →SM labeling table (Table 15), whose underlying label-
ing map is uniquely fixed by Theorem 9.17 once the declared ordering keys are chosen
(Remark 9.20);

• generation of the mass-spectrum closure table (Table 18).

• bounded-coefficient rigidity search for the depth ansatz (Table 94).

• generation of a PMNS mixing-angle closure and its induced matrix tables (Section 12).

• generation of a resolution-threshold staircase table for Fibonacci-structured uplifts (Sec-
tion 14.2.1).

• generation of a discrete cosmology energy-budget fit fragment and its visualization (Ap-
pendix AD.12).

• generation of finite-resolution connection/holonomy audit tables on the n = 3 Hilbert grid
(Section 6).

• generation of uncertainty-robustness audit tables (Appendix AE.7).

• generation of counterfactual baseline audit tables (Appendix AE.9).

• generation of systematic aggregation/multiplicity baselines for the α−1
em and J normaliza-

tion dictionaries (Section AF.1 and Section AF.3).

• generation of the quantitative rigidity-target summary table used in the main text (Ta-
ble 16).

AJ.2 Main entry points

• scripts/run_all.py: runs the full deterministic pipeline in a fixed order and checks that
the expected generated fragments exist.

• scripts/exp_x6_enumeration.py: enumerates X6 and writes sections/generated/x6_
*.tex.

• scripts/exp_xm_enumeration.py: enumerates Xm for an m-sweep and writes:

– sections/generated/xm_sweep_rows.tex

• scripts/exp_fold6_stats.py: computes Fold6 statistics and writes sections/
generated/fold6_*.tex.

• scripts/exp_fold_family_sensitivity.py: generates a bounded counterfactual fold-
family sensitivity fragment:
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– sections/generated/fold_family_sensitivity_rows.tex

• scripts/exp_foldm_stats.py: computes Foldm statistics for an m-sweep and writes:

– sections/generated/foldm_sweep_rows.tex

• scripts/exp_hilbert_chirality_index.py: computes χ on the n = 3 Hilbert path and
writes sections/generated/hilbert_chi_summary.tex.

• scripts/exp_addressing_selection.py: compares Hilbert addressing to a row-major
counterfactual by protocol-internal locality and computability metrics and writes:

– sections/generated/addressing_selection_rows.tex

• scripts/exp_gauge_complexity_sensitivity.py: generates a bounded sensitivity
sweep for gauge-factor complexity-label choices and writes:

– sections/generated/gauge_complexity_sensitivity_rows.tex

• scripts/exp_hilbert_chi_sweep.py: sweeps χ across multiple Hilbert orders and
writes:

– sections/generated/hilbert_chi_sweep_rows.tex

• scripts/exp_scalar_coarse_grain.py: generates a coarse-grained scalar parity table
fragment and writes:

– sections/generated/scalar_coarse_grain_rows.tex

• scripts/exp_resolution_thresholds.py: generates a resolution-threshold staircase ta-
ble fragment and (optionally) a plot:

– sections/generated/resolution_thresholds_rows.tex

– figures/resolution_thresholds_staircase.png (optional)

• scripts/exp_cosmology_energy_budget_fit.py: generates the discrete energy-budget
fit fragment and the mandatory figure used in Appendix AD.12:

– sections/generated/cosmology_energy_budget_fit_equation.tex

– figures/cosmology_energy_budget_fit.png

• scripts/exp_edge_mismatch_decomposition.py: generates edge-connection audit frag-
ments:

– sections/generated/edge_mismatch_deg_pair_rows.tex

– sections/generated/edge_mismatch_cost_quantiles_rows.tex

• scripts/exp_holonomy_loops.py: generates a plaquette-holonomy distribution frag-
ment:

– sections/generated/holonomy_cycle_type_rows.tex

• scripts/exp_sm_labeling_solver.py: implements the deterministic rank-matching
construction of Theorem 9.17 and writes sections/generated/sm_labeling_rows.tex
(Remark 9.20).

• scripts/exp_labeling_lift_consistency.py: audits a functorial label lift under the
prefix projection πm→6 and writes:
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– sections/generated/label_lift_rows.tex

• scripts/exp_mass_spectrum.py: generates the mass-spectrum table fragments:

– sections/generated/mass_spectrum_anchor_rows.tex

– sections/generated/mass_spectrum_quark_rows.tex

– sections/generated/mass_spectrum_neutrino_rows.tex

– sections/generated/mass_spectrum_rows.tex (combined)

• scripts/exp_higgs_z_offset_rigidity.py: generates a bounded-denominator rigidity
sweep for the Higgs–Z depth offset and writes:

– sections/generated/higgs_z_offset_sweep_rows.tex

• scripts/exp_mass_matching_layer.py: computes a minimal quantized matching-layer
summary for the mass-spectrum closure and writes:

– sections/generated/mass_matching_layer_rows.tex

– sections/generated/mass_matching_layer_summary_rows.tex

• scripts/exp_mass_depth_rigidity.py: runs a bounded-coefficient search (20 iterations)
and writes sections/generated/mass_depth_rigidity_rows.tex.

• scripts/exp_mass_depth_leave_one_out.py: runs a leave-one-out robustness sweep for
the mass-depth coefficient search and writes:

– sections/generated/mass_depth_leave_one_out_rows.tex

– sections/generated/mass_depth_leave_one_out_summary_rows.tex

• scripts/exp_ckm_mixing_depth_rigidity.py: runs a bounded-complexity minimax
search for CKM magnitudes (20 iterations) and writes sections/generated/ckm_mixing_
*.tex.

• scripts/exp_ckm_matrix_closure.py: reconstructs a full CKM matrix from three mag-
nitudes and a Jarlskog anchor (both a PDG-consistent reference reconstruction and the
closed prediction) and writes:

– sections/generated/ckm_angles_rows.tex

– sections/generated/ckm_matrix_rows.tex

– sections/generated/ckm_unitarity_rows.tex

• scripts/exp_pmns_mixing_depth_rigidity.py: runs a bounded-complexity minimax
search for PMNS mixing sines and writes:

– sections/generated/pmns_mixing_rigidity_rows.tex

– sections/generated/pmns_mixing_rows.tex

• scripts/exp_pmns_matrix_closure.py: reconstructs a PMNS matrix from the bounded-
complexity angles and a discrete CP-phase closure and writes:

– sections/generated/pmns_delta_sweep_rows.tex

– sections/generated/pmns_angles_rows.tex

– sections/generated/pmns_matrix_rows.tex

– sections/generated/pmns_unitarity_rows.tex
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• scripts/exp_pmns_no_io_stability.py: runs a NO/IO robustness diagnostic for the
PMNS closures and writes:

– sections/generated/pmns_no_io_stability_rows.tex

• scripts/exp_neutrino_mass_interface.py: generates a minimal neutrino mass-scale
interface table fragment:

– sections/generated/neutrino_mass_interface_rows.tex

• scripts/exp_inverse_hypercharge_fit.py: generates the inverse diagnostic fragment:

– sections/generated/inverse_hypercharge_fit_rows.tex

• scripts/exp_inverse_hypercharge_sign_fit.py: generates the inverse diagnostic frag-
ment:

– sections/generated/inverse_hypercharge_sign_fit_rows.tex

• scripts/exp_inverse_hypercharge_full_fit.py: generates the inverse diagnostic frag-
ment:

– sections/generated/inverse_hypercharge_full_fit_rows.tex

• scripts/exp_inverse_rep_dim_fit.py: generates the inverse diagnostic fragment:

– sections/generated/inverse_rep_dim_fit_rows.tex

• scripts/exp_inverse_generation_fit.py: generates the inverse diagnostic fragment:

– sections/generated/inverse_generation_fit_rows.tex

• scripts/exp_inverse_diag_summary.py: aggregates a compact main-text summary
across inverse diagnostics and writes:

– sections/generated/inverse_diag_summary_rows.tex

• scripts/exp_labeling_order_sensitivity.py: measures SM-side ordering-key sensi-
tivity of the induced cyclic labeling and writes:

– sections/generated/labeling_order_sensitivity_rows.tex

• scripts/exp_audit_closure_metrics.py: generates bounded-complexity audit metrics
(domain sizes, uniqueness gaps, quantiles) and writes:

– sections/generated/audit_closure_metrics_rows.tex

– sections/generated/audit_closure_quantiles_rows.tex

• scripts/exp_audit_uncertainty_robustness.py: generates minimizer stability rates
under sampled target perturbations and writes:

– sections/generated/audit_uncertainty_robustness_rows.tex

• scripts/exp_audit_counterfactual_baselines.py: generates counterfactual baseline
comparisons and writes:

– sections/generated/audit_counterfactual_rows.tex

• scripts/exp_audit_pi_polynomial_null.py: generates a broader π-polynomial null
baseline sweep for α−1 and writes:
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– sections/generated/audit_pi_poly_null_rows.tex

• scripts/exp_alpha_coeff_rigidity.py: runs the bounded simplex search for the α−1

coefficient rigidity statement and writes:

– sections/generated/alpha_coeff_rigidity_rows.tex

• scripts/exp_aggregation_baselines.py: generates systematic aggregation and multi-
plicity baseline fragments and writes:

– sections/generated/alpha_aggregation_baselines_rows.tex
– sections/generated/j_multiplicity_baselines_rows.tex

• scripts/exp_ew_rigidity.py: runs finite searches for the electroweak Z-scale rigidity
statements and writes:

– sections/generated/ew_alpha_pi2_rigidity_rows.tex
– sections/generated/ew_sin2_rational_rigidity_rows.tex

• scripts/exp_jarlskog_pi_rigidity.py: runs the bounded (a, n) search for the J =
1/(aπn) rigidity statement and writes:

– sections/generated/jarlskog_pi_rigidity_rows.tex

• scripts/exp_quant_summary.py: generates the quantitative summary fragment used in
Table 16 and writes:

– sections/generated/quant_summary_rows.tex

• scripts/exp_sigma_summary.py: generates a sigma-normalized mismatch summary frag-
ment (using the explicit audit sigma scales in scripts/common_constants.py) and writes:

– sections/generated/sigma_summary_rows.tex

• scripts/exp_audit_summary.py: generates the audit summary fragment:

– sections/generated/audit_summary_rows.tex

AJ.3 How to run (examples)

• cd docs/papers/2025_z128_standard_model_stable_sector_hpa_omega

• python3 -m pip install -r requirements.txt

• python3 scripts/run_all.py

• python3 scripts/exp_x6_enumeration.py

• python3 scripts/exp_fold6_stats.py

• python3 scripts/exp_hilbert_chirality_index.py

• python3 scripts/exp_sm_labeling_solver.py

• python3 scripts/exp_mass_spectrum.py

• python3 scripts/exp_mass_depth_rigidity.py

• python3 scripts/exp_ckm_mixing_depth_rigidity.py

• python3 scripts/exp_audit_summary.py

• latexmk -pdf -interaction=nonstopmode -halt-on-error main.tex
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AJ.4 Generated LaTeX fragments

The scripts write small LaTeX fragments into:

docs/papers/2025_z128_standard_model_stable_sector_hpa_omega/sections/
generated/

These fragments are generated outputs and should not be edited by hand; re-run the scripts
to regenerate them deterministically from the stated constructions and bounded sweeps. This
repository includes the generated fragments so the paper can compile out of the box, but they
can be regenerated at any time.

AK Closed computable work packages (interface deliverables)
This appendix summarizes the interface work packages that are realized within this paper as
explicit computable deliverables. They are not premises for any theorem-level folding statement;
they are protocol-layer closures and audit objects with deterministic scripts and generated tables.

AK.1 Functorial refinement of the field-level labeling map

The labeling map LSM at (m,n) = (6, 3) is closed in Section 9. Its canonical uplift/refinement
under window growth is made explicit by prefix projection and deterministic refinement indices
in Appendix V, together with generated lift-multiplicity and refinement-audit tables.

AK.2 Mixing matrices as holonomy of protocol connections

Finite protocol connections and holonomy diagnostics are constructed explicitly in Section 6.
The resulting bounded-complexity closures for CKM/PMNS magnitudes and their induced ma-
trix reconstructions are recorded in Sections 11 and 12, with unitarity and CP-odd invariants
reported in generated tables.

AK.3 Resolution flow and running couplings

The discrete uplift/coarse-graining flow is fixed as the protocol flow law in Definition 8.16. Its
scale dictionary is provided by the Fibonacci resolution coordinate and the RG conversion rule
in Proposition 8.17, while the thresholded staircase meff(µ) is fixed by Corollary 14.2.

AK.4 Mass/inertia as protocol cost and latency (interface)

The closed mass-spectrum template in Section 13 is complemented by a matching-layer delay
and lapse dictionary in Section Y, including Wigner–Smith delay as an operational proxy and
standard GR/SR reference relations used only at the interface layer.

AK.5 Protocol-to-continuum error control (interface)

The χ(x) reconstruction protocol in Appendix AD.8 and the overhead-to-gravity weak-field
dictionary in Appendix AD.7 together define a concrete pipeline from discrete protocol statistics
to continuum representative fields such as Φ and ρeff . To make this pipeline auditable as a
quantitative interface deliverable, Appendix AD.9 records explicit error-control bounds and
propagation formulas: concentration bounds for bounded folding-derived statistics, log-ratio
perturbation bounds for χ̂, and truncation/noise-amplification bounds for the finite-difference
operators (needed for χ′ and ∆χ), together with the resulting uncertainty propagation to γ̂ and
ρ̂eff .
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