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Abstract

We adopt a tick-first ontology closed under two declared primitives: time as tick (the
iteration count along a unitary readout stream) and the Computational Action Principle
(CAP) as the unique deterministic closure/selection rule on explicit finite candidate fami-
lies. For reader navigation, we also use the interface-level terms Wish (protocol-stable target
data/structures) and Motive (an auditable objective functional), explicitly marked as [Au-
ditlnot used in proofs. Finite observers access only finite windows, hence finite binary words
w € Q,, = {0,1}™ (Section [2)). At the golden branch, a forbidden-word grammar and a
cyclic closure predicate define a stable sector X,,, C €, with Fibonacci size |X;,| = Frny2
and a rigid cyclic/boundary split (Section [4)).

To speak about locality, “space” is introduced as a derived display structure: an address-
ing basis folds a finite tick prefix into a locality graph, and distance is the induced graph
metric (Section [3|and Section . In this paper we use a 2D Hilbert screen for explicit finite
diagnostics, while treating any conversion from tick units to physical units (including the
measured value of ¢) as a matching-layer dictionary rather than a theorem-level output.

At the CAP-selected anchor on the chosen screen, (m,n) = (6,3), one has |Qs] = 64 and
a fully explicit theorem-level folding core 64 — 21 with a canonical 18 & 3 split (Section .
On the physical identification layer, “particles” are identified with stable readout types, while
gauge fields are interpreted as compensating connection data forced by finite projection fibers
under cross-site consistency. Mass and energy are treated as time dictionaries: mass scales
are expressed in a Fibonacci log-time coordinate and compared to operational delay proxies
(Wigner-Smith) and Compton-clock ratios (Section [10] and Appendix [Y).

We close several interfaces by bounded-complexity audits with explicit finite candidate
families and deterministic tie-break rules, and we record falsifiable predictions in the protocol
language. We also record low-complexity rigidity targets for coupling normalization and
CP violation, together with explicit log-mismatch factors and reproducible counterfactual
baselines generated by deterministic scripts.
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golden mean shift; Hilbert addressing; dihedral group; chirality; antimatter duality; gauge con-
nections; Weinberg angle; Jarlskog invariant; CP violation.
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Table 1: A compact roadmap of the m = 1...12 resolution spectrum (interface). Under the
rigid-frame coarse-lock budget at the anchor (Section Proposition , the bulk dimension
is selected as d = 3 and the minimal single-window coarse-localization anchor is at m = 6, which
induces an interface partition into a sub-geometric vacuum (m < 6), a geometric ground state
(m = 6), and hyper-geometric layers (m > 6). A quantitative m = 1...12 spectrum template
(counts and threshold scales under the minimal calibration) is recorded later in Table

m 1 2 3 4 5 6 7 8 9 10 11 12
regime pre-geometric sub-geom. vacuum anchor hyper-geometric layers
marker — — —  — non-local vacuum electron/SM nuclear QCD bottom EW BSM deep

Conventions. Unless otherwise stated, log denotes the natural logarithm. We use Fibonacci
numbers Fy = F = 1, Fi.1 = Fy + Fy_1. For N € N, the Zeckendorf digits ¢, € {0,1} satisfy
cipcr+1 = 0 and

N = Z Cka+1.
k>1

We write w = wy - - wy, for a finite binary word with letters w; € {0,1}. We reserve m for
Zeckendorf window length and reserve n for Hilbert order. We write ¢ € Z for the scan iteration
count (tick) when an explicit time index is needed. The standard Abel path refers to the limit
process r T 1 with r € (0,1).

Dimensional language. Throughout the paper we use conventional terms such as “space”,
“spacetime”, “grid”, and “dimension” only as shorthand for protocol-level addressing and locality
structure induced by the chosen readout basis (e.g. Hilbert addressing at fixed order). No ontic
postulate of a pre-existing continuum manifold or a privileged physical dimension is used as a
premise for the theorem-level folding statements. References to “4D spacetime” and to the 6-DoF
rigid-frame coarse-lock anchor are likewise interface language: time refers to scan iteration count,
while the spatial dictionary refers to the chosen locality basis; these identification statements

are not used as premises for the folding core.

Data and code availability. All finite constructions, audit tables, and quantitative sum-
maries in this paper are generated by deterministic Python scripts included in the repository
under scripts/. Generated INTEX fragments are written to sections/generated/ and are
treated as outputs. The scripts are a reference implementation of the paper’s explicit finite
constructions and bounded-family audits; they are provided to reproduce tables and to avoid
manual transcription errors, not to introduce additional modeling freedom. A single entry point
scripts/run_all.py regenerates the full set of fragments; see Appendix [AJ]

Reader guide and audit contract. The layered audit rule and recommended reading paths
are recorded in Part I (Contract).
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Part 1
Contract: Wish, Motive, and the
Two-Axiom Spine

Reader-facing contract (audit discipline)

Layer tags used in the main text. [Mathjmarks theorem-level finite constructions and proofs
(counts, maps, finite tables). [Interfacelmarks protocol-to-physics identification statements and
operational dictionaries. [Matchjmarks external comparison conventions (PDG/CODATA tar-
gets, unit/scheme choices) that never serve as premises for theorem-level claims. [Auditjmarks
explicit candidate families/objectives/tie-break rules and other audit/provenance statements
(including not used in proofs remarks).

Ledger statuses used for dependency tracking. The inference ledger (Appendix
records dependency status using the five tags [Math], [Prot], [Iface], [CAP], and [Open]. These
ledger statuses are not additional main-text layer tags; they are used only for audit and depen-
dency tracking.

Wish and Motive (interface language; not used in proofs). [Interface]lWe use Wish as
shorthand for a protocol-stable target datum/structure (a reproducible stable readout type
and its associated invariants), and Motive as shorthand for an auditable objective functional
that combines mismatch certificates with bounded implementation cost. [Auditf These names are
organizational and reader-facing: they do not add new axioms, and they are not used as premises
in theorem-level proofs. For a compact template definition (reader-facing; not used in proofs),
see Appendix |C| The only primitives are the tick (Axiom and CAP (Axiom [L.5); see also
Figure [5] and Appendix [G]

No reverse dependence (legend discipline). [AuditfWe follow the dependency legend in
Figure theorem-level implications flow along solid arrows, while interface dictionaries and
audit overlays (dashed/dotted arrows) never serve as premises for theorem-level proofs.

Three channels as the mainline. [Interface] The core finite stability reduction is organized by
three channels, denoted p—m—e: grammar admissibility, cyclic closure, and an analytic stability
template. The fully explicit finite reduction at the anchor is recorded in Section [4] [Audit]For a
compact checklist of auditable “rigidity bridge” certificate forms and where each mainline step
is realized in this paper, see Appendix [l

Reader guide (recommended paths)

This paper supports four complementary reading paths. The main text is organized into eight
parts: Contract (Part I), Tick-first (Part II), Periodic Core (Part III), Structure (Part IV),
Matter (Part V), Dynamics (Part VI), Validation (Part VII), and Recursive closure (Part VIII).

+ Narrative path (short mainline). Read the tick dictionary (Section[3)), then the folding
core at (m,n) = (6,3) (Section [4)), then the SM labeling closure (Section [J), and finally
the falsifiability statements (Section . If you want one minimal spine: Section @ —

Section [f] — Section[d — Section[14.2.1].

o Frequency-first dynamical closure (equivalence — action - EOM — thermo).
Read the equivalence semantics and frequency-first dictionary (Appendix [AA)), then the
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CAP closure of a minimal continuum action (Appendix [AD.4)), then the variational field
equations (Appendix|AD.5)), and finally the thermodynamic closure (Appendix|AD.6). For
matching-layer delay/redshift templates used as operational proxies, see Appendix E and

Appendix [Z]

o Extended self-contained closures (overhead gravity / quantum / RG / cosmol-
ogy). For the overhead-to-gravity closure and the x reconstruction protocol, see Appen-
dices [AD.7] and [AD.8] For the quantum readout interface and Born-probability rigidity,

see Appendix|[AD.10l For RG/running couplings in the r coordinate, see Appendix|AD.11
For cosmology as resolution flow, see Appendix

o Audit path (what depends on what). Verify the declared inputs and the depen-
dency hierarchy using Figure [f] and Appendix [K] then spot-check representative rigidity
certificates (e.g. Tables referenced in Sections [L1] and [13).

o Reproducibility path (run the pipeline). Use Appendix and run
python3scripts/run_all.py to regenerate sections/generated/ and the figures. The
paper’s definitions and candidate-family specifications are the logical source of truth; the
scripts are the deterministic reproducer.

1 Introduction: from tick-only readout to stable sectors

The Standard Model (SM) organizes known non-gravitational interactions into the gauge struc-
ture

SU(3) x SU(2) x U(1),

with chiral matter content and experimentally established parity violation and CP violation;
see, e.g., [1;/2]. Despite its predictive success, several structural features remain “input-like” at
the microscopic explanatory level: the origin of chirality, the meaning of gauge redundancy, and
the origin of small CP-odd invariants.

This paper adopts the HPA-Q viewpoint: observability is not the presence of continuous
fields a priori, but the output of a finite-resolution protocol produced by unitary scanning and
window projection (Section . In this view, a “particle” is first a stable readout type, and
“forces” arise from the constraints required to keep readout consistent across space.

The present paper is written to be closed under its declared input set (Table and Ap-
pendix : the only primitives are the tick (Axiom and CAP (Axiom . All other
ingredients (addressing basis, anchor choice, orientation-bit convention, phase-register dictio-
nary, and quantitative normalization targets) are outputs of explicit finite definitions and CAP-
closures with deterministic tie-breaks and reproducible scripts. Companion manuscripts in the
same docs/papers repository provide extended context and alternative presentations [3-11],
but they are not required to follow the present paper’s definitions, proofs, and audits.

Audit note. [Audit]Status: [Audit]. Depends on: the reader-facing audit contract (Table
and the bounded-closure template (Appendix [H). If: any quantitative interface component
is reported, it is either a finite theorem-level statement or a CAP-closure over an explicitly
declared finite family with deterministic tie-breaks; external PDG/CODATA values enter only
as matching-layer reference conventions.

For reader navigation, Table [2] provides the global map of the resolution axis under the
minimal calibration. In the tick-first spine used here, the only primitive physical input is time
as tick (scan iteration count), and the only primitive selection law is CAP. Accordingly, all
physical-language notions (space, distance, velocity, gauge connections, mass/energy scales)
are treated as derived protocol structures and/or CAP-closed interface components. Section
records the corresponding dictionary and fixes the time-first dependency order used throughout.
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Table 2: The holographic resolution spectrum under the minimal calibration rgep, = 27 (Sec-
tion . Under the rigid-frame coarse-lock budget at the anchor (Section Proposi-
tion , the bulk dimension is selected as d = 3 and the minimal single-window coarse-
localization anchor is at m = 6, inducing an interface partition into a sub-geometric vacuum
(m < 6), a geometric ground state (m = 6), and hyper-geometric layers (m > 6). Stable-type
counts obey |X,,,| = F42 (Lemma [4.5); threshold energies use the p,(m) rule defined in Sec-
tion M42.11

m | Xm|  pen(m) physical correspondence mechanism (protocol language)
(interface)

Phase I: Sub-geometric (the vacuum)

1-4 2-8 - pre-geometric logic finite bits, causality, addressability
5 13 ~ 25 keV sub-geometric vacuum coarse-lock deficit: one bit short of the
(non-local) m = 6 anchor

Phase II: Geometric ground state (matter)
6 21 0.511MeV  electron / minimal SM anchor  coarse-lock anchor: minimal localized
rigid-frame display

Phase III: Hyper-geometric (mass & thresholds)

7 34 ~ 10MeV  nuclear binding scale binding bridge between m = 6 matter
and hadronic confinement

8 55 ~ 0.2GeV  QCD onset confinement-scale template at the
protocol interface

9 89 ~ 4.4GeV  bottom threshold heavy-flavor onset in the staircase

10 144  ~91GeV  electroweak (Z/H) layer uplift/coarse graining: protocol-level
mass generation

11 233 ~ 1.9TeV  BSM frontier first hyper-compressed layer;

constrained topological capacity

12 377 ~ 38 TeV deep structure candidate scale for further refinement
(preons/extra dimensions)

Appendix |G| records the complete tick + CAP derivation spine (explicit candidate families, ob-
jectives, and deterministic tie-breaks for each closed interface component). Appendix [R|records
short “forced-by-rigidity” interface lemmas (minimal coarse locking, compactness of probability-
preserving redundancy, channelwise factorization, and minimal anomaly-neutral closures) that
are repeatedly used as audit-level justifications in the main text.

1.1 Axiom 0: the tick (sequential readout) as the only primitive input (in-
terface)

Axiom 1.1 (Readout sequentiality (interface)). The microscopic description is sequential. An
observer couples to a single unitary scan order that produces a one-dimensional readout stream,
and finite observability appears through window projection (Section @) Multi-dimensional lan-
guage enters only through a choice of addressing basis that folds the scan order into a locality
structure (Section @; throughout, we use “space” and “spacetime” only in this protocol-level
addressing sense (Conventions).

Time, signal rate, and matching dictionaries. Under Axiom [1.1] “time” is operationally
the iteration count along the scan. Any conversion from the dimensionless scan rate to physical
units is therefore a matching-layer and units dictionary: once a locality basis is fixed, a constant
step advance defines a maximal protocol signal rate, while the measured constant ¢ appears only
after choosing a physical calibration. We do not treat ¢ as a theorem-level output of the folding
core.

Matter as recurrent patterns and mass as protocol cost. In a linear ontology, stable
excitations are not points placed in an ontic background, but persistent patterns in the readout
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stream that are stable under the chosen channels. On the physical identification layer, we adopt
the interface identification that an observed mass scale corresponds to protocol overhead required
to resolve and stabilize a pattern at a given resolution (e.g. increased local scan density, deeper
matching shifts, or larger folding-degeneracy costs in the finite invariants). This paper makes
this identification auditable by a closed depth coordinate and a reproducible mass-spectrum
template (Section [L3).

Remark 1.2 (Static ontology vs. sequential readout (interface)). Although the paper is written
in the scan-first language of Aziom[I.1, one may also adopt a complementary interface dictio-
nary: the scan order together with the chosen addressing dictionary can be regarded as a fired
(already-defined) structure, while “time” is the ordered traversal experienced by a coupled ob-
server. In this reading, dynamical episodes are a playback effect of sequential readout on a static
protocol substrate (a block-universe style viewpoint), not the construction of that substrate. We
record this only as an interface dictionary viewpoint; none of the theorem-level finite folding
statements depends on it as a premise.

Remark 1.3 (A historical analogy: Wheeler’s one-electron universe). As a historical analogy,
Wheeler suggested to Feynman that the identity of electrons might admit a radical kinematic
explanation: a single electron world-line could thread the observed phenomenology, with positrons
interpreted as the same object propagating backward in time in the spacetime picture. We use
this only as an analogy for the present linear-ontology interface: a sequential primitive can
generate rich multi-body effective structure once it is read through an addressing basis and a
matching dictionary, without promoting the analogy to a premise of the mathematical layer.
See, e.g., [12,/15].

The key inversion relative to conventional field-first narratives is methodological: we treat
the problem of “what particles and forces exist” as a problem of which readout types are stable
under a fized protocol. Finite windows induce symbolic compression; stability constraints induce
further compression; and the effective “spectrum” is the surviving stable sector. From this
viewpoint, discreteness is not a postulate but a consequence of finite-resolution projection.

Stability and agency as dual interface viewpoints. The stable-sector viewpoint used
in this paper admits a control-theoretic dual dictionary: in open systems, long-lived low-
entropy structure can be modeled as predictive active error correction (AEC) that suppresses
protocol-level mismatch relative to a passive baseline while paying dissipation and implemen-
tation costs |14|15]. Appendix |U| records a protocol-level dictionary that aligns stable-sector
objects (alphabets, stability channels, degeneracies) with AEC objects (mismatch certificates,
feedback, and audit constraints) without mixing mathematical-layer premises with physical iden-
tification claims.

1.2 From scan to knot: an interface picture

Figure [I] provides a narrative visualization of the interface picture used throughout this pa-
per. The primitive description is a single sequential readout stream (Axiom , while spatial
language enters only after choosing an addressing basis that folds the stream into locality neigh-
borhoods (Section . Under the rigid-frame coarse-lock budget at the anchor, CAP selects
bulk dimension d = 3, and m = 6 is the smallest single-window anchor for localized display

(Section [L.3)).

The scan (1D). One may picture the readout as an extremely thin “luminous thread” whose
order is fixed by the unitary scan: the observer sees only a time-ordered sequence of windowed
binary words.
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vacuum: smootn scan (no ciosure) viateer: Cyclic Knot (1oCalizeaq) Force: pounaary priage (connects VOxels)

N e

Figure 1: Conceptual triptych (interface picture). Left: Vacuum. Below the 6-DoF anchor, a
scan segment can be stable as a symbolic word yet remains sub-admissible for localized rigid-
frame display; it is therefore treated as a non-local background (sub-geometric vacuum). Mid-
dle: Matter (cyclic). At the m = 6 anchor, stability can self-close into localized recurrent
patterns; at the minimal anchor (m,n) = (6, 3) the stable sector obeys 64 — 21 with a canonical
cyclic/boundary split 21 = 18 @ 3. Right: Force (boundary). Boundary-type patterns connect
neighboring voxels/sites and are interpreted as interaction carriers enforcing cross-site consis-
tency. This figure is a schematic interface picture and does not enter the theorem-level folding
statements, which are formulated in finite readout language.

The fold (local compression). Once a locality dictionary is chosen, a single window must
encode enough independent distinctions to be displayed as a localized object in that dictionary.
Under the minimal two-bin-per-DoF convention, this creates a geometric bottleneck at m = 6
in the derived d = 3 dictionary: the readout must fold its local patterning to supply a coarse
position—orientation frame.

The lock (closure vs. bridge). At the interface level, cyclic closure (a local recurrence)
is interpreted as a fermion-like localized excitation, while boundary-type connectivity between
neighboring sites is interpreted as a boson-like carrier that transmits readout constraints across
space. The subsequent sections make these statements auditable by fully explicit finite construc-
tions at (m,n) = (6,3) and by closed protocol-level interfaces.

1.3 Derived bulk dimension: rigid-frame display budget at the anchor (in-
terface)

While Axiom fixes only sequentiality, any physical identification must specify what it means
to display a localized object. In the tick-first dictionary of Section [3 locality is a derived
addressing graph, and a “localized rigid frame” is an interface notion tied to coarse pose distin-
guishability. Let d denote a candidate bulk dimension of such a rigid-frame display dictionary.
A local rigid frame carries d translational degrees of freedom and d(d — 1)/2 rotational degrees

of freedom, hence

dim SE(d) = d + d(d; D _ d(d; D)

We now state explicitly what the “bit-per-DoF” language means in this paper. The claim is not
that m bits can encode a continuous pose in SE(d) with arbitrary precision. Rather, it is the
minimal nontrivial coarse-lock convention at the protocol interface (Lemma : a length-m
window yields at most 2™ distinct binary readout classes, and to display a local rigid frame the
protocol must be able to distinguish at least two coarse bins along each independent parameter

16



of SE(d). In this minimal two-bin-per-parameter convention, a sufficient single-window coarse-
admissibility condition is

d(d+1)

om > dmSEM) ey > dim SE(d) = 5

More generally, if one asks to specify an element of a k-dimensional Lie group up to an e-scale
resolution, the required number of bits scales as m 2 klog(1/e) (metric-entropy / quantization
scaling) [164/17]. In the present paper we use only the minimal two-bin-per-parameter anchor,
and we keep the rigid-frame lock on the physical identification layer.

Remark 1.4 (What the 6-DoF “lock” does and does not assert). The 6-DoF coarse-lock is an
interface convention, not a theorem about continuous pose estimation. It does not claim that
m = 6 is sufficient to “lock” a pose in SE(3) at any fized accuracy; continuous pose locking at
accuracy € requires a bit budget scaling as m 2 6log(1/e) in the standard quantization sense
/16,17]. It also does not claim that m > 6 is necessary for localization under all possible protocols:
multi-window temporal integration, analog readout features, or additional structure/constraints
can reduce the effective information required at a given task. The role of the lock in this paper
is narrower: given the CAP-selected anchor bit budget m = 6 and the minimal two-bin-per-
parameter convention, CAP selects the bulk dimension d = 3 (Proposition and thereby
identifies m = 6 as the minimal single-window coarse rigid-frame display budget in that derived
dictionary. Once a p < m selection rule is fized at the protocol layer (Corollary , the
protocol uses the smallest admissible m throughout the corresponding energy band until an uplift
threshold is crossed.

At the anchor m = 6, CAP selects the maximal bulk dimension compatible with the rigid-
frame budget, namely d = 3 (Proposition . Empirically, the observed locality structure is
three-dimensional to high precision on laboratory and astrophysical scales, providing an external
consistency check.

Audit note. [Audit]Status: [Interface] + CAP. Depends on: the minimal coarse-lock criterion
(Lemma and Proposition If: the coarse-lock is interpreted in the minimal two-bin-
per-parameter sense and applied as a single-window admissibility criterion; the resulting d is a
protocol-interface output and is not used as a premise for the folding core.

At d = 3, a local rigid frame is modeled by the Euclidean group

SE(3) =2 R® x SO(3),

as a semidirect product; see, e.g., [18]. It is specified by a position z € R® and an orientation
R € SO(3). Hence the minimal kinematic description carries six independent parameters: three
translational plus three rotational degrees of freedom.

We treat this as a geometric coarse-lock on the physical identification layer: a fundamental
readout window supplies one bit per kinematic degree of freedom of a local frame. In 3D this
locks the minimal window to six bits, Q¢ = {0,1}5. This statement belongs to the physical
identification layer: it fixes the preferred anchor scale under the minimal nontrivial coarse-lock
convention but is not used as a premise for any theorem-level folding statement.

To make the geometric exclusivity explicit, compare the first few balanced candidates m €
{4,6,8, ...} against the rigid-frame degree count % [18]: in 2D one has 3 DoF, so the
balanced code length m = 4 overspecifies the kinematics (4 > 3); in 4D one has 10 DoF, so the
next balanced length m = 8 underspecifies it (8 < 10). Only at d = 3 does the balanced length
m = 6 match exactly (6 = 3 + 3), yielding a unique geometric lock at the anchor that selects
the bulk dimension.

Once a locality-preserving addressing basis is fixed (e.g. Hilbert addressing on a chosen
readout screen), one may adopt a balanced coupling convention that matches the m-bit readout
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two-bin / DqE
s —>

3 ranslations m = 6 bits
+ 3 rotations Q6 = {0,1}°

Figure 2: The 6-DoF coarse-lock (interface language): at the anchor m = 6, CAP selects bulk
dimension d = 3 under the minimal coarse-lock convention (Proposition , so a local rigid
frame has six degrees of freedom (three positional plus three orientational).

alphabet size 2™ with the number of sites at Hilbert order n (Lemma [4.1)). Throughout this
paper we use the classical 2D Hilbert addressing (a square grid), so the matched site count is
4" = (22)" and the balanced relation takes the form m = 2n; other addressing dimensions would
change this arithmetic match (Remark and Remark . Balanced coupling is used only to
attach spatial diagnostics and is not a theorem-level necessity for the folding core (Remark .
At the chosen anchor m = 6 on the 2D screen, balanced coupling yields n = 3 and 2° = 4% = 64.

1.3.1 The geometric vacuum and protocol rejection

The rigid-frame coarse-lock has an immediate consequence: in the derived d = 3 locality dic-
tionary, any readout pattern that is to be displayed as a localized object must supply enough
independent information to fix a local position—orientation frame. Under the minimal coarse-lock
hypothesis stated above (two bins per independent parameter), a single-window coarse display
requires at least m > 6 binary distinctions; in this sense m = 6 is the minimal interface anchor
for matter-like localization in the derived dictionary.

For m < 6, stable symbolic types still exist at the mathematical layer—indeed the golden-
mean admissible set has size |X,,| = Fpy2 (Section [£.3)—but they are sub-geometric for a
d = 3 readout: they underdetermine the kinematic frame and cannot be consistently assigned to
a unique local site-and-frame configuration. We therefore treat these modes as protocol-rejected
as matter: they do not appear as stable localized particles, but persist as a non-local background
that can seed transient fluctuations when coupled to higher-resolution readout. [Interface]Below
the anchor, these modes are treated as sub-geometric vacuum/ghost-sector degrees of freedom;
diagnostic sweeps are recorded in Appendix [P}

Roadmap: the m = 1...12 spectrum. Although the technical core of this paper is anchored
at the CAP-minimal holonomy instance (m,n) = (6,3) on the chosen 2D screen, the derived
d = 3 rigid-frame coarse-lock dictionary induces a canonical interface partition of the resolution
axis into three regimes: the sub-geometric vacuum (m < 6), the geometric ground state (m = 6),
and hyper-geometric layers (m > 6). We use this dictionary-induced partition as the global
narrative spine, and we summarize a compact m = 1...12 spectrum template (counts and
threshold scales under the minimal calibration) in Table [2 the detailed falsifiability statement
is then formulated in the protocol language in Section [I4.2.1]

1.4 Methodological note: auditable layering

No-hidden-knobs contract (reader-facing). [AuditfWhenever a quantitative claim is re-
ported, it is either a finite theorem-level statement or an audited interface closure within an
explicitly declared finite candidate family with deterministic tie-break rules (Definition Ap-
pendix[AE|and Appendix[AJ). [Match|External reference targets (PDG/CODATA, scheme/scale
conventions) enter only as comparison inputs and are not fit parameters. The compact audit
contract table is recorded in Appendix [H| (Table .
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Audit-facing contract and inference map (supplement). [AuditjThe reader-facing audit
contract and the dependency map are recorded compactly in Appendix (Tableand Figure.

Layer separation. [Math]The finite folding statements constrain [Interface]the falsifiable map-
ping/identification layer; Appendix [K|records the dependency status in compact form.

Inference map (what depends on what). Figure [5|is recorded in Appendix |[J; we use its
legend throughout: solid arrows are theorem-level dependencies, dashed arrows are interface
dictionaries, and dotted arrows indicate CAP-audited selections within explicit finite families.

Dependency checklist. Appendix [K] provides the compact checklist of which statements
are [Math]theorem-level, which are [Interface]linterface dictionaries/closures, and which are
[Matchjmatching conventions.

1.5 Research questions (summary)

[Interface] The paper closes (i) minimal stable-sector structure at the anchor, (ii) a deterministic
SM labeling map consistent with anomaly constraints, and (iii) protocol-level falsifiability routes;
the compact dependency status is recorded in Appendix

1.6 Audit protocol: bounded-complexity closure and rigidity certificates

Several quantitative interface statements in this paper take the form of a bounded-complexity
closure: we specify a small, discrete candidate family for a target observable and select a unique
minimizer by a deterministic rule under an explicit finite complexity bound. This is designed
to address a standard audit concern in speculative constant/parameter matching: post-hoc
freedom.

Axiom 1.5 (Computational Action Principle (CAP; interface)). Within a fixed protocol class,
realized effective structures are selected by minimizing accumulated readout mismatch (discrep-
ancy) and implementation overhead subject to protocol constraints. In the finite audited setting of
this paper, CAP is instantiated by explicit bounded candidate families and deterministic selection
rules: given a declared finite complexity budget and an explicit objective measuring mismatch to
reference targets, select the unique minimizer with a fully specified tie-break rule (Deﬁm'tion.

Audit form (supplement). [Audit|The formal closure definition, log-mismatch rationale,
rigidity certificate, and audit-output conventions are recorded in Appendix [H and Appendix[AE]

1.7 A minimal falsifiable anchor: 64 — 21 stability at (m,n) = (6, 3)

[Math]We work at the fully explicit finite anchor (m,n) = (6,3) on the chosen 2D Hilbert screen
(Table [30). At m = 6 the folding core yields 64 — 21 and the canonical split 21 = 18 & 3

(Section [4).

1.8 Zi93 as a phase-register label

[Interface] We represent internal phases by a finite dyadic register Zo» (Appendix[B]). At the anchor
window m = 6, the baseline choice is p = m + 1 = 7, i.e. Z198. The remaining bounded phase-
lift freedom (denominators and low-complexity phase maps) is audited by deterministic sweeps

(Appendix and Appendix .
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1.9 Main interface closures

Building on the provable 64 — 21 folding core, we record three interface closures: [Interface]gauge
as compensation (Section , [Interface]chirality as protocol selection (Section , and [Inter-
face]antimatter as conjugate readout (Section @

We emphasize the audit separation: the folding counts and tables are mathematical-layer
facts, while the SM identifications are recorded as falsifiable mapping problems.

Quantitative anchor. The closed-theory rigidity targets and their CODATA/PDG devia-
tions are summarized in Table [L6l

Closure deliverables at (m,n)=(6,3). [Math]the folding core 64 — 21 and 18 & 3 (Sec-
tion ; [Interfacela unique SM labeling map (Section @; [Interface]a closed mass-depth template

(Section [13).

Rigidity doctrine (interface). [InterfacelOnce one commits to finite readout primitives and
CAP-style bounded closure, many interface components become sharply constrained at the
anchor; Appendix [K| records the compact dependency status.

Reader guide: rigidity checkpoints (supplement). [Audit])A compact checkpoint list is
recorded in Appendix [K]

Part II
Tick-first: From Scan to Finite Observables

2 HPA readout dynamics: from unitary scan to Zeckendorf win-
dows

2.1 Unitary scan and a Weyl pair: time as iteration count

In HPA, microscopic dynamics is modeled as a unitary scan with a Weyl-pair structure [19].
Abstractly, one may encode noncommutativity by operators (U, V') satisfying

UV = e¥Meyy, (1)

with an irrational slope a. At the level of a circle rotation model, let g € R/Z and define the
orbit .
Ty =20 +na (mod 1), 2p 1= e2™on ¢ T (2)

Time is not imposed as an external parameter; it is realized as the iteration count n € Z along
the scan.

Remark 2.1 (Scan rate, units, and the speed-of-light dictionary). The scan iteration count n
is dimensionless. In this paper, we treat any conversion between “one step per iteration” and a
physical time unit, and therefore any identification of an effective maximal signal speed with the
measured constant c, as part of a matching-layer and units dictionary rather than as a theorem-
level output of the finite folding core. Once a locality basis is fixed (e.g. via Hilbert addressing),
a constant step advance induces a protocol-invariant notion of maximal propagation rate on the
associated locality graph; the physical value of ¢ enters only after calibration.
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Remark 2.2 (Delay observables as an operational time dictionary). When the protocol is
matched to an experimental platform, “time per update” can be accessed through standard delay
observables. In scattering settings where a unitary S-matriz S(w) is measured as a function of
frequency, the Wigner—Smith time delay provides an operational proxy for additional overhead
via Tws(w) = To(—iSTdS/dw) [20,|21]. We record this dictionary (and its relation to relativistic
lapse/redshift templates) as an interface section (Section[Y)).

2.2 Window projection and symbolic words: finite observability

Let W C T be a measurable “readout window”. Define the binary readout word by thresholding
the scan orbit:
wy, = 1{z, € W} € {0,1}. (3)

The resulting sequence w = (wy)nez is a symbolic coding of the orbit (mechanical/Sturmian
in classical settings; see, e.g., [22,23]). Finite observers access only finite windows, hence finite
words wy -+ - Wy € Q. In operational quantum language, such coarse readout corresponds to
a POVM-like description, where the “particle spectrum” is readout-induced discreteness rather
than an a priori field continuum; see, e.g., [24] for standard measurement and POVM formalism.
In particular, what is experimentally accessible is not the underlying continuous orbit, but the
empirical statistics of finite window words. The finite readout alphabet €2, and its stability-
filtered subsets therefore serve as the primary objects for any auditable finite-resolution model.

Remark 2.3 (Irrational rotations and Sturmian minimal complexity). For the canonical two-
interval partition induced by an irrational rotation (equivalently, for the length-o window W, =
[1 — «a,1) or its complement), the resulting binary coding is Sturmian (a mechanical word):
it is aperiodic and has minimal factor complexity among aperiodic binary sequences, namely
p(l) = ¢+ 1 distinct length-f subwords for each ¢ > 1. Appendiz gives a self-contained proof
of the complexity formula and the resulting zero entropy-rate bound.

2.3 The golden branch and Zeckendorf/Ostrowski coding

At the golden branch o = !, the symbolic language is constrained by Fibonacci/Sturmian
structure and connects naturally to Ostrowski and Zeckendorf numeration 22,25 26]. In par-
ticular, every N € N admits a unique Zeckendorf expansion

N = Z Cka+17 Ck € {Oa 1}7 CkCr+1 =0, (4)
E>1
which is a forbidden-word grammar (no adjacent ones) on the digit string (cg). This grammar
is the mathematical origin of the ¢-channel in the folding model: it selects a stable type set
Xm C Qp, by excluding the forbidden substring “11” at finite window length (Section .

A coding bridge (symbol < arithmetic). At the golden branch, Fibonacci weights provide
a canonical arithmetic bridge between symbolic digits and integers. Given a binary digit sequence
(c) satisfying the Zeckendorf grammar, the value map is

V(C) = Z Cka+1.
k>1

Conversely, given a binary readout word (wy) produced by a window protocol, one may form a
Fibonacci-weighted observable
Z = wipFy, (5)

E>1
which makes explicit the “arithmetic-symbol-geometry” loop emphasized in the HPA program:
window projection induces symbolic words; the golden branch constrains them by a forbidden
grammar; and Fibonacci weights convert the resulting digits into arithmetic invariants.
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Audit note (finite coordinate bridge). [Audit]Status: [Math] (numeration/grammar) —
[Interface] (protocol identification). Depends on: the golden-branch choice o = ! and its
induced Zeckendorf/Ostrowski numeration (Section [2.3). If: one represents a finite microstate
register dyadically while reading stable types in Zeckendorf digits, the explicit bridge between
these coordinates is fixed by the folding map Fold,, in Section [4f a bounded counterfactual
family of alternative bridges at m = 6 is audited in Appendix

Remark 2.4 (Why the golden branch is singled out among irrational slopes). For a general
irrational slope «, interval codings of the rotation are Sturmian and admit an Ostrowski
numeration determined by the continued-fraction expansion of a [22,26]. The choice a = =t =
[0;1,1,1,...] is distinguished by its extremal Diophantine property: among irrationals it is “most
poorly approzimable” by rationals (all continued-fraction digits are minimal), yielding a canonical
and mazimally rigid substitution structure (the Fibonacci word) and therefore a canonical digit
grammar that closes to Zeckendorf/Fibonacci weights (22,27]. This is the mathematical sense in
which the golden branch is the minimal nontrivial symbolic/arithmetic bridge: it is the unique
slope whose Ostrowski system reduces to the Fibonacci/Zeckendorf system used throughout the

folding layer.

Tick-only reading: the base ¢ as the intrinsic clock-ratio. In a tick-first ontology,
the scan index n is the only primitive time variable. Choosing a slope « therefore fixes, at
finite depth, how the tick stream distributes symbols under window projection and how mis-
match accumulates along time. Proposition makes this selection auditable: at every finite
depth, the golden branch is the unique minimizer of a finite-depth continued-fraction com-
plexity proxy and therefore the unique choice that closes the symbolic/arithmetic bridge to a
canonical digit grammar. This is why the Fibonacci growth rate logy becomes the intrinsic
normalization constant for scale and time dictionaries downstream: it is the topological en-
tropy (capacity) of the Zeckendorf-admissible stable-type language X,, on the golden branch
(cf. Remark and Remark [£.4). This should not be confused with the entropy rate of the
Sturmian time-series readout, which vanishes (Appendix . Accordingly, the resolution coor-
dinate r(u) = log(u/me)/log ¢ used later is simultaneously a log-frequency and (up to sign) a
log-time coordinate (Appendix @, providing a unified tick-derived scale language.

Proposition 2.5 (Finite-depth least-discrepancy rigidity of the golden branch). Let o =
[0;a1,a9,...] € (0,1) \ Q and fir a depth m > 0. Define the finite-depth continued-fraction
proxy

m
Cm(a) == Z Afi1-
k=0
> m + 1, with equality if and only if a1 = -+ = amy1 = 1. In particular,
1,1,1,...] uniquely minimizes Cp,(«) at every depth.

Proof. Since a; € N for all 4, one has a; > 1, hence Cy,(a) > m + 1. Equality holds if and only
if each term satisfies agy1 =1for k=0,...,m,le. a1 = =ap41 = 1. O

The CAP reading is that, among irrational scan slopes, the golden branch is rigidly selected
as the unique minimizer of a finite-depth complexity/discrepancy proxy, and it is the unique
choice that closes the Ostrowski numeration to Zeckendorf/Fibonacci ticks used throughout the
folding layer.

2.3.1 Accumulated mismatch and discrepancy certificates (interface)

Beyond finite-depth proxies, mismatch accumulation along scan time admits a standard certifi-
cate formulation in terms of discrepancy. For the orbit z,, = z¢ + na (mod 1) (Section [2.1),
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define the star discrepancy of the length-N prefix by [28]

| N-1
Dy := sup | 1 ,a (ajn) —aj, (6)
M acon [N ngo o

and the accumulated mismatch by
Ey := N Dj. (7)

In this language, sustainable readout corresponds to keeping En controlled over long horizons,
while phase locking corresponds to linear growth in En for rational (or effectively rational)
slopes. For bounded-type irrational slopes (notably the golden branch), Ey admits explicit
logarithmic upper bounds tied to continued-fraction data [2829]; in the HPA—{Q program this
provides a quantitative mismatch dynamic that complements the symbolic/grammar viewpoint
and supports least-discrepancy selection principles [4}7].

Remark 2.6 (An explicit bounded-type certificate (self-contained)). Appendiz[N records a self-
contained derivation of a continued-fraction/Ostrowski bound for the Kronecker scan: if o =
[0; a1, ag,...] has bounded partial quotients ay, < A, then

8A
Dy(Pn(a)) < (4 +1og, V), Ey < 8A(4 +log, N),

and the golden branch ay = 1 is the minimaz choice within this audited certificate family (Re-

mark .

Remark 2.7 (What changes if « is varied). If one replaces o = ¢~! by another irrational, the
theorem-level Sturmian minimal-complexity property remains (Remark , but the canonical
digit system changes: the induced numeration becomes the Ostrowski system associated to the
continued fraction of « rather than Zeckendorf/Fibonacci [22,26]. Accordingly, the specific Fi-
bonacci counts and p-based depth coordinates used in later sections are tied to the golden branch
choice; a generalized program would replace Fibonacci weights by the corresponding Ostrowski
weights and would induce a different admissibility grammar. In the present paper we therefore
fit o = ¢~ as the CAP-minimal choice within this audited class (Proposition , and we
audit robustness primarily under window-length uplift m — m’ and balanced refinement m = 2n
(Appendiz @), rather than under arbitrary irrational-slope substitution.

Golden-angle scan on a planar screen (phyllotaxis overlay; not
used in proofs)

[Interface]For reader intuition, one may visualize the golden-branch scan as a planar point set (a
phyllotaxis/sunflower disk) obtained by a deterministic map from the one-dimensional rotation
orbit. [Audit]This construction is an interpretation-layer overlay: it introduces no new axiom and
is not used as a premise in theorem-level proofs. The quantitative auditable proxy remains the
mismatch/discrepancy certificates of Subsubsection and Appendix

Let o = ¢~ ! be the golden-branch slope in . Writing the same orbit with the comple-

mentary step

Bi=1—a=q¢ 2

the corresponding planar “golden angle” increment is v := 278 =~ 137.5°. Given a horizon
N > 1, define the tick-indexed planar points by

k .
O, == 27k[, pk::\/N, 2z = pre* e C, k=0,1,...,N — 1.
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The set {z} is the classical phyllotaxis disk. Its role here is organizational: it turns the slope
selection at the golden branch into a planar “screen” picture that helps connect three interface
dictionaries used elsewhere in the paper: (i) uniform coverage / isotropy proxies (quantified by
discrepancy, i.e. En in (7)), (ii) distance as addressing steps on a chosen display graph (Section
and Definition [3.3)), and (iii) local density/revisit as a visualization proxy for overhead/latency
dictionaries (Section [10] and Appendix [Y]).

[Match]The value 137.5° is an angle reported in a chosen unit system, while 1/aey, is a
dimensionless ratio; any numerical comparison belongs to matching/interpretation and is not
used as a premise for closure.

3 Tick calculus: deriving observables, space, gauge, and scale
from sequential readout

Aim. This section fixes the time-first spine used throughout the paper. We treat the tick (scan
iteration count) as the only primitive input and CAP as the only primitive closure/selection rule,
and we define all physical-language quantities as derived protocol structures. Mathematical-layer
statements (counts, maps, and finite tables) remain as in Sections and ; the additional content
here is a dictionary that maps each physical concept to an explicit mathematical object.

3.1 The tick as the only primitive input

Definition 3.1 (Tick (scan time)). The tick is the scan iteration index t € Z. The direction
t — t+ 1 is the operational notion of forward time within the protocol.

Audit note. [Audit]Status: [Interface]. Depends on: Axiom [I.I] If: time is identified with
the executed update order (a definitional convention; no additional dynamical assumption).

3.2 Time orientation and initialization: the arrow of time in tick-only lan-
guage

Orientation is part of sequential execution. [Interface]At the mathematical layer, the scan
orbit can be indexed by Z and is formally symmetric under reversal t — —t¢. In the executed
protocol, “time” is the operational update order (Definition , sot— t+ 1 is the forward
direction by definition.

Origin choice. [Interface]Protocol observables depend only on tick differences (e.g. Defini-
tion [3.4), so shifting ¢ — ¢ + to is a coordinate convention away from boundary conditions.

Irreversibility from finite observability (no new axiom). [Interface]The arrow is not pos-
tulated as an extra dynamical law: it arises because “physics” here is the finite record after
window projection and stability folding, both many-to-one. Consequently, observable word his-
tories are not invertible to unique microstate histories, and reversal corresponds to a different

protocol/run (Section [7.1)).

3.3 From ticks to finite observables: windows and words

Observable records are finite. Fix a window length m > 1. Finite readout is represented

by length-m binary words
Qi ={0,1}"™, Q| = 2™,

obtained by window projection of the scan stream (Section [2.2]). [Math]At resolution m, an
elementary record is the pair (tick, word).
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3.4 Stability as an intrinsic grammar: admissible types and folding

Stability is a predicate on words. At the golden branch, the @-channel selects the ad-
missible set X,, C Q,, by a forbidden-word grammar (no adjacent ones), and one has the
Fibonacci count | Xy,| = Fpo (Lemma [4.5). The 7-channel induces the cyclic/boundary split

(Proposition [4.8).

Microstates and projection. [Math]The folding map Fold,, (Definition ) deterministi-
cally projects microstate indices in 2,, to stable types in X,,; it is surjective for all m (Propo-

sition [4.20)).

Audit note. [Audit]Status: [Math]. Depends on: the admissible grammar defining X,,, and
the explicit truncation map Fold,, (Section. If: Fold,, is the Zeckendorf-truncation projection
adopted in this paper (theorems apply to the map as defined).

3.5 Space as addressing: display graphs, distance, and velocity

Space is a derived display structure. To speak about locality, the protocol must choose
an addressing basis that embeds a finite tick prefix into a neighborhood graph. At Hilbert order
n, the canonical finite prefix is ¢ € {0,...,4™ — 1} and the Hilbert addressing map is a bijection

H,:{0,1,...,4" =1} — {0,1,...,2" — 1}?

(Section [5).

Definition 3.2 (Addressing map and display graph). Fiz an order n and an addressing map
A, from indices to sites. For the Hilbert screen, A, := H,. Define the display graph G, as the
nearest-neighbor graph on the site set A, ({0,...,4" — 1}), with edges given by unit Manhattan
adjacency on the grid.

Definition 3.3 (Protocol distance). For sites z,y in the display graph G, define the protocol
distance
dn(x,y) := shortest-path distance between x and y in G,,.

Tick-distance relation. [Interface]Distance is a tick-count proxy once a per-move tick budget
is fixed (Definition [3.3)).

Definition 3.4 (Protocol velocity and maximal signal rate (tick units)). Given a tick-indexed
site trajectory x(t) € Gy, define the protocol velocity (in sites per tick) by

dn (2 (t1), 2(t2))

i) = |ta — t1]

(t1 # t2).

The mazimal protocol signal rate on G, is the supremum of v over admissible update rules.

Remark 3.5 (Physical units and the speed-of-light dictionary). The quantities in Deﬁm’tions
cmd are dimensionless (graph units per tick). Any identification with meters/seconds, and
hence any identification with the measured constant c, is a matching-layer calibration (Re-

mark[2.1]).
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3.6 Bulk dimension as a CAP output from the anchor bit budget

Screen versus bulk. The addressing screen used for finite diagnostics is a protocol-level
readout basis (Section . By contrast, the bulk dimension d is an interface parameter that
enters when one asks what it means to display a localized rigid object and to compare its pose
across sites. In the tick-only language, d is not taken as a primitive input: it is selected from a
finite candidate set by CAP at the chosen anchor scale.

Definition 3.6 (Rigid-frame coarse-lock budget (tick-only interface)). Let d > 1 be a candi-
date bulk dimension. A local rigid frame has d translational degrees of freedom and d(d — 1)/2
rotational degrees of freedom, hence dim SE(d) = d(d + 1)/2. Under the minimal nontrivial
coarse-lock convention (two bins per independent parameter), a single binary window of length
m can coarse-lock a rigid frame only if

d(d+1)

m > dimSE(d) = 5

Proposition 3.7 (CAP-maximal bulk dimension at the anchor). At the chosen anchor window
length m = 6, CAP selects the mazximal bulk dimension compatible with the coarse-lock budget
n Deﬁnition namely d = 3. Equivalently, dim SE(3) = 6 matches the anchor bit budget.

Proof. For d = 4 one has dim SE(4) = 10 > 6, so a single m = 6 window cannot coarse-lock
a 4D rigid frame under the minimal two-bin convention. For d = 3 one has dim SE(3) = 6, so
d = 3 is admissible and saturates the budget. Thus the maximal admissible d is 3. O

Audit note. [Audit]Status: [Interface] + CAP. Depends on: Definition [3.6| and the anchor
choice m = 6. If: the single-window coarse-lock criterion uses the minimal two-bin-per-
parameter convention; this selection does not enter the theorem-level folding statements.

3.7 Gauge data as fiber compensation

Why connections are forced. At fixed m, stable labels w € X,, carry finite microstate
fibers P(w) = Fold,}(w). Once the protocol demands cross-site consistency on the display
graph, stable labels alone are insufficient: one must also specify how fibers are matched between
neighbors (Proposition . This is the finite origin of compensating connection data and gauge
redundancy.

3.8 Overhead, delay, and scale: mass and energy as time dictionaries

Overhead as time-lag. In a tick-first ontology, “mass as depth” is an operational state-
ment about overhead: stabilizing a pattern consumes additional local protocol resources. At
the matching layer, this overhead can be accessed through delay observables (Wigner—Smith;
Appendix @ and compared to clock-rate/lapse dictionaries.

A single log-time coordinate. Fix the electron reference g = me and define the resolution
coordinate
) o 082/ me)
log ¢

By the Compton-clock dictionary (Appendix @, r is simultaneously a log-frequency and (up to
a sign) a log-time coordinate. This is the sense in which mass and energy are derived from time
in the present protocol language: they are calibrated re-expressions of time-scale ratios relative
to the m = 6 anchor.
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protocol concept

mathematical object

where fixed in this paper

operational proxy (matching
layer)

time (tick)
finite observables

stability (types)
projection

space (display)
distance
velocity (tick units)

phase
frequency

gauge data
curvature (finite)

overhead / lapse

mass (overhead)
energy/scale
dynamics (continuum
closure)

entropy / temperature
force

Born probabilities

RG / running
cosmology (interface)

t € Z (Definition )
w € Qm = {0,1}™

Fold,, : {0,...,2™ — 1} —
Xm

addressing map A, and graph
Gn

drn (graph metric)

v=Ad/At

dyadic register Zop and el®
w = Af/At (tick units)

fiber matchings / holonomy
holonomy conjugacy invari-
ants

K, x = log(k/ko), N =e7X

depth / delay dictionary

r(p) = log, (1/me)
CAP-selected action class [S]
and its EOM

state-count and conjugate
scale

response  functional  (ac-
tion/free energy gradient)
POVM probabilities P, =
Tr(pEy)

dg/dr = (log ¢)B(g)
fstab(m) = Fm+2/2m7 dm
2™ [Finyo

Axiom Section

Section

Section

Section

Section [5} Definition
Definition

Definition

Appendix E Section

Appendix

Section

Section |6} Appendix
Appendices
Sections

Section [10.1

Appendix

Appendices
Appendix

Appendix |AD.11
Appendix [AD.12

laboratory clock ticks after cali-
bration

binary readout stream / bit
records

persistent readout classes

coarse graining / equivalence
classes

locality graph used for audits

hop count / minimal transport
steps
propagation rate; c after calibra-
tion
phase readout / interferometry

spectral peaks; clock ratios; red-
shift

plaquette holonomy statistics
loop/plaquette statistics

clock slowdown; redshift; time
delay

Compton time; Wigner—Smith
delay

frequency/energy conventions
weak-field tests; effective-field
fits

thermodynamic entropy; noise
spectra

acceleration; pressure/gradient
forces

measurement frequencies

scale dependence of couplings

energy budget / clustering prox-
ies

Table 3: Tick-first dictionary: each physical-language concept used in this paper is identified

with an explicit mathematical object derived from sequential readout.

3.9 Dictionary summary: physical concepts as mathematical objects

Full derivation spine (supplement). [AuditjAppendix [G|records the full tick + CAP deriva-
tion spine (candidate families, objectives, and deterministic tie-breaks) behind the interface
components summarized here.

Part 111

Periodic Core: the (p, 7, ¢) channels and the

anchor

4 Resolution folding core: ()3 — X and the 64 — 21 stable sector

This section records the finite-resolution mathematical layer of the construction with fully ex-
plicit definitions and proofs. The broader resolution-folding and recursive uplift program (be-
yond the m = 6 anchor emphasized here) is developed in the companion manuscript [9].
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4.1 Microstate readout space and balanced coupling

Fix a window length m > 1 and define the microstate readout space
Q= {Oa 1}m’ ’Qm| = 2m7

with linearization H,, := £2(,,). To attach explicit spatial diagnostics later (Hilbert addressing,
chirality, holonomy), we use an addressing basis as a readout screen (Section ; at the minimal
anchor this choice is made explicit and auditable (Table . We adopt the classical 2D Hilbert
addressing and a balanced cardinality match on that screen, 2™ = 4" (equivalently m = 2n).
We focus on the minimal instance used in this paper, n = 3 and hence m = 6:

Qs = {0,1}°, || = 64.

At the same order n = 3, the 2D Hilbert-addressed grid has 4™ = 64 sites, matching the local
readout cardinality.

Lemma 4.1 (Balanced coupling equivalences). For integers m,n > 1, the following are equiv-
alent:
2™ = 4", m = 2n.

FEquivalently, an order-n Hilbert grid has the same number of sites as the m-bit readout alphabet
Qm if and only if m = 2n.

Proof. Since 4" = (22)" = 22", the equality 2™ = 4" holds if and only if m = 2n. O

Remark 4.2 (Balanced coupling and addressing dimension). Lemma is the cardinality match
specialized to the 2D Hilbert addressing used for the explicit finite diagnostics in this paper: an
order-n square grid has 4" = (22)" sites, hence 2™ = 4" <= m = 2n. More generally, a
d-dimensional hypercubic addressing basis at side length 2" has (2")% = 29" sites, and matching
|| = 2™ corresponds to m = dn. We use the 2D Hilbert grid as an explicit readout screen for
the diagnostics below; see Remark [5.1] for the rationale, Table[J for the bounded counterfactual
audit, and the 3D comparison in Remark [5.1]

Operational forcing rationale for m = 2n (2D screen) and for the “minimal” instance.
At Hilbert order n, the scan index ranges over {0, ...,4"—1} and therefore carries exactly 2n bits
of information. The balanced rule m = 2n identifies a readout window length with this canonical
bit budget and yields a simple one-to-one site labeling on the chosen 2D screen (Lemma .

Remark 4.3 (Balanced coupling is a diagnostic convention). Balanced coupling is not a theorem-
level requirement of the folding core. All folding maps, admissible sets, and counting statements
in this section are defined for every m. The balanced relation 2™ = 4™ is adopted only when we
attach spatial diagnostics by placing window words (or stable types) on an order-n addressing
grid with matched cardinality so that each site carries exactly one m-bit microstate label. Within
the tick-only interface of this paper, this choice is CAP-minimal among couplings on a fixed
screen: a bijective sites»window assignment avoids additional protocol conventions and mapping
overhead. Other couplings 2™ £ 4™ correspond to non-bijective site<>window assignments and
would require additional protocol conventions; they are not pursued here.

Why (m,n)=(6,3)? A minimal holonomy anchor (CAP). The algebra permits any m
and any addressing basis; attaching locality and transport diagnostics requires additional pro-
tocol structure. A closed-loop holonomy diagnostic requires at least a two-dimensional display
graph, so we use a 2D screen (Section [5)). Given a fixed 2D screen and an addressing basis,
balanced coupling 2™ = 4" is CAP-minimal because it yields a bijective site<>microstate assign-
ment and avoids additional mapping overhead (Remark . Among balanced pairs, CAP then
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channel explicit finite-m definition and derived output at m = 6

¢ (grammar) Forbidden-word legality: X, := {w € {0,1}" : w;w;41 = 0}, equivalently D,(w) =
1{w contains 11} and ¢-stability is Dy(w) = 0 (Equation (8)). Then |Xm| = Fm42 and in
particular | Xg| = Fg = 21 (Lemma.

™ (wrap-  Cyclic closure at finite window length: Dy (w) = 1{w; = wm = 1} and X,, = XU X2 with

around) X3¢ ={w € Xpm : wiwm = 0} and X,t;dry ={w € Xm : w1 = wm = 1} (Section . Then
|XPdY| = F,,_5 and at m = 6 one has the canonical split 21 = 18 @& 3 with explicit boundary
words (Proposition and Corollary .

e (analytic) Analytic stability template: Artin-Mazur zeta and Abel normalization for the golden mean shift,

yielding ¢(z) = 1/(1—z—22) and the Abel pole barrier at r = 1 under z = r/¢ (Section|d.5). At m =
6 this channel is used as an interpretation layer rather than to further reduce Xg (Remark .

Table 4: The three stability channels as explicit finite constructions. The reduction 64 — 21
at m = 6 is enforced by the p-grammar (admissible words), while the 7-channel induces the
canonical 18®3 cyclic/boundary split; the e-channel supplies an analytic stability template used
for interpretation and for higher-resolution variants.

selects the smallest n for which the deterministic finite connection yields nontrivial plaquette
holonomies (3/4 cycles) and a nonzero phase-lift signal; the balanced-chain sweep in Table
shows that n = 1,2 produce only trivial holonomy while n = 3 is the first scale with nontriv-
ial 3/4-cycle content. Thus the minimal anchor on this screen is (n,m) = (3,6). We treat
(m,n) = (6,3) as a concrete anchor for fully explicit finite diagnostics; higher balanced pairs
such as (m,n) = (8,4) and (10, 5) are addressed uniformly by the same definitions and by the
uplift sweeps recorded in Appendix [AE] In particular, the Fibonacci admissible sizes and the
m-channel split persist for all m (Lemma and Proposition : for example,

28 — | Xg| =55, 55 =47®8,

and
219 — | Xy0| = 144, 144 = 123 @ 21,

as recorded in Table

4.2 Three stability channels (summary)

At finite window length, stability is organized by three channels, denoted @—m—e. For the
mainline narrative we treat them as explicit predicates/definitions on finite words. An equivalent
defect-operator viewpoint and an optional relaxation dynamics are recorded in Appendix

Three stability channels (fully explicit at finite window length). The 64 — 21 claim at
m = 6 is not obtained by fitting or post-hoc filtering: it follows deterministically from explicit
defect predicates on finite words (the ¢ and 7 channels) together with a standard analytic
template (the e channel). For reader convenience, Table 4| summarizes the precise channel
definitions used in this paper and points to the theorem-level count statements that follow.

4.3 The p-channel: Zeckendorf grammar and |X;s| = 21
Define the golden-mean admissible set (forbidden substring “117)
X i ={w e {0,1}"": wywj4; =0foralli=1,...,m—1}. (8)
Equivalently, define the defect function
D, (w) := 1{w contains the substring 11},

so that p-stability is D, (w) = 0 and the ¢-stable sector is exactly X,.
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Remark 4.4 (Sturmian readout language vs. golden-mean admissible language). The set X,
is the length-m block language of the golden-mean shift (the shift of finite type forbidding the
word 11), hence | X,| = Fto and its associated topological entropy is log e (Lemma and
Remark . This should not be confused with the factor language of the Sturmian time-series
readout produced by an irrational scan and a canonical two-interval window partition, which
has factor complezity p(m) = m + 1 and zero entropy rate (Appendiz . The two notions are
compatible because the Sturmian language is a strict subset of the golden-mean admissible block

language (Appendiz[M).

Lemma 4.5 (Fibonacci count of admissible words). For all m > 1, one has | X,,| = Fio. In
particular, | X¢| = Fg = 21.

Proof. Let ap, = |X;,|. An admissible length-m word either starts with 0 followed by an
admissible length-(m — 1) word, or starts with 10 followed by an admissible length-(m —2) word.
Thus a,, = am—1 + am—2 with initial values a; = 2, ag = 3, hence a,,, = F10. O

Remark 4.6 (Sub-geometric stable types at m < 6 (interface)). Lemma shows that ad-
missible stable types exist at every window length, including the near-threshold case m = 5
with |Xs| = F; = 13. Under the rigid-frame coarse-lock budget at the anchor (Section [1.3;
Proposition , m = 6 is the minimal single-window anchor compatible with coarse localized
rigid-frame display at the protocol interface, so m < 6 admissible types are sub-geometric in
this interface sense (cf. Remark . We refer to Section and Section E for the com-
plementary protocol interpretations of the vacuum sector (sub-geometric admissibility versus
protocol-unstable microstates).

Remark 4.7 (The ghost sector: protocol-unstable microstates (interface)). In the HPA scan—
projection paradigm, a vacuum is not the absence of microstates but the absence of stable lo-
calized outputs under a fized finite-resolution protocol. In addition to sub-geometric admissible
types at m < 6 (Section m), a second contribution is present already at fized m: the protocol-
unstable complement Q,,, \ X, consisting of readout words that violate the admissibility grammar.
We refer to Qp, \ Xy as the ghost sector.

At the anchor m = 6, one has |Qg| = 64 and |Xg| = 21, hence |Qg \ X¢| = 64 — 21 = 43.
This same count also appears as projection redundancy in the many-to-one folding map Foldg
(Section @) stable readout labels retain 21 degrees of freedom while 43 microscopic degrees of
freedom are suppressed by projection.

A minimal instability witness. Define the adjacent-ones count
Nijj(w) =#{ie{l,....m—1} : w;=wiy1 =1}.

Then X, = {w € Q, : Ni1(w) = 0} and the ghost sector is Qu\Xm = {w € Qp, : N11(w) > 1}.
Section@ records diagnostic m-sweeps for the ghost sector (violation distributions and minimal
repair costs) generated by deterministic scripts.

Define the ¢-stable projection P, : Hy, — Hu, as the orthogonal projection onto €2(X,,). At
m = 6, this is the first rigid compression:

rank(P,) = | Xs| = 21.

4.4 The m-channel: cyclic closure and the 18 ¢ 3 split

At finite window length, the m-channel refines stability by imposing a cyclic wrap-around ad-
missibility. Define the wrap-around defect

Dy (w) := 1{w; = w,, = 1}.
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For a window length m > 4, define
X ={w e Xp, 1 wiwy, =0}, andry ={we X, : wy =wy, =1}

Proposition 4.8 (Cyclic/boundary split size for the m-channel). For every m > 4, the boundary
set has Fibonacci size
|X;)ndry| = Fm-2,

and therefore, using Lemma [].5,
X = [ Xom| = | X | = Faniz — Fna.

Proof. If w € X,'?@dry, then wy; = w,, = 1 and Zeckendorf admissibility forces wy = wy,—1 = 0.
Thus the middle substring ws - - - w,,—9 is an admissible word of length m — 4 with no adjacent
ones, i.e. an element of X,,,_4. Conversely, any v € X,,_4 yields a boundary word w = 10w 01 €
XPdry  This gives a bijection X294 22 X, 4 hence

‘X};Ldry| — ‘Xm_4| = F(m_4)+2 = Fm_2
by Lemma [4.5 O

Corollary 4.9 (Canonical 18®3 split at m = 6). At m = 6, one has | Xg""| = 18 and |Xé°dry\ =3,
and
X = {100001, 100101, 101001}.

Proof. The sizes follow from Proposition and Lemma For the explicit list, use the
bijection in the proof of Proposition .8 every boundary word at m = 6 has the form w =
10w 01 with u € X5. Now Xa = {00,01,10}, hence Xg% = {100001, 100101, 101001} =
{100001, 100101, 101001}. O

4.5 The e-channel: Artin—Mazur zeta and Abel pole barrier

The e-channel expresses analytic stability through zeta functions and Abel normalization [30-32].
For a compact, self-contained summary of the Abel-path and pole-barrier viewpoint used in this
channel, see Appendix For a dynamical system (X, f), the Artin—-Mazur zeta function is
defined by the periodic-point counts

Cr(z) :=exp (Z M z”) , (9)

n>1 n

whenever the series is well-defined [30,31]. For shifts of finite type with transition matrix A, the
Artin—Mazur zeta function admits the standard rational form ((z) = 1/det(I — zA) [23,31},32].
For the golden mean shift, one can make A explicit:

Lemma 4.10 (Golden mean shift: transition matrix and zeta). Let X C {0,1}% be the shift
of finite type defined by the forbidden word 11. With state space {0,1} and allowed transitions
0—0,0—=1,1—0, the transition matriz is

11
A:<1 0).
1 1
C(Z>:det(I—ZA) T 1oz 22

Consequently,

(10)
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Proof. The transition rule encodes the forbidden substring “11”, hence the stated adjacency
matrix. Then

I—zAz(l_Z _Z>, det(I —2zA)=(1—2)-1—22=1—2— 22

—z 1
which gives . O
Let ¢ be the golden ratio and apply spectral normalization z = r/¢. Then
Glr) = Clrfo) = — = ()
-5 (0=nl+5)

The principal pole at = 1 lies on the boundary of the unit disk and plays the role of an analytic
“pole barrier” for Abel-type limits.

Lemma 4.11 (Golden normalization factorization). One has the identity

r ?”2

r
l-————==01-m1+—),

o ¢ ( 902)
s0 the poles of (. are located at r =1 and r = —p?.

Proof. Using 1 — ¢~ 2 = ¢! (equivalently ©? = ¢ + 1), expand

2 2 2
r r r 1 r r r
A=)+ —)=1l-r+——=1-(1-=)r——=1-—-_
( 902) e p? ( 902) @2 o 2

O]

Remark 4.12 (Finite window vs. higher-resolution distinction). At the minimal window length
m = 6, the analytic channel is used here primarily as an interpretation layer for stability (holo-
morphy domain and boundary pole), while the admissible-word selection is already enforced by the
p-grammar. At higher resolution, weighted/pressure-like variants can make e genuinely distinct
from a single forbidden-word predicate.

4.6 The folding map Foldg: from 64 indices to 21 stable types

Index the microstate words by integers {0,...,2™ — 1} via the usual binary identification. For
N € {0,...,63}, let (cx) be the Zeckendorf digits of N as in (). Define the length-6 folding
map by truncation:

FOldG(N) = (Cl,...,CG) € Xg, (12)

padding by zeros if the expansion length is < 6.

Remark 4.13 (Dyadic microstates versus Zeckendorf digits). At fized window length m, there
are two distinct binary coordinate systems in play. The microstate register {0,...,2™ — 1} is
dyadic (a size-2™ index set), while the stable sector X,, is defined as a Zeckendorf-admissible
digit language (no adjacent ones) on the golden branch. The folding map Fold,, used in this paper
is the explicit deterministic bridge between these coordinates: it converts a dyadic index N to its
Zeckendorf digits and then takes a length-m prefix (Definition ) This is a [Math]definition of
the finite folding layer. Other deterministic base-change/repair conventions from {0,...,2™ —
1} to X, are possible and would, in general, induce different fiber statistics. To make this
dependence auditable, Appendiz[Q) records a bounded counterfactual family of alternative maps
at m = 6 and summarizes the resulting finite invariants. Within that bounded family, the
additional natural fized-point constraint F(V(w)) = w for all w € Xg (Definition selects
the Zeckendorf-truncation map uniquely (Proposition .
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Definition 4.14 (Zeckendorf value of a stable word). For w = wy---wg € Xg, define its
Zeckendorf value

6
V(u)) ::ZkakH:w1'l—i—wg‘2+w3-3+w4-5+w5-8+w6-13. (13)
k=1

Proposition 4.15 (Value labeling of the 21 stable types). The map V : X¢ — {0,1,...,20} is
a bijection.

Proof. Step 1 (range). Since w € Xg has no adjacent ones, the maximal value is attained by
the admissible choice w = 010101, giving

V(w) =245+ 13 = 20.

Thus 0 < V(w) < 20 for all w € Xg, so V maps into {0,...,20}.

Step 2 (injectivity). Let w,w’ € X and suppose V(w) = V(w') =: N. By Step 1, N <20 <
21 = Fy, so the Zeckendorf expansion of N uses only Fibonacci weights up to F7 = 13 and has
zero digits beyond position 6. Therefore the length-6 Zeckendorf digit vector of N is uniquely
defined. Since w and w’ are both admissible digit vectors yielding the same value N, Zeckendorf
uniqueness forces w = w’. Hence V is injective.

Step 3 (bijectivity). By Lemma |Xg| = 21, and |{0,...,20}| = 21. An injective map
between two finite sets of equal size is bijective. O

Lemma 4.16 (Surjectivity of Foldg). For every stable word w € Xg, one has
Foldg(V (w)) = w.
In particular, Foldg : {0, ...,63} — Xg is surjective.

Proof. Fix w = wy---ws € X¢ and set M := V(w). By Proposition 0<M<2 <
21 = Fg, so the Zeckendorf expansion of M uses only Fibonacci weights up to F7 = 13 and

has zero digits beyond cg. Moreover, by construction of V(w), the digit vector (ci,...,cs) of
this Zeckendorf expansion equals (wq,...,ws). Therefore, by the definition , Foldg(M) =
(c1y...,c6) = w. O

Lemma 4.17 (Explicit fiber description of Foldg). Let w € Xg and write v := V(w) €
{0,...,20}. Then Foldg*(w) is given explicitly by:

o Ifwg =1, then Foldg ! (w) = {v, v+ 34}.

o Ifwg =0 and v <8, then Foldg*(w) = {v, v+ 21, v+ 34, v+ 55}.

o Ifws=0 and 9 <v <12, then Foldg ' (w) = {v, v+ 21, v+ 34}.
In particular, every stable type has preimage size in {2,3,4}.

Proof. Fix w € Xg and write v := V(w). By definition, Foldg(N) = w iff the Zeckendorf digit
string of N begins with (cy,...,cs) = w. Write the Zeckendorf expansion of N as

N=v+ Z ckFxi1 = v+ 21y + 34cg + 5Hcg + Z ckFiy1,
k>7 k>10

using Fg = 21, Fy = 34, Fig = 55. Since 0 < N < 63, one must have ¢; = 0 for all £ > 10
because Fi1 = 89 > 63. Hence

N = v+ 2lcy + 34cg + 55c¢, C7,C8,C9 € {0,1},
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with Zeckendorf admissibility constraints
weger = 0, creg = 0, cgcg = 0.

We now enumerate admissible (c¢7, cg, cg) and enforce N < 63.

Case 1: wg = 1. Then ¢; = 0. If cg = 1 then ¢cg = 0 and N = v + 34. If ¢g = 0, then either
cg = 0 giving N = v, or ¢g = 1 giving N = v + 55. But when wg = 1 one has v > 13, hence
v+ 55 > 68 > 63, s0 cg = 1 is impossible. Thus Foldg ' (w) = {v,v + 34}.

Case 2: wg = 0. Now ¢; may be 0 or 1. If ¢; = 1 then cg = 0, and cg may be 0 or 1: this
yields N = v+ 21 or N = v+ 76. The latter exceeds 63, so only N = v + 21 remains. If ¢; = 0,
then cg may be 0 or 1. If cg = 1 then c¢g =0 and N = v + 34. If ¢g = 0 then ¢cg may be 0 or 1,

yielding N = v or N = v+ 55. The option N = v+ 55 is admissible iff v < 8. Finally, note that
for wg = 0 one always has v < 12 (the maximal value without the F7 = 13 digit). Therefore:

o if v <8, all three values v, v + 21, v + 34, v + 55 lie in [0, 63];
o if 9 <wv <12, v+ 55> 63 and the preimage reduces to {v,v + 21,v + 34}.
This proves the stated cases and the preimage-size set {2,3,4}. ]

Theorem 4.18 (Finite folding statistics at m = 6). The map Foldg : {0,...,63} — Xg is
surjective. Every stable type has preimage size 2, 3, or 4, with degeneracy histogram

(IVal, [Vs], [Va]) = (8,4,9),
where Vi, := {w € X¢ : |Foldg ' (w)| = k}. Moreover, the boundary-sector preimages are
Foldg!(100001) = {14,48}, Foldg!(100101) = {19,53}, Foldg'(101001) = {17,51}.

Proof. Surjectivity is Lemma Lemma gives |Foldg '(w)| € {2,3,4}.

Histogram. First count words with wg = 1. Such words satisfy ws = 0 and the prefix wy - - - wy
is any admissible word in X4, hence there are |X4| = Fs = 8 such words. By Lemma [£.17] (case
wg = 1) they have fiber size 2, so |V5| = 8.

Now consider words with wg = 0. Then w; ---ws € X5, so there are | X5| = Fr = 13 such
words. Among them, those with ws = 1 have wy = 0 and the remaining triple (w1, ws, ws) can
be any admissible length-3 word not equal to 000. Indeed, if (wq,wa,ws3) = 000 then v = &,
while any other admissible triple adds at least 1 to the value, giving v € {9,10,11,12}. There
are exactly 4 admissible triples with sum > 1, namely 100,010,001, 101. Hence there are 4 words
in X with wg = 0 and v € {9,10,11,12}, and by Lemma they have fiber size 3. Thus
|V3| = 4. The remaining 13 — 4 = 9 words with wg = 0 have v < 8 and therefore fiber size 4, so
[Va| = 9. This yields (|Va|, [V5],[Va]) = (8,4,9).

Boundary-sector preimages. Using Definition compute the boundary values:
V(100001) = 1+ 13 =14, V(100101) =145+ 13 =19, V(101001) =1+ 3 + 13 = 17.

All three have wg = 1, so Lemma m gives Foldg!(w) = {V(w),V(w) + 34}, yielding the
displayed pairs. O

Degeneracy histogram (supplement). The rigid (2,3, 4) degeneracy histogram is recorded
in Appendix
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Summary at minimal resolution. At (m,n) = (6, 3), the three-channel stability mechanism
yields an explicit, auditable chain:

) forbidden grammar ) cyclic closure

Q6 (64 microstates > X6 (21 stable types X a Xg™ (18 @ 3).

@-projection T-split

This 64 — 21 and 18 @ 3 structure is not a metaphor but a finite combinatorial theorem with
explicit tables. The remainder of the paper treats this rigid finite skeleton as the stable-sector
substrate for Standard Model interface hypotheses.

4.7 Uplift: Fold,, and persistence across m

The m = 6 map Foldg is the first nontrivial instance of a general truncation map at arbitrary
window length. For m > 1 and N € {0,...,2™ — 1}, let (cx)x>1 be the Zeckendorf digits of N
(no adjacent ones) and define

Fold,,(N) := (¢1,. .., ¢m) € X, (14)
padding by zeros if the digit vector length is < m.
Lemma 4.19 (Dyadic bound for Fibonacci growth). For all m > 1, one has F1o < 2™.

Proof. At m =1, F3 = 2 = 21, Assume Fy, 12 < 2™ and F,41 < 2™ ! for some m > 2 (the
second inequality holds by the induction hypothesis at m — 1). Then

Fris = Foqo + Fpq < 2m 4 2m-1 < om+l
Thus F, 43 < 2™*! completing the induction. O

Proposition 4.20 (Surjectivity of Fold,, onto X,,). For every m > 1, the map Fold,, :
{0,...,2™ — 1} — X, is surjective.

Proof. Let w € X,,, and define its Zeckendorf value
m
Vm(w) = Z kak-Jrl.
k=1

It is standard that the admissible digit set X, has size F;,, 12 and represents exactly the integers
{0,..., Fipyo — 1} under V,, (Lemma see also [25,[26,[33H35]). In particular, Vp,(w) <
Fpt2—1. By Lemma[d.19] Fy, 49 < 2™ for all m > 1, hence Vp,(w) € {0,...,2™ —1}. Moreover,
the Zeckendorf expansion of V;,(w) uses no Fibonacci weights beyond F, i, hence its digits
beyond ¢, are zero and its first m digits equal w. Therefore Fold,, (V,,(w)) = w. O

A canonicality criterion for the digit window. Beyond surjectivity, one may ask whether
the choice of the digit window (ci,...,¢y) in is forced within natural nearby variants. The
following simple fixed-point condition rules out “shifted” Zeckendorf digit windows.

Definition 4.21 (Shifted Zeckendorf-window maps). For m > 1 and an integer shift s > 0,
define the shifted map

FoldgfL)(N) = (Clts, Cotsy--yCmrs) € Xm,

where (c)p>1 are the Zeckendorf digits of N (padding by zeros for indices beyond the expan-
sion length). Thus Foldfg) = Fold,, and s = 1 is the “FoldZ-shift” counterfactual at m = 6

(Appendiz @)
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Definition 4.22 (Value consistency at window length m). A deterministic map F' : {0,...,2" —
1} — X, is value-consistent if

F(Vip(w)) =w for all w € Xy,
where Vi, (w) = Y00 wi Fiy1 is the Zeckendorf value used above.

Proposition 4.23 (Value consistency forbids Zeckendorf window shifts). Fix m > 1. Within
the shifted Zeckendorf-window family {Foldgf;) : s > 0}, the only value-consistent map (Defini-
tion is the unshifted map Foldgg) = Fold,,.

Proof. Let w = 10---0 € X,, (a single 1 followed by zeros). Then V,,(w) = F5 = 1. The
Zeckendorf digits of 1 satisfy ¢y =1 and ¢ = 0 for all £ > 2. Therefore, for any shift s > 1,

Fold® (Vi (w)) = (C145s - mays) = (0,...,0) # w,

so Fold(®) is not value-consistent. On the other hand, Fold) (V;,(w)) = Fold,,(1) = w by the
definition of Fold,, and Zeckendorf uniqueness. ]

Degeneracy as truncated Zeckendorf tails. For a fixed w € X,,, the preimage size
gm(w) := |Fold, )} (w)| counts how many Zeckendorf expansions of numbers N € {0,...,2™ — 1}
share the same first m digits. Equivalently, writing

N =Vy(w)+ Y exFria,
k>m+1

the fiber size is the number of admissible tail digit strings (¢m+1,Cm+2,--.) (With ¢, = wp,
enforcing ¢,¢pmy1 = 0) whose tail value keeps N in the finite domain. Thus finite preimage
degeneracy is a direct consequence of Zeckendorf truncation at finite window length and the
cutoff V < 2™; it is not an artifact of the m = 6 case.

Uplift evidence. Appendix records an m-sweep (generated by
scripts/exp_foldm_stats.py) that verifies Im(Fold,,) = X,, and reports the full de-
generacy histograms for m =6, ...,16 (Table[68). In particular, the support {2,3,4} at m =6
uplifts to larger, still highly structured degeneracy values at m = 8 and m = 10 (Table ,
consistent with the tail-count interpretation above.

Vacuum / ghost-sector diagnostics (supplement). [Interface] The protocol-unstable com-
plement €, \ X, (the ghost sector) and its diagnostic sweeps are recorded in Appendix E]

Part IV

Structure: Locality, (Gauge, Chirality, and
Antimatter

Planar holographic screen as a chart (stereographic projection;
interface)

[Interfacel When we speak of a “screen” in this paper, the concrete object is a finite display graph
induced by an addressing basis (Section [5)). The 2D Hilbert grid is used for fully explicit finite
diagnostics at the anchor, and it may also be viewed as a discrete sampling of a planar chart.
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[Interface] A standard continuous display chart that connects bearing/boundary language to
planar coordinates is the stereographic projection of the unit sphere S? C R? to the complex
plane. For a direction w = (wy,ws,w3) € S? (away from the projection pole), define

w1 + iwo

e C.
1—ws

z(w) ==

Conversely, for z € C define the inverse map

2Rez 2Imz |2[2—1 9
= S<.
< <1+|z|2’1+|z|2’1+|z2 :

In this chart, planar distance and density are display-dependent quantities; the protocol distance
used for operational statements in this paper remains the graph metric on the chosen display
graph (Definition [3.3)).

[Audit] This stereographic chart is a display convention (interface dictionary) and is not used
as a premise for theorem-level folding statements or for CAP minimality audits; it provides a
compact coordinate language for “planar screen” discussions when a continuum chart is conve-
nient.

5 Hilbert addressing and dihedral layout families

5.1 Hilbert addressing as a locality-preserving embedding

Under the linear-ontology interface of this paper (Axiom , the primitive object is a one-
dimensional scan order (tick stream). To represent locality at finite resolution, we introduce space
as a derived display structure: an addressing basis folds a finite tick prefix into a neighborhood
graph (Section . Hilbert addressing provides a classical locality-preserving bijection

H,:{0,1,...,4" -1} - {0,1,...,2" — 1}?

with bounded jump statistics relative to the Euclidean metric; see [36H38]. At n = 3, the
grid has 4% = 64 sites, matching the 64 microstates of Qg for the chosen 2D balanced coupling
(m,n) = (6,3).

5.1.1 Space from ticks: display graph, distance, and velocity (dictionary)

Fix an order n and view tick indices as embedded on the grid by H,. We treat the resulting
nearest-neighbor grid graph as the display graph and use its graph metric as the protocol notion
of distance (Deﬁnition. Accordingly, a tick-indexed trajectory z(t) on the display graph has
a protocol velocity in sites per tick given by

dn (2(t1), z(t2))

Pl Ba) = to—t1]

as in Definition Any conversion of this dimensionless rate to physical units, and therefore
any identification with the measured constant ¢, is a matching-layer calibration (Remark [2.1]).

Remark 5.1 (Why the 2D Hilbert grid is used in this paper). Higher-dimensional locality-
preserving space-filling curves (including 3D Hilbert variants) exist. Other 2D space-filling curves
can likewise be used as alternative addressing bases; we do not claim they fail. At the minimal
anchor used in this paper, the choice of addressing basis is made explicit and auditable by a
bounded counterfactual comparison, in which Hilbert addressing is selected as CAP-minimal
within the stated finite family (Table E‘?]) Independently of this audit, Hilbert addressing provides
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addressing  jump q90  jump q99 edge q90 edge q99 failures/total failure frac  status

hilbert 1.000 1.000 12.000 17.000 0/5 0.000 selected
row-major 8.000 8.000 10.000 12.000 0/3 0.000

Table 5: Addressing-basis audit at the minimal anchor (m,n) = (6,3): Hilbert vs. a row-
major counterfactual on the 8 x 8 screen. “jump” is the Manhattan step length along
the scan path (tick order) on the screen; “edge” is the 0.90/0.99 quantile of the mini-
mum fiber-matching cost across nearest-neighbor edges (Hamming cost on 6-bit microstates);
“failures” counts Gram—Schmidt failures when projecting phase-lifted holonomies (denom =
64) on nontrivial (3/4-cycle) plaquettes. Rows are reproduced by the deterministic script
scripts/exp_addressing_selection.py.

a concrete locality-preserving representative with a fully explicit symmetry structure [37]. In
particular, one may use a 3D Hilbert-type addressing map

H® :{0,1,...,2°" =1} - {0,1,...,2" — 1}3,
so that the order-n hypercubic grid has (27)% = 23" sites. At window length m = 6, the balanced
cardinality match for 3D addressing is m = 3n, hence n = 2 and 2% = 232 = 64; equivalently,
a4 x4 x4 grid carries the same 64 sites as Qg. We use the classical 2D Hilbert grid for
three complementary reasons. First, it is the minimal screen dimension that admits closed
loops (plaquettes) and therefore supports the holonomy diagnostics used later (Section @; n
one dimension there are no cycles. Second, it yields an explicit dihedral layout family with
a transparent orientation-preserving vs. orientation-reversing split (Section , making the
parity/chirality protocol audits fully explicit at the 64-site anchor [37]. Third, the 2D grid can
be read as a minimal finite “screen” on which the linear scan is rendered, consistent with a
boundary-first (holographic) viewpoint in which observable data live on a readout boundary while
bulk locality is an interface dictionary [39441]. Nothing in the folding statements depends on
the addressing dimension; changing the addressing basis changes only which spatially organized
diagnostics (e.g. chirality/holonomy histograms) are attached to the same theorem-level stable

types.

A bounded counterfactual and a CAP-minimality audit. 7o make the addressing choice
auditable in the tick-first language, we compare Hilbert addressing to a bounded counterfactual
of equal description complexity: a row-major scan order on the same 8 x 8 screen. We score
each candidate by protocol-internal locality metrics (no external targets): (i) high-quantile scan-
path jump length (Manhattan distance) per tick, and (ii) neighbor-fiber matching overhead and
a phase-lift computability diagnostic on nontrivial plaquettes. Table[5 reports the resulting com-
parison and records the CAP-style deterministic selection within this explicit finite candidate
family.

Remark 5.2 (Addressing geometry versus ontic dimension). The square grid and its Fuclidean
metric are used here as part of a protocol-level readout basis that makes locality auditable at finite
resolution. They do not serve as premises about an underlying ontic manifold; the theorem-level
folding statements depend only on word combinatorics, while addressing enters only through
controlled families of readout bases (Section .

5.2 The D, layout family and non-canonicity

Hilbert recursion is not unique: there are 8 global layout variants related by the dihedral group
D, acting on the square by rotations and reflections. These correspond to different address fami-

38



lies (different orientation and reflection choices at recursion seed), and can be treated as different
readout bases. Rotation elements preserve orientation; reflection elements reverse orientation.

Lemma 5.3 (D, layouts and orientation classes (standard)). The symmetry group of the square
is the dihedral group Dy with |D4| = 8 elements. Composing a fized order-n Hilbert addressing
map H, with any g € Dy yields another valid global layout with the same locality-preserving re-
cursion statistics. Moreover, Dy splits into 4 orientation-preserving rotations and 4 orientation-
reversing reflections.

Proof. The symmetry group of the square is classical and has 8 elements. Since each g € Dy is an
isometry of the grid, the composition go H,, is again a bijection {0,...,4" 1} — {0,...,2"—1}2
The rotation subgroup has order 4 and preserves orientation; the remaining coset consists of
reflections and reverses orientation [37]. O

This non-canonicity is the geometric entrance for chirality in the readout protocol: fixing an
orientation class at initialization selects a handedness for the address recursion. In the physical
identification layer, we elevate this to a protocol choice whose mirror is not a symmetry within
the same protocol (Section .

Non-canonicity as protocol, not gauge. Changing Hilbert layout changes the address
mapping and therefore changes certain finite statistics of neighborhood patterns. At the same
time, the folding core of Section ] is protocol-stable: the 64 — 21 and 18 @ 3 statements are
invariant as combinatorics of words, independent of the spatial embedding. The role of Dy is
therefore not to modify the folding theorem, but to provide a controlled family of readout bases
in which chirality can be defined and tested.

5.3 A discrete Hilbert chirality index

Let po,pi1,--.,pan—1 € Z? be the Hilbert path points, with p, = H,(k). Define the discrete
chirality index

4n_2
x =Y sgn((pk — pr—1) X (Pk+1— k), (15)
k=1

where the 2D cross product is the scalar (az, ay) x (bz, by) = azby—ay, b, and sgn(t) € {—1,0,+1}.
Intuitively, x is the net excess of left turns over right turns along the discrete path. We take
sgn(0) = 0, so collinear triples contribute 0; thus x counts signed turns and ignores straight
steps.

Proposition 5.4 (Parity and traversal reversal flip x). Let P be any reflection of the grid and
let T be traversal reversal (path reversal). Then

x(P-p)=-x(p), x(T-p)=—x(p),
while orientation-preserving rigid motions (rotations and translations) preserve x.

Proof. Reflections reverse orientation, hence reverse the sign of the scalar cross product at every
non-collinear local turn. Traversal reversal swaps the order of each local triple (pg_1, Pk, Pk+1),
which also flips the cross-product sign. Rotations preserve orientation and therefore preserve
cross-product signs. Translations cancel in the differences px, — pr_1 and pr1 — pg, hence leave

every cross product unchanged. O
Appendix records a reproducible n = 3 check (generated by
scripts/exp_hilbert_chirality_index.py): the canonical Hilbert path has y = -2,

while both reflection and traversal reversal yield y = +2.
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projection fibers deterministic edge plaquette holonomy SU(3) embedding
P(w) under Foldg transport p,_,, € Sy po (cycle type) (standard subrep.)

invariants effective 3 x 3 dyadic phase lift
angles, J unitary U denom = 2P

Figure 3: Holonomy diagnostic pipeline (finite, auditable): deterministic edge matching induces
an Sy connection on the Hilbert grid; plaquette holonomies are embedded into an SU(3) skeleton
and optionally phase-lifted to yield effective unitary matrices and rephasing-invariant summaries.

6 Protocol connections and finite holonomy diagnostics on a
tick-addressed grid

This section records a minimal, auditable connection model that makes the slogan “gauge fields
as compensating connections” concrete at finite resolution. The construction is discrete, finite,
and fully computable at the chosen anchor scale (m,n) = (6,3). It is used here as a protocol-level
diagnostic: every choice is explicit, every search domain is finite, and the reported fit objectives
reuse the same log-mismatch norms as in Definition No continuum limit is assumed in
the computations below; any continuum interpretation is an interface dictionary (see Propo-
sition . As an audit-oriented look-elsewhere check, Appendix includes counterfactual
baselines for selected holonomy fits (e.g. Hilbert vs. row-major addressing) in Table [74 In the
tick-first spine, the addressing basis is part of the display dictionary (Section ; its minimality
at the anchor is made explicit by the addressing audit in Table

Non-circular diagnostic contract. The holonomy outputs in this section are diagnostics and are
not used as premises for the CKM/PMNS closures in Sections and [12l Whenever PDG /global-
fit targets appear, they enter only as external comparison values to score a finite family of protocol
outputs under the shared audit norm (Definition .

Fit objective and deterministic tie-breaks (audit rule). Whenever we report a “best
fit” of a finite holonomy construction to a target triple of mixing sines (s12, s23,s13) in PDG
conventions, we use the same audit norm as elsewhere in the paper: for each component s; with
reference s1f > 0 we set e; := |log(s;/si!)|, then summarize by

7 %

Fo := maxe;, FE = E e;.
K2 .
K3

Candidates are selected by lexicographic minimization of (Fw, E1), followed by an explicitly
stated deterministic complexity tie-break (e.g. phase-denominator exponent p, discrete phase
map family, loop indices, and global S5 x S5 relabelings), so that reported best fits are unique
within the declared finite search domains.

Remark 6.1 (Diagnostic status and non-circular use of mixing targets). The holonomy con-
structions in this section are diagnostics: they do not supply premises for the CKM/PMNS
closures in Sections and . Whenever PDG /global-fit targets appear here, they enter
only as external comparison values used to score a finite family of protocol outputs under the
audit norm. In particular, we do not tune the connection rule, the phase-map family, or the
phase denominator by importing Standard Model targets into the folding core; we instead re-
port bounded sweeps over these explicit finite protocol parameters and record uniqueness/qgap
information within each declared search domain.
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6.1 Fibers under projection: stable types with finite degeneracy

At m = 6, the folding map Foldg : {0,...,63} — X is surjective and each stable type w € Xg
has a finite preimage

P(w) := Foldg *(w) C {0,...,63}, |P(w)| € {2,3,4}.

From the protocol viewpoint, P(w) is a finite fiber of microstates that project to the same stable
readout label. Comparing stable labels across space requires a convention for how these fibers
are identified, which is the discrete origin of a compensating connection.

6.2 A deterministic discrete connection on grid edges

Fix Hilbert order n = 3 and embed indices & € {0,...,63} into an 8 x 8 grid via Hilbert
addressing (Section . Label each site by its stable type w = Foldg(k). For each undirected
nearest-neighbor grid edge {a,b}, we define a deterministic transport map between the two
endpoint fibers by the following rule:

o For each stable type w, list its fiber P(w) in increasing order and pad it deterministically
to length 4 (the maximal degeneracy at m = 6) by repeating its last element.

e Define a cost between microstates by Hamming distance on their 6-bit binary words.

e Choose the minimum-cost bijection between the two length-4 padded fibers; if multiple
bijections attain the same minimum cost, select the lexicographically smallest permutation.
This yields a well-defined permutation in Sy.

o For the reverse orientation, use the inverse permutation.

This produces a discrete, non-abelian edge connection on edges, designed to be auditable and
fully reproducible by a finite exhaustive search over 4! matchings per edge.

Remark 6.2 (Why we pad fibers to 4 and use Hamming cost). At (m,n) = (6,3) the Folds
preimage sizes satisfy |P(w)| € {2,3,4} (Theorem[{.18), so rank-4 padding is the unique smallest
uniform slot count that accommodates every fiber without truncation. Repeating the last element
s a deterministic minimal padding that does not introduce any new microstate index beyond the
true fiber. For the cost, Hamming distance on {0,1}% is the canonical bit-flip metric induced by
the readout alphabet itself; it measures the minimal number of elementary bit changes between
microstates and is independent of any external geometric scale.

Definition 6.3 (Hamming distance on microstates). Let u,v € Qg = {0,1}°. Define the Ham-

ming distance
6

dg(u,v) = Z lu; — vl
i=1
For indices k,l € {0,...,63}, write bin(k) € {0,1}° for the 6-bit binary word of k and set
dp(k,£) := dg(bin(k), bin(¢)).

Lemma 6.4 (Well-defined edge transport in Sy). For any oriented neighbor edge a — b, the
above rule produces a unique permutation p,_p € Si. Moreover, the reverse-edge rule py_q :=
pgib makes the transport involutive under orientation reversal.

Proof. Each endpoint has a padded fiber list of length 4. There are finitely many bijections
between two 4-element index sets, namely 4! permutations. The cost of a permutation is a finite
sum of Hamming distances (Definition , hence each cost is well-defined and real-valued.
Therefore a minimum-cost permutation exists. If the minimum is attained by more than one
permutation, the fixed lexicographic tie-break selects a unique one, giving a unique p,_p € S4.
Defining the reverse-edge transport as the inverse permutation is then deterministic and satisfies
(Pa—sp) ™! = py_sq by construction. O
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degeneracy pair (|P(w,)|, |P(wp)|) count fraction

(2,2) 16 0.143
(2,3) 11 0.098
(2,4) 13 0.116
(3,3) 12 0.107
(3,4) 11 0.098
(4,4) 49 0438

Table 6: Distribution of preimage-size (fiber degeneracy) pairs across nearest-neighbor
edges on the 8 x 8 grid at n = 3. Rows are reproduced by the deterministic script
scripts/exp_edge_mismatch_decomposition.py.

quantile ¢ min-match cost quantile
0.00 0.000
0.50 8.000
0.90 12.000
0.99 17.000
1.00 17.000

Table 7: Quantiles of the minimum matching cost (sum of Hamming distances under the chosen
optimal bijection) across all nearest-neighbor edges. Rows are reproduced by the deterministic
script scripts/exp_edge_mismatch_decomposition.py.

Definition 6.5 (Vertex relabelings and cycle-type invariance). At a vertex x, relabeling the
padded fiber positions is modeled by a permutation g, € S4 acting on the local index i €
{0,1,2,3}. Under such a local relabeling field g : vertices — Sy, the edge transport transforms
as

Pa—sb p:zab = gbPa—b gail'

Proposition 6.6 (Plaquette cycle type is invariant under local relabelings). Let po be the
plaquette holonomy obtained by composing the four oriented edge permutations around a unit
square. Under the local relabeling action of Definition the holonomy transforms by conju-
gation, hence its Sy cycle type is invariant.

Proof. This is the standard lattice-gauge transformation law: edge transports change by
left /right multiplication at endpoints, so the ordered product around a closed loop changes by
conjugation by the vertex relabeling at the basepoint [42}/43]. Conjugation preserves cycle type
in Sy, so the cycle-type summary in Table [§]is gauge invariant under local fiber relabelings. [

6.3 Elementary plaquette holonomy

Given an Sy-valued edge transport rule, we define the holonomy of a unit-square plaquette by
composing the four oriented edge permutations around its boundary. Because the connection
takes values in a non-abelian group, holonomy can be nontrivial even in a fully finite setting. This
is the standard lattice-gauge notion of plaquette holonomy as a minimal loop observable [42,43].
We summarize holonomy values by Sy cycle type.

Remark 6.7 (Why we emphasize 3/4-cycle holonomies). In the standard Sy action on four
fiber slots, 3- and 4-cycles are the simplest nontrivial cycle types that move at least three slots.
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cycle type count fraction

1 24 0.490
2 19 0.388
2x2 1 0.020
3 3 0.061
4 2 0.041
other 0 0.000

Table 8: Holonomy distribution on the 7 x 7 family of unit-square plaquettes in the 8 x 8 grid at
n = 3, under the deterministic Sy edge transport rule. Rows are reproduced by the deterministic
script scripts/exp_holonomy_loops.py.

Under the 3-dimensional sum-zero (standard) representation used below, these cycle types induce
genuine rotations in SO(3) with nonzero angles, providing the minimal finite skeleton for later
3 x 3 mizing-matriz diagnostics [44)].

6.4 A minimal SO(3) C SU(3) representation bridge

To connect the discrete Sy holonomy values to a continuous group action (as a skeleton for later
mixing-matrix work), we use the standard permutation representation and its 3-dimensional
“standard” subrepresentation [44]. Concretely, let p : Sy — O(4) act by permutation matrices
on R*, and let

4
. 4, _
H: {xeR ;xl 0},

the sum-zero subspace. Then H is p-invariant and dim H = 3.

Remark 6.8 (Why the sum-zero subspace is canonical). The permutation representation of Sy
onR?* contains a trivial one-dimensional invariant subspace spanned by (1,1,1,1). Restricting to
H removes this trivial mode and yields the standard 3-dimensional representation that captures
the nontrivial mizing of slots; see, e.g., [44).

Lemma 6.9 (Sign-twisted standard representation Sy — SO(3)). Let pg : Sa — O(H) =
O(3) be the restriction of the permutation representation to H. Then det(pm (o)) = sgn(o).
Consequently the twisted representation

7o) := sen(o) pr (o)
lands in SO(3). Viewing SO(3) matrices as real unitary matrices gives an inclusion SO(3) C
SU(3).

Proof. Permutation matrices satisfy det(p(c)) = sgn(c). Moreover R* decomposes as an orthog-
onal direct sum
R* = span{(1,1,1,1)} @ H,

and p(0) fixes (1,1,1,1). Thus det(p(0)) = det(p(0)|span{(1,1,1,1)}) - det(pr (o)) = 1-det(pr (o)),
proving det(pg (o)) = sgn(o). Finally, on the 3-dimensional space H, multiplication by the
scalar sgn(o) € {41} contributes determinant sgn(c)3 = sgn(c), hence

det(p(0)) = det(sgn(o) I3) det(pu(0)) = sgn(o) - sgn(o) = 1,

so p(o) € SO(3). The inclusion SO(3) C SU(3) follows because a real orthogonal 3 x 3 matrix
is unitary over C, and determinant 1 is preserved. ]

Table |§| summarizes the induced rotation angles (in degrees) by Sy cycle type for the plaquette
holonomies at n = 3.
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cycle type count mean angle [deg] min [deg] max [deg]

1 24 0.000 0.000 0.000
2 19 180.000 180.000 180.000
2x2 1 180.000 180.000 180.000
3 3 120.000 120.000 120.000
4 2 90.000 90.000 90.000
other 0 — — —

Table 9: Rotation-angle summary for the sign-twisted standard SO(3) C SU(3) represen-
tation of plaquette holonomies at n = 3. Rows are reproduced by the deterministic script
scripts/exp_holonomy_su3_representation.py.

6.5 A phase-register lift and a CP-odd invariant

To allow CP-odd signatures in a holonomy-based description, one must go beyond purely real
orthogonal representations. As a minimal protocol-level bridge consistent with the Zjsg phase-
register stance, we can attach a deterministic discrete phase to each microstate and lift the edge
transport to a unitary (phase-weighted) transport. We make this lift fully explicit. Fix a dyadic
denominator denom = 2P and a low-complexity index map 7 : {0,...,63} — {0,...,63} chosen
from the family

(k) = k, Toray (k) = k @ (k>1), Thitrev (k) = bitreverseg(k), Tnot (k) = 63 — k.

Here & and > denote bitwise XOR and right shift on 6-bit integers, and bitreverseg reverses
the 6-bit binary expansion.

Remark 6.10 (Why the phase-map family is bounded). The map 7 is a pure indexing con-
vention for attaching phases to the finite microstate set {0,...,63}. To bound look-elsewhere
freedom, we restrict to a small explicit family of invertible, bit-level transforms of minimal de-
scription complezity (identity, Gray map, bit reversal, and complement). Within this bounded
family, the protocol adopts a canonical representative by CAP tie-break (Amiom: the baseline
choice is T = 1q unless an explicitly stated bounded-complexity closure selects otherwise. This
keeps the phase attachment auditable and makes any refinement of the map family an explicit
change of the finite candidate set rather than an implicit tuning knob.

Remark 6.11 (Dyadic phase registers and Zjog). The choice denom = 2P matches the finite-
ring phase-register stance in which phases are represented in Zopr rather than as continuous
angles. In particular, p = 7 corresponds to a Zisg register. At the minimal window m = 6, the
default choice denom = 2™ = 64 used in several tables is equivalently a Z19g Tegister restricted to
even residues, since 2m 7T(k)/64 = 2w (27(k))/128. Smaller p coarsen the phase resolution, while
larger p refine it; the dyadic family provides a nested, auditable refinement chain. In CAP audit
language, denominators of the form denom = 2P are treated as an explicit bounded candidate
family: the baseline uses the anchor-coherent choice denom = 2™ and the bounded sweeps record
sensitivity and counterfactuals (Appendix and Appendix @) This is consistent with standard
dyadic phase encodings used in finite-register quantum information models; see, e.g., [24)].

Define the phase register embedding
k
o(k) = 2m (k) (16)

denom

For an oriented edge a — b with padded fibers f,(:) and f(i) (: = 0,1,2,3) and transport
permutation p € Sy (Section [6.2), define the phase-lifted edge transport U,_;, € U(4) by

(Ua—>b)p(z’),i = eXp(i(Qb(fb(p(i))) - Qb(fa(z))))’ 1=0,1,2,3, (17)
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cycle type count mean |J| max |J| mean J
1 24 1.25398e-50 8.55285¢e-50 +1.00603e-50
2 19 1.05674e-17 6.04883e-17 +3.42678e-18
2x2 1 0 0 +0
3 3 0.0634247 0.0772868 +0.0396244
4 2 0.0225747 0.030227 -0.00765223
other 0 - - -

Table 10: Phase-register lifted holonomy and a CP-odd invariant in a finite projec-
tion/renormalization model at n = 3. The baseline CAP choice here is 7 = 1q and denom = 64
(equivalently a Zjog register restricted to even residues; Remark . Rows are reproduced by
the deterministic script scripts/exp_holonomy_phase_lift_cp_invariant.py.

with all other entries equal to 0.

Lemma 6.12 (Phase-lifted edge transport is unitary). For each oriented edge a — b, the matriz
U, defined in s unitary.

Proof. Each column ¢ has exactly one nonzero entry, located at row p(i), and this entry has
modulus 1. Since p is a permutation, distinct columns have disjoint nonzero rows, hence the
columns are orthonormal. Therefore U} ,,Uy—p = 14, s0 Uy, € U(4). dJ

Projecting the resulting 4 x 4 unitary plaquette holonomy to the 3-dimensional sum-zero
subspace and renormalizing by a deterministic Gram—Schmidt procedure yields an effective 3 x 3
unitary matrix.

Remark 6.13 (When projection/renormalization can fail). The projection to the sum-zero sub-
space can produce a rank-deficient 3 X 3 matrixz for certain degenerate holonomies or phase
choices. In that case Gram—Schmidt cannot produce o full orthonormal basis and the effective
unitary is undefined. Our scripts treat such cases as deterministic failures and record the failure
counts explicitly in the relevant tables (e.g. Tables and @)

From this effective unitary one can compute a rephasing-invariant CP-odd quantity, e.g. the
Jarlskog-type invariant
J = (\\X(UIIUQQUTQUQ*:L) .

This is the standard rephasing-invariant combination for 3 x 3 unitary mixing matrices [2}45].
Table [I0] summarizes the induced values by underlying Sy cycle type for the n = 3 plaquettes.

A bounded family sweep over the phase denominator. To make the phase-lift choice
auditable, we can sweep a bounded candidate family for the phase denominator denom = 27
and record the induced mean |J| on the nontrivial plaquettes (3- and 4-cycles). Table [11]reports
the resulting values and the log mismatch to the constant-geometry target Jyeo = 1/(1177).

Angle extraction (PDG convention, diagnostic). From a 3 x 3 unitary matrix U in the
PDG standard parameterization [2], one can extract mixing sines by the identities

/ Uiz Uas
C13 = 1_8%37 uv 3:u7

C13 €13
and obtain a principal Dirac phase § from the Jarlskog invariant via

J

2
512523513C12C23C73

s13 = |Unsl, S12 =

1— s2

sind = e

Cij =
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denom p mean |J| (3) mean |J| (4) mean |J| (3/4) log(mean/Jgeo) | -] failures
64 6 0.0634247 0.0225747 0.0470847 +7.355  7.355 0

128 7 0.0253985 0.0480647 0.034465 +7.043  7.043 0
256 8 0.0096841 0.0408178 0.0221376 +6.601  6.601 0
512 9 0.0045296 0.0192532 0.010419 +5.847  5.847 0
1024 10  0.00222787  0.00943926 0.00511243 +5.135  5.135 0
2048 11  0.00110939  0.00469533 0.00254376 +4.437  4.437 0
4096 12 0.000554126 0.0023446 0.00127032 +3.743  3.743 0
8192 13  0.000276992  0.00117192 0.000634963 +3.049  3.049 0
16384 14  0.000138487  0.000585911 0.000317457 +2.356  2.356 0
32768 15  6.92426e-05  0.00029295 0.000158725 +1.663  1.663 0
65536 16  3.46211e-05  0.000146474 7.93623¢-05 +0.970  0.970 0
131072 17 1.73106e-05 7.3237¢-05  3.96811e-05 +0.276 0.276 0
262144 18  8.65527¢-06  3.66185e-05 1.98406e-05 -0.417 0417 0

Table 11: Phase-denominator sweep for the phase-lifted holonomy CP invariant at n = 3,

over denom = 2P for a bounded range of p. Rows are reproduced by the deterministic script
scripts/exp_holonomy_phase_lift_family_sweep.py.

cycle type count mean Sio mean Sog mean si3 mean § [deg] mean |J|
1 24 0.0000 0.0000 0.0000 38.77 1.25398e-50
2 19 0.4569 0.7719 0.3407 14.01 1.05674e-17
2x2 1 1.0000 0.8165 0.8112 nan 0
3 3 0.6434 0.8005 0.4966 59.46 0.0634247
4 2 0.7439 0.8485 0.4548 47.03 0.0225747
other 0 — — - - -

Table 12: PDG-style angle extraction from phase-lifted effective holonomy matrices at
n = 3 (finite diagnostic). The default choice here is 7 = 7 and denom =
64 (the same choice as Table . Rows are reproduced by the deterministic script
scripts/exp_holonomy_phase_lift_angles.py.

In the holonomy diagnostics below, because row/column identifications are not fixed a priori, we
also allow a global relabeling (a pair of permutations in S3x S3) when comparing to PMNS/CKM
targets. Table [12] reports cycle-type aggregated mean values at the default phase denominator
used in Table 10l

Extended sweeps and robustness diagnostics (supplement). The balanced-chain sweep
across higher balanced pairs, loop-scale/denominator scans, phase-map family sweeps, and the
soft-transport variant are recorded in Appendix [

Protocol EFT embedding (supplement). [Interface]A standard local gauge-invariant EFT
embedding consistent with the closed labeling is recorded in Appendix
7 Chirality, antimatter, and C'PT as protocol geometry

7.1 Protocol-level P,T,C: definitions

Definition 7.1 (Protocol-level discrete symmetries). Fiz a Hilbert order n and a window length
m. We define:
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o Pyrot: a spatial reflection (an orientation-reversing element of the Dy layout family acting
on the Hilbert-addressed grid);

o Throt: scan traversal reversal (replacing the scan index order k — 4™ —1—k on the Hilbert
path);

o Cprot: phase conjugation on the scan orbit, z, — Z,, with window conjugation chosen so
that admissible readout is compared within matched protocols.

These are protocol transformations; they need not coincide with the continuum-field definitions
of P,T,C in standard QFT, but are designed to be auditable at finite resolution. In particular,
Torot Teverses the execution orientation of a finite tick prefix, and is therefore a protocol change
relative to a given initialized run in the tick-only language (Section .

7.2 Scan—chirality locking

Hilbert addressing admits both orientation-preserving and orientation-reversing layout families
(Section . The D4 layout family therefore splits into two orientation classes exchanged by
reflection, and this exchange flips the sign of the discrete chirality index x (Proposition |5.4]).

Definition 7.2 (Orientation class bit and canonical representative (CAP tie-break)). The ori-
entation class is a one-bit protocol datum: it specifies whether the initialized addressing layout
lies in the orientation-preserving or orientation-reversing class. Since the two classes are cost-
degenerate under the tick-only locality diagnostics of Section[d], we fiz a canonical representative
by the deterministic tie-break rule of CAP (Aziom : at the n = 3 anchor, use the standard
Hilbert layout for which the forward-traversal chirality indez satisfies x < 0 (Appendia:@). The
reflected layout defines the mirror protocol and has x > 0. Accordingly, protocol-level parity is
implemented as a protocol swap to the mirror layout rather than as a symmetry within a fixed
protocol.

Which D, choices are physically distinguishable. The D, family consists of 4 rotations
and 4 reflections (Lemma . In an isotropic setting, a global rotation of the spatial grid is a
coordinate convention and does not define a distinct physical protocol once the observer’s coor-
dinate frame is fixed. The nontrivial discrete choice is therefore the orientation class (rotation
vs. reflection), which is detected by the sign of the discrete chirality index x (Proposition .
This is why SCL is formulated as an orientation-class selection rather than as a choice among
all eight layouts.

Proposition 7.3 (Orientation class as the minimal discrete protocol datum). Fiz a Hilbert
order n and an observer coordinate frame. Within the Dy layout family, orientation-preserving
layouts are related by rigid motions of the grid and are coordinate conventions, while orientation-
reversing layouts flip the sign of the discrete chirality index x. Consequently, modulo orientation-
preserving conventions, the only physically distinguishable discrete choice is the orientation class,
and it is detected by sgn(x).

Proof. Lemma [5.3| gives the Dy split into rotations and reflections. Proposition shows that
rotations preserve x while reflections flip its sign. O

In this view, parity violation in the weak sector is a protocol statement: the weak compen-
sation connection is defined within a chosen protocol class, while its mirror requires a protocol
swap (it changes the readout basis).

Proposition 7.4 (A minimal parity-odd sign datum at finite resolution). Fix a Hilbert order
n and any Hilbert layout within a chosen orientation class. Let x be the discrete chirality index
of the associated path, defined in . Then Pyt flips the sign of x (Proposition , while
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any orientation-preserving protocol change leaves x invariant. Consequently, any protocol-level
observable that is a deterministic function of x is parity-odd in the sense that it changes sign
under Pprot .

Proof. This is immediate from Proposition O

Why this targets the weak sector. Within the three-channel template, the m-channel is the
closure/topology channel, and the weak sector is the minimal non-abelian gauge sector SU(2). If
the corresponding compensation connection is implemented by protocol-local consistency rules
that depend on Hilbert layout orientation, then the mirror layout is not a symmetry but a
different protocol. This provides a readout-geometric route to parity asymmetry: the “right-
handed” copy is not an internal symmetry operation within the fixed protocol.

Observable consequences of different orientation classes. If different orientation classes
occur in different spacetime domains (different initializations), then parity-odd observables tied
to x should flip sign between domains while remaining invariant under orientation-preserving
layout changes; see Prediction P2 in Section Conversely, if a single global protocol class
is selected, then all parity-odd statistics should be coherent with a fixed sign of x at a given
scale.

7.3 Time reversal and discrete chirality

The chirality index x in flips sign under traversal reversal (Proposition |5.4]). Since traversal
reversal is the discrete operational avatar of time reversal in a scan process, this provides an
auditable finite-resolution coupling:

T reversal <«<— x~— —x.

Appendix records the n = 3 computation (generated by
scripts/exp_hilbert_chirality_index.py) that y(path) = —2 and x(reversed path) = +2.

A discrete proxy for geometric phase. The index x counts the signed turning of a locality-
preserving address curve. In continuous settings, signed turning and orientation couple naturally
to geometric phase (Berry phase) and to spinorial sign structures [46,47]. The finite n = 3
computation therefore provides a minimal auditable finite-resolution model for the statement

T reversal <= chirality/spin sign flip,

at the protocol layer: both traversal reversal (time reversal) and reflection (parity) flip the same
discrete sign datum.

7.4 Antimatter as conjugate readout
Consider the scan orbit z, = e2™(@0+7)  Complex conjugation yields
z = e—27ri(xo+na) _ e27ri((—zg)+(—n)o¢)_

Thus phase conjugation is equivalent to scan reversal n — —n up to a phase shift. Formally:

Lemma 7.5 (Conjugation equals reversal up to an initial-phase flip). Let z, = e2mi(zotna) gp
define 2, := ™0+ with xl) = —xo. Then z, = 2, for all n € Z.

Proof. This is the displayed computation. O
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Lemma 7.6 (Matched-window readout conjugation induces scan reversal). Let W C T be a
measurable readout window and write W := {Z: z € W}. Let (z,) and (2}) be as in Lemma .
Define readout sequences by

wp, = 1z, € W}, w) = 1{zl, € W}.
Then w), = w_, for alln € Z.

Proof. By Lemma 2! = 7z—,. Therefore 2/, € W if and only if z_,, € W, hence w/, = 1{z_,, €
W} =w_,. O

Consequently, in the rotation model the protocol operation Cirot is realized by traversal
reversal together with an initial-phase flip, hence it is tied to the same discrete chirality sign
datum as Tprot:

Corot == X+ —X.

A CP-sign anchor from chirality. Complex conjugation flips the sign of any conjugation-
odd (hence CP-odd) holonomy residue. Since Cpo is realized at the scan layer by conjugation-
as-reversal, the protocol already contains a canonical orientation sign datum, sgn(x), that can be
used to fix the CP-odd sign convention within a chosen protocol class. We record the resulting
interface rule:

Definition 7.7 (Chirality-anchored CP-odd sign convention (interface)). Let Jcp be a CP-
odd rephasing-invariant holonomy residue (e.g. a Jarlskog invariant) expressed in a fired PDG
convention. Within a fixed protocol class, its sign is anchored by the chirality sign datum:

sgn(Jop) = sgn(x)-
Switching to the mirror protocol (reflection) flips x and therefore flips the anchored sign.

Remark 7.8 (Convention dependence of CP-odd signs). The sign of a CP-odd invariant de-
pends on phase conventions and on bookkeeping conventions (e.g. generation ordering and pa-
rameterization), even when the magnitude is rephasing invariant. In this paper, whenever a
CP-odd sign is used, we keep the PDG parameterization fized and treat the chirality sign sgn(x)
as a protocol-internal orientation datum that removes the remaining quadrant ambiguity in a
deterministic way (cf. the PMNS phase closure in Section . Observable consequences are
therefore phrased at the protocol level as parity-sensitive statistical contrasts (Prediction P2),
rather than as a standalone claim about a convention-free sign.

At the level of finite readout words, Lemma yields a concrete antimatter dual:

Definition 7.9 (Scan-reversal dual of a finite word). For a finite binary word w = wy -+ - Wy,
define its scan-reversal dual by
W = Wy * - WI.

Lemma 7.10 (Reversal preserves admissibility and the n-tag). If w € X,, (no adjacent ones),
then W € X,,,. Moreover, the m-channel boundary tag is preserved: Dp(w) = Dr(w).

Proof. The forbidden substring “11” occurs in w if and only if it occurs in the reversed word w,
so Zeckendorf admissibility is preserved. For the boundary tag, D,(w) = 1{w; = w,, = 1} and
reversal swaps endpoints, hence D, (w) = 1{w; = Wy, = 1} = D (w). O

Massless-limit matching dictionary (consistency check). In the relativistic massless
limit, chirality coincides with helicity [1,48]. Under conjugation-as-reversal, a left-handed parti-
cle maps to a right-handed antiparticle, matching the standard massless-limit dictionary between
chirality and helicity when combined with scan-direction reversal. Remark: we record this only
as a matching-layer consistency check with standard QFT kinematics, not as a premise of the
folding layer.
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7.5 CPT at the scan layer vs. symmetry breaking at the protocol layer

The scan layer is unitary and reversible by construction, so combined transformations can re-
main valid at the microscopic level. However, once a readout protocol is fixed (window choice
plus Hilbert orientation class), P and T may no longer be symmetries within the same proto-
col: they change the readout basis. This provides a protocol-geometric route to understanding
why effective theories may violate P (and C'P) while preserving CPT. Remark: in standard
local Lorentz-invariant quantum field theory under the usual assumptions (locality, a Hermi-
tian Hamiltonian, and the spectrum condition), C'PT invariance is enforced by the CPT the-
orem; see, e.g., [48,/49]. Here we use the C'PT theorem only as a consistency reference point:
Porots Tprots Cprot are explicitly defined finite-resolution protocol operations, and no continuum-
field axioms are used as premises in the folding layer.

7.6 Mirror protocols and a “right-handed” universe

If the initialization at ¢ = 0 selects the opposite Hilbert orientation class, then the protocol-level
chirality sign flips globally. In such a mirror protocol, the weak sector would appear right-
handed rather than left-handed. This provides a precise sense in which a “mirror universe” is
not a different Lagrangian, but a different readout protocol (Hilbert layout class). If protocol
domains existed in the early universe, their boundaries would be protocol defects, yielding the
domain-wall prediction in Section

Part V
Matter: Standard Model interface closures
at the anchor

8 A ¢—7m—e template for the Standard Model interface

This section records the physical identification layer: falsifiable mapping hypotheses that connect
the three-channel folding template to Standard Model structures.

8.1 Three channels as three compensation classes
The folding framework isolates three commuting stability channels:
* (p) syntactic legality. A forbidden-word grammar (Zeckendorf admissibility).
« (m) topological closure. A cyclic monodromy / wrap-around admissibility condition.

o (e) analytic stability. A zeta/Abel holomorphy domain with a pole barrier.

Independently, the Standard Model gauge group is a three-factor product SU(3) x SU(2) x
U(1) [1]). We first record the protocol-level necessity of compensation under cross-site consis-
tency, and then record a CAP-minimal gauge-factor closure under explicit compactness and
factorization constraints that are forced by probability-preserving internal redundancy (Propo-

sition [R.3) and by channelwise independence (Lemma [R.4)).

Proposition 8.1 (Finite-fiber mismatch forces a compensating connection datum (interface)).
Fiz a window length m and an addressing graph that renders a finite tick prefiz as a locality
structure (Section @ e.g. the Hilbert-addressed grid at order n = 3). Let each site x carry a
stable label w, € X, and let its microstate fiber be

P(wy) := Fold,,} (w,)  {0,...,2™ — 1},
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so that multiple microscopic indices can project to the same stable readout label. If protocol-
consistent comparison/transport of stable labels is required across a neighbor edge x ~ 'y,
then the stable labels alone are insufficient: one must specify an additional transport rule that
matches the endpoint fibers. After embedding endpoint fibers into a common slot set of size
7 = maxyex,, |[P(w)| (by any deterministic padding convention), any such edge transport is
represented by a permutation in S.. Changing the local slot labeling at a vertex acts by conjuga-
tion on edge transports, so the transport rule is defined only up to local relabelings (a finite gauge
redundancy). In a continuum modeling dictionary, such discrete connection data are represented
by gauge connections on a bundle.

Proof. The point is finite and protocol-internal. When |P(w)| > 1, the stable label w identifies
only an equivalence class of microstates, so comparing two neighboring stable labels requires a
choice of how the two equivalence classes are matched. Once a uniform slot count r is fixed, such
matchings are elements of the finite symmetry group S,. Local relabelings at vertices change
edge matchings by left /right multiplication and therefore conjugate loop products, which is the
standard discrete gauge-transformation law on graphs [42,/43]. At the minimal anchor m = 6 one
has r = 4, and Section [0] gives an explicit deterministic construction of an Sy edge connection
and its plaquette holonomy diagnostics. O

Assumption bundle for gauge-factor closure (audit). [Audit]For audit clarity, Proposi-
tion [8.2) should be read as a conditional interface closure under an explicit assumption bundle:

e (G1) Channelwise factorization. The three commuting defect channels correspond to
three independent local redundancy sectors (Lemma [R.4]).

e (G2) Compact probability-preserving redundancy. In a continuum dictionary, in-
ternal redundancy is represented by probability-preserving transformations on a finite-
dimensional local Hilbert space, hence is compact at the connected level (Proposition |R.3)).

e (G3) Candidate family. The non-abelian redundancy closes to two simple compact
factors G2, G3 (non-isomorphic) together with the U(1) sector forced by local rephasing

(Proposition [8.4).

o (G4) Complexity label and tie-break. CAP selects the lexicographically minimal
factor pair under a declared discrete complexity label; the main text uses dim(g), and
Appendix [A]] audits sensitivity to alternative labels.

Proposition 8.2 (CAP-minimal three-factor gauge closure (interface)). Fiz a continuum mod-
eling dictionary in which the compensation redundancy is internal and probability-preserving
(hence compact at the connected level; Propositz'on and in which the three defect channels
define three independent redundancy sectors (Lemma . FEquip compact gauge factors with
the intrinsic complexity label dim(g) (Lie-algebra dimension) and select the lexicographically
minimal triple, under CAP (Aziom , among compact gauge groups of the form

U(1) x G2 x G,

where Go and Gs3 are compact, non-abelian, simple, and non-isomorphic. Then the unique
minimizer is U(1) x SU(2) x SU(3) (up to finite group quotients).

Proof. By Proposition local rephasing redundancy enforces an abelian U(1) connection
sector in any local continuum dictionary. Compact Lie algebras split as a direct sum of an
abelian torus algebra and compact simple factors; requiring two additional inequivalent non-
abelian simple factors and applying minimality in dim(g) selects dimensions 3 and 8, hence
su(2) and su(3) by Lemma [9.4] O
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The content of Proposition [8.1] is operational: gauge redundancy arises because compen-
sation is only defined up to local rephasing of the readout basis. The three-factor structure
is not assumed as a premise, but closed as a CAP-minimal identification within the stated
compactness/factorization constraints (Proposition [8.2).

Proposition 8.3 (Three commuting defect channels force a three-factor compensation struc-
ture (interface)). Suppose protocol mismatch certificates decompose into three commuting defect
channels and that, at the modeling level, compensation is defined only up to independent local
basis changes associated with each channel (the channelwise redundancy stance of Lemma .
Then the minimal compensating connection splits into three independent connection components,
so the effective local redundancy factorizes into a product of three gauge redundancies.

Proof. Since the defect channels commute, a mismatch certificate can be represented as a triple
of channelwise components and compared channel-by-channel. By the channelwise redundancy
stance, each channel admits its own local basis redundancy, so at each site  the modeling dic-
tionary permits independent local changes (g,(x), gr(x), ge(x)). Consequently, any channelwise
covariant transport rule along an edge x ~ y is a triple of group elements

(A4p7A7r7Ae)m~>y S G@ X Gﬂ X Ge,
transforming under local basis changes as

(A¢7A7r;Ae>z—>y = (gcp(y)Agogw(x)_la gﬂ(y)Awgﬂ(QL’)_l, ge(?/)Aege(x)_l)'

Thus the minimal redundancy group is the direct product of the three independent channel
redundancies. O]

Uniqueness at the Lie-algebra level. Under probability-preserving internal redundancy
(hence compactness at the connected level; Proposition and using Lie-algebra dimension
as an intrinsic complexity label, the dimensions (1,3,8) already pin the factor Lie algebras
uniquely to u(1) @ su(2) @ su(3) (up to finite group quotients), by the Cartan—Killing classifica-
tion (Lemma . In this sense, once the three-channel template is fixed and one commits to
dimension-as-complexity, the choice of U(1), SU(2), and SU(3) is rigid rather than a naming
convention. Appendix [Al]records a bounded sensitivity sweep showing that the same minimizer
persists under several alternative discrete complexity labels in the tested window. Moreover,
Proposition [AL] gives a short theorem-level reason for this robustness for the most natural
low-complexity labels (dimension, rank, dimension+rank, and dyiy ).

Compensation as a locality cost. In the finite protocol language, a gauge field is not an ex-
tra substance but the bookkeeping of enforcing phase consistency across neighboring addresses.
When the local stable sector is defined by defect suppression, neighboring sites generically dis-
agree on which microstates project to which stable types. A compensating connection is the
minimal additional datum required to compare (and transport) stable types between sites with-
out ambiguity. In this paper, we formulate this as an implementation budget: compensation has
a cost, and the effective dynamics favors minimal discrepancy subject to protocol constraints
(Axiom [L.5]).

Rigidity and defects. In topologically trivial regions a compensating connection can be
gauged away (pure gauge), while persistent mismatch requires nontrivial holonomy supported
by defects. This aligns the “matter as defect” view with the “gauge as compensation” view:
matter is a stable obstruction that prevents global trivialization of the connection.
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Proposition 8.4 (From local rephasing to a connection field (standard)). Let 1)(z) be a complex
matter field and impose local U(1) redundancy ¢(z) — e*®)(x). Then invariance of a local
kinetic term under this redundancy requires introducing a compensating connection A, and re-
placing 0,, by the covariant derivative D, = 0, —iA,. Assuming locality and Lorentz covariance
and restricting to bulk terms quadratic in A,, and its first derivatives, the unique gauge-invariant
quadratic kinetic term is proportional to F,, F'*, where F,, = 0,A, — 0,A,.

Proof. This is standard; see, e.g., [1,48L.|50]. O

Proposition 8.5 (From local SU(N) redundancy to a Yang-Mills connection (standard)). Let
W(zx) transform in a representation of SU(N) and impose local redundancy (x) — U(z)(x)
with U(x) € SU(N). Then invariance of a local kinetic term under this redundancy requires
introducing an SU(N) connection A,(x) and replacing 0, by the covariant derivative D, =
Oy —ig A, The corresponding curvature (field strength) is

F, = ;[Du, D)) = 9,4, — d,A, —ig[A,, A,

and, restricting to local bulk terms quadratic in F),,, the gauge-invariant kinetic term is propor-
tional to Tr(F,,, FM).

Proof. Standard; see, e.g., |1,|48/51]. O

Remark 8.6 (Relation to the CAP gauge-field viewpoint). The standard continuum statements
above are included only as a matching dictionary: they translate local basis redundancy into the
familiar connection-field language. In the HPA-Q) program, the same structural conclusion—
that a compensating connection is forced once local phase consistency is demanded—is devel-
oped directly from finite readout and CAP-minimal discrepancy logic; see the companion CAP
manuscript [4|] for an extended presentation.

8.2 Stable types as minimal defect-carrying modes

In the protocol viewpoint adopted here, matter is modeled as persistent topological defects
whose stability is constrained by an implementation budget. In the present finite-resolution
setting, the stable types Xg provide a minimal, explicitly enumerable set of defect labels.

Definition 8.7 (Particles as stable types (interface)). Physical particle labels at the chosen
anchor scale are identified with stable readout types in X¢ (or with protocol-invariant functionals
thereof ), while microstates in Qg \ X¢ are protocol-unstable and do not survive as visible outputs
under projection.

The 1833 split of Xg then becomes a structural interface candidate: boundary types are non-
closed readout defects (endpoints), while cyclic types are closed defects (loops). This matches the
qualitative distinction between colorless endpoint-like excitations and loop-carrying excitations
that can support nontrivial holonomy.

Why the 18 & 3 split is a rigid interface constraint. The split is enforced by a concrete
wrap-around defect predicate D, hence has an intrinsic “closure vs endpoint” meaning at the
protocol level. Interpreting cyclic types as loop-like carriers and boundary types as endpoint-like
carriers is therefore not an analogy but a direct reading of the m-constraint. The numbers also
provide a rigid counting target: any SM identification must explain why exactly 18 stable types
admit closure while exactly 3 do not at the anchor scale.
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A rigid integer pattern tying 21 to SM data. Beyond closure semantics, the minimal
stable count admits a nontrivial arithmetic decomposition that matches Standard Model integers
used elsewhere in this paper:

| Xs| =21 = (18 4+ 3) = (8 + 3) + 10.

Here 8 = dim(su(3)) and 3 = dim(su(2)) are the gauge-sector dimensions, while 10 = 3~ rcqy Yfz
is the hypercharge-squared sum over the chiral fermion content in three generations under the
PDG normalization @ = T5 + Y. The identity 21 = (8 + 3) 4+ 10 is an integer constraint and
does not involve any post-hoc fitting freedom; it is recorded as an auditable counting target for
the closed labeling interface (Proposition . The same integers reappear in the electroweak
normalization (13 = 10 + 3; Section and in the CP-odd multiplicity (dcp = 8 + 3;
Section , providing a cross-checked integer backbone across multiple independent interface
diagnostics.

Lemma 8.8 (Hypercharge-squared sum Y. Y?2). Under the PDG convention Q = T3 +Y [,
the Standard Model chiral fermion content without right-handed neutrinos satisfies
2 ].O . 2 .
ZY =3 per generation, Z Y; =10 jor three generations.
fesM

Proof. For one generation, sum Y2 over left-handed Weyl fields with multiplicities (color and

weak components):
1\? 2\ 2 1\? 1\?2 10
- - - 2(= 1-(1)=—
6(6> +3<3> +3<3) " (2> =g

corresponding to Qr, ur, dr, L1, and eg. Multiplying by three generations yields 10. A sterile
singlet vp has Y = 0 and does not change the sum. ]

8.3 Minimal mapping problem

We record the interface as an explicit mapping problem. A closed, computable field-level labeling
map is provided in Section [9

How the closed labeling is constructed (preview). The labeling closure is not an un-
structured guess: it is a deterministic order-isomorphism between two finite totally ordered
sets. On the protocol side, the 18 cyclic stable types are totally ordered by intrinsic invariants
(Definition and Definition . On the Standard Model side, the 18 chiral multiplets are
totally ordered by the tuple (g, dim(SU(3)-rep), (6Y)2, dim(SU(2)-rep), name) under the PDG
convention Q = T3 + Y (Definition . Matching ranks yields a unique cyclic assignment,
while the three boundary types are assigned to {U(1), SU(2),SU(3)} by monotone matching of
intrinsic value and gauge-sector complexity (Lemma ; see Theorem and Table

Definition 8.9 (Intrinsic invariants available at window length 6). For w € Xg, the finite
protocol provides several intrinsic, directly computable invariants:

o closure/boundary tag: D,(w) € {0,1} (cyclic vs. boundary);
o Zeckendorf value: V(w) € {0,...,20} (Definition ;
o Hamming weight: |w|; € {0,1,2,3} (Appendix @;

« folding degeneracy: g(w) := |Foldg ' (w)| € {2,3,4} (Theorem .
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Proposition 8.10 (Closed Standard Model labeling at (m,n) = (6,3)). The Standard Model
labeling of the 21 stable types at the chosen anchor (m,n) = (6,3) is closed and unique: The-
orem [9.17 constructs a unique split-compatible labeling map Lon : Xe — Fsm U Gsm by order
isomorphism on the cyclic sector and the unique monotone assignment on the boundary sector.
Moreover, under window uplift m — m’ the labeling admits a canonical functorial lift by prefiz
projection together with explicit refinement multiplicities and deterministic refinement indices

(Appendiz @

8.4 No-Go Theorem: the scalar exclusion principle (interface)

At the chosen anchor instance (m,n) = (6,3), the 21-type interface is optimized for a chi-
ral/gauge closure: 18 cyclic labels for chiral fermion multiplets and 3 boundary labels for
gauge-factor classes (Section E[) In this setting we record a no-go statement on the physical
identification layer: the directed-scan geometry of the minimal stable alphabet excludes parity-
even scalar degrees of freedom as distinct primitive stable types, so scalar effective modes should
arise only as coarse-grained and uplift-dependent observables. At the audit level, this is already
forced by the closed 21-type contract at the anchor: there is no unused stable label in Xg avail-
able for an additional Higgs-like primitive type (Proposition . The additional geometric
constraint is that the minimal stable-sector closure is tied to directional protocol data (scan
order and the chirality sign datum) and to compensation transport, whereas a scalar mode is,
by definition, an observable whose effective appearance is insensitive to these orientation-sign
choices.

The vector nature of the linear universe (interface). Under Axiom the primitive
ontology is a directed scan: the microscopic description is not a static configuration but an
ordered stream. As a result, the elementary readout carriers at the minimal stable alphabet
inherit directional protocol data (in particular the orientation-sign information that controls
chirality in the Hilbert addressing family). A fundamental scalar (spin-0) would amount to
a directionless primitive mode whose effective appearance is insensitive to the scan-direction
and chirality sign datum already at the minimal window. This contradicts the directed-scan
identification at the interface level. Therefore, within the minimal stable-sector closure at m = 6,
a fundamental Higgs-like scalar cannot be a primitive stable type. Accordingly, the observed
Higgs boson must be realized as a composite or statistical emergent mode supported by higher-
resolution texture and coarse graining, where directional protocol data effectively averages out.

Remark 8.11 (Relation to composite/Goldstone Higgs paradigms). Treating the Higgs dou-
blet as an EFT-level degree of freedom rather than a primitive elementary mode is compatible
with mature composite/Goldstone Higgs frameworks, in which a scalar arises as an emergent
low-energy excitation of a more microscopic sector; see, e.q., [52,53]. The present protocol for-
mulation differs in microscopic language, but it implies the same practical expectation: scalar
behavior can be resolution-dependent and should admit additional diagnostic constraints beyond
a minimal chiral labeling at m = 6.

In particular, a renormalizable Standard Model EFT includes a scalar Higgs doublet whose
vacuum structure controls electroweak symmetry breaking. In the present protocol language,
the Higgs is therefore treated as an EFT-level completion (Appendix rather than as an
additional minimal stable type at m = 6 (Remark . The resolution-uplift narrative fixes a
concrete locus for scalar emergence: in the admissible-set sweep one has | X = 144 = 123621
(Table , and under the minimal staircase calibration the threshold for m = 10 lies near
the electroweak scale (Section Table . Accordingly, in the present interface language
electroweak-scalar behavior is modeled as an emergent, parity-even background supported by
higher-resolution texture, not as a primitive type at the minimal window.
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Proposition 8.12 (Scalar-sector closure in the protocol language). At the minimal stable alpha-
bet (m,n) = (6,3), parity-even scalar modes are closed as protocol-emergent observables rather
than as additional primitive stable types:

o (parity-even scalar observables) Coarse-grained scalar observables are obtained by spa-
tial block-averaging intrinsic stable-type functionals on the Hilbert-addressed grid (Defini-
tion ; by construction they are invariant under Ppoy up to pullback (Remark .

o (coupling to compensating connections) In a lattice-gauge modeling dictionary, scalar
site variables couple to link connections by gauge-covariant nearest-neighbor terms that
reduce to (D, H YW(DEH) in a continuum limit [42,45,|54]; in protocol language this cor-
responds to allowing the local implementation cost of transport/holonomy to depend on a
coarse-grained scalar observable (Remark‘ and Remark .

o (uplift dependence) A distinct scalar “type” is therefore expected only under resolution
uplift and coarse graining, not as a new label in Xg; the first audited locus is the m = 10
uplift where | X10| = 144 = 123 @ 21 and the staircase calibration places g, (10) near the
electroweak scale (Table @ and Table @)

Quantitative scalar-scale closure (supplement). [AuditjThe bounded-denominator Higgs—
Z depth-offset rigidity audit is recorded in Appendix (Proposition [AH.1|, Table .

Definition 8.13 (Coarse-grained protocol scalars). Fiz a Hilbert order n and view the scan
indezx as embedded on the grid by H, (Section @ Let q be any intrinsic protocol functional
on stable types (for example q(w) € {V(w),|w|1,g(w), Dr(w)} at m = 6). A coarse-grained
scalar observable is any block-averaged field obtained by spatial averaging of q over a finite
neighborhood on the Hilbert-addressed grid. Block averaging as a coarse-graining operation is
standard in lattice models; see, e.q., [42,45].

Remark 8.14 (A minimal protocol route to scalar effective modes). By construction, coarse-
grained observables of Definition are parity-even in the protocol sense: under Ppo they
transform by pullback of the spatial reflection on the grid rather than by an intrinsic sign flip.
They are likewise insensitive to the traversal-direction sign datum used to define the discrete
chirality index x. This provides a concrete protocol interpretation for a scalar exclusion at
the minimal stable alphabet: parity-even scalar modes are naturally modeled as composite or
protocol-emergent observables whose appearance depends on coarse graining and resolution uplift,
consistent with the Higgs-sector status recorded in Remark[9.1]

A minimal finite check (supplement). [Audit]The parity-contrast check between the chiral-
ity sign datum and coarse-grained scalar summaries is recorded in Appendix (Table [100)).

Remark 8.15 (Coupling scalars to connections (interface viewpoint)). In lattice gauge theory,
gauge fields live on links while scalar fields can be modeled as site variables transforming in
a representation of the gauge group, with gauge-covariant nearest-neighbor couplings that re-
duce to (D, H)'(D*H) in a continuum limit [42,145,(54)]. In the present protocol language, this
provides a concrete modeling route for scalar-sector closure (Proposition : allow the local
implementation cost of compensating transport to depend on a coarse-grained scalar observable
(Definition , yielding a site-dependent modulation of transport/holonomy statistics without
introducing a new minimal stable type at m = 6.

8.5 Protocol flow under uplift and coarse graining (interface)

The program treats finite resolution as primary: both the window length m and the spatial
addressing scale n are protocol parameters. Changing resolution (uplift in m and/or n) and ap-
plying coarse graining are therefore the protocol-native candidates for a discrete renormalization
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step. In this paper, the protocol flow law is fixed explicitly as a discrete uplift—coarse-graining
flow together with a standard RG dictionary in the resolution coordinate r [42,43].

Definition 8.16 (Protocol flow step and flowing objects). Fix a family of protocol parameters
(m,n) and a chosen coarse-graining map C on the Hilbert-addressed grid (e.g. block averaging
or kernel readout). The protocol flow step is the deterministic update

(m,n) — (m',n')

together with the induced map on observables obtained by: (i) recomputing the finite stable
sector X,y and intrinsic invariants at the new window length, (ii) pushing observables for-
ward/backward along the canonical prefix projection(s) Tpy—m (Appendiz[V]), and (iii) applying
C to obtain coarse observables. The flowing objects are any protocol observables defined at
finite resolution (stable-type counts, degeneracy histograms, holonomy distributions, bounded-
complexity minimizers, and derived effective couplings defined as functions of these invariants).

Proposition 8.17 (RG dictionary in the Fibonacci resolution coordinate). Let u(r) = poe”
be the Fibonacci resolution map (Section and let g(p) be any scale-dependent effective
parameter with a standard RG equation dg/dlogu = B(g) away from thresholds. Then, in the
resolution coordinate,

dg
—= =1 .
3. = Uogw) B(g)
Proof. Since log u = log po + rlog ¢, one has d/dr = (log ¢) d/d log p. O

9 Closure: field-level labeling of the 21 stable types

This section closes the Standard Model labeling interface by giving an explicit, computable
assignment of field-level labels to the finite stable type set Xg. We work at the chosen anchor
scale (m,n) = (6,3), where | Xg| = 21 and Xg = X U XM with [ XZ| = 18 and |Xg™| = 3

(Proposition [4.9).

9.1 Field-level targets and audit discipline

We use “field-level” in the Standard Model sense of chiral multiplets per generation (rather than
individual Weyl components), with the unique minimal extension forced by the closure of the
18 cyclic types under anomaly-neutrality (Proposition . Concretely, for each generation
g € {1,2,3}, we consider the six chiral multiplets

A, D, 4, 1D, . P,

with the usual SU(3) x SU(2) x U(1) quantum numbers under the PDG convention @) = T3 +Y

[1,12]. Here 1/1(%]) denotes a neutral singlet (hypercharge Y = 0) that is absent in the minimal
SM, but standard in minimal sterile extensions used to parametrize neutrino mass interfaces [2].
Within the explicit minimal candidate family “one additional multiplet per generation”, anomaly
neutrality and the global SU(2) consistency condition force the choice of a sterile singlet with
Y = 0 (Proposition ; in particular, adding a gauge singlet with Y = 0 does not change the
SM anomaly-cancellation identities (Proposition . This yields 18 fermion multiplets. The
remaining three stable types in the 18® 3 split are reserved for the three gauge-factor connection
classes, aligned with the three-channel template (Proposition .

Remark 9.1 (Higgs sector and what is (not) covered by the 21 stable types). The 21 stable
types at (m,n) = (6,3) are used here to close a minimal chiral labeling interface: 18 cyclic labels
for fermion multiplets and 3 boundary labels for gauge-factor classes. This does not, by itself,
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provide a stable-type label for the Higgs doublet. Accordingly, when we discuss a field-theoretic
embedding (Appendix @, the Higgs is treated as an additional field required for a renormalizable
SM EFT, not as a claim that it must appear as a distinct stable type at the minimal window
length. At the protocol-geometry layer, Hilbert addressing enters through an oriented scan order
on the grid, and parity-odd sign data such as the discrete chirality index x in are built
from signed turns along this order (Section @ Accordingly, the minimal labeling interface
closed at (m,n) = (6,3) emphasizes chiral/gauge degrees of freedom tied to the orientation-
class choice (Section @ By contrast, Lorentz-scalar sectors carry no intrinsic handedness and
are treated, in the present interface language, as composite or protocol-emergent modes whose
effective appearance depends on resolution uplift and on the choice of coarse graining, rather
than on the minimal m = 6 stable alphabet. The corresponding scalar-sector closure in protocol
language is recorded in Proposition [8.13

Non-negotiable interface constraints (audit contract). From an audit viewpoint, the
labeling stage is closed under an explicit constraint set:

e Split compatibility. Cyclic vs. boundary types are fixed by the m-predicate D, so the
18 & 3 split is not negotiable (Section [d); we therefore require Lom(Xg'¢) C Fem and

Lsm(Xg™) C Gour.

e Standard consistency constraints. The field-level target set obeys the standard
anomaly-cancellation identities and hypercharge quantization under @ = T3 + Y |1, 2];
adding a sterile vg with Y = 0 is the minimal anomaly-neutral closure of the cyclic count

(Proposition [0.6)).

e« No numerical SM targets in the labeling stage. Masses, couplings, and fit-derived
continuous parameters are not used to construct Lgy; only discrete quantum-number
invariants enter (representation dimensions and the integer invariant (6Y)?).

e Deterministic closure. Any remaining ties are resolved by explicit deterministic rules
(Definitions and|9.12)), and the sensitivity to the SM-side ordering-key choice is audited

(Table [14)).

Within this contract, the labeling is not a free-form assignment: once the protocol-side order
and SM-side order are fixed, the cyclic-sector bijection is forced as the unique order isomorphism
(Theorem . To address the concern that the result is a vacuous relabeling, we additionally
report inverse diagnostics that test recoverability of several SM quantum-number patterns from
intrinsic stable-type invariants by bounded-complexity rules (Table [13|and Appendix |W)).

Definition 9.2 (Gauge-sector complexity order). For a gauge factor G € {U(1),SU(2),SU(3)},
define its protocol-level complexity by the Lie-algebra dimension

dim(g),

equivalently the number of gauge bosons in the corresponding factor.

Lemma 9.3 (Dimension order of the SM gauge factors). For the Standard Model gauge factors

one has
dim(u(1)) =1, dim(su(2)) = 3, dim(su(3)) = 8,

hence U(1) < SU(2) < SU(3) in the complezity order of Definition[9.4

Proof. This is standard: dim(u(1)) = 1 and dim(su(N)) = N? — 1; see, e.g., [1]. O
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Lemma 9.4 (Uniqueness of compact simple factors at dimensions 3 and 8 (standard)). Among
compact simple real Lie algebras, the only isomorphism class of dimension 3 is su(2) = s0(3), and
the only isomorphism class of dimension 8 is su(3). Consequently, if the gauge-sector complezity
in Definition[9.9 is identified with dim(g) and one assumes compact (semi)simple gauge factors,
then the dimension triple (1,3,8) pins the factor Lie algebras uniquely to

u(l) @ su(2) @ su(3),
up to finite quotients at the group level.

Proof. This follows from the Cartan—Killing classification of compact simple Lie algebras and
their dimension formulas; see, e.g., [18.[55]. O

Lemma 9.5 (A standard Zg quotient in the global gauge group). Let G := SU(3)x SU(2)xU(1)
and normalize hypercharge by Q = T3 +Y so that 6Y € Z (Lemma . Let the U(1) factor
act on a field of hypercharge Y by the integer charge Qy = 6Y, i.e. u € U(1) acts as u® .
Define the central element

z:= (62”1/3 13, —1o, em/3) e SU(3) x SU(2) x U(1).

Then z acts trivially on all Standard Model fermion multiplets used in this paper (including a
sterile vg), and the resulting faithful gauge group may be taken as G/{z) = (SU(3) x SU(2) x
U(1))/Zs.

Proof. For each multiplet (SU(3), SU(2))y, the SU(3) center contributes ¢2™/3 on triplets and
1 on singlets, the SU(2) center contributes —1 on doublets and 1 on singlets, and the U(1)
factor contributes e™@v/3 = ¢7(6Y)/3 " Using the standard hypercharges under Q = T3 + Y for
Qr,uRr,dr, L1, er,vr |1,2], one checks that the product phase equals 1 in each case. ]

We note two standard consistency facts for this fermion content (per generation), recorded
here as audit-level requirements and referenced to the standard literature: (i) the hypercharge-
squared sum (with multiplicities) equals Y. Y2 = 10/3 under Q = T3 + Y (Lemma , and
(ii) the gauge and mixed gravitational anomalies cancel (a neutral singlet does not affect these
cancellations) [1,2,56].

Proposition 9.6 (Anomaly cancellation is unchanged by adding vg). Under the PDG con-
vention Q@ = T3 + Y, the Standard Model chiral fermion content (per generation, without vg)
has vanishing gauge and mized gravitational anomalies. Adding a sterile singlet vy with' Y =0
preserves these cancellations.

Proof. The anomaly-cancellation identities for the Standard Model hypercharge assignments are
standard [1,2,56]. A sterile singlet vr contributes Y = 0 to all anomaly sums and therefore does
not change them. 0

Lemma 9.7 (Explicit anomaly sums in a left-handed basis (one generation)). Under the PDG
convention @ = T3 + Y, write one generation in a left-handed Weyl basis

Qp, u® d° Ly, € (and optionally v°¢ with Y = 0),

with hypercharges Y (Qr) = 1/6, Y (u®) = —2/3, Y (d°) = 1/3, Y(Lr) = —1/2, and Y (e°) = 1.
Then the mized gravitational-hypercharge anomaly and the cubic hypercharge anomaly vanish:

dYy=o0 > Y=o,

where the sums include multiplicities from color and weak isospin components. Moreover, the
mixed non-abelian anomalies vanish:

SUB2U): 2.1 § +

o =0, SU2?*U1): 3

1
3
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equivalently > Y T(R) = 0 for each non-abelian factor (with T the Dynkin index of the funda-
mental representation).

Proof. For the gravitational sum, include multiplicities of left-handed Weyl components:

(B +3(-2)+a(2) +2(-H) +1-wo

For the cubic U(1)3- sum:

(3 (o) () e oreo

For SU(3)2U(1), only color triplets contribute, and all fundamental /antifundamental contribu-
tions share the same Dynkin index; factoring it out yields 2Y(Qr) + Y (u®) 4+ Y (d°) = 0. For
SU(2)2U(1), only weak doublets contribute; factoring out the SU(2) fundamental Dynkin index
yields 3Y(Qr) + Y (L) = 0. These are the standard anomaly-cancellation identities in a chiral
left-handed basis [1}2,56]. O

Remark 9.8 (Why the minimal extension is chosen as a neutral singlet). The role of vy in
this paper is purely interface-level and audit-driven: it closes the cyclic-cardinality count to 18
using the smallest additional bookkeeping burden. Adding new chiral multiplets charged under
U(1) and/or SU(3) would introduce nontrivial local anomaly contributions unless accompanied
by additional compensating matter [1,|2]. Moreover, adding SU(2) doublets is constrained by
the global SU(2) anomaly (Witten anomaly), which depends on the parity of half-integer isospin
representations [57). Choosing vy as a sterile singlet with Y = 0 preserves both the standard
local anomaly cancellations and the SU(2) global consistency condition while matching a minimal
sterile extension widely used in neutrino-mass parametrizations [2].

The construction is auditable in the finite protocol language: we build the labeling map from
intrinsic invariants of stable types (Definition , with the Hilbert order entering through the
depth assignment in Definition

9.2 Nontriviality checks: inverse diagnostics and ordering sensitivity

The closed labeling map in this section is an explicit deterministic rank-matching between two
finite ordered sets (Theorem [9.17). To demonstrate that this assignment is not a vacuous
relabeling, we record two audit-level nontriviality diagnostics.

Inverse interface diagnostics (recoverability of quantum-number patterns). Ap-
pendix [W] treats the closed labeling as supervised data on the cyclic stable types and asks,
for several Standard Model targets, whether bounded-complexity rules built from intrinsic in-
variants can recover target patterns above fixed chance/majority baselines (and in some targets
exactly). Table summarizes those inverse diagnostics; full details and model families are
recorded in Appendix [W] These inverse diagnostics are not premises for any result in the main
text: they are post-hoc audits of structure.

Ordering sensitivity. To test how much the induced cyclic assignment depends on SM-side
ordering conventions in Definition we run a bounded sensitivity sweep that varies: (i) the
component order among {dim(SU(3)), (6Y)?,dim(SU(2))}, (ii) whether the generation index
appears first or later, and (iii) whether the final deterministic tie-break uses the SM name
or a name-free integer code (e.g. Youm = 6Y). For each variant we recompute the induced
cyclic pairing by rank matching. As a summary metric we report, for each induced pairing,
the Hamming distance (and fraction) between the resulting ordered multiplet-type list and the
baseline ordering used in this paper. Table [14] records the resulting sensitivity sweep.
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target baseline best accuracy detail

(6Y)? class 1/6 0.389 Table [55
sign(Y) 1/2 0.667 Table [56}
Yium = 6Y 1/6 1.000 Table [57
dim(SU(3)) 1/2 0.833 Table [53
dim(SU(2)) 2/3 0.778 Table [58
generation g 1/3 1.000 Table [59

Table 13: Summary of inverse interface diagnostics on cyclic stable types at m = 6: each row
compares a fixed chance/majority baseline to the best bounded-complexity accuracy achieved
by a reproducible inverse diagnostic (Appendix . Rows are reproduced by the deterministic
bounded sweeps described in Appendix |W| (scripts/exp_inverse_diag_summary.py).

SM ordering key labels changed (of 18)  fraction
(g,dim(SU(3)), (6Y)?, dim(SU(2)), name) 0 0.000
(g, dim(SU(3)), dim(SU(2)), (6Y)?, name) 15 0.833
(g, (6Y)% dim(SU(3)),dim(SU(2)), name) 15 0.833
(g, (6Y)2,dim(SU(2)),dim(SU(3)), name) 15 0.833
(g,dim(SU(2)), dim(SU(3)), (6Y)?, name) 15 0.833
(g,dim(SU(2)), (6Y)?,dim(SU(3)), name) 15 0.833
(g,dim(SU(3)), (6Y)%, dim(SU(2)), Yaum) 0 0.000
(dim(SU(3)), (6Y)?,dim(SU(2)), g, name) 14 0.778
(dim(SU(3)), (6Y)2, dim(SU(2)), g, Yaum) 14 0778

Table 14: Ordering sensitivity audit: varying SM-side ordering conventions (component order,
generation placement, and name vs. name-free tie-break) and counting how many cyclic multiplet
labels change relative to the baseline ordering used in Definition [9.12l The bold row is the
baseline. Rows are reproduced by a deterministic finite sweep over the stated ordering-key
variants (scripts/exp_labeling_order_sensitivity.py).

9.3 A canonical labeling map

We first define an intrinsic protocol depth from stable-type invariants.
Definition 9.9 (Effective protocol depth at (m,n) = (6,3)). For w € X, define
re(w) = V(w) +n(g(w) - 2), (18)

where V(w) € {0,...,20} is the Zeckendorf value, g(w) € {2,3,4} is the folding degeneracy, and
n = 3 is the Hilbert order at the chosen anchor (m,n) = (6,3).

Lemma 9.10 (Discrete range of r, at (m,n) = (6,3)). At the minimal anchor (m,n) = (6, 3)
one has r(w) € {0,1,...,26} for every w € Xg.

Proof. By Proposition V(w) € {0,...,20}. By Theorem g(w) € {2,3,4}, hence
n(g(w) —2) € {0,3,6} for n = 3. Therefore r.(w) = V(w) + n(g(w) — 2) € [0,20] + [0,6] =
{0,...,26}. O

Why r, is used in the labeling order. The quantity r,(w) is an intrinsic protocol-level
scalar built only from finite-resolution invariants at (m,n) = (6,3). It is reused consistently
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across the paper: it is the same unnormalized depth that enters the closed mass template
(Deﬁnition and therefore ties the labeling interface to the resolution-depth spectrum closure
by a shared protocol cost coordinate. Using r, in the cyclic ordering makes the labeling stage
deterministic without importing any Standard-Model numerical targets as premises.

We now turn the labeling into a closed optimization statement.

Definition 9.11 (Ordering of cyclic stable types). On the cyclic sector Xg'°, define the total
order <x by

wy <x wy <= (r«(w1),V(w1),w1) is lexicographically smaller than (ri(w2),V (w2),ws).

Definition 9.12 (Ordering of SM fermion multiplets). Let Fgn be the set of 18 chiral fermion
multiplets used in Section [9.1 Define the total order <p on Fsy by lexicographic comparison
of the tuple

(g, dim(SU(3)-rep), (6Y)?, dim(SU(2)-rep), name),

where g € {1,2,3} is the generation index and Y is the hypercharge under the PDG convention
Q=T5+Y /1|2

Lemma 9.13 (Hypercharge quantization and the integer invariant (6Y)?). Under the PDG
convention Q@ = T3 + Y, every Standard Model chiral multiplet (including a sterile singlet vy
with Y = 0) has hypercharge Y € %Z. Consequently 6Y € Z and (6Y)? € N is an intrinsic
integer invariant of the field-level label.

Proof. This is the standard hypercharge assignment for one generation: Y (Qpr) = 1/6, Y (ugr) =
2/3,Y(dr) =—-1/3,Y (L) = —1/2,Y(er) = —1, and Y (vg) = 0 under Q = T3 +Y [1,2]. Each
value is an integer multiple of 1/6. O

Remark 9.14 (Why (6Y)? is used in the ordering). Using (6Y)? replaces the rational invariant
Y2 by the minimal integer normalization compatible with Lemma . This keeps the ordering
rule fully discrete and bounded-complexity. For the minimal fermion multiplet set used here, the
discrete gauge-quantum-number tuple already distinguishes the six multiplet types within each

generation, so the final deterministic tie-break can be taken either as the SM name or as a
name-free integer code (Table .

Lemma 9.15 (Representation dimensions in the SM multiplet set). Within the Standard Model
fermion multiplets used in this paper, the SU(3) representation is either the singlet (dim = 1) or
the fundamental triplet (dim = 3), and the SU(2) representation is either the singlet (dim = 1)
or the fundamental doublet (dim = 2).

Proof. This is standard for the chiral matter content of the Standard Model (per generation):
Q1 and (ug, dg) are color triplets, while leptons are color singlets; Q1 and Ly, are weak doublets,
while the right-handed singlets are weak singlets [1},2]. O

Remark 9.16 (Generation labels and deterministic tie-breaks). The generation index g in
Definition is a bookkeeping label for the three copies of the same gauge-quantum-number
pattern; any permutation of {1,2,3} corresponds to a relabeling at the level of gauge interac-
tions. We fix the conventional naming order and take g = 1 to be the charged-lepton reference
generation used later in the mass template (Definition . The final “name” entry is used
only as a deterministic tie-break when the gauge-quantum-number tuple is otherwise identical.
Within the multiplet set Fsn used in this paper, that name tie-break is redundant: the tuple
(dim(SU(3)), (6Y)?,dim(SU(2))) already separates the six multiplet types per generation. Ta-
ble includes a name-free variant (replacing the final name tie-break by Youm) and confirms
that the induced cyclic labeling is unchanged.
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We define a labeling map
Lsm = Xe — Fem U Gswm,

where Ggv := {SU(3), SU(2),U (1)} denotes the three gauge-factor connection classes. The map
is chosen to satisfy:

« (split compatibility) Lov(Xg"¢) C Fem and ESM(ngry) C Gsmr;

o (protocol covariance) rotations preserve labels while reflections/traversal reversal act
by the protocol-level Ppyrot/Tprot rules (Section ;

o (minimality) among all assignments satisfying the above, we select the unique minimal-
complexity solution under a fixed lexical tie-break rule.

Theorem 9.17 (Closed labeling as the unique order-preserving assignment). There exists a
unique labeling map Lgn such that:

o it is split-compatible;
e on the cyclic sector it is order-preserving:

w) <x w2 = Lgm(wi) <r Lsm(wa);

o on the boundary sector, it assigns the three boundary types in increasing V(w) order to
{U(1),8U(2),SU(3)} in increasing gauge-sector complezity order (Lemma [9.5).

Proof. Both (X¢"°, <x) and (Fsm, <F) are finite totally ordered sets with the same cardinality
18, hence admit a unique order isomorphism given by matching ranks. The boundary words
in Xg 4y have distinet values V(w), hence a unique increasing order. Likewise, the three gauge
factors have distinct complexity values dim(g), hence a unique increasing order by Lemma
Matching ranks gives the unique order-preserving boundary assignment. O

Remark 9.18 (CAP minimality of the monotone boundary assignment). Among the 3! = 6
boundary permutations, the monotone assignment is the unique one compatible with the com-
plexity order of Definition[9.9 and therefore the unique CAP-minimal choice under any monotone
mismatch cost between intrinsic boundary value and gauge-sector complexity. Any non-monotone
assignment would map a larger intrinsic boundary value to a lower-complexity gauge factor, cre-
ating an avoidable ordering mismatch that must be compensated elsewhere in the interface.

Operationally, the assignment is therefore constructed as follows (equivalently: among the
3! = 6 boundary permutations, it is the unique one that is monotone in the intrinsic value V (w)
and the gauge-sector complexity).

o The three boundary types are sorted by V(w) and assigned to {U(1),SU(2),SU(3)} in
increasing gauge-sector complexity order (Definition .

e The 18 cyclic types are sorted by <x and assigned to the 18 fermion multiplets sorted by
<F.

Remark 9.19 (Explicit boundary-value order at m = 6). At m = 6, the boundary words are
100001, 101001, and 100101 (Corollary [{.9). Their Zeckendorf values are V(100001) = 14,
V(101001) = 17, and V(100101) = 19 (Definition[{.14]). Thus the intrinsic increasing boundary
order is

100001 < 101001 < 100101,

which is the order used for the unique monotone assignment to U(1) < SU(2) < SU(3)

(Lemma[9.3).
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stable type w  V(w) g(w) |wli re(w) Dx(w) label Lopm(w) (SU(3),SU(2))y
000000 0 4 0 6 0 i) (1,1)0
100000 1 4 1 7 0 iy (1,2) 12
010000 2 4 1 8 0 eV (1,1)_,
001000 3 4 19 0 % (3,2)1/6
101000 4 4 2 10 0 dy (3,1)_1/3
000100 5 4 1 11 0 ull) (3,1)2/3
100100 6 4 2 12 0 N (1,1)0
010100 7 4 2 13 0 e (1,1)_4
000010 8 4 1 14 0 ul? (3,1)2/3
100010 9 3 2 12 0 L (1,2) 1/
010010 10 3 2 13 0 @ (3,2)1/6
001010 11 3 2 14 0 N (1,1)0
101010 12 3 3 15 0 L' (1,2) 12
000001 13 2 1 13 0 i (3,1)_1/3
100001 14 2 2 14 1 U(1) -
010001 15 2 2 15 0 e (1,1)_4
001001 16 2 2 16 0 ®) (3,2)1/6
101001 17 2 3017 1 SU(2) -
000101 18 2 2 18 0 4y 3,1)_1/3
100101 19 2 319 1 SU(3) -
010101 20 2 3 20 0 uld (3,1)2/3

Table 15: Closed field-level labeling of the 21 stable types at (m,n) = (6,3). The
labeling map is the unique order-preserving assignment of Theorem Rows are
reproduced by a deterministic implementation of the same rank-matching construction
(scripts/exp_sm_labeling_solver.py).

Remark 9.20 (Determinism vs. reproducibility). Theorem is the logical closure: it pins
a unique map Lgv once the two total orders <x and <p and the boundary monotonicity con-
vention are fived. The script scripts/exp_sm_labeling_solver.py is only a deterministic
implementation of this rank-matching construction used to reproduce the table rows and to
avoid manual transcription errors; it is not an additional premise and it does not select among
multiple solutions.

10 Mass as latency: the Fibonacci resolution coordinate (inter-
face)

This section records the resolution-depth coordinate and the operational mass-as-delay dictio-
nary used at the matching layer. These definitions are used downstream by the closed mass-
spectrum template and by the falsifiability statements formulated in the protocol language.

A readout viewpoint (interface). In a static-ontology reading (Remark[L.2)), the underlying
protocol substrate is fixed while physical episodes reflect sequential access and finite-resolution
projection. On this viewpoint, increasing effective resolution does not change the substrate; it
changes which structure is rendered/accessible in the readout, and how much overhead (latency)
is paid to stabilize it.
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10.1 Fibonacci resolution coordinate

Fix the reference scale pg = m. and define the resolution coordinate

) o B/ me)

1
log (19)
where ¢ = (1 4+ /5)/2 is the golden ratio. Equivalently, the exponential map is
p(r) =mee”. (20)

This is the resolution-flow dictionary used throughout the paper.

Tick-first meaning. In the tick-first dictionary (Section, mass and energy are not primitive
substances: they are calibrated names for time-scale ratios. Accordingly, the coordinate r(u)
is used as a single log-time coordinate: by the Compton-clock relation, it is simultaneously a
log-frequency coordinate and (up to sign) a log-time coordinate (Remark and Appendix@.
This is the precise sense in which the present framework treats “mass as depth” as “mass as a
time-lag / overhead coordinate” rather than as an independent input.

10.1.1 Mass as delay: scattering time lag as inertia (interface)

In the scan-based identification dictionary used in this paper, “mass as depth” is read as “mass
as protocol overhead”: deeper stabilization requires additional local protocol resources. An
operational proxy for such overhead is measurable scattering delay. Let S(w) be a (nearly)
unitary scattering matrix at angular frequency w. The Wigner—Smith time-delay matrix is

Qw) == —15(&;)*%, Tws(w) = TrQ(w),

and in a one-channel setting S(w) = ) one has Tws(w) = dd/dw (Section @

Why should depth create mass? Physically, high information density forces the one-
dimensional scan to execute additional local folding and consistency operations to stabilize a
persistent pattern. When probed through a scattering channel, this manifests as an excess time
delay. To an external observer, a localized excitation that systematically “lags” in response be-
haves as an inertial degree of freedom. Throughout this paper this dictionary is used only at the
matching layer: it complements the Compton-clock relation below and provides an independent
falsifiability route via delay-derived lapse ratios (Section and Section .

Remark 10.1 (Mass as a clock rate (matching dictionary)). By the standard relations E = mc
and E = hw [24,158], a mass scale u defines a Compton angular frequency we () = puc?/h and
a Compton time scale 7o(p) = 1/we(u) = h/(uc?). Therefore the resolution coordinate is
equivalently a log-frequency (or log-time) coordinate:

r(n) = log, (026255))) -8 (TTCCE%))) '

In particular, the depth mismatch Ar = r — ¥ reported later in the mass-spectrum closure is
the same multiplicative mismatch in Compton-clock period, Tc/Tc pred = @ A7 and can be
compared to operational delay prozies (Section@ at the matching layer. The same logarithmic
coordinate also linearizes Schwarzschild black-hole thermodynamics: log, Sgu = 27 (M) + const

and log, Ty = —1(M) + const (Appendiz @)

Remark 10.2 (Why the base ¢ is canonical on the golden branch). Lemma gives | X, | =
Foyo for the admissible language at window length m. By Binet’s formula, Fp,12 grows expo-
nentially as @™ up to a fixed prefactor [27]. Equivalently, the golden-mean shift has topological
entropy log ¢ and its Artin-Mazur zeta function is ((z) = 1/(1 — z — 2%) (Lemma 125].
Thus using log ¢ as the denominator in matches the intrinsic exponential growth rate of
the admissible symbolic language on the golden branch.

2
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Quantity closed value reference (CODATA/PDG) log(closed /ref)

agl (low energy) 47w + 72+ 7 137.035999084 (CODATA 2022)  +2.22 x 1076

a Y(uz) 1372 127.955 (PDG) +2.73 x 1073
sin? O (1z) 3/13 0.23122 (PDG, MS) —1.95 x 1073
J (CKM) 1/(1177) 3.00 x 107° (PDG) +3.31 x 1073

Table 16: Quantitative rigidity targets of the closed model in this paper, together with stan-
dard reference values and signed log mismatches in the audit norm. For small deviations,
log(closed/ref) ~ (closed — ref)/ref. Domain sizes, uniqueness gaps, uncertainty-robustness
checks, and counterfactual baselines for the associated bounded-complexity closures are recorded
in Appendix (Tables [2,/59]. Rows are reproduced by the deterministic script

scripts/exp_quant_summary.py.

Delay / lapse matching dictionaries (supplement). [MatchThe Wigner—Smith delay
proxy, Compton-clock ratios, and GR/SR lapse reference formulas used at the matching layer
are recorded in Appendix [Y]and Appendix [Z]

11 Couplings and CP violation as geometric normalization

This section records two interface points: (i) coupling constants as geometric normalization
costs, and (ii) CP violation as a CP-odd phase-space volume with discrete multiplicity. We
treat the closed expressions as CAP-closed interface normalizations: they follow from explicitly
declared finite candidate families and canonical geometric data, and their mismatch to scheme-
/scale-dependent experimental conventions is recorded as a matching-layer factor.

Audit pointer (bounded-family closure). [AuditjQuantitative selections in this section are
CAP closures within explicitly declared finite candidate families with deterministic tie-break
rules; see Appendix [H| and Appendix [G] for the audit contract, and Appendix and Ap-
pendix for domain/gap tables and reproducibility pointers.

Detailed constructions (supplement). The explicit geometric constructions, bounded-
complexity enumerations, and CKM reconstruction tables are recorded in Appendix

11.1 Summary table: closed values vs. CODATA /PDG

Interpretation of mismatch. The closed expressions in Table[I6]are not free fit parameters:
they are rigidity targets selected by explicit bounded-complexity closure rules. The mismatch
log(closed/ref) is recorded as a protocol-level matching factor between an idealized closed nor-
malization and a scheme-/scale-dependent reference convention. This plays the same structural
role as the matching-layer depth shift Ar used later for masses (Appendix [AG). The corre-
sponding finite rigidity enumerations (top candidates and gaps within the declared domains)

are recorded in Appendix (Tables [76[{79).

Supplementary sigma-normalized view. [Audit]A sigma-normalized mismatch view (for
interpretive convenience only) is recorded in Appendix the closed-model statement remains
the log-mismatch /matching-layer interpretation used throughout.
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ordering eigenstate reference p [GeV] r(pu) nearest 7 Ar  p/ppred

NO ma 0 — — — —
NO Mo 8.61394e — 12 -37.195 -37  -0.195 0.910594
NO ms 5.01697¢ — 11  -33.533 -34 0467  1.25199
10 my 4.998¢ — 11 -33.541 -34 0459  1.24726
10 mo 5.07169¢ — 11  -33.510 =34 0490  1.26565
10 ms 0 — — — —

Table 17: A minimal neutrino mass-scale interface in the resolution coordinate. For each refer-
ence mass p we compute r(u) = log(u/me)/log ¢ and select the nearest integer depth 7, yielding
a depth mismatch Ar = r — 7 and the implied multiplicative matching factor. Rows are repro-
duced by the deterministic script scripts/exp_neutrino_mass_interface.py.

12 Lepton mixing and a neutrino-scale interface

This section extends the bounded-complexity closure program to the lepton sector. We record
a minimal, auditable closure for the PMNS mixing angles and provide a corresponding matrix
reconstruction in the PDG standard parameterization. Majorana phases do not affect oscillation
probabilities and are not constrained by this minimal closure, so we ignore them here [2].

Audit pointer (bounded-family closure). [AuditjThe reported PMNS closures are CAP
selections within explicitly declared finite candidate families with deterministic tie-break rules;
see Appendix [H] and Appendix [G] for the audit contract, and Appendix and Appendix
for the enumerations, gaps, and robustness tables.

12.1 PMNS angles as bounded-complexity amplitudes

The bounded-complexity candidate family, the stabilized minimizers, and the associated rigid-
ity /robustness tables are recorded in Appendix

12.2 Matrix reconstruction and a discrete CP-phase closure

The bounded-denominator Dirac-phase selection and the induced PMNS matrix/ unitarity di-
agnostics are recorded in Appendix [AF]

12.3 A minimal neutrino mass-scale interface

At the anchor resolution (m, n) = (6, 3), the mass-spectrum closure of Section[L3|anchors scheme-
stable charged-lepton scales and treats neutrino absolute masses as an interface input. To express
neutrino scales in the same resolution language, we record a deterministic nearest-integer depth
assignment for representative minimal-mass normal/inverted orderings inferred from oscillation
splittings. We use representative central values for (Am3,,|Am3;|) from standard global fits
[2160].

Remark 12.1 (Status of the neutrino-scale assignment). The nearest-integer depth assignment
in Table 18 an interface-level bookkeeping device: it expresses commonly quoted oscillation-
inferred mass scales in the same additive depth coordinate used elsewhere, without claiming
a unique absolute-mass prediction at (m,n) = (6,3). Any stronger neutrino-mass prediction
requires additional physical identification input (e.g. a concrete mass-generation mechanism and
threshold/matching conventions) beyond the minimal closure reported in this paper.
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13 Closure: mass spectrum as resolution depth and protocol
cost

This section closes the interface by connecting the field-level labeling map (Section E[) to a
concrete, reproducible mass-spectrum template. We work with dimensionless ratios relative
to the electron reference, and we phrase running/threshold effects in the Fibonacci resolution
coordinate of the golden branch.

We use the resolution-depth coordinate and the operational delay /lapse dictionaries recorded
in Section [I0 and Section [Y]

Audit pointer (bounded-family closure). [Audit|The depth template and its integer-
coefficient rigidity are CAP closures within explicitly declared bounded families with determin-
istic tie-break rules; see Appendix [H and Appendix [G] for the audit contract and Appendix [AG]
for the bounded-domain searches, gaps, and robustness diagnostics.

Tick-only interpretation. The closure below is written in the r-coordinate precisely because
r is a log-time coordinate: it linearizes multiplicative time-scale ratios. On this view, the
predicted depth 7 is a discrete protocol overhead (in tick-derived units), while the mismatch Ar =
r—7 is a matching-layer time-scale factor (Compton-clock and delay dictionaries; Appendix @

13.1 A closed depth assignment from stable-type invariants

Let w € Xg and recall the intrinsic invariants (V(w), g(w), Dx(w)) (Definition [8.9). We use the
effective protocol depth r,(w) from Definition The folding degeneracy g(w) is the fiber size
of the finite projection Foldg and therefore measures the intrinsic multiplicity of microstates that
share the same stable readout label (Section @

Lemma 13.1 (Uniform fiber distribution and residual uncertainty). Let N be uniformly dis-
tributed on {0, ...,63} and set W := Foldg(NN) € X¢. Then for each w € Xg one has

P(W =w) = 2Z—, P(N—k\w—w)—g(lw) for k € Foldg ' (w),

and the conditional Shannon entropy of N given W = w equals log g(w) (in nats) [17,(61].

Proof. Immediate from uniformity and Bayes’ rule; see, e.g., [17]. O

Remark 13.2 (Protocol depth as a cost coordinate (interface)). Lemmal[l3.1 makes explicit that
g(w) controls the intrinsic residual multiplicity of microstates that share the same stable readout
label at m = 6. In a scan-based identification dictionary (Aziom , resolving or compensating
such multiplicities across space requires additional protocol resources (extra scan steps, deeper
matching, or additional connection data), and therefore fizes the use of g(w) as a discrete cost
term in T4« and in the normalized depth . The closed quantitative content used for mass
matching in this paper is the auditable template together with the bounded-complexity rigid-
ity certificate for its integer coefficients (Proposition . A stronger time/mass matching
dictionary based on scattering delay (Wigner—Smith) and relativistic lapse/redshift templates is
recorded in Section[Y] and provides the operational closure used at the matching layer.

Definition 13.3 (Closed mass template). Fiz the electron reference field e := eg) and let
we € Xg denote its stable-type label under Lqn. Define the normalized depth

P(f) = mlra(wy) = ra(we)) + (lwrly = |wels) + (g(we) — g(wy)), (21)
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where wy € Xg satisfies Lsm(wy) = f, £ := m/n = 2 for the balanced coupling at the chosen
anchor (m,n) = (6,3) on the 2D Hilbert screen, |w|y is Hamming weight, and g(w) is folding
degeneracy (Definition . Then define the closed template mass prediction by

:U’pred(f) = Me @T(f)' (22)

(1)
R

Remark 13.4 (Choice of charged-lepton reference). We take e := e’ as the charged-lepton ref-

erence because the three singlet multiplets {eg), eg), eg)} form a minimal family already present
in the field-level labeling closure (Section @ Since uses only depth differences relative to we,

any global normalization shift is absorbed into the matching-layer depth shift Ar (Section .

It is useful to express 7 directly as a bounded-complexity integer combination of stable-type
differences.

Proposition 13.5 (Simplified depth formula). Let AV := V(wy) =V (we), Ag := g(wy) —g(we),
and Alwly := |ws|1 — |we|y. Under Definition[13.3 at (m,n) = (6,3) one has

F(f) = 2AV +5Ag + Alwl. (23)

Proof. By Definition re(w) = V(w) + 3(g(w) — 2) at n = 3. Hence k(ri(wy) — me(we)) =
2AV + 6Ag. The remaining two correction terms in (21 contribute Alw|; — (Ag), yielding
2AV +5Ag + Alwly. O

Equation yields a discrete spectrum of reference scales. Threshold and scheme effects
are recorded as multiplicative matching factors (equivalently, additive shifts in 7) as in effective
field theory [1}2].

13.2 Predicted spectrum and PDG/CODATA comparisons

Table [I§] records the closed template values. Standard reference values are listed using PDG
and CODATA conventions. For quarks we use a scheme-dependent reference (e.g. MS running
masses) and treat scheme dependence as a matching input rather than an integer-depth anchor,
consistent with the resolution-map calibration philosophy used in this paper. For neutrinos
we record an order-of-magnitude reference scale inferred from oscillation data, but we do not
fix a unique absolute mass prediction at this minimal resolution [2,60]. For W, Z, and H we
include the canonical electroweak anchor depths as discrete reference points in the r-coordinate.
These bosonic rows are not identified with individual stable types in Xg; they serve as protocol-
calibration thresholds for the electroweak interface in the same sense as the Z-scale normalization
recorded in Section (11| [2].

Remark 13.6 (Bosonic anchor depths as nearest-integer reference points). The bosonic anchor
depths reported for W, Z, and H are taken as the nearest-integer reference points to r(u) =
log(p/me)/log @ at the corresponding PDG masses. This keeps the bosonic thresholds fully
discrete (no continuous fit) while allowing the residual mismatch to be recorded explicitly in
the same additive form Ar used elsewhere. The same nearest-depth convention is used in the
minimal neutrino-scale interface table (Table .

Scheme dependence and matching inputs. For light quarks, PDG masses are convention-
dependent and quoted as running masses in a chosen scheme; even for heavy quarks, perturbative
matching and threshold conventions affect the quoted reference values [2]. Accordingly, the
extended fermion rows in Table are diagnostic: they record the implied depth mismatch
Ar and the corresponding multiplicative matching factor f1/pipreqa under the stated reference
convention, rather than serving as scheme-independent rigidity anchors.
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field reference p [GeV] r(p) T OAr:=r—7  /lpred
Anchor scales

e 5.10999 x 10~4 0.000 0 0.000 1
o 0.10565838  11.080 11 0.080 1.03901
T 1.77686  16.945 17 -0.055 0.973741
W 80.377  24.866 25 -0.134  0.937607
A 91.1876  25.128 25 0.128 1.06371
H 125.25  25.788 26 -0.212  0.902982
Quark refs (scheme)

u 0.00216 2996 6 -3.004  0.235563
d 0.00467 4.598 5 -0.402  0.82406
s 0.093 10.814 12 -1.186  0.565212
c 1.27  16.247 12 4.247  7.71848
b 4.18 18.722 23 -4.278  0.127656
t 172.76  26.456 28 -1.544  0.47574

Neutrino scale
v (scale) 5x 107t -33.540 — - -

Table 18: Mass-spectrum closure in the resolution-depth language. The predicted values use the
normalized depth (equivalently ) together with the exponential map . The depth
mismatch Ar is additive, while p/piprea = ©®" is the corresponding multiplicative matching
factor. All rows are reproduced by the deterministic script scripts/exp_mass_spectrum.py.

Rigidity audits and matching-layer summaries (supplement). Bounded-coefficient
rigidity searches, leave-one-out robustness diagnostics, and the quantized matching-layer tables
are recorded in Appendix [AG]

Audit reading and failure criteria. [AuditjThe depth-coefficient closure is anchored on the
scheme-stable charged-lepton set {u, 7} (Appendix [AG.1)); quark rows are treated as diagnostic
matching inputs under a stated scheme convention rather than as scheme-independent rigidity
anchors. Operationally, the closure would be falsified within its stated hypothesis class if (i) the
bounded-integer minimizer for (a, b, ¢) were not unique or did not stabilize across modest bound
increases, or (ii) the matching-layer residuals required substantially finer denominators than the
minimal dyadic quarter-step lattice to be compactly summarized (Appendix .

Part VI
Dynamics: continuum representatives, free
energy, RG, cosmology

Pointer. [Audit]This part is a reader-facing index to the closed continuum representative mod-
ules recorded in the appendices; it introduces no additional theorem-level inputs beyond tick
and CAP.

e Appendix : Wish/Motive templates and a generic Lyapunov certificate (reader-facing;
not used in proofs).

e Appendix @ semigroup and exponential-kernel notes (arrow-of-time template; reader-
facing; not used in proofs).
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. Appendix Abel finite parts and a resolvent-style unit-disk holomorphy template (reader-
facing; not used in proofs).

e Appendix holomorphy versus interior poles (pole-barrier rigidity template; reader-
facing; not used in proofs).

o Appendix [AA} equivalence semantics and a frequency-first dictionary.

. Appendix modular geodesic flow and Gauss-map renormalization (mother-space notes;
not used in proofs).

o Appendix Morita equivalence and Fourier exchange (equivalence structures; not used
in proofs).

o Appendix Hecke operators and the prime skeleton (cross-scale symmetry template;
not used in proofs).

« Appendix CAP-closed minimal continuum action skeleton.
o Appendix variational field equations (Einstein/Yang—Mills/x templates).

e Appendix thermodynamics from equivalence/coarse  graining (en-
tropy/temperature/free energy dictionary).

e Appendix overhead/x to lapse and weak-field gravity closures.

e Appendix X (z) reconstruction protocol from finite diagnostics.

e Appendix quantum readout interfaces and Born-probability rigidity.

e Appendix running couplings in the resolution coordinate r.

o Appendix cosmology as resolution flow (interface, audited assumptions).

o Appendix [Y} unified delay closure and matching-layer dictionaries.

Part VII
Validation and falsifiability (and open
closures)

14 Falsifiability: predictions in the protocol language

The folding counts and tables are mathematical-layer facts. The statements below are physical-
layer predictions: they can be tested by observational constraints, laboratory bounds, and re-
producible protocol-level audits.

Time-first test strategy. In the tick-first dictionary of this paper (Section , the primitive
input is the sequential update count and the primitive closure rule is CAP. Accordingly, the
most direct experimental handles are time dictionaries: delay and clock-rate proxies that test
the overhead interpretation of mass and scale. For a time-first reading, begin with P6 (scatter-
ing delay as a lapse proxy). Predictions P1/P2/P4/P5 are protocol-level structural or rigidity
statements that do not require a numerical staircase calibration. Prediction P3 is special: its
threshold locations depend on the bounded-complexity calibration of 74, and the chosen ref-
erence anchors, and should therefore be read as a conditional prediction within that calibrated
hypothesis class.
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14.1 Independent protocol predictions (no staircase calibration required)
14.1.1 P1: right-handed neutrinos as protocol-external / ghost modes

If weak chirality is tied to the Hilbert-protocol orientation bit and its mirror-protocol swap
(Definition , then a neutral singlet vp can behave as a protocol-decoupled mode: it can be
stable at the level of type labeling while remaining effectively unobservable through the weak
compensation connection within a fixed protocol. Operationally, this manifests as an “invisible”
or “ghost-like” degree of freedom with extremely suppressed couplings at the readout level [2].

Remark 14.1 (Relation to standard sterile-neutrino extensions). Gauge-singlet right-handed
neutrinos are also the standard minimal extension used in neutrino-mass model building (e.g.
seesaw completions of the dimension-five Weinberg operator); see, e.g., [2,62,|63].

A concrete interface reason at the chosen 2D anchor (m,n)=(6,3). In the closed
labeling map, vg carries (SU(3), SU(2))y = (1,1)o (Table[15]), hence is neutral under all three
gauge-factor connection classes. In this sense, vgr is the forced protocol-external candidate
within the closed labeling: it can exist as a stable label without participating in the weak SU(2)
compensation transport within a fixed protocol.

Relation to the hidden microstates. At m = 6, the protocol-unstable complement has size
|96\ Xg| = 64 — 21 = 43. In addition to protocol-decoupling within X, a stronger possibility is
protocol-instability: if certain degrees of freedom are implemented as readout patterns outside
Xg, they reside in this ghost sector and are absent from stable visible outputs.

Data channel. Laboratory sterile-neutrino searches (oscillation anomalies, beta-decay spec-
tral distortions, missing-energy signatures) and cosmological bounds on extra relativistic degrees
of freedom provide direct constraints on protocol-decoupled neutral singlets.

Fail condition. Evidence for an unsuppressed weakly coupled right-handed neutrino mode
within the same protocol class (i.e. a vg that participates in the SU(2) compensation transport
comparably to left-handed leptons) would contradict the protocol-external/decoupled identifi-
cation used here.

14.1.2 P2: chirality-domain defects and large-scale statistical signatures

If early-universe initialization admitted domains with different Hilbert orientation classes, do-
main boundaries would act as protocol defects. Such defects should leave parity-sensitive sta-
tistical signatures (e.g. polarization correlations) tied to the chirality index sign. Remark: do-
main walls as macroscopic defect remnants are standard in symmetry-breaking narratives; see,

e.g., [64L65].

Test strategy. The prediction is protocol-level: one should search for statistics that are invari-
ant under orientation-preserving layout changes but change sign under reflection-like protocol
swaps, consistent with Proposition Conversely, parity-even observables provide a control:
coarse-grained scalars such as those in Definition should be coherent across orientation
domains up to pullback and should not exhibit an intrinsic sign flip.

Concrete observable channel: CMB parity-odd correlators and cosmic birefringence.
A standard parity-sensitive testbed is CMB polarization: the E/B decomposition separates
parity-even and parity-odd modes [66,67]. In statistically isotropic parity-invariant models,
the T'B and EB cross-correlations vanish (up to foreground/systematics), while a parity-odd
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polarization-rotation (cosmic birefringence) angle 8 mixes E and B and induces nonzero TB/EB
with a sign controlled by 3 [68/69]. In the present protocol language, different Hilbert orientation
domains flip sgn(x); therefore any fitted parity-odd estimator whose sign tracks an effective
rotation/birefringence sign is expected to flip sign between domains while parity-even control
statistics remain coherent up to pullback.

Data channel. CMB polarization (parity-odd T'B/EB correlators), cosmic-birefringence es-
timators, and other large-scale parity-odd correlation searches provide concrete observational
channels.

Fail condition. If improved multi-frequency data and systematics-controlled analyses exclude
any domain-like sign-flip pattern in parity-odd estimators while the protocol-chirality mapping
remains fixed, the chirality-domain defect scenario is disfavored.

14.2 Calibration-dependent staircase prediction (requires a calibrated 7ep)
14.2.1 P3: resolution jumps and Fibonacci-structured spectrum thresholds

At window length m, the admissible stable type count is | X,,| = F,42 (Lemma[4.5)). Moreover,
the m-channel cyclic/boundary split is itself Fibonacci-rigid: for m > 4,

|XPndry| = Fpno, |X’I(':n),]c’ = Fm+2 — Fin—2

(Proposition |4.8)). If effective window length changes with energy or environment, the number
of stable types should exhibit threshold behavior constrained by Fibonacci growth rather than
arbitrary particle additions.

Collider as an active observer: forced zoom (interface). In this framework, a high-
energy collider is not merely a kinetic machine but an information-focusing device. By concen-
trating energy density into a small interaction region, the experiment can force the local protocol
to operate at higher effective resolution and thereby make higher-m structure accessible in read-
out. Operationally, this corresponds to pushing the local scale across the calibrated thresholds
f1en(m) so that the deterministic selection meg (1) jumps (Corollary [14.2). We refer to this ex-
perimental act as active renormalization: one does not change the theorem-level folding core,
but forces the protocol to render latent high-complexity modes that are otherwise inaccessible
at the m = 6 ground-state readout.

Fibonacci-structured thresholds. Since Fj,t2 obeys Fy,1o = Fj,41 + Fin, any one-step
resolution uplift m — m + 1 admits only a constrained increment of stable type count. This
provides a rigid spectral-template prediction: new stable modes, if any, should enter in Fibonacci-
structured batches. At the minimal anchor m = 6, the split is 18 & 3; the next two uplifts would
yield 29 @ 5 at m =7 and 47 @ 8 at m = 8.

A minimal p < m calibration. To compare these discrete uplifts to energy thresholds, we
use the golden resolution coordinate already employed in the mass-spectrum closure:

_ log(p/me)
r(u) = W.

We record a minimal calibration in which a one-step window uplift m — m + 1 corresponds to
a fixed additive depth increment

Tstep ‘= 2T, reh(m) == (m — 6) T'steps ttn(m) = me gorth(m).
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In this calibration, the threshold for m = 10 lies near the electroweak scale (u¢n(10) ~ 91 GeV),
providing a concrete protocol-level staircase template for where Fibonacci-structured stable-type
uplifts may occur. The resulting spectrum template is summarized in Table

Odd steps as bridges between even stability islands (interface). The even steps m =
6,8,10 are already singled out by the combination of the m = 6 coarse-lock anchor and the
bounded-complexity staircase calibration: they align the minimal matter anchor (electron), a
conservative hadronic-scale reference (QQCD onset), and the electroweak layer, respectively. Once
this scaffold is fixed, the odd steps are no longer optional: the same staircase necessarily places
intermediate thresholds at m = 7,9,11 (Table . This yields three concrete, falsifiable targets
for where additional stable-mode structure should concentrate if it arises through resolution
uplifts:

o Prediction 1 (nuclear binding scale): m = 7 corresponds to pun(7) ~ 10 MeV, near
the characteristic nuclear binding scale (few—10 MeV), suggesting an intermediate “bind-
ing” information density that can glue m = 6 matter-like objects into nuclei without yet
requiring the full hadronic confinement structure of m = 8.

o Prediction 2 (bottom onset): m = 9 corresponds to pn(9) ~ 4.4GeV, close to the
bottom threshold (m; ~ 4.18 GeV), marking the staircase onset point for heavy-flavor
physics under the fixed calibration [2].

o Prediction 3 (BSM frontier target): m = 11 corresponds to pn(11) ~ 1.9 TeV and
provides a protocol-level BSM target at the LHC/FCC frontier: any additional stable
modes entering as an effective uplift to m = 11 should be constrained by the finite topo-
logical capacity |X11| = 233 and by the inherited cyclic/boundary split constraints from
the 7 channel.

Corollary 14.2 (Resolution selection by least discrepancy (interface)). Fiz rgep > 0 and
the threshold map ugn(m) above. Given an effective energy (or mass) scale p, define r(p) =
log(p1/me)/log ¢ and select an effective window length by the deterministic rule

T(M)J ,

T'step

Meg (1) := 6+ \‘

equivalently: meg(p) = m if and only if pn(m) < p < pgn(m + 1). This is the minimal closed
selection principle compatible with CAP (Aziom : window length increases only when the
scale crosses a calibrated threshold, and within each band the protocol uses the smallest admissible
m.

Remark 14.3 (Why the step size 27 is canonical (interface)). The factor 2w is the canonical
period of phase in the unitary scan language (circle normalization), and it is also the canonical
normalization that relates horizon surface gravity to Hawking temperature, Ty = keg/(27), in
the standard semiclassical dictionary [70,71]. Accordingly, using an additive increment rstep =
27 is the minimal-description choice for a dimensionless “one-step” uplift in a protocol depth
coordinate. We nevertheless keep it auditable: the bounded family reep = km is explicitly swept

and selected by deterministic objectives (Tables and Proposition .

A bounded-complexity calibration comparison. To make the choice rsep, = 27 explicit
as a low-complexity calibration, we compare the small candidate family 7gep = km for 1 < k < 10
against the single electroweak anchor scale my (PDG), using the template threshold at m = 10.
Table [20[ reports the induced p4,(10) and the log mismatch log(pen(10)/myz) for each candidate.
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mrw(m)  pen(m) [GeV] [ Xon| (X3l X0 AIX,|
6  0.000 5.10999 x 10~* 21 18 3 0
7 6.283 0.0105082 34 29 5 13
8  12.566 0.216091 55 47 8 21
9 18.850 4.44369 89 76 13 34
10 25.133 91.3802 144 123 21 55
11 31.416 1879.15 233 199 34 89
12 37.699  3.86428 x 10* 377 322 55 144
13 43.982  7.94651 x 10° 610 521 89 233
14  50.265  1.63412 x 107 987 843 144 377
15  56.549  3.36041 x 10 1597 1364 233 610
16 62.832  6.91036 x 10° 2584 2207 377 987

Table 19: A concrete resolution-uplift staircase template under the minimal calibration
rstep = 2m. The stable-type counts use |X,,| = Fp42 and the cyclic/boundary split
| XPdy| = F,,_ for m > 4 (Proposition . Rows are reproduced by the deterministic script
scripts/exp_resolution_thresholds.py.

candidate rstep Tstep 141 (10) [GeV]  log(pn(10)/mz) [ -]
T 3.14159 0.216091 -6.0450  6.0450
2 6.28319 91.3802 +0.0021  0.0021
3 0.42478  3.86428 x 10% +6.0492  6.0492
Am 12.5664  1.63412 x 107 +12.0963  12.0963
57 15.708  6.91036 x 10° +18.1434 18.1434
6m 18.8496  2.92225 x 1012 +24.1905  24.1905
e 21.9911  1.23576 x 1015 +30.2375  30.2375
87 25.1327  5.22576 x 1017 +36.2846  36.2846
9 28.2743  2.20986 x 1020 +42.3317  42.3317
10 31.4159  9.34505 x 1022 +48.3788  48.3788

Table 20: Calibration sweep at m = 10 over the bounded family rye, = kn (1 < k < 10),
using myz = 91.1876 GeV as a reference scale. Rows are reproduced by the deterministic script
scripts/exp_resolution_calibration_sweep.py.

A two-anchor minimax calibration (diagnostic). As an additional diagnostic (still on the
physical identification layer), we can calibrate rgep against two reference anchors simultaneously:
the Z pole mass at m = 10 and an order-of-magnitude nonperturbative QCD reference scale
poep = 0.2GeV at m = 8 (a conservative hadronic-scale anchor; see, e.g., [2]). We evaluate
the same bounded family rgiep, = k7 with a deterministic minimax objective across the anchors.
Table reports the resulting mismatches and selects the unique minimizer by lexicographic
tie-break rules.

Proposition 14.4 (Bounded-complexity calibration selection of rgiep, = 2m). Within the bounded
candidate family reep = km for 1 < k < 10, the calibration rsep = 27 is the unique minimizer
against the single Z-anchor objective in Table[20, Under the two-anchor minimaz objective re-
ported in Table[21], the same choice remains the unique minimizer under the stated deterministic
tie-break rules.

Proof. Finite exhaustive enumeration over the stated candidate family; see the generated tables
and the scripts cited in their captions. O
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candidate rstep Tstep  Hn(10) [GeV]  log(pen(10)/mz)  pen(8) [GeV]  log(pen(8)/mqep) Eoo By

™ 3.14159 0.216091 -6.0450 0.0105082 -2.9462  6.0450  8.9911
o 6.28319 91.3802 +0.0021 0.216091 +0.0774 0.0774 0.0795
37 9.42478  3.86428 x 10% +6.0492 4.44369 +3.1009  6.0492  9.1501
dx 12.5664  1.63412 x 107 +12.0963 91.3802 +6.1245  12.0963  18.2207
5w 15.708  6.91036 x 109 +18.1434 1879.15 +9.1480  18.1434  27.2914
6m 18.8496  2.92225 x 1012 +24.1905  3.86428 x 104 +12.1716  24.1905  36.3620
2 21.9911  1.23576 x 101° +30.2375  7.94651 x 105 +15.1951  30.2375  45.4326
8 25.1327  5.22576 x 1017 +36.2846  1.63412 x 107 +18.2186  36.2846  54.5033
9 28.2743  2.20986 x 1020 +42.3317  3.36041 x 108 +21.2422  42.3317  63.5739
10m 31.4159  9.34505 x 1022 +48.3788  6.91036 x 10° +24.2657 48.3788  72.6445
Table 21: Two-anchor minimax calibration over the bounded family rgep, = km (1 <
k< 10), using my = 91.1876GeV and puqcp = 0.2GeV as reference anchors at
m = 10 and m = 8, respectively. Rows are reproduced by the deterministic script

scripts/exp_resolution_calibration_multianchor.py.

Resolution-uplift staircase (r_step = 2*pi)

16

14 1

12

ak (Z pole / Higgs sector)

effective window length m

-2 0 2 4 6 8 10
log1l0(threshold energy [GeV])

Figure 4: Optional visualization of the staircase m(u) under the same calibration, if the figure
file is generated.

Why this is not post-hoc tuning. The step size is selected from a small explicit candidate
family rgep = k7 with deterministic objectives and tie-break rules, and the residual mismatches
to the reference anchors are reported explicitly in the same log-mismatch language used through-
out. Thus the staircase calibration is a discrete audited selection rather than a continuous fit.

Test strategy. The prediction is not that a specific new particle must appear at every pn(m),
but that if additional stable modes do appear as effective resolution uplifts, they should enter
in Fibonacci-structured batches A|X,,| = F,,, and inherit the cyclic/boundary split constraints
from the 7 channel.

Data channel. Collider and fixed-target threshold scans (new stable-mode onsets, heavy-
flavor thresholds, and clustering of new phenomena in energy) provide the primary laboratory
channels; astrophysical threshold phenomena provide complementary constraints.

Fail condition. Conditional on the stated staircase calibration, the framework is falsified
if new stable modes appear in a way that is incompatible with Fibonacci-constrained batch
structure across uplifts, or if statistically significant new-mode onsets systematically avoid the
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calibrated threshold bands without an alternative calibrated rgep explanation within the stated
bounded family.

14.3 Independent quantitative rigidity and time-dictionary tests
14.3.1 P4: CP violation magnitude tied to a rigid phase-space volume

If CP violation is controlled by a CP-odd phase space Mcp with fixed volume and multiplicity as
in , then CP-odd observables should exhibit rigid low-complexity signatures and constrained
drift patterns under protocol deformation.

Numerical rigidity target. Equation provides a concrete normalization target for the
CKM Jarlskog invariant: Jeeo = 1/(1177). Any protocol deformation model that claims to ex-
plain CP violation should either reproduce this rigidity signal or explain its systematic deviation
in a controlled, testable way.

Data channel. Global CKM fits and direct CP-odd observables that determine the Jarlskog
invariant under standard conventions provide the primary test channel.

Fail condition. If the experimentally inferred J converges to a value incompatible with the
rigid target 1/(1177) under fixed CKM conventions (i.e. the mismatch cannot be represented as
a stable matching-layer factor comparable to the other closed normalizations in this paper), the
CP-volume normalization dictionary is falsified.

14.3.2 P5: discrete mixing predictions and quantified robustness

Beyond qualitative protocol narratives, the bounded-complexity closures used for CKM and
PMNS provide concrete discrete targets: Tables record the CKM magnitude closure, the
induced PDG-parameter reconstruction, and unitarity diagnostics, while Tables record
the analogous PMNS closure together with the bounded-denominator Dirac phase selection
(Table . These are falsifiable as measurement precision improves: the candidate families are
finite, the minimizers are unique at the stated bounds, and the mismatches are reported in the
same log-norm used across the paper.

Quantified robustness. Appendix reports minimizer stability rates under explicit per-
turbation models for the reference targets (Table . This provides an audit-level quantifica-
tion of how sensitive each discrete prediction is to plausible shifts in the quoted reference values
(PDG/global-fit or conservative stress-test scales), and it sharpens the distinction between a
rigid discrete selection and a fragile post-hoc match.

Data channel. Precision determinations of CKM/PMNS mixing parameters (magnitudes,
angles, and phases) directly test whether the reported minimizers remain the unique best can-
didates within the stated finite families.

Fail condition. If future measurements shift the reference targets such that, within the same
stated bounds, the reported minimizers cease to be unique/stable or are no longer the best
candidates in the declared finite families without enlarging the complexity budget, then the
low-complexity discrete closure claim fails as stated.
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14.3.3 P6: scattering delay as a measurable lapse proxy (interface)

If protocol overhead admits a direct operational proxy in terms of measurable delay, then scatter-
ing experiments provide a concrete test channel. In settings where a (nearly) unitary scattering
matrix S(w) can be measured as a function of frequency, one can compute the Wigner—Smith
delay mws(w) = Ti(—iSTdS/dw) [20,21]. Normalizing by a calibrated tick duration 7 yields a
dimensionless overhead proxy kws = Tws/70 and a lapse proxy Nws = ko/kws (Section @
The prediction is that, under any concrete platform identification that ties the measured scat-
tering channel to protocol-local degrees of freedom, delay-derived lapse ratios should behave like
redshift /clock-slowing ratios under the same identification, providing an independent falsifiabil-
ity route for the overhead-lapse dictionary.

Data channel. Platforms with measurable near-unitary scattering matrices (mi-
crowave/optical cavities, mesoscopic quantum transport, cold-atom scattering, nuclear/particle
scattering phase-shift analyses) provide channels where Wigner—Smith delay can be extracted
and compared across controlled conditions.

Fail condition. If delay-derived lapse ratios fail to correlate with independently measured
clock-rate/redshift proxies under the same platform identification (beyond stated experimen-
tal/systematic uncertainty), the overhead—lapse matching dictionary is disfavored.

14.3.4 PT: ~ cross-observation consistency (interface/audit)

Appendix records a deterministic, auditable multi-channel estimate of the single param-
eter v that appears in the overhead-to-lapse and overhead-to-gravity dictionaries. The intended
falsifiability target is not that every channel yields the same point estimate at present preci-
sion, but that the same ~ is not systematically forced into incompatible values by independent
operational proxies once the data protocol and counterfactual baselines are declared.

Data channel. Independent constraints from rotation-curve fits, lensing/delay proxies, and
redshift /clock-rate proxies, together with explicit uncertainty and stability sweeps, provide the
channel. The paper includes a small vendored audit subset and a deterministic script that
generates Table [64] Table [65] and Figure

Fail condition. If under declared protocol baselines and stated uncertainties, the per-channel
4 estimates are mutually inconsistent beyond tolerance (e.g. a large x? with negligible p-value
and unstable conclusions under counterfactual baseline sweeps), then the single-parameter cross-
channel closure claimed by the overhead dictionary is disfavored as stated.

15 Limitations, scope, and relation to prior work

15.1 Mathematical results vs. physical identifications

The paper is organized around an auditable separation (Section . The folding statements at
(m,n) = (6,3) (e.g. 64 — 21 and the 18 & 3 split) are mathematical-layer results with explicit
tables and reproducible scripts. By contrast, the physical identifications (gauge sectors, chirality,
antimatter, and CP violation) are recorded as interface statements stated in protocol language
(e.g. Proposition Proposition Definition Definition . The finite combinatorics
alone is not a Lagrangian; the Standard Model interface is fixed here by explicit closure rules that
are stated at the protocol layer and are audited by finite searches. Concretely, the paper provides
a rigid finite substrate (Xg with intrinsic invariants) on which any identification must act,
closed auditable interface maps at the level of discrete assignments (e.g. the labeling closure in
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Section E[), and falsifiable protocol-level predictions that go beyond post-hoc parameter matching
(Section [14). Within the declared protocol class, the remaining selection freedom is closed
by deterministic bounded-complexity rules (Definition and by explicit refinement maps
(Appendix ; uniqueness/stability is recorded via rigidity certificates and stabilization tables
throughout. Appendix [K]records the resulting “no-new-input” dependency ledger in a compact
audit form, separating theorem-level consequences, finite protocol constructions, conditional
interface implications, and bounded-complexity closures.

15.2 On the CAP-selected anchor (m,n) = (6,3)

For the chosen 2D Hilbert readout screen, the balanced coupling condition m = 2n is used
to match two independent finite cardinalities: the local readout alphabet size |€,| = 2" and
the number of sites on the Hilbert-addressed grid 4™ (Section . This is a diagnostic con-
vention used to attach spatial statistics; it is not a theorem-level necessity for the folding core
(Remark [4.3)). Other addressing dimensions correspond to m = dn rather than m = 2n (Re-
mark , and other space-filling curves can be used as alternative readout bases (Remark .
The choice (m,n) = (6,3) is then the smallest nontrivial instance of this match: 26 = 43 = 64.
This choice is an anchor scale for an auditable finite model, not a claim that the dynamics
must select m = 6. On the physical identification layer, we record a CAP selection princi-
ple for this anchor: within the balanced family on the chosen 2D screen, the smallest pair for
which the deterministic holonomy diagnostic becomes nontrivial is (n,m) = (3,6). Concretely,
the balanced-chain sweep in Table shows that n = 1,2 yield only trivial (identity) plaque-
tte holonomy while n = 3 is the first scale with nontrivial 3/4-cycle content. This provides a
low-complexity interface constraint whose compatibility with uplift and coarse-graining behav-
ior is audited and falsifiable. We partially control parameter sensitivity by recording m-sweeps
and balanced refinement chains (Appendix and Section @, which show that several struc-
tural counts (Fibonacci admissible sizes, cyclic/boundary split) persist across m. To close the
energy<>m interface at the protocol layer, we fix a deterministic staircase selection rule meg(u)
in Corollary together with an auditable calibration of the step size rgep (Section .
At the purely mathematical level, the persistence statements are theorem-level: |X,,| = Fj42
and |XPdY| = F,, 5 for all m (Lemma [4.5/and Proposition , and the truncation map Fold,,
is surjective onto X, for all m > 1 (Proposition .

15.3 Rigidity targets, look-elsewhere context, and counterfactual baselines

Several quantitative statements are presented as low-complexity rigidity targets (Section .
We do not interpret these as “agreement within experimental error bars” when the reference un-
certainties are far smaller than the quoted mismatches (e.g. ag,l), but as matching-layer factors
between an idealized closed normalization and scheme/scale-dependent reference conventions.
To reduce the risk of numerology, we treat each target as a bounded-complezity closure with
an explicit finite candidate family and a fully specified tie-break rule (Definition . Ap-
pendix [AF] records audit context beyond point estimates: candidate-domain sizes, second-best
gaps, distribution quantiles, stability under target perturbations, and deterministic counterfac-
tual baselines (Tables . These audits provide look-elsewhere information within stated
hypothesis classes; they are not a substitute for a complete statistical analysis over unrestricted
expression families.

Error control from protocol outputs to continuum fields. Several falsifiability channels
in this paper involve reconstructing a field x(x) from discrete protocol statistics (Appendix
and then applying derivative operators (e.g. x'(r) or Ax) to form weak-field observables such as
pet (Appendix . Such steps are intrinsically noise-amplifying: finite differences can trade
O(h?) truncation bias against O(e/h) or O(e/h?) noise amplification, so any empirical use must
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declare the discretization/smoothing rules and report stability under explicit counterfactual
baselines. Appendix records explicit concentration and propagation bounds in a self-
contained audit form (see, e.g., standard references [72-74]).

A minimal model-selection interpretation (within stated families). If one treats a
candidate family © as a discrete hypothesis class equipped with the uniform prior, then the
empirical frequency

_ N<e
=T el

in Table [70] gives the probability that a uniformly random candidate achieves minimax log-
mismatch F,, < e¢. When the minimizer is unique, the probability that a uniformly random
candidate matches as well or better than the selected minimizer is 1/|©|. Multiple-comparison
adjustments across several simultaneously reported closures can be bounded conservatively (e.g.
Bonferroni), but we emphasize that our audit tables are intended to provide transparent within-
family look-elsewhere context, not a comprehensive search over unrestricted expression gram-
mars.

15.4 Rigidity constraints and why key interface choices are forced

Some parts of the physical identification layer are not yet derived from CAP beyond the audited
finite selection rules recorded here (Section ; nevertheless, at the chosen anchor scale the
interface is subject to strong rigidity constraints that sharply limit admissible choices. This
subsection records, in audit language, the sense in which several design choices are “forced”
once one commits to the stated protocol primitives and to minimality.

(i) The (m,n)=(6,3) anchor is CAP-minimal for nontrivial holonomy on the chosen
2D screen (interface). The balanced rule m = 2n is the theorem-level cardinality match spe-
cialized to the 2D Hilbert addressing used for the explicit finite diagnostics in this paper, namely
2™ = 4™ (Lemma see also Remark for the d-dimensional general form). On the physical
identification layer, we require a closed-loop (plaquette) diagnostic with nontrivial transport, as
used in the holonomy constructions of Section [f] Within the balanced chain, Table [30] shows
that n = 1,2 produce only identity plaquette holonomy (no 3/4-cycle content), while n = 3
is the first scale with nontrivial 3/4 cycles. Thus (n,m) = (3,6) is selected as the minimal
balanced holonomy anchor for the non-abelian holonomy diagnostic on the chosen screen. Other
addressing dimensions would select different balanced relations m = dn (Remark and Re-
mark . This is the precise sense in which the anchor is not arbitrary within the declared
protocol choices: it is the meeting point of the scan-bit budget, the chosen screen/dihedral audit
structure, and the minimal closed-loop diagnostic requirement.

(ii) The 18 ® 3 split forces a minimal chiral/gauge allocation at m = 6. The m-channel
induces a canonical cyclic/boundary split X¢*“® X g 4V with sizes 1863 (Proposition. If one
insists that boundary types represent gauge-factor connection classes while cyclic types represent
matter multiplets (Proposition and Definition , then the minimal chiral content compat-
ible with three generations is rigidly constrained by cardinality. Closing 18 cyclic labels with
the smallest anomaly-neutral extension forces the addition of vg with Y = 0 (Proposition ,
because any charged extension would require further compensating matter by standard anomaly
constraints.

(iii) The three boundary labels admit a unique monotone gauge-factor assign-
ment. The boundary set has exactly three elements with distinct intrinsic values V' (w) (Corol-
lary [£.9). The gauge factors {U(1), SU(2),SU(3)} have distinct Lie-algebra dimensions 1, 3,8
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knob / input meaning status in this paper where audited

m (window length) readout resolution / admissible alphabet anchor m = 6; m-sweeps and refinement chains recorded
n (Hilbert order) addr
B (closure budget) finite search radius for bounded-complexity closures  reported as a sweep; stabilization is recorded when it occurs

Q (phase-denominator cap)  bounded rational-angle candidate family for & reported as a sweep Q = 1,...,12

denom = 27 dyadic phase register for holonomy diagnostics CAP-audited bounded family (phase-lift dictionary)

reference conventions PDG/CODATA targets and scheme conventions explicit inputs (not fit); mismatch interpreted at matching layer

ng resolution anchor n = 3 for the chosen 2D screen (via m = 2n); chirality sweep recorded

quark mass scheme MS/threshold conventions for quark references treated as matching input (diagnostic rows)

NO/IO choice neutrino mass ordering
orientation class discrete protocol initialization (mirror) via sgn(x) ~ not a continuous parameter; flips under mirror protocols Definition [7.2Jand Definition[7.7

used for reference targets treated as external input; sensitivity diagnostics recorded

Table 22: Explicit “knobs” and inputs used in the protocol/interface layer. The purpose of this
table is to make clear that the paper does not hide continuous degrees of freedom: the remaining
choices are either fixed by declared primitives, treated as explicit matching inputs, or audited
by finite sweeps with recorded stabilization.

(Lemma [9.3). Among the 3! = 6 possible assignments, the monotonicity requirement “larger
intrinsic boundary value <+ larger gauge-sector complexity” selects a unique assignment (Theo-
rem [9.17)). This eliminates a common source of post-hoc freedom.

(iv) The mass-depth template is rigid within the minimal invariant language. At
(m,n) = (6,3), the intrinsic stable-type invariants available for all w € X4 are discrete and
low-entropy: (V(w), g(w), |w|i, Dx(w)) with V € {0,...,20} and g € {2,3,4} (Definition [8.9).
Requiring that a depth assignment be built only from these invariants and be auditable as a
bounded-integer closure leads naturally to the integer ansatz , whose coefficients are rigidly
selected as (2,5,1) under the stated objective and tie-break rules (Proposition [AG.1). This is
the precise, checkable meaning of “mass is forced by rigidity” within the declared hypothesis
class.

(v) Phase registers and holonomy diagnostics are closed in CAP audit form. The
dyadic phase-register family Zopr enters only through the finite phase-lift dictionary: the phase
denominator denom = 2P and the low-complexity index-map family 7 are fixed as explicit
bounded candidate sets, and their influence is audited by deterministic sweeps (Section |§| and
Appendix. Thus, although the holonomy diagnostics are physical-layer constructs, they are
not free-form: the permitted choices are enumerated, tie-breaks are explicit, and sensitivity is
reported.

15.5 Status of the channel-to-gauge identification and anomaly constraints

The strongest theorem-level statements in the paper are finite combinatorial and operator facts
about admissibility and projection (Sections [2[ and . The mapping from the three stability
channels to the Standard Model gauge factors is an interface closure (Proposition : it is
CAP-minimal within explicit compactness and factorization assumptions, but it is not used as
a premise for the theorem-level folding core. What the present paper supplies at the technical
level is: (i) a closed, computable labeling of the 21 stable types into 18 fermion multiplets
and 3 gauge-factor classes (Section E[), (ii) explicit finite connection/holonomy diagnostics that
realize a non-abelian transport structure at minimal resolution (Section @, and (iii) audit-level
consistency checks against standard constraints such as anomaly cancellation and hypercharge
sum rules (Lemma and Proposition . In this framework, anomaly cancellation is treated
as a non-negotiable interface consistency requirement: any candidate identification of Xg with
chiral matter must satisfy the standard anomaly sums [1,2]. Appendix@ further records inverse
diagnostics that probe to what extent quantum-number patterns can be recovered from intrinsic
invariants by bounded-complexity rules (not used as premises).

Scalar sectors and symmetry breaking. The present paper closes a minimal chiral labeling
interface at (m,n) = (6,3) and does not provide a stable-type label for the Higgs doublet
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(Remark . When a renormalizable EFT embedding is recorded, the Higgs is introduced as
an additional field (Appendix . The corresponding scalar-sector closure in protocol language
(parity-even scalar observables by coarse graining/uplift, together with a standard EFT coupling
dictionary) is recorded in Proposition

15.6 Scheme dependence and renormalization-group flow

Several reported quantities are scheme and scale dependent (e.g. a(u) and sin? Oy (1)), and the
paper therefore treats deviations as matching-layer effects rather than as direct “within-error”
claims (Section and Section . At present, the paper does not derive Standard Model
B-functions from the finite combinatorics. Instead, standard one-loop running is used only as
an interpretive dictionary: an additive mismatch in o' corresponds to a logarithmic scale shift
(Remark . The intrinsic protocol flow law used in this paper is fixed explicitly as a
discrete uplift/coarse-graining flow together with the RG dictionary in the Fibonacci resolution

coordinate (Definition and Proposition [8.17]).

15.7 Open problems (audit-tagged)

The following items are not closed by the present paper’s theorem-level folding core and are
recorded as explicit open problems. Each item identifies where the gap enters, what additional
input would be required to close it, and what would count as a satisfactory closure. Appendix [K]
mirrors these as [Open] items.

(OP1) Gauge-group uniqueness beyond the stated candidate family. The paper closes
a conditional gauge-factor identification by CAP within an explicit compact three-factor fam-
ily (Proposition . What remains open is deriving the candidate family itself (compactness,
factorization into three commuting redundancies, and the complexity label) from a deeper mi-
croscopic scan/readout architecture, and proving uniqueness without relying on a hand-declared
bounded family. Within the stated family, the particular choice of common low-complexity la-
bels is less fragile than it may appear: Appendix [Allshows the minimizer persists under several
alternative labels in a bounded sweep, and Proposition gives a short classification-based
reason for this robustness for the most natural labels. Closing this would require either: (i)
a theorem-level derivation that any admissible local redundancy group must lie in the stated
family under the tick-only primitives, or (ii) a universality theorem showing that alternative
admissible redundancy realizations coarse-grain to the same effective gauge triple.

(OP2) Uniqueness/inevitability of the folding map family. The truncation map Fold,,
used here is an explicit, deterministic bridge from dyadic indices to Zeckendorf-admissible digits
(Definition and Remark . Appendix [Q| shows that alternative deterministic dyadic—
X, bridges exist and can change fiber statistics. Within the bounded counterfactual family
audited there, the additional natural fixed-point constraint F'(V(w)) = w for all w € Xg selects
the Zeckendorf-truncation map uniquely (Proposition ; this is a partial closure inside the
audited family. More generally, within the natural shifted Zeckendorf-window family Foldgfl)
(Definition , the same value-consistency condition forbids all nonzero shifts and selects
the unshifted digit window (Proposition . What remains open is a principled selection
theorem: either derive Fold,, as uniquely forced by tick + CAP under a stated notion of protocol
locality /implementability, or prove an (e, d)-universality statement that makes low-resolution
predictions insensitive to the choice of bridge.

(OP3) Continuum Yang—Mills/EFT emergence from the finite connection. The pa-
per constructs a fully finite non-abelian transport/holonomy diagnostic at (m,n) = (6,3) (Sec-
tion@, but it does not derive the continuum Yang—Mills action or renormalizable EFT dynamics
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from this finite skeleton. Closing this would require a controlled continuum limit /renormalization
argument: showing that a family of finite protocols (increasing m with suitable coarse graining)
converges to a local gauge field theory with the correct degrees of freedom, and that the observed
couplings/mixing data arise as stable low-energy parameters.

(OP4) Global model-selection / look-elsewhere control across families. Within each
stated bounded candidate family, the paper records full audit context (domain sizes, gaps,
counterfactual baselines) (Appendix [AE|and Tables[70H74). What remains open is a theory-level
prior /description-length principle that compares different candidate families fairly (e.g. different
invariant sets, different expression grammars, different complexity labels), and quantifies the
overall look-elsewhere effect. Closing this would require an explicit global prior (or MDL-style
penalty) and a combined evidence calculation across closures.

(OP5) Scalar/Yukawa sector and RG-running closure. At the anchor, the stable-type
contract closes a minimal chiral labeling and does not allocate a primitive stable label to
the Higgs (Remark ; scalar behavior is treated as uplift/coarse-graining dependent (Ap-
pendix . The paper also does not derive SM S-functions from the finite combinatorics
(above). Closing the full Standard Model would require a protocol-level mechanism that gener-
ates scalar/Yukawa structures and reproduces RG flow, including scheme/threshold conventions
as explicit matching-layer outputs rather than inputs.

15.8 Falsifiability beyond parameter matching

While parts of the quantitative interface are expressed as parameter targets, the paper also
records nontrivial protocol-level predictions that are not reducible to retrodictive match-
ing: chirality-domain defects and parity-odd statistical signatures (Section , Fibonacci-
structured resolution-threshold batches (Section , and a finite holonomy diagnostic pro-
gram that produces distributional outputs rather than a single fitted number (Section @ Each
prediction is accompanied by an explicit observable channel in standard language: mixing and
CP observables are compared directly to PDG /global-fit targets (Sections and [12)), reso-
lution uplifts are tied to energy thresholds by the calibrated staircase and the deterministic
map meg(p) (Corollary [14.2), and delay/lapse proxies are expressed via Wigner-Smith and GR
reference dictionaries (Section [Y).

15.9 Role of the e-channel at minimal resolution

At m = 6, admissibility is already enforced by the ¢-grammar and the 7-split, so the e-channel
is not used to further reduce X¢ (Remark [4.12)). Its technical role at minimal resolution is to
fix a standard analytic stability template (Artin-Mazur zeta, Abel normalization) and thereby
fix the use of an Abel/pole-barrier viewpoint when defining resolution-flow coordinates and
exponentially small weights. At higher resolution, weighted /pressure-like variants can make the
analytic channel genuinely constraining beyond a single forbidden-word predicate.

15.10 Self-containment within the declared input set

This paper is written to be closed under its declared protocol primitives and interface inputs
(Table [25] and Appendix . For audit clarity, we emphasize that no theorem-level results are
imported from companion manuscripts: every protocol primitive and every finite closure used
here is defined explicitly in the main text and appendices, and all tables are reproduced by
deterministic scripts (Appendix [AJ]).

For reader navigation, the following table indicates where the main components that may
also appear in companion manuscripts are located inside this paper:
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topic (in this paper) where it is closed and audited here

scan orbit, window projection, Weyl-pair Sectionsand , Appendix

viewpoint

phase registers Zaop and Zi2g label Section [1.8f Section Appendix

folding core and uplift template (p—7—e) Sections 4| and Appendix and Appendix
CAP as bounded-complexity closure with de-  Axiom [1.5| and Definition , Appendix
terministic tie-breaks

connection/holonomy finite diagnostics Section |6} Appendix

closed normalizations and rigidity audits (o,  Section , Appendix
in2

sin® Oy, J)

time/mass delay dictionaries (matching Section
layer)

Table 23: Internal closure map: where the main protocol ingredients and audit templates are
contained within this paper.

Companion manuscripts in the same repository remain useful as extended context and al-
ternative presentations [3-H11], but they are not required to follow the finite constructions and
audited closures in the present paper.

15.11 Related discrete approaches and standard constraints

Several mature lines of work share the broad goal of extracting continuum physics from discrete
or finite data: classical and quantum lattice gauge theory [42,43[54], quantum cellular automata
models for relativistic equations [75], and causal-set approaches to discrete spacetime structure
[76]. More recently, tensor-network and holographic-code frameworks provide discrete models
in which geometry, error correction, and coarse graining are structurally linked [77-79]. The
present work differs in emphasis: it treats finite readout (window projection plus protocol audit)
as the primitive, and records explicit finite invariants and closure rules at a minimal scale. On
the combinatorics/number-theory side, there is also a large literature on generalized Zeckendorf
decompositions, digit statistics, and structural classifications beyond the classical Fibonacci case;
see, e.g., [33H35].

On the Standard Model side, the interface claims are constrained by standard consistency
requirements such as anomaly cancellation and scheme/scale dependence (Sections |§| and .
For modern high-precision discussions of scheme conventions and the extraction of Standard
Model parameters in a fixed MS prescription, see, e.g., [80]. For CP-violation constraints be-
yond mixing observables, electric-dipole-moment bounds provide an important complementary
diagnostic; see, e.g., [81]. For modern treatments of flavor invariants in extended Standard
Model settings, see, e.g., [82]. For electroweak mixing, it is also useful to keep in view the
standard grand-unification benchmark sin? 6y = 3/8 at a unification scale in minimal SU(5)-
type models [83,[84]. Our electroweak targets are stated at the Z scale and are interpreted as
matching-layer normalizations rather than unification-scale relations.

Open closures (ledger-aligned; not used in proofs)

[Audit] The authoritative compact list of open problems is recorded in Appendix (within
Appendix . For discussion and pointers, see Section and Appendix

[Audit) Gauge-group uniqueness beyond the stated bounded family.

[Audit]Uniqueness/inevitability of the folding map beyond bounded counterfactual families.

[Audit]Continuum Yang-Mills/EFT emergence from finite connections.

[Audit]Global model selection / look-elsewhere across families.
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o [Audit]Scalar/Yukawa sector and RG-running closure from the finite protocol.

16 Conclusion

We proposed a tick-first reformulation of Standard Model structure within the HPA scan—
projection paradigm. In this framing, the only primitives are time as tick (scan iteration count)
and CAP as the bounded-complexity closure rule, while finite observability appears through
window projection and stability filtering (Section |3|and Section. At the CAP-selected anchor
on the chosen 2D screen, (m,n) = (6,3), the provable folding core at m = 6 compresses 64
microstates to 21 stable types with a canonical 18 @ 3 cyclic/boundary split (Section . Lo-
cality language is then introduced as a derived display structure by an addressing basis, whose
minimality at the anchor is made explicit and auditable (Table . On the physical identification
layer, we recorded interface hypotheses: gauge fields as defect-compensating connections; chiral-
ity as protocol selection among orientation classes; antimatter as conjugate readout under scan
reversal; and mass/scale as time dictionaries in a Fibonacci log-time coordinate. We provided
auditable scripts and generated tables that reproduce the finite folding statistics, the addressing
and chirality diagnostics, and the quantitative closures, and we stated falsifiable predictions for-
mulated directly in the protocol language (Section. In addition, we closed two main interface
components at (m,n) = (6,3): a unique field-level labeling of the 21 stable types, and a closed
mass-spectrum depth formula with a bounded-complexity rigidity signal.

Summary.

o Theorem-level anchor. At (m,n) = (6,3) the folding core yields 64 — 21 and the
canonical split 21 = 18 @ 3 (Section [4]).

» Closed interfaces. We close a unique SM labeling map Lgy (Theorem[9.17)) and a closed
mass-depth template (Definition m Table .

o Audited normalizations and mixing. Coupling/CP targets and mixing closures are
recorded as bounded-complexity CAP selections with explicit audits (Section |11} and Ap-

pendix [AF]).
o Falsifiability. Protocol-level predictions and test channels are summarized in Section

e Ledger. A compact dependency and input ledger is recorded in Appendix

Closing (interface shorthand). [Interface]ln the tick-first framing, time is the update count,
space is a derived addressing/locality dictionary, and matter/scale are protocol-stability and
overhead dictionaries anchored at m = 6.

Part VIII

Recursive closure: self-read /write, active

renormalization, Wish update

17 Final synthesis: self-readout, active renormalization, and la-
tency unification (interface)

[Interface] This section closes, at the protocol interface, the apparent tension between scan-first
language (Axiom [1.1]) and the experimental fact that high-energy structure is accessed by engi-
neered devices such as colliders.
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A tick-first recap. The only primitive input in the present framing is the tick (scan iteration
count), and the only primitive closure rule is CAP. Space is a derived display graph induced
by an addressing basis, and at the minimal anchor the addressing choice is made explicit and
auditable (Table [f]). Mass and scale are time dictionaries in a Fibonacci log-time coordinate,
with operational test channels through delay and lapse proxies (Section [10|and Appendix .

17.1 Observer as a self-read /write head

In the present framework, an “observer” is not identified with a human subject. Operationally,
an observer is any interacting subsystem that (i) couples to the readout stream and (ii) induces
a stable, auditable record in a chosen locality dictionary. In this sense, observation is not an
external act imposed on a passive substrate: it is a protocol event realized by interaction. This
is consistent with the layered audit rule stated in Section theorem-level folding statements
are static finite facts, while “measurement language” belongs to the physical identification layer.

The slogan “self-read /write head” summarizes the consequence: once interaction is treated as
readout, the universe contains its own read/write events. Local subsystems act as read heads for
each other whenever they exchange constraints, because the very notion of a recorded outcome
is the existence of a stabilized readout relation.

17.2 Colliders as forced zoom: active renormalization

In the same protocol language, a collider is an engineered way to concentrate energy density
and thereby force a localized transition in effective resolution. The relevant object is not a
literal creation of new ontic degrees of freedom, but a change in the local readout budget: as
the interaction region is driven across calibrated thresholds, the deterministic selection of the
effective window length jumps (Corollary . This is why high-energy physics can be phrased
as an act of active renormalization (Section [I14.2.1)): the experiment forces the protocol to
render latent high-complexity structure that is otherwise inaccessible at the m = 6 ground-state
readout.

On this viewpoint, “new particles” are not imported as new axioms of the mathematical
layer. They correspond to stable-mode capacity made available by a resolution uplift in the
same folding framework (Section , together with the chosen matching dictionary that connects
the protocol depth coordinate to laboratory scales.

17.3 Latency unification: micro delay and macro lapse

The same interface dictionary also unifies two operational notions of “time slowing” as a single
phenomenon of overhead. At the micro level, delay can be measured directly in scattering as
a Wigner—Smith time delay (Section [Y]). At the macro level, time dilation is encoded by a
lapse factor and redshift relations in the standard GR dictionary (Appendix . In the protocol
interpretation, both are instances of a local overhead field x and its associated clock-rate factor
N = ko/k (Section [Y.4).

This provides a concrete closing of the “mass as latency” interface: the same obstruc-
tion/complexity that increases stabilization overhead in the readout (depth, degeneracy, match-
ing shifts) also induces operational delays (scattering) and reduced effective clock rates
(lapse/redshift) when translated into standard measurement language.

Wish update (programmatic; not used in proofs)

[Audit] The paper’s closed finite invariants and audited interface closures can be read program-
matically as updating the admissible target set of protocol-stable data (“Wish”) and the corre-
sponding audit objective (“Motive”). This programmatic loop is recorded as a forward-looking
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interface statement and is not used as a premise in theorem-level proofs. For a compact list of
open closures and next-step audits, see Appendix [AK]

Interpretive unification: complex exponentials and unitary
spheres (not used in proofs)

[Audit] The following remarks provide a compact unifying language for three interface themes that
appear separately in the paper: (i) memoryless semigroup weights (arrow of update time), (ii)
phase/frequency-first dictionaries (unitary rotations), and (iii) screen-based renderings of the
tick stream. None of this material is used as a premise in theorem-level proofs.

Real versus imaginary exponents. For parameters A € R and w € R, the complex expo-
nential splits as

Miw)t _ A jiwt

e( = e e

[Audit]In the protocol language, the real factor e™ is the canonical continuous representative

of a memoryless semigroup weight (Appendix @, while the phase factor e“! is the canonical
representative of a unitary rotation at frequency w (Appendix [AD.10)).

Unitary spheres as a representation choice. In the standard quantum interface, states
may be represented as unit vectors in a complex Hilbert space, so unitary evolution preserves the
norm and acts as a trajectory on the unit sphere. [Audit)We use this only as a compact language
for the readout/POVM interface; we do not promote “the universe is literally a Hilbert sphere”
to an additional axiom.

Scan trajectories and additional assumptions. Visual renderings of the tick stream on a
screen (e.g. Section [5{ and the golden-angle phyllotaxis overlay in Part II) can suggest intuitive
statements about uniform coverage or ergodicity. [Audit])Any claim of density/ergodicity requires
additional dynamical assumptions and is outside the closed folding chain; such statements, if
used, must be recorded explicitly as [Auditlor as [Open] in Appendix

A Symbols and objects (summary)

This appendix records a compact list of the primary objects used in the paper.

e Weyl pair. A pair of unitaries (U, V) satisfying UV = e*™*VU (Definition [B.1)), used as
an algebraic encoding of scan shift and phase.

» Rotation algebra and Morita equivalence (optional notes). The rotation algebra
A, is the C*-algebra generated by a Weyl pair at irrational slope o € R\ Q. Morita
equivalence classes are acted on by SLa(Z) via a — (acx+b)/(ca+ d); a Fourier transform
exchanges scan shift and phase multiplication (Appendix .

e Scan orbit. Given an irrational slope o and seed zg € R/Z,

Tp =29 +na  (mod 1), 2y = 2™ ¢ T

e Window readout. For a window W C T,

wy, = 1{z, € W} €{0,1}.

o Finite windows. At window length m, Q,, = {0,1}"™ is the microstate alphabet, and
Hom = £2(82y,) its linearization.
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Wish and Motive (reader-facing; not used in proofs). Appendix |C| records a
template interface object W = (m,Z,,,Cpn,e) (Wish), a finite candidate family F, an
auditable objective functional J : F — R (Motive), and the CAP-selected minimizer
fx = argminr J with deterministic tie-break rules.

Zeckendorf admissible set. X, C ), is the forbidden-word admissible set (no adjacent
ones), equivalently the y-stable sector.

Golden base. ¢ = (1 ++/5)/2 and log,, » :=log x/ log ¢.

Resolution coordinate and exponential map. For a mass scale u, r(u) = log,,(11/me)
and p(r) = mep” (Section [13)).

Stable-type invariants at (m,n) = (6,3). For w € X, V(w) is the Zeckendorf value,
lw|; is Hamming weight, g(w) = |Foldg ' (w)| is the folding degeneracy, and Dy (w) is the
cyclic/boundary tag (Definition [8.9).

Depth and matching shifts. r.(w) = V(w) 4+ n(g(w) — 2) at (m,n) = (6,3) (Defini-
tion ; the normalized depth 7 and mismatch Ar = r — 7 are defined in Section

Defect channels. D, detects the forbidden substring “11”; D, detects cyclic wrap-
around violation w; = w,, = 1; the e-channel is expressed via the normalized zeta function

Ce(r) = C(r/ep).

Dyadic phase registers. Phases are modeled by Zgr with the embedding k — e
(Appendix [B); Z12s is the baseline choice at p = 7 (Section [1.8)).

2mik /2P

Abel path and pole barrier. An Abel-normalized sum is F(p) = >, >0 anp" with the
Abel path p 11 (Definition [B.3); the first singularity that obstructs analytic continuation
along this path is the pole barrier (Appendix [B|and Section .

Abel finite part. If an Abel generating function admits an expansion c_1/(1—7)4co+- - -
as r 1 1, the Abel finite part is the constant term FP.41(-) = co (Appendix [E).

Folding map. Fold,, maps integers (microstate indices) to stable types by Zeckendorf
digits and truncation; Foldg gives the 64 — 21 stable projection.

Hilbert addressing. H, : {0,...,4" — 1} — {0,...,2" — 1}? is a locality-preserving
address map with a dihedral layout family Dj.

Hilbert chirality index. For the Hilbert path points p, = H,(k), x is the net signed
turning index defined by (L5)).

Compton clock dictionary (matching layer). wc(u) = puc?/h and 7o(p) = 1/we(p)
(Section [Y]).

Frequency (tick units). w = Af/At denotes phase advance per tick (Definition [AA.1);
this is the primary ratio-level bridge to energy/mass/temperature in the frequency-first

closure (Appendix [AA)).

Wigner—Smith delay (operational proxy). Q(w) = —iS(w)fdS/dw and mws(w) =
TrQ(w) (Section[Y)).

Continuum representative (CAP-closed). Sex denotes the CAP-selected continuum
action skeleton (Appendix [AD.4); varying it yields Einstein—Yang-Mills—x equations (Ap-

pendix [AD.5).
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B

Overhead, y, and lapse. k(x) denotes a local overhead and x(z) = log(k/ko); N(x) =
e~ () is the lapse proxy in the overhead-to-gravity closure (Appendix )

X reconstruction protocol. An executable Hilbert-binning — window-word — folding-
statistics pipeline reconstructs x(z) from data/simulations (Appendix [AD.8]).

Born probabilities (quantum readout). Finite-resolution readout is modeled by
POVMs with probabilities P, = Tr(pE)) and instrument updates in Kraus form (Ap-

pendix |AD.10)).

RG in the r coordinate. Running in scale is expressed in r by dg/dr = (log¢)5(g)
(Appendix [AD.11)).

Cosmology as resolution flow. Stable/hidden fractions are fgsta,(m) = Fpyp2/2™ and
fhia(m) =1 — fstab(m); mean degeneracy is dy, = 2" /F,,+2 (Appendix |AD.12]).

Gauss map (optional mother-space notes). The Gauss map is G(§) = {1/£} on
(0,1); its invariant Gauss measure and digit law provide a canonical dynamical source for
continued fractions (Appendix [ABJ).

Hecke operators and prime skeleton (optional notes). Hecke operators T, act
on modular forms and satisfy multiplicative relations and prime-power recursions; primes
generate the Hecke algebra and Euler products factorize into prime local factors (Ap-

pendix [AD]).

Thermodynamic closure objects. S denotes a coarse-grained entropy (state-
count /channel-count); 7" is the conjugate temperature scale; F = E — T'S is a free-energy
functional used in CAP closure form (Appendix [AD.6).

Black-hole scales (external targets). Ry = 2GM/c?, A = 4nR2%, (% = Gh/c?, and
Spu = kpA/(40%); Ty denotes the Hawking temperature (Appendix .

Isotropic radius and inversion (external template). For Schwarzschild exterior
geometry, p > 0 denotes the isotropic radius with throat radius p, = Rs/4 and inversion

Z(p) = p2/p (Proposition [X.6)).

Wormbhole-like pointer jump (protocol-level). A directed (or undirected) pointer

link a p—tr> b on the scan index set defines a wormbhole-like shortcut channel in the readout
protocol (Definition [X.7)).

Protocol primitives and regularization conventions

This appendix records, in one place, a compact set of protocol primitives and analytic conven-
tions that are used throughout the paper. It introduces no new axioms or assumptions beyond
the declared input set in the main text; it only restates standard definitions and short supporting
lemmas.

B.1 A Weyl pair viewpoint for scan dynamics

The scan orbit x, = xy + na (mod 1) can be encoded algebraically by a Weyl pair. One
convenient realization is on L?(T) with the shift and multiplication operators.

Definition B.1 (Weyl pair). Fiz o € R. A Weyl pair is a pair of unitary operators (U, V)
satisfying

UV = e2mayy.
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Remark B.2 (A canonical realization). On L?(T) with coordinate x € R/Z, define

UN)(z) = flz+a),  (V))(@):=e"f(x).
Then U and V are unitary and satisfy the Weyl relation in Definition [B.1. This algebraic
encoding is used only as a bookkeeping device for “shift” and “phase” operations consistent with
Aziom [
B.2 Window projection as a readout map

Given a window W C T, define the indicator kernel Ky : T — {0,1} by Kw(z) = 1{z € W}.
The (deterministic) binary readout induced by W is

wy, = Ky (z,) = 1{e*™ ¢ W} € {0, 1}.
Finite observability at window length m is the restriction to words w = wy---wy, € Q) =
{0,1}™.
B.3 Zeckendorf admissibility and the golden branch
On the golden branch, admissibility is enforced by the forbidden word “11”:

X = {w € Qy, : w contains no adjacent ones}.

Equivalently, if ¢, € {0,1} are Zeckendorf digits, the admissibility constraint is cxcg+1 = 0. The
Fibonacci count |X,,| = F42 (Lemma is the combinatorial backbone of the p-channel.

B.4 Dyadic phase registers

For a phase resolution parameter p > 1, we model phases by the finite ring
Zov = 1./2PZ,

equipped with the embedding into T given by

L o2mik/2P

In the holonomy diagnostics, denominators of the form denom = 2P and the low-complexity
phase-map family are treated in CAP audit form: we fix explicit bounded candidate families
and report deterministic sweeps and counterfactual baselines, rather than allowing implicit con-
tinuous tuning (Section @] and Appendix . The label Zisg is the baseline choice at p = 7

(Section [1.8).
B.5 Abel normalization and pole barriers

The e-channel uses an Abel-type viewpoint: one studies an analytic generating function on the
open unit disk and takes a limit along the Abel path p T 1 with p € (0,1). This isolates the
location of the first singularity (the “pole barrier”) that obstructs extending the analytic object
to the boundary.

Definition B.3 (Abel-normalized sum). Let (an)n>0 be a complexr sequence and define, for

p € (0,1),
F(p)i= 3 and
n>0

whenever the series converges. If the limit exists (finite or infinite), the Abel limit is

lim F'(p).
i ()
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Lemma B.4 (Root-test pole barrier). Let (a,) be a sequence with

A = limsup |a, |'/" € [0, o0].
n—oo
Then F(p) = 3,50 anp™ converges absolutely for 0 < p < 1/\ (with the convention 1/0 = o0)
and diverges for p > 1/X. In particular, if A > 1 then the Abel path p T 1 necessarily encounters
a singularity barrier at p=1/X < 1.

Proof. This is the standard root test applied to the power series with coefficients a,,. For p < 1/X,
one has limsup,, |a,p™|'/™ = p\ < 1, so the series converges absolutely. For p > 1/, the limsup
exceeds 1, so the terms do not tend to zero and the series diverges. O

Remark B.5 (Connection to the e-channel language). In this paper, the phrase “Abel pole
barrier” refers to the first singularity that obstructs analytic continuation along the Abel path
in the relevant generating function (Section . The Artin-Mazur zeta framework supplies a
canonical class of such gemerating functions in symbolic dynamics and provides a standard way
to encode stability information through analyticity and singularity structure [30-32).

C Wish and Motive as auditable interface objects (template)

Scope and status. [Audit]This appendix records a reader-facing template that formalizes the
terms Wish and Motive as interface/audit objects used to organize the narrative. They introduce
no additional axioms beyond tick and CAP, and they are not used as premises in theorem-level
proofs.

C.1 Wish: protocol-stable target data

Definition C.1 (Wish (protocol-stable target data)). [interface] A Wish is a protocol-stable target
datum/structure specified as a finite list of invariants and admissibility predicates that an ob-
server wishes to reproduce under a fixed readout protocol. Concretely, a Wish can be represented
by a tuple

W= (m, L, Cn, €),

where m is the window length, I, is a finite set of computable invariants on finite observables
(e.g. stable-type statistics on Xy, ), Cp, 1S a finite set of admissibility/consistency predicates (e.g.
cross-site constraints on a chosen display graph), and ¢ is an explicit tolerance budget for audit
coOmparison.

Audit note. [Audit]Status: [Interface]. Depends on: the tick-first dictionary (Section [3) and
the declared audit discipline (Appendix Appendix. If: Wish is treated as a data-structure
specification (invariants + predicates + tolerance) rather than as a new physical axiom.

C.2 Motive: auditable objective functional

Definition C.2 (Motive (auditable objective functional)). [interface]Given a Wish W =
(m, Ly, Cmy€) and a finite candidate family F of protocol choices/closures, a Motive is an ex-
plicitly declared objective functional

J: F =R, J = Jmismatch + A Jeost + n Jrobust

where Jmismatch quantifies violation of the Wish tolerance (mismatch certificate), Jeost quanti-
fies bounded implementation/description cost, and Jiopust optionally quantifies stability under
a bounded counterfactual family. The coefficients A\, > 0 are declared as part of the audit
specification.
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Audit note. [Audit]Status: [Audit] + [Interface]. Depends on: an explicitly declared finite can-
didate family F, objective decomposition, and deterministic tie-break rules (Appendix . If:
all reported selections are CAP-closures over explicit finite families with deterministic tie-breaks;
external targets enter only at the matching layer.

C.3 CAP closure of Motive (template)

Definition C.3 (CAP closure (finite family)). [Audit/Let F be a finite candidate family and let
J : F — R be an auditable objective functional. The CAP-closed output is the unique minimizer
fx :=argmin J(f),
feF

with deterministic tie-break rules specified when the minimum is degenerate.

Remark C.4 (Programmatic reading (not used in proofs)). [Audit/One may read the paper’s
audited interface closures as a sequence of CAP-closed choices in explicit finite families, each
of which can be interpreted as minimizing a Motive induced by a Wish. This programmatic
interpretation is reader-facing only and is not used as a premise in theorem-level proofs.

C.4 A generic teleological dynamics statement (template)

Scope. [Audit]This subsection records a generic Lyapunov-type template that is often used to
connect an explicit objective functional to an arrow of update time in a parameter space. It is
included for reuse and is not used as a premise in the theorem-level folding core.

Proposition C.5 (Generic Lyapunov monotonicity (template)). [MathjLet U : R? — R be
continuously differentiable and consider the gradient flow

o(t) = —VU((t)).
Then along any solution one has
d

U 0@®) ==[vU@E®)|* <o,

so U is non-increasing and serves as a Lyapunov certificate for the induced arrow of update
time.
Proof. By the chain rule,

d

ZU0() = VUO() - 6(t) = VU(O(t)) - (=VU (0(1))) = = [ VU(OE)]* < 0.

O]

D Semigroup and exponential kernels (arrow-of-time template)

[Audit] This appendix records a standard functional-equation template that connects a one-way
additive time law on ticks to exponential weights. It is included as a reusable mathematical
note; it introduces no additional axioms and is not used as a premise in theorem-level folding
proofs.

D.1 Discrete semigroup weights on ticks

Proposition D.1 (Memoryless weights on Ng are exponential). [Math]Let (w¢)ien, be real weights
with wg = 1 and
Wips = Wt Ws for all t,s € Ny.

Then w; = 1t for all t € Ny, where r := wy.

Proof. Taking s = 1 gives w41 = wywy = rwy for all t € Ng. By induction, w; = rfwg = rt. O
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D.2 Continuous representative and the Cauchy exponential equation

Proposition D.2 (Continuous semigroup weights are exponentials). [Math]Let w : [0,00) —
(0,00) be continuous and satisfy

w(t+s) =w(t) w(s) forallt,s >0, w(0) = 1.
Then there exists A € R such that w(t) = exp(At) for all t > 0.

Proof. Define a(t) := logw(t), which is well-defined and continuous because w(t) > 0. Then
a(t+s) =a(t)+a(s) for all t,s > 0 and a(0) = 0. By the standard Cauchy functional equation
result under continuity, a(t) = At for some A\ € R. Exponentiating gives w(t) = exp(At). O

D.3 Calibration constants and matching-layer inputs

[Interface] Exponential laws determine a shape but not an absolute origin: when one solves a
linear update law (discrete or continuous), an initial-condition constant remains. For example,
the differential equation z/(t) = Az(t) has solutions x(t) = C exp(At), and the constant C' is
equivalent to a choice of time origin or amplitude normalization. In the audit discipline of
this paper, such constants are treated as matching-layer conventions (units, calibration targets,
reference scales) rather than as theorem-level outputs.

D.4 Abel-first weights and the r 1 1 path

[Math]The discrete exponential family r* with 0 < r < 1 is the canonical “Abel-first” convergence
weight: it suppresses late-time contributions while preserving the semigroup law r'** = rirs,
The standard Abel path is the limit process r 1 1 (Conventions). In this paper, Abel-first
conventions appear as a disciplined way to discuss finite parts and controlled limits; they do not
add new premises to the finite folding core.

E Abel finite parts and unit-disk analyticity (notes)

[Audit] This appendix records a standard Abel-first/finite-part template used as an analytic sta-
bility discipline: one replaces infinite-horizon expressions by holomorphic generating functions
on the unit disk and defines renormalized values by a canonical constant-term extraction along
the Abel path. It introduces no new axioms and is not used as a premise in theorem-level folding
proofs.

E.1 Abel generating functions and holomorphy on the unit disk

Let (at)t>0 be a bounded complex sequence: |a;| < M. Define its Abel generating function

Ag(r) == Zatrt, Ir| < 1.

>0
[Math] This is holomorphic for |r| < 1 and satisfies the estimate

M
1—|r|’

[Aa(r)] <

In particular, for bounded protocol traces, the only universal singular behavior compatible with
absolute convergence occurs on the boundary as r 1 1.
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E.2 Finite-part extraction along the Abel path

If A,(r) admits an asymptotic expansion of the form
C—1

1—1r
then the Abel finite part is defined by

A (r) =

+eo+al—r)+--- (r11),

FPrTlAa(T) = Cp.

This is the canonical constant-term prescription used whenever an Abel-first finite part is refer-
enced. For classical Abelian summation and finite-part asymptotics, see [85,86].

E.3 Rotation resolvent formula and a canonical pole subtraction

We record a self-contained template for irrational rotations, which clarifies why the Abel-first
viewpoint is naturally stable under protocol-level changes that preserve a bounded Fourier kernel
class.

Let a € (0,1) \ Q and let z; = xg + taw (mod 1). Let f : R/Z — C have an absolutely
summable Fourier series

f@) = Y Fompemime, S [ fom)| < oo,

MEZ mEZ

Define the Abel orbit sum
S¢(r) ::Zrtf(:ct), Ir] < 1.

t>0
Proposition E.1 (Fourier-resolvent representation and universal pole). [Math]For every |r| < 1,
. . 1
2
Sf(r) - Z f(m) e 1 — pre2mima’
meZ
In particular, one has the decomposition

f(0)

Sp(r) =1

+ Hy(r),

where Hy is holomorphic on |r| <1 and extends continuously to r 1 1.

~

Proof. Absolute summability of f(m) implies uniform convergence of the Fourier series, allowing
termwise summation of the geometric series 3~ (r €™M = 1/(1 — re?™™®) for |r| < 1. The
m = 0 term equals f(0)/(1 — 7). For m # 0, irrationality of o implies €™ £ 1. hence the
denominators do not vanish at » = 1; uniform convergence then yields holomorphy on |r| < 1
and continuity at r 1 1. O

Corollary E.2 (Finite part exists and is scheme-stable within the admissible class). [Math]Under
the hypotheses of Proposition the Abel finite part exists and equals Hy(1):

FP418¢(r) = Hy(1).

Moreover, if one modifies the subtraction by a function g(r) that is holomorphic in a neighborhood

of r =1, then R

_ f(0)
1—7r

Tl

lim (Sf(r) - g(?“)) = Hy(1) —g(1),

so the only ambiguity is an explicit additive constant determined by the declared counterterm
g(1).
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F Holomorphy versus interior poles: a pole-barrier rigidity tem-
plate (notes)

[Audit] This appendix records an abstract rigidity motif used repeatedly in Abel-first analytic sta-
bility arguments: if a protocol object is defined as a holomorphic function on the unit disk, then
any competing representation that would force an interior pole is incompatible. The template
is included for reuse and is not used as a premise in theorem-level folding proofs.

F.1 Exponential modes force interior poles

Lemma F.1 (Interior pole from an off-stable exponential mode). [Math]Let A € C with Re(\) > 0
and define the mode generating function

>
My(r) = Zrt M, Ir| <e” Re(}),
t=0

Then My has the meromorphic closed form

1

M =1

with a pole at vy = e~ satisfying |r\| = e~ Re(\) < 1. In particular, any expression that contains
a nonzero multiple of My cannot extend to a holomorphic function on the full unit disk {|r| < 1}.

Proof. The series is geometric with ratio r e* and therefore sums to 1/(1 —re’) on its domain of
absolute convergence. The pole occurs where the denominator vanishes, at 7 = e~ *. Its modulus
is e~ Re(M) < 1 when Re()\) > 0. O

F.2 Holomorphic-meromorphic incompatibility at a pole

Lemma F.2 (Holomorphic-meromorphic incompatibility). [Math]Let U C C be open and let
ro € U. If F' is holomorphic on U and G is meromorphic on U with a pole at rg, then F # G

on U\ {ro}.

Proof. Assume for contradiction that F' = G on U \ {rp}. On a small disk centered at ro, F' has
a Taylor series while G has a Laurent expansion with a nontrivial principal part. Equality on
the punctured disk forces the principal part to vanish, contradicting that G has a pole. 0

F.3 How the template is used in this paper

[Audit]In this paper, the Abel-first viewpoint enters in two concrete places: (i) the e-channel
analytic stability template via Artin-Mazur zeta and Abel normalization (Section and Ap-
pendix [B]), and (ii) canonical finite-part prescriptions for bounded traces and orbit sums (Ap-
pendix . The lemmas above formalize the generic obstruction: any representation that would
require an interior pole is incompatible with the closed-layer holomorphy requirement on the
unit disk.

G Tick + CAP derivation spine: from the sole input to all in-
terface outputs

This appendix records the full “tick + CAP” derivation spine in one place. It introduces no

additional axioms or independent physical inputs beyond: (i) tick as the sequential update index

(Axiom [1.1]), and (ii) CAP as the universal closure/selection rule on explicit finite candidate
families (Axiom and Appendix . All other ingredients used throughout the paper are
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either theorem-level definitions/proofs in the finite model, or CAP-closed interface components
whose candidate families and tie-break rules are explicit and audited by deterministic scripts.
External reference conventions (PDG/CODATA targets, renormalization schemes, threshold
choices) enter only at the matching layer as comparison inputs and are never used as premises
for theorem-level folding statements.

Two-axiom spine (reader contract). Within this paper, “physics” means the executed
protocol outputs of a run. The only primitive input to that execution is the tick stream, and
the only primitive rule for closing otherwise underdetermined interface components is CAP.
Accordingly, every nontrivial interface component below is recorded in one of two forms: a
theorem-level finite construction, or a CAP-closure over an explicitly declared bounded candidate
family with deterministic tie-break rules.

G.1 Reading guide and dependency convention

We use the following status tags consistently:
o [Tick]| definitional use of the sequential tick stream and finite window records.
o [Math] theorem-level finite constructions (counts, maps, explicit tables).

o [CAP] bounded-complexity closure: explicit finite candidate family + deterministic
objective/tie-break.

o [Match] matching-layer comparison to external conventions (PDG/CODATA,
scheme/scale).

Appendix |[K] provides a compact ledger of these dependencies; the present appendix expands
each nontrivial CAP-closure step in full audit form (candidate family, objective, tie-break, and
where it is reproduced).

G.2 Tick to finite observables: words

[Tick] Finite observability is windowed. Given the tick stream (Axiom [1.1]), finite obser-
vation at resolution m is represented by binary words w € Q,,, = {0,1}"™ obtained by window
projection (Section 2| and Appendix . This fixes the basic data type used throughout: (tick,
word).

G.3 CAP selection of the golden branch and the Fibonacci base

[CAP] Candidate family. At the scan layer one may choose an irrational slope o € (0,1) \
Q in the Kronecker orbit. Within the audited proxy class of finite-depth continued-fraction
complexity at depth m,

m
Cn(a) ::Zak_H for a = [0;a1,aq,...],
k=0
CAP selects the unique minimizer at every depth.

[CAP] Objective and tie-break. Minimize C),(«) at each depth m; the tie-break is trivial
because the minimizer is unique.

[CAP] Result (rigidity). Proposition [2.5{shows that o = = =[0;1,1,1,...] is the unique
minimizer at every finite depth. This rigidly closes the symbolic/arithmetic bridge to the Zeck-
endorf/Fibonacci digit system used downstream (Section [2)).
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[Math] Consequence: Fibonacci grammar and counts. On the golden branch, admissi-
ble digit strings satisfy the forbidden-word grammar (no adjacent ones), yielding the Fibonacci
stable-sector sizes | X;,| = Fn42 (Lemmalfd.5) and the canonical 7-channel split (Proposition[4.8)).

G.4 CAP selection of a locality screen and an addressing basis

[CAP] Screen dimension. Closed-loop transport diagnostics require cycles. In a one-
dimensional display graph there are no plaquettes, hence no holonomy; therefore the minimal
screen dimension that supports the finite holonomy diagnostics of Section [0] is 2. Accordingly,
CAP selects a 2D screen as the minimal choice that admits an auditable loop-based diagnostic.

[CAP] Addressing basis on the chosen screen. Given a 2D screen, an addressing basis
is a bijection from a finite tick prefix to grid sites. We treat the choice of addressing basis as a
CAP-closed selection in an explicit finite counterfactual family:

o candidates: Hilbert vs. row-major on the same 8 x 8 screen at the anchor;

o objectives: protocol-internal locality /overhead metrics (scan-path jump quantiles, neigh-
bor fiber-matching overhead quantiles, phase-lift computability failure rate);

o tie-break: lexicographic ordering of the objective vector.

The resulting comparison and the deterministic selection are recorded in Table|5|and reproduced
by scripts/exp_addressing_selection.py.

G.5 CAP selection of balanced coupling and of the anchor (n,m) = (3,6)

[CAP] Balanced coupling as minimal overhead. On a fixed screen, attaching spatial
diagnostics requires assigning microstate labels to sites. CAP selects the bijective coupling
(Remark [4.3): on the 2D screen, 2™ = 4™ (equivalently m = 2n) so that each site carries exactly
one m-bit microstate label and no additional mapping conventions are required.

[CAP] Anchor selection by minimal nontrivial holonomy. Within the balanced chain
m = 2n, CAP selects the smallest n for which the deterministic finite connection yields nontrivial
plaquette holonomies (3/4 cycles) and a nonzero phase-lift signal. The balanced-chain sweep in
Table 30| shows that n = 1,2 yield only trivial (identity) holonomy, while n = 3 is the first scale
with nontrivial 3/4-cycle content. Therefore the anchor on the chosen screen is (n,m) = (3,6).

G.6 The folding core and stable types at the anchor

[Math] Folding is a finite theorem-level layer. Given the golden-branch grammar and the
explicit Fold,, projection, the folding core is a finite combinatorial statement: at m = 6 one has
64 — 21 with the canonical split 21 = 18 & 3 (Section . No additional physical identification
is used as a premise.

G.7 CAP derivation of bulk dimension from the anchor bit budget

[CAP] Rigid-frame coarse-lock as a finite interface criterion. At the protocol inter-
face, “bulk dimension” enters only when one defines what it means to display a localized rigid
frame and compare poses across sites. Under the minimal two-bin-per-parameter coarse-lock
convention, a single m-bit window can coarse-lock a rigid frame in dimension d only if

d(d+1)

m > dim SE(d) = 5

(Definition [3.6)).
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[CAP] Objective. At fixed anchor m = 6, CAP selects the maximal bulk dimension d com-
patible with the coarse-lock budget.

[CAP] Result. Proposition [3.7shows that d = 3 is the unique maximal admissible dimension
at m = 6 under the minimal convention. Thus the 3D rigid-frame dictionary is not an external
input: it is a CAP output of the anchor budget.

G.8 CAP tie-break for the orientation-class bit (chirality sign)

[CAP] Candidate family. On the 2D Hilbert screen, the global layout family is D4 and
splits into two orientation classes (Section. Reflection swaps the two classes and flips the sign
of the discrete chirality index x (Proposition .

[CAP] Tie-break. Because the two orientation classes are symmetry-related and cost-
degenerate under the locality diagnostics, CAP fixes a canonical representative by determin-
istic tie-break: the forward-traversal layout at n = 3 is chosen so that y < 0 (Definition
Appendix [AE]). The reflected layout defines the mirror protocol.

G.9 CAP-closed phase-register and phase-map dictionary (holonomy lift)

[CAP] Baseline closure. Phases are represented by a dyadic register Zgr and the phase
lift uses denom = 2P together with a low-complexity index map 7 (Section . The baseline
choices are fixed by CAP as canonical minimal-description representatives coherent with the
anchor window:

o choose denom = 2™ (anchor-coherent dyadic denominator);

o choose T = Tiq (identity map as the minimal bit-level transform).

[CAP] Audited bounded counterfactual families. The dyadic refinement chain and the
bounded phase-map family are not hidden knobs: their influence is recorded by deterministic
sweeps and counterfactual baselines. In particular, the denominator sweep is reported in Table[IT]
and the phase-map family sweep is reported in Tables all reproduced by scripts listed in

Appendix [A]]

G.10 CAP-closed coupling/CP normalizations from phase-volume data

[CAP] Electromagnetic normalization. Section fixes the three-stratum impedance
template and closes the phase-volume dictionary by CAP within an explicit finite primitive
family (Definitions .i This yields the closed geometric impedance value ae_nllgeo =
473 + 72 + 7 (Theorem |AF.9).

[CAP] Electroweak normalization. At the Z scale, the electroweak normalization is closed
by CAP from discrete weights already fixed by the closed labeling at the anchor (Defini-

tion [AF.12)), yielding a™(uz) = 1372 and sin? Oy (uz) = 3/13 (Theorem |AF.14)).

[CAP] CP normalization. The CP-odd phase space is CAP-closed within the same primitive
family (Definition|AF.20/and Proposition|AF.24)), yielding the closed normalization target Jgeo =

1/(1177) (equation (8H)).
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[Match] External comparisons are not premises. CODATA/PDG values enter only to
report mismatch sizes, stability under perturbations, and within-family look-elsewhere context
(Appendix ; they are not used as premises for the theorem-level folding core or for the
CAP-closed normalization dictionaries above.

G.11 Gauge fields as compensating connections (from fiber mismatch)

[Tick, Math] Cross-site comparison forces extra transport data. At any fixed window
length m, a stable label w € X,, stands for an entire microstate fiber Fold,!(w). Therefore,
if the protocol requires comparing or transporting stable labels across neighboring sites in a
display graph, then stable labels alone are insufficient: one must choose how the endpoint fibers
are matched. This necessity is finite and intrinsic to window projection and stability folding.
Proposition formalizes the point and shows that, after a deterministic padding to a uniform
slot size 7 = maxyex,, [Fold,!(w)|, each edge transport is represented by a permutation in S,
with local relabelings acting by conjugation (a finite gauge redundancy).

[Math] Deterministic discrete holonomy at the anchor. At the CAP-minimal anchor
m = 6 one has r = 4, and the paper provides a deterministic S; edge-connection construction
together with plaquette holonomy diagnostics (Section @ This is the finite, protocol-internal
origin of the connection/holonomy language used throughout.

[CAP] Three commuting channels close a three-factor compensation structure. The
folding template isolates three commuting defect channels (p, 7, e). If compensation is defined
only up to independent local basis changes associated with each channel, then the minimal
redundancy factorizes into three independent components (Proposition .

[CAP] Gauge-factor closure (bounded family, objective, tie-break). To pass from
the finite graph connection to a continuum dictionary, we treat gauge redundancy as internal
and unitary (hence compact at the group level), and we restrict to three-factor products with
one abelian phase sector and two inequivalent compact simple non-abelian factors. Within the
explicit bounded family

U (1) x Go X Gg,

with G and G3 compact, simple, non-abelian and non-isomorphic, we use dim(g) as the intrin-
sic complexity label and apply CAP as lexicographic minimization of (dim go, dim g3) (Propo-
sition [8.2). The unique minimizer is U(1) x SU(2) x SU(3) (up to finite quotients), by the
compact Lie classification and Lemma [9.4

G.12 Closed Standard Model labeling as a CAP-minimal rank matching

[Math] The 18 & 3 target cardinalities are fixed at the anchor. At (m,n) = (6,3) the
stable sector is Xg = X&° U Xg™ with |XZ°| = 18 and | X2 = 3 (Section ). Any SM
identification at the anchor must respect this split.

[CAP] Minimal closure of the cyclic target set. On the SM side we require 18 chiral
multiplets (field-level labels) to match the 18 cyclic stable types. Within the bounded family
of minimal extensions of the SM fermion content at fixed three generations, CAP selects the
anomaly-neutral minimal addition that closes the cardinality: a sterile singlet vp with Y = 0
(Proposition . This closes Fsy to 18 multiplets without changing anomaly sums or intro-
ducing new charged matter.
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[CAP] Candidate family and objective for the labeling map. Consider the finite family
of split-compatible maps
Lsm = Xe — Fsm U Gswm,

where Ggv = {U(1),SU(2),SU(3)} are the three gauge-factor connection classes. CAP closes
the map by minimizing ordering mismatch subject to split compatibility:

e cyclic sector: fix a deterministic intrinsic order <x on Xg' using only stable-type
invariants (Definitions and [9.11)), and fix a deterministic SM-side order <p on Fgy
using only discrete quantum-number invariants (Definition [9.12));

e objective: minimize the number of inversions between the induced pairing and the target
orders (equivalently: enforce order preservation);

o tie-break: deterministic rank matching (order isomorphism) on the cyclic sector; and on
the boundary sector, monotone matching of intrinsic boundary value V(w) to gauge-sector

complexity dim(g) (Lemma [9.3| and Remark [9.18]).

[Math] Result (uniqueness). Theorem shows that the minimizer is unique: the cyclic
assignment is the unique order isomorphism between two finite total orders, and the boundary
assignment is the unique monotone permutation among 3! = 6 candidates. The explicit labeling
table is recorded in Table [15] and reproduced by scripts/exp_sm_labeling_solver.py.

G.13 Mass as latency: CAP-closed integer depth ansatz and rigidity

[Tick] Mass/energy are time-scale ratios in a log-time coordinate. The Fibonacci

resolution coordinate
7"( ) — log(:u‘/me)

log ¢
is used because it linearizes multiplicative time-scale ratios (Section. In tick-first language, a

depth mismatch Ar is a multiplicative mismatch of Compton-clock period and can be compared
to operational delay proxies (Remark and Appendix [Y).

[Math] Intrinsic stable-type invariants supply a discrete cost basis. At the anchor,
each stable type carries intrinsic invariants (V(w), g(w), |w|i) (Definition [8.9). The degener-
acy g(w) = |Foldg'(w)| measures residual microstate uncertainty under window projection
(Lemma and is therefore the protocol-native discrete overhead term in a protocol-cost
dictionary.

[CAP+Match] Bounded integer closure for the depth map. To make the depth as-
signment auditable as a low-complexity closure, we restrict to the explicit bounded family of
integer-linear depth maps

P(w)=aAV+bAg+cAlwly,  abceeZ,  |a||b]|f<B

(Appendix equation ) The objective is evaluated on the scheme-stable charged-lepton
anchors {y, 7} in the resolution coordinate r(u), with deterministic lexicographic tie-break rules;
an extended quark set is recorded as a diagnostic.

[CAP+Match] Result (rigidity). Proposition shows that the unique minimizer stabi-
lizes at (a,b,c) = (2,5,1) by B =5 and remains constant up to B = 20 (Table [94), reproduced
by scripts/exp_mass_depth_rigidity.py. Once the coefficients are fixed, the closed tem-

plate mass prediction is pprea(f) = me ") (Definition [13.3)), and all remaining deviations are
recorded explicitly as matching-layer shifts Ar (Section 1_—3| and Appendix [AG]).
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G.14 Resolution staircase: CAP-closed calibration and deterministic selec-
tion

[CAP+Match| Candidate family for the step size. To close the energy«»>m interface
at the protocol layer, we fix a deterministic staircase template g, (m) whose only free discrete
choice is the step size rgep (Section [14.2.1). We restrict to the explicit bounded family

Tstep = KT, 1 <k <10,

audited by deterministic sweeps.

[CAP+Match] Objectives and tie-break. Two deterministic calibration objectives are
recorded:

 single-anchor: match the electroweak anchor by minimizing |log(un(10)/mz)| over the
candidate family (Table [20));

« two-anchor minimax: minimize the maximum absolute mismatch across (m = 10,mz)
and (m = 8, uqep) with deterministic tie-break rules (Table [21)).

[CAP+Match| Result. Proposition records that rgep, = 27 is the unique minimizer
under both audited objectives within the stated bounded family. With 74ep fixed, the effective
resolution map meg (1) is selected deterministically by least discrepancy (Corollary [14.2)).

G.15 Frequency-first continuum representative: equivalence, action, and
equations

[Iface] Equivalence semantics fixes what counts as “the same physics”. Appendix
records the semantic quotients already used throughout the paper (tick-origin shift, projection-
fiber equivalence, local basis relabeling/gauge, coarse-graining preorder, and action equivalence).
In particular, frequency is treated as a primary derived quantity in tick units via phase advance

w = Af/At (Definition [AA.1)).

[Iface+CAP] CAP-closed action representative on a finite family. To obtain a contin-
uum dynamical representative without introducing new primitives, we treat the choice of action
as a CAP closure:

o candidates: a finite term-type dictionary of local covariant invariants (gravity, gauge,
information/overhead sector, matter placeholder) together with a bounded rational coef-

ficient box (Appendix [AD.4));

e objective: lexicographic minimality in derivative order and description complexity, com-
patible with the equivalence semantics and coarse-graining monotonicity;

o tie-break: deterministic complexity key (term count, denominator height, and declared
group-dimension keys where applicable).

The resulting CAP-minimal action skeleton is recorded in Proposition

[Math] Field equations by standard variation. Once the representative action is fixed,
the dynamical equations are the Euler—Lagrange equations of that action. Appendix
records the resulting Einstein equation with total stress (Theorem , Yang—Mills equations
(Proposition, and the y-sector amplitude equation (Proposition , together with the
weak-field Poisson template (Section [AD.5.6)).
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G.16 Thermodynamics as coarse-graining and CAP free-energy closure

[Iface+CAP] Entropy/temperature and entropic force. Appendix[AD.G records a ther-
modynamic closure compatible with the same equivalence semantics: entropy is defined by
coarse-grained state counting (or boundary channel capacity), temperature is the conjugate fre-
quency scale, and equilibrium selection is a CAP closure on a finite family (Proposition .
Force is treated as a response functional (free-energy /action gradient), aligning the entropic-force
dictionary with the weak-field gravitational potential dictionary.

G.17 Overhead-to-gravity closure and a data protocol for y

[Iface] Overhead and lapse dictionaries. Appendix records a minimal overhead-to-
lapse closure: define xy = log(x/kp) and set N = e~ 7X as the lapse proxy (Definition . In a
static gauge, set goo &~ —N? and identify the weak-field potential by goo ~ —(1+2®/c?), yielding
® = —vc2(x — xo0). This closes a weak-field Poisson source template peg o< —Ax (equation ([68]))
with a single calibration parameter ~.

[Prot] x(z) reconstruction protocol. Appendix records an executable pipeline:
Hilbert binning — window words — folding statistics g,, (or defect proxies) — x(z) =
log(gm/go). Given x(x), v can be fit by rotation curves, lensing, or delay/redshift proxies.

G.18 Quantum readout and Born-probability rigidity

[Iface] POVM readout. Appendix |[AD.10| records finite-resolution readout by POVMs and
instruments, giving Born probabilities P, = Tr(pFE}).

[Iface] Closure routes for Born weights. Two complementary closures are recorded: (i)
a projection-induced counting template compatible with the finite fiber semantics of this paper
(Theorem, and (ii) a mature uniqueness theorem (Gleason—Busch; Theorem that
forces the Born form under noncontextual additivity.

G.19 Running couplings and cosmology as resolution flow (self-contained in-
terfaces)

[Iface] RG in the r coordinate. Appendix [AD.11| records the chain-rule form dg/dr =
(log ¢)B(g) and standard one-loop templates, together with threshold matching as discrete uplifts
in the protocol flow.

[Iface] Cosmology as resolution initialization and capacity growth. Appendix[AD.12]
records a minimal cosmology interface: big bang as resolution bootstrapping, inflation as expo-
nential growth of stable capacity |X,,| ~ ¢™ under approximately linear m(t), and a discrete
energy-budget matching hypothesis on the stable fraction fgap,(m) = Fpi0/2™.

H CAP closures: deterministic audit template

This appendix collects a single, reusable audit template for bounded-complexity closures under
the Computational Action Principle (Axiom . It introduces no new axioms or independent
inputs beyond those declared in the main text; it only makes explicit the finite selection logic
already used throughout the paper.
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H.1 Selection on a finite candidate family

The core reason the audit program is well-posed is finiteness: for each bound B, the candidate
family ©(B) is a finite set by construction (Definition [H.IJ).

Definition H.1 (Bounded-complexity closure (audit form)). Fiz reference targets 2}t > 0 and
a candidate family x;(6) > 0 indexed by discrete parameters 0. For a bound B € N, let O(B) be
a finite domain of admissible parameters (the “complexity box”). Define the log-mismatch vector

(0
i(6) = log<x fef)) ,
Zj
and the summary objectives

Ex(0) := max lei(0)], Eq(0) := Z le;(0)].

%

A bounded-complezity closure is the selection of a unique O € ©(B) by lexicographic minimiza-
tion: first minimize Eo, then Ey, then any stated secondary criteria (e.g. coefficient sum), with
a fully specified tie-break rule.

Remark H.2 (Why log-mismatch is used). The log mismatch is dimensionless and symmetric
under inversion: log(xz/x"f) = —log(x*f /x). It also linearizes multiplicative matching factors:

if x = sx™, then log(z/2™") = logs. For small deviations, |log(x/x")| ~ |z — z"f|/2ret.

Proposition H.3 (Deterministic closure map). Fiz a bound B € N and a finite candidate family
O(B). Let (Ex(0), E1(0),T(0)) be a triple of real-valued diagnostics on ©(B), where T' denotes
any fully specified secondary tie-break key (possibly vector-valued with a fized lexicographic order).
Then the lexicographic minimization Tule

Op € argmin (Ex(0), E1(6),T(6))
0cO(B)
selects a nonempty minimizer set and defines a deterministic selection function once T is chosen
so that ties are fully resolved.

Proof. Because O(B) is finite, the set of triples {(Ex(6), E1(0),T(6)) : 6 € ©(B)} is finite, hence
admits at least one lexicographic minimum. If the tie-break key 7' is defined so that equality of
the full triple can occur for at most one element, the selected minimizer is unique and the rule
becomes deterministic. O

H.2 Audit outputs beyond point estimates

For each closure, the paper reports additional finite statistics that quantify within-family look-
elsewhere context and stability under perturbations (Section and Appendix [AE]). Two fre-
quently used diagnostics are the candidate-domain size and a uniqueness gap.

Definition H.4 (Rigidity certificate). A closure is called rigid on a tested range B €
{1,..., Buax} if the minimizer is unique at each B and stabilizes: there exists By < Bpax
such that g = 0p, for all B, < B < Bpax-

Definition H.5 (Domain size and uniqueness gap). Let © be a finite candidate family and let
J(0) be an objective (e.g. Ex(0)). Define the domain size as |O|. If the minimizer is unique,
define the uniqueness gap as

AJ = J(OP) — J0W),

where ) s the minimizer and 0® is the best competitor under the same tie-break ordering
restricted to J.
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category status in this paper

protocol primitive the tick (scan iteration count) and window observables (Axiom Section D

derived protocol structures admissible languages X,,, folding maps Fold,,, and intrinsic invariants (Sec-
tions b

audited discrete closures explicit finite candidate families selected by CAP (e.g. bounded-complexity bud-

get B, phase denominator denom = 2P, bounded rationals for mixing/phases,
staircase step Tstep; Section j

external reference conventions PDG/CODATA targets and scheme/scale choices treated as inputs at the match-
ing layer (not fit)

Table 24: Audit contract: what is fixed, what is swept under explicit finite bounds, and what is
treated as an external reference convention.

H.3 Reference implementation sketch (audit form)

The following pseudocode summarizes the selection logic implemented by the deterministic
scripts in this repository. It is intended as an audit aid (not as a new modeling premise).

Input:
- finite candidate set Theta(B)
- reference targets x_ref[i] > O
- candidate map x(theta)[i] > O for theta in Theta(B)
- objective: E_inf(theta) = max_i |log(x_i(theta)/x_ref([i])|
E_1(theta) = sum_i |log(x_i(theta)/x_ref[i]) |
- tie-break key T(theta) (fully specified; lexicographic)

Algorithm:

best <- None

for theta in Theta(B):
compute e_i(theta) = log(x_i(theta)/x_ref[i]) for all i
compute (E_inf(theta), E_1(theta), T(theta))
if best is None or (E_inf, E_1, T) is lexicographically smaller than
— best:

best <- (E_inf, E_1, T, theta)
output theta_B = best.theta

Audit outputs (in addition to theta_B):
- |Theta(B)| (domain size)
- best/second-best gaps for E_inf and E_1 where feasible
- quantiles of E_inf over Theta(B) for large domains
- robustness under explicit target perturbations
- counterfactual baselines within stated families

Remark H.6 (Why this does not add hidden knobs). The only discretionary content in a closure
is the explicit declaration of the finite family ©(B), the objectives, and the tie-break key T. Once
declared, the selection is a deterministic function of these finite inputs (Proposition . This
is the operational meaning of the paper’s “no-hidden-knobs” audit contract (Table .

I Rigidity-bridge certificates and mainline checklist (audit)

[Audit] This appendix records a compact checklist for “rigidity bridges”: auditable certificate forms
that turn a narrative step into a verifiable implication with an explicit minimal input set. It is
reader-facing audit infrastructure and is not used as a premise in theorem-level folding proofs.

I.1 Certificate forms (RB-A/B/C/D)

We use four certificate templates:
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o RB-A (finite-family minimization). A finite candidate family F, an explicit objective
functional J : F — R, and a deterministic tie-break rule; the output is a unique (or
near-unique with a gap) minimizer f, = arg ming J.

o RB-B (incompatibility / obstruction). A “bad” structure would force an obstruction
(e.g. an interior pole) that is incompatible with an established analytic domain or stability

certificate; hence the bad structure is excluded.

o RB-C (counting/classification rigidity). A finite classification, counting identity, or
image—preimage structure forces a unique decomposition (e.g. 64 — 21, 18 @ 3).

o RB-D (gap-stability / robustness). A quantitative gap or sensitivity bound shows that
the conclusion persists under bounded counterfactual families or perturbations, upgrading
“accidental alignment” to a robust closure.

I.2 Mainline checklist (where each bridge is realized in this paper)

mainline jump closure output RB form minimal inputs where in this paper
Tick — CAP deterministic  finite- RB-A tick + bounded com- Axioms Appendix ,
family closure rule plexity + tie-break Appendix IE
CAP — golden branch  finite-depth least- RB-A/RB-D continued-fraction Proposition , Subsubsec-
discrepancy selection proxy + audited tion @ Appendix IE
of o =~ discrepancy bound
golden branch — ¢- admissible set X,  RB-C Zeckendorf admissibil-  Lemma Appendix
grammar with [Xm| = Frt2 ity
p-grammar — 7w~ cyclic/boundary split RB-C wrap-around con- Proposition Corollary
closure and 18 3 at m =6 straint + Fibonacci
counts
(¢, ™) — e stability zeta/Abel normaliza- RB-B/RB-D unit-disk holomorphy Section Appendix Ap-
tion and pole-barrier + Abel path conven- pendix@ Appendixﬂ
template tions
m-closure — anchor minimal explicit RB-A/RB-C finite screen family +  Section Remark Ta-
screen anchor cardinality match +  ble El
(m,n) = (6,3) and tie-break
audited addressing
choice
anchor —  finite connec- RB-C/RB-D local fiber relabeling Section@ Appendix
gauge/holonomy tion/holonomy in- + loop invariants +
variants modulo local bounded families
relabeling
gauge — SM label- bounded-family label- RB-A/RB-D explicit candi- Section@ Appendix Ap-
ing/mass ing closures at the an- date families +  pendix E
chor gap/robustness audits
overhead — grav- overhead-to- RB-B/RB-D error budget + coun-  Appendix , Ap-

ity /dynamics

lapse/potential
closure with error
control

terfactual regulariza-
tion sweeps

pendix @

I.3 A minimal workflow for upgrading intuition to audit statements

[Audit)When adding an interface intuition, we recommend the following minimal workflow:

o Step 0 (decide the layer). Decide whether the target sentence belongs to the theo-
rem layer ([Math]), the operational dictionary ([Interface]), external calibration ([Match]), or
audit/provenance ([Audit]).

o Step 1 (objectify and constrain). Replace narrative words (“stable”, “unique”, “mem-
oryless”) by explicit objects and constraints (functional equation, finite minimization,

counting identity, or obstruction).
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item status where defined audit / falsifiability channel

tick-only primitive Axiom Section Section Foldg checks; Appendix

CAP closure rule Axiom |1.5] Defini- Section , Appendix audit tables; Appendix
tion
dyadic phase registers Zor CAP-audited Section and Section , denom/map-family audits; Sec-
bounded closure  Appendix E tion @
(phase-lift dictionary)
addressing basis (screen) CAP-audited counter-  Section [5) Section Table [5; Appendix
factual closure
rigid-frame display anchor interface  dictionary  Section Section resolution staircase; Section
(derived localization
criterion)
Hilbert orientation class CAP tie-break (one- Section Deﬁnition x sign flips; Proposition
bit canonical repre- Prediction P2
sentative)
three channels <> three gauge Proposition Section closed labeling; Theorem
factors holonomy diagnostics; Section
geometric normalization dic- CAP-closed dictionar-  Section rigidity targets and audits; Ta-
tionaries ies (bounded families) ble E Appendix @

Table 25: Audit-facing interface contract: tick and CAP as the primitive inputs; all other
interface components are CAP-closed within explicit finite candidate families and audited by
the listed channels.

o Step 2 (choose a certificate form). Record which RB form (A/B/C/D) certifies the
step, and state the minimal inputs used.

o Step 3 (separate matching inputs). Move unit choices, reference scales, and external
targets into [Matchland/or the inference ledger, never as premises.

o Step 4 (audit hooks). Record the candidate family, objective, tie-break, and reproduc-
tion script entry points when applicable.

J Audit overview: contract and inference map (supplement)

This appendix records two reader-facing audit summaries used throughout the main text: the
audit-facing interface contract and the inference map.

K Inference ledger: what is implied within the declared input
set

This appendix answers a compact audit question that arises repeatedly in the HPA-{2 program: if
one does not introduce any additional axioms or free continuous inputs beyond what is explicitly
declared in the main text, what physically meaningful conclusions can be inferred, and what is
their dependency status? We summarize the answer as a layered ledger. The purpose is not
to add new claims, but to make explicit which statements are (i) theorem-level consequences
of finite combinatorics, (ii) finite protocol constructions, (iii) conditional interface implications
under stated dictionaries, and (iv) bounded-complexity closures with reported mismatch factors.
Appendix |G| provides the expanded tick + CAP derivation spine (candidate families, objectives,
and tie-breaks); the present ledger is the compact status summary.

Notation for status tags. We use five audit-facing tags:

o [Math] theorem-level statement in the mathematical layer (finite definitions and proofs).
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e A
Mathematical layer (finite constructions).

Readout sequentiality: time as tick (Axiom [L.1]). > Folding core and invariants (Section '
) o . At (m,n) = (6,3): 64 — 21 and 18 ® 3 (Sec-
Tick-first dictionary (Section [3). .
L ) tion .
N

r 2
Primitive axiom (tick input).

r N Y
Primitive axiom (CAP closure). ( h

Computational Action Principle (Axiom [[3) in- Gl SN mipei D )
stantiated as bounded-complexity closure and § ~sM .

deterministic tie-breaks (Definition [FL.T). o Mass—depth closure and rigidity certificates (Sec-
L ) tion .

Coupling/angle/CP rigidity targets (Section [IT).
Resolution staircase selection and calibration

( M)

CAP-closed interface components. vl (Section ~
Rigid-frame display dictionary and derived bulk [~ ~ g
dimension (Section Proposition . v
i ion-class bi o . i s M
8éflon class bit (CAP tie-break; Defini Protocol-level predictions and tests.
C AP-r.niﬁimal gauge-factor closure (Proposi- Falsifiability statements P1-P6 (Section and
. audit tables (Appendix [AE).
tion (8.2]). L )
CAP-closed phase-volume dictionaries for nor-
malization targets (Section .

- J

Figure 5: Inference map of the paper under the two-axiom spine (tick input and CAP closure).
Solid: theorem-level; dashed: interface dictionaries in protocol language; dotted: CAP-audited
selection.

[Prot] finite protocol construction (explicit algorithm on a finite model; no continuum
limit assumed).

o [Iface] physical identification statement (a dictionary/closure declaration stated in proto-
col language).

o [CAP] bounded-complexity closure (finite candidate family + deterministic tie-break
rules).

o [Open] explicitly recorded open problem (not closed within the declared input set).

Matching-layer dictionaries (units, scheme dependence, threshold conventions) are recorded ex-
plicitly as such in the main text; they are not treated as new premises here.

K.1 Declared inputs (minimal list)

The paper’s declared protocol primitives are recorded in Table and Figure In the strict
tick-only program pursued here, the only primitive inputs are:

o Tick (scan iteration count) as the time variable (Axiom Section [3)).

o CAP as the universal selection/closure rule within declared finite candidate families (Ax-

iom Definition Appendix .

All other items that appear throughout the paper (golden-branch slope, addressing basis, anchor
selection, orientation-class tie-break, phase-register choices, and coupling/CP normalizations)
are treated either as theorem-level definitions in the finite model, or as CAP-closed interface
components within explicitly declared finite candidate families with deterministic tie-break rules;
matching-layer reference conventions (PDG/CODATA, scheme/scale) are recorded explicitly
and are not counted as premises.
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Audit reading. Whenever the main text reports a “closed” numerical value for a physical
quantity, the intended status is [Iface] (a dictionary/normalization choice) together with [CAP]
(closure within a stated finite hypothesis class), and any residual deviation from PDG/CODATA
conventions is interpreted as a matching-layer factor rather than as a theorem-level claim.

K.2 Mathematical-layer consequences (no physical identification needed)

Stable-sector grammar and counts.

o [Math] Fibonacci admissible counts. For every m > 1, the p-admissible set X,,, C Q,,
(forbidden substring “11”) satisfies | X,,,| = Fin12 (Lemma[4.5). In particular, | Xg| = 21.

o [Math] Canonical 7-split. For m > 4, the wrap-around predicate D, induces a canonical
cyclic/boundary split X,, = X&°¢ U XPdY with | XPdY| = F, 5 and |X&°| = Fiyo —
F,,—2 (Proposition . At m = 6 this is 21 = 18 ® 3 with explicit boundary words
(Corollary [4.9).

o [Math] Fold surjectivity. The truncation folding map Fold,, : {0,...,2"™ —1} — X, is
surjective for every m > 1 (Proposition 4.20]), and in particular Foldg : {0,...,63} — Xg

(Lemma [4.16)).

o [Math] Canonical integer labeling of Xs. The Zeckendorf-value map V : Xg —
{0,...,20} is a bijection (Proposition |4.15]).

Hilbert-path chirality sign law.

o [Math] Parity and traversal reversal flip x. For the discrete Hilbert chirality index
x defined in , any reflection and traversal reversal flip its sign, while orientation-
preserving rigid motions preserve it (Proposition [5.4)).

K.3 Finite protocol constructions (computable, no continuum limit assumed)

Discrete connection/holonomy skeleton at (m,n) = (6,3).

o [Prot] A deterministic S; edge connection. At the m = 6 anchor, stable-type fibers
satisfy |P(w)| € {2,3,4}. Padding to 4 slots and minimizing Hamming-cost matchings
yields a deterministic edge transport p,—p, € S4 (Lemma [6.4)).

o [Prot] Gauge-invariant plaquette signatures. Under local relabelings of fiber slots,
plaquette holonomy transforms by conjugation, so its Sy cycle type is invariant (Proposi-

tion .

o [Prot] Dyadic phase-lift and a CP-odd invariant. Given a bounded low-complexity
phase map family 7 and dyadic denominator denom = 2P, the phase-lifted edge transport
produces a finite holonomy model with an induced Jarlskog-type invariant J (Section .
The role of Z9g is explicit at p = 7 (Remark [6.11]).

K.4 Interface-level implications (conditional on stated dictionaries)

Rigid-frame coarse-lock anchor and the vacuum sector.

o [Iface] Localization admissibility threshold. Under the rigid-frame display anchor
(Section [1.3)), window lengths m < 6 are sub-admissible for single-window coarse rigid-
frame display and are treated as protocol-rejected as localized matter within this interface

dictionary (Section see also Remark [L.4] for scope).
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o [Iface] Ghost-sector vacuum microstructure at fixed m. Even at fixed m, mi-
crostates outside the admissible grammar are protocol-unstable. At m = 6, the ghost-
sector size is [Q \ Xg| = 64 — 21 = 43 (Section [P)).

Gauge fields as compensating connections.

 [Iface] Compensation is forced by finite fibers. When stable labels have nontrivial
fibers, cross-site comparison requires an additional transport rule; local relabelings imply
a gauge redundancy (Proposition [8.1)).

o [Iface]+[CAP]| Three-factor closure and the SM gauge triple. If compensation
decomposes into three commuting classes and gauge factors are modeled as compact uni-
tary groups, then CAP-minimal selection within the stated factorization family yields
U(1) x SU(2) x SU(3) up to finite quotients (Proposition [8.2).

Chirality, antimatter, and CP-sign anchoring.

o [Iface] Parity as protocol change. Under the canonical orientation-bit convention, the
only physically distinguishable discrete choice in the Dy layout family is the orientation
class detected by sgn(x) (Definition Proposition |7.3)).

 [Iface] Conjugation-as-reversal and antimatter dual. Phase conjugation of the scan
orbit corresponds to scan reversal up to an initial-phase flip (Lemma and Lemma ,
yielding a protocol antimatter dual by word reversal (Definition [7.9)).

o [Iface| Chirality-anchored CP sign. Within a fixed protocol class and a fixed PDG
parameterization, CP-odd sign conventions are anchored by sgn(x) (Definition .
Closed labeling and minimal chiral content.

o [Iface]+[CAP] Closed 21-type labeling at the anchor. Once one commits to the
split semantics (cyclic <+ matter multiplets, boundary <> gauge-factor classes) and to the
stated deterministic ordering rules, the labeling map Lgy is uniquely fixed (Theorem 9.17)).

o [Iface] Anomaly-neutral closure forces a sterile vg. Closing the cyclic count to
18 with the smallest anomaly-neutral extension selects a sterile singlet vp with ¥ = 0;
anomaly cancellation is unchanged by adding vg (Proposition .

K.5 Quantitative rigidity targets and closures (within stated finite families)

The following are recorded in the main text as explicit low-complexity targets or bounded-
complexity selections, together with mismatch factors and audit context (Appendix [AE):

« [Iface]+[CAP] Electromagnetic impedance target. ag;eeo = 473 + 7%+ under the
declared primitive phase-space family and serial aggregation dictionary (Theorem [AF.9).

o [Iface]+[CAP] Electroweak volume target. a~!(uz) = 1372 and sin? Oy (uz) = 3/13
under the weighted-volume dictionary fixed by discrete invariants (Theorem [AF.14]).

« [Iface]+[CAP] CP volume/multiplicity target. Jyo, = 1/(1177) under the declared
CP-odd phase-space and multiplicity dictionary (equation and Proposition [AF.25)).

« [CAP] Discrete mixing closures. CKM magnitudes (Proposition [AF.27) and PMNS
mixing sines plus bounded-denominator § closure (Proposition [AF.30[ and Table .
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o [CAP] Mass-depth rigidity. Within the bounded integer ansatz, the coefficients (2,5, 1)
are rigidly selected (Proposition [AG.1]).

« [CAP] Resolution staircase calibration. Within the bounded family 7gcp = k7 (1 <
k < 10), the calibration rgep, = 27 is uniquely selected under the stated objectives against
fixed reference anchors (the Z scale, and optionally a conservative QCD-scale anchor),
which enter only as matching-layer comparison inputs (Proposition .

o [CAP] Scalar-sector uplift marker. The Higgs—Z depth offset closure Argz = 2/3
is selected within the stated bounded rational family (Proposition [AH.1]), consistent with
treating scalar behavior as uplift/coarse-graining dependent rather than as a new m = 6

stable type (Proposition [8.12)).

K.6 Continuum representatives: action, field equations, and thermodynam-
ics (frequency-first)

Equivalence semantics and the frequency-first dictionary.

o [Iface] Physical objects as equivalence classes. Appendix formalizes the se-
mantic quotients already used throughout the paper (tick-origin shifts, projection-fiber
equivalence, local relabelings/gauge, coarse-graining preorder, and action equivalence).

o [Iface] Frequency as a primary derived quantity. Frequency in tick units is defined
by phase advance w = Af#/At (Definition [AA.1]) and tied to mass/energy/temperature
dictionaries (Appendix and Appendix @

CAP-closed continuum action skeleton.

o [Iface]+[CAP] CAP-minimal covariant action representative. Appendix
records a finite candidate family of local covariant term types and a bounded rational
coefficient box, and states a CAP-minimal action skeleton Seg (Proposition [AD.1)).

Field equations from variation.

o [Math] Einstein—Yang—Mills equations (given the CAP-selected representa-
tive). Appendix records the Euler-Lagrange equations obtained by varying the
representative action: Einstein equation with total stress (Theorem , Yang-Mills

equations (Proposition [AD.5|), and the y-sector amplitude equation (Proposition [AD.6)).

Thermodynamics and entropic force.

o [Iface]+[CAP] Entropy as state counting and CAP as free-energy closure. Ap-
pendix closes entropy/temperature in coarse-graining language and records a CAP
free-energy selection template on finite candidate families (Proposition [AD.§), together
with the entropic-force response definition.

Overhead gravity and the y reconstruction protocol.

o [Iface] Overhead-to-gravity closure (weak field). Appendix records the dic-
tionary x — N +— ggo — P and the resulting weak-field source template peg ox —Ax,
together with a one-parameter fit for ~.

o [Prot] Executable y(z) reconstruction protocol. Appendix records a Hilbert-
binning — window-word — folding-statistics pipeline that reconstructs x(z) from data or
simulations.
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Quantum readout and Born probabilities.

o [Iface] POVM/instrument interface. Appendix [AD.10| records POVM readout and

instrument update rules as the minimal quantum interface for finite observers.

o [Iface] Born-probability rigidity. Appendix|AD.10|records two closure routes: a count-
ing template aligned with projection-induced degeneracies and the Gleason—Busch unique-
ness theorem.

Running couplings and cosmology as resolution flow.

o [Iface] RG dictionary in the r coordinate (self-contained). Appendix|AD.11|records
the r-flow form of RG equations and the semantics of threshold matching as discrete uplifts.

+ [Iface] Cosmology as resolution initialization/flow. Appendix [AD.12| records the
capacity-growth (inflation-like) mechanism from |X,,| ~ ¢ and a discrete background
energy-budget matching hypothesis.

Connection to falsifiability. The falsifiability statements P1-P6 in Section [14] are phrased
entirely in this protocol language: they depend on the declared interface items above and on
audited finite constructions, and they do not add new theorem-level premises beyond the stated
input set. In particular, the staircase-threshold locations in P3 are conditional on the stated
T'step calibration and its reference anchors, while P1/P2/P4/P5/P6 do not require that numerical
calibration to be stated.

K.7 Open problems (not closed within the declared input set)

The following gaps are explicitly acknowledged as [Open]. They are not implied by the tick-only
primitives or by the finite folding core, and closing them would require additional theorem-level
inputs or a stronger universality framework. For discussion and pointers, see Section [15.7]

+ [Open] Gauge-group uniqueness beyond the stated bounded family. The paper
closes U(1) x SU(2) x SU(3) only conditionally under compactness/factorization and a
declared finite candidate family (Proposition [8.2)). Deriving the candidate family from mi-
croscopic scan/readout architecture remains open; within the stated family, the minimizer

is robust under several natural label choices (Appendix and Proposition |AI1)).

o [Open] Uniqueness/inevitability of the folding map. Alternative deterministic
dyadic— X, bridges exist and can change fiber statistics (Appendix . Within the
bounded counterfactual family audited at m = 6, the natural value-consistency condition
F(V(w)) = w selects the Zeckendorf-truncation map uniquely (Proposition [Q.2). More
generally, within the natural shifted Zeckendorf-window family Foldﬁf;) the same condition
forbids all nonzero shifts (Proposition . Global uniqueness beyond such bounded
families remains open. More generally, a principled uniqueness theorem for Fold,,, or an
operational universality theorem making predictions bridge-insensitive at readout scale,
remains open.

o [Open]| Continuum Yang—Mills/EFT emergence from finite connections. The
finite S4 holonomy diagnostic is closed at the protocol layer (Section @, but deriving
continuum gauge dynamics and EFT running from the finite skeleton is not done here.

o [Open] Global model selection / look-elsewhere across families. Within-family
audits are provided (Appendix [AE]), but a global prior/MDL principle comparing different
hypothesis families and quantifying the overall look-elsewhere effect remains open.
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o [Open]| Scalar/Yukawa sector and RG-running closure. The anchor closes a min-
imal chiral labeling and treats scalar behavior as uplift/coarse-graining dependent (Ap-
pendix ; deriving Yukawa structures and SM fS-functions from the finite protocol is
open.

L Sturmian readouts: factor complexity and entropy-rate
bounds

This appendix closes a small proof gap used implicitly in Remark of Section for the
canonical two-interval window partition associated with an irrational rotation, the induced bi-
nary readout is Sturmian and has linear factor complexity p(n) = n + 1, hence zero entropy
rate. The argument is elementary and is included here to keep the paper self-contained at the
theorem level.

L.1 Mechanical words as canonical interval codings

Fix an irrational slope o € (0,1) \ Q and an intercept p € R. Let R, : T — T be the rotation
Ry(x) = v+ a (mod 1), and write x,, := p + na (mod 1). Consider the canonical half-open

window of length «,
Wyi=[1—a,1)CT. (24)

Define the binary readout by
wy, = Uz, € W,o} €{0,1}. (25)

Proposition L.1 (Window coding as a mechanical word). For every n € Z one has
wy, = |[(n+ 1)a+p| — [na+pl. (26)

Proof. Write {t} :=t — [¢t] for the fractional part. Then z, = {na + p}. One has w,, = 1 iff
Ty € [1 —a,l), ie. iff {na+ p} > 1 — «, which is equivalent to {na + p} + « > 1. This last
condition holds iff [na + p+ a| = [na + p| + 1, which is exactly the stated difference-of-floors
identity. O

Remark L.2 (Why the window length matters). The reduction of the factor complexity to
p(n) = n+1 hinges on the canonical choice that the window length equals the rotation slope. For
a general interval window W of arbitrary length, the coding 1{x,, € W'} is still a rotation coding,
but it need not be Sturmian. The present paper uses only the canonical two-interval partition
determined by « (equivalently, a length-a window or its complement).

L.2 Factor complexity p(n) =n+1

For a bi-infinite binary sequence w = (wy, )pez and n > 1, let £,,(w) denote the set of length-n
factors (contiguous subwords)

Ln(w) := {wpwgr1 - wgan_1: k €2} C{0,1}",
and define the factor complezity by p(n) == |Ln(w)|.

Theorem L.3 (Canonical rotation window coding is Sturmian). Let o € (0,1) \ Q and let
wy, = 1{p+na € W,} with Wy =[1 — «,1) as above. Assume p # —ka (mod 1) for allk € Z
(so the orbit never lands exactly on the window boundary). Then w is aperiodic and satisfies

p(n) =n+1 for alln > 1. (27)

FEquivalently, w is Sturmian in the standard complexity sense.
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Proof. Step 1: p(n) < n+1 (a partition by n+1 breakpoints). Fix n > 1 and define the
length-n block map

F,:T —{0,1}", Fo(z) = (H{z e Wo,l{z+a e Wat,....,1{z+ (n— 1)a € W,}).

For each j =0,...,n — 1, the indicator 1{x + ja € W, } can change only when z + ja crosses a
boundary point of W, namely 0 or 1 — «. Thus F;, is locally constant on T away from the set
of breakpoints

n—1
By =] ({-je}u{l—a—ja}) CT.
=0
Because 1 —a — ja = —(j + 1)a (mod 1), one has
B, ={-ka:k=0,1,...,n},

which has exactly n+1 distinct points since o ¢ Q. These points partition T into n+ 1 half-open
intervals Iy, ..., I,, on each of which F,, is constant. Therefore the image F,(T) contains at most
n + 1 distinct length-n words, so p(n) < n+ 1.

Step 2: p(n) > n+ 1 (every interval is realized). Since « is irrational, the rotation R,
is minimal: the orbit {zy}xez is dense in T. Because the orbit avoids the finite breakpoint set
B,, by assumption, it intersects the interior of each interval I,. For any r € {0,...,n} choose
k, with zy, € int(l,). Then F,(zk,) € Ln(w) is the length-n factor starting at k.. Moreover, if
r # r' then zj_ and rg, lie in different intervals on which F, is constant. At each breakpoint
b = —ka € By, at least one coordinate of F), changes across by (indeed by is a boundary point
for the j = k or j = k—1 coordinate, within 0 < j < n—1), so adjacent intervals yield distinct
words. Hence F,(wg,) # Fn(xk ). Thus at least n + 1 distinct factors occur, so p(n) > n + 1.

Combining Step 1 and Step 2 gives p(n) =n + 1.

Step 3: aperiodicity. If w were periodic with period ¢ > 1, then 1{z; € W,} = 1{x) + qa €
Wy} for all k € Z, i.e. the sets W, and W,, — ga have identical membership on the dense orbit
{z}. If W, # W, — qa as subsets of T, then their symmetric difference contains a nonempty
open arc (both are half-open intervals). By density, that arc would contain some orbit point z,
contradicting the membership equality above. Hence W, = W, — qa. For a nontrivial interval
W, this implies g = 0 (mod 1), contradicting « ¢ Q. Therefore w is aperiodic. O

L.3 Zero entropy rate

The linear factor bound p(n) = n + 1 immediately implies that Sturmian readouts carry infor-
mation in correlations but have vanishing entropy rate.

Corollary L.4 (Topological entropy). Let w be as in Theorem . Then the topological entropy
of its factor language is zero:

1 1 _
htop = nlggo . logp(n) = nh%rgo . log(n+1) =0.
Corollary L.5 (Block Shannon entropy bound). Let (X, o) be the shift-orbit closure of w, and let
w be any shift-invariant probability measure on X. Let P, (u) := u([u]) denote the p-probability
of the cylinder set of a word u € {0,1}"™. Then the block entropy

Hy(p) = — Z Py (u)log P (u)
ue{0,1}m
satisfies
Hy
H,(n) <logp(n) =log(n+1), hence lim sup ) = 0.
n—00 n
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Proof. Only words u € L, (w) can have P,(u) > 0, so the sum is supported on at most p(n)
terms. Any probability distribution supported on at most p(n) points has Shannon entropy
at most logp(n), with equality only for the uniform distribution. Using p(n) = n + 1 from
Theorem gives the claimed bound. O

M Sturmian readout language vs. golden-mean admissible lan-
guage
The main text uses two closely related but different symbolic objects:

o the Sturmian word produced by a scan—projection readout (Section [2] and Appendix ,
and

o the Zeckendorf-admissible digit language X, (Section , equivalently the length-m block
language of the golden-mean shift.

This appendix records the precise relationship and resolves a common point of confusion: a
Sturmian readout has zero entropy rate, while the golden-mean admissible language has expo-
nential growth with rate log ¢. There is no contradiction because the Sturmian factor language
is a strict subset of the golden-mean admissible block language.

M.1 Golden-mean shift and its block language
Definition M.1 (Golden-mean shift). Let
Yaum = {z € {0,1}7: zzi =0 Vi Z},
and let o : Yom — Xam be the left shift (ox); = zi41.
Definition M.2 (Block language). For n > 1, define the length-n block language of Yam by
Ln(Eam) = A{ziTit1 Tign—1: T € XgMm, © € Z}.
Equivalently, L,(Xcgm) is the set of all length-n binary words containing no adjacent 1’s.

Lemma M.3 (Identification with X,, and Fibonacci growth). For every n > 1 one has
Ln(ZGM) = Xn7 |Xn‘ = Fn+2-

In particular, the topological entropy of Xam s hiop(XaMm) = log p.

Proof. The identification £,(Xgm) = X, is immediate from the forbidden-adjacency defini-
tion. The Fibonacci count is Lemma Finally, htop(Xcm) = limy o0 %log\ﬁn(EGMﬂ =
lim,, o0 % log F,+2 = log ¢ by Binet asymptotics (Remark . O

M.2 A Sturmian representative inside the golden-mean shift

Definition M.4 (Fibonacci word (substitution fixed point)). Let 7 be the substitution on {0, 1}
given by
7(0) = 01, (1) =0.

Starting from 0 and iterating T yields a nested sequence of finite words T%(0). Their limit in the
product topology is a one-sided infinite word f = fofifo---, called the Fibonacci word.

Lemma M.5 (No adjacent ones; no triple zeros). The Fibonacci word f contains no adjacent
ones. Moreover, it contains no factor 000.
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Proof. No adjacent ones. In 7(0) = 01 the symbol 1 is always followed by 0, and 7(1) = 0
contains no 1 at all. Therefore, in every iterate 7%(0) any occurrence of 1 is followed by 0, so
the factor 11 never appears. Passing to the limit preserves forbidden factors, hence f contains
no 11.

No triple zeros. Every 0 in 7%(0) is either the image of a 1 (namely 7(1) = 0) or the first
symbol of 7(0) = 01. In particular, every 0 produced as the first symbol of 7(0) is immediately
followed by a 1. Thus a run of zeros can only arise from a pattern where a 1-image 0 is adjacent
to the initial 0 of some 7(0) block, creating at most two consecutive zeros. Since 11 never
occurs, two l-images cannot be adjacent, so runs of zeros have length at most 2 and 000 is
impossible. O

Corollary M.6 (Strict language inclusion). Let L, (f) denote the set of length-n factors of the
Fibonacci word f. Then for everyn > 1,

Ln(f) € Xn,
and the inclusion is strict for all n > 3.

Proof. By Lemma f contains no 11, hence every factor of length n contains no 11 and
therefore lies in X,,. For strictness at n > 3, the word 000 is in X3 but is not a factor of f by
Lemma [M.5] so £3(f) # X3 and hence L, (f) # X,, for all n > 3. O

M.3 Two entropies and what log ¢ means here

The Fibonacci word is Sturmian (it is the canonical characteristic word on the golden branch),
so its factor complexity satisfies |£,(f)] = n+ 1 and its entropy rate is zero (Appendix [[J). In
contrast, the full admissible block language X,, grows as Fj, 2 and defines a positive topological
entropy log ¢ (Lemma [M.3)).

In this paper, the base ¢ in the resolution coordinate is tied to the capacity/growth rate of
the admissible stable-type language X,, (Remark , not to the Shannon entropy rate of the
Sturmian time-series readout.

N Discrepancy certificates from  continued fractions
(Ostrowski/Denjoy—Koksma)

This appendix makes explicit the quantitative link used in Section [2.3.1} continued-fraction
data of the scan slope « yield deterministic finite- N discrepancy bounds for the Kronecker orbit
xn = xo+na (mod 1). We keep the discussion in the one-dimensional setting relevant to window
counts, where the key estimate reduces to interval indicators.

N.1 Star discrepancy and a rational baseline

For a finite point set Py = {z¢,...,znx-1} C [0, 1), the one-dimensional star discrepancy is

1
DN(Py) = sup | =#{0<n<N-1: z,<a}—al.
a€l0,1] N

Lemma N.1 (Equally spaced points have discrepancy 1/N). Let y, = {yo + n/N} for n =
0,...,N—1. Then Dy({vo,...,yn-1}) =1/N.

Proof. The set {y,} is a translate of the uniform grid {j/N }éV: ', and star discrepancy is trans-
lation invariant on the circle. For the grid, for any a € [0, 1] the count #{j/N < a} equals either
|Na| or [Na] — 1, so the normalized error differs from a by at most 1/N. Taking a = j/N
shows the bound is attained, hence D} = 1/N. O
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N.2 Continued fractions and convergents

Let a € (0,1) \ Q with continued fraction a = [0;ay,az,...|] and convergents py/qi. We use the
standard recurrences

q-1=0, @ =1, Q1 = Qg+1qk + qr—1 (k> 0),
and similarly for pg.

Lemma N.2 (Best-approximation error of convergents). For every k > 0,

1 1
dk Akqk+1 q;
Proof. This is a standard continued-fraction property; see, e.g., |27, Ch. 10] or [2§]. O

N.3 A discrepancy bound at convergent lengths

Let z, = {xo + na} be the scan orbit. At convergent lengths N = gy, the orbit is uniformly
close to the rational orbit with step px/qr. This yields a simple O(1/N) discrepancy bound with
an explicit constant.

Lemma N.3 (Convergent-length discrepancy bound). Fiz k > 0 and set N := q. Let Py(a) =
{zg,...,xNn_1} with x, = {xo + na}. Then
Dy (Py(0) < >

Proof. Let  := pr/qr and define the rational reference points y, = {xo + nfS}. Since
ged(pr, qr) = 1, the set {yn}fy;()l is exactly an equally spaced grid (a permutation of {zo+j/N}),
so by Lemma one has Dy ({yn}) = 1/N.

By Lemma § := |a — B8] < 1/N2. For each n € {0,...,N — 1}, the points x,, and y,
differ by the rotation n(a — 3) on the circle, so their circular distance obeys

1
dr(Tn,Yn) < nd < N’ dr(u,v) := min{|u —v|, 1 — |u —v|}.

Fix a € [0,1] and compare the counts Cy(a) :=#{0 <n < N —1: z, < a} and Cy(a) :=
#0<n<N-1: y, <a}. If z, and y, fall on different sides of the interval boundary of
[0,a), then y, must lie within circular distance < 1/N of one of the two boundary points {0, a}
(otherwise a < 1/N perturbation cannot change membership in the half-open interval). Since
the y, are 1/N-spaced, there are at most 3 indices n within circular distance < 1/N of each
boundary point, hence |Cy(a) — Cy(a)| < 6 for every a.

T oW (6@ | G@-G@ 1 67
z\a y\a z\a) — Uyla
22\ gl < |2 < 42"
=[BT sy
uniformly over a. Taking the supremum gives D} (Pn(a)) < 7/N. We state the slightly looser
constant 8/N for a clean margin. O

N.4 Ostrowski decomposition and a general finite-N bound

The convergent-length bound uplifts to arbitrary N using the Ostrowski representation, which
decomposes N into a sum of convergent denominators.
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Definition N.4 (Ostrowski representation (statement)). Let o = [0;a1,ag,...] be irrational
with convergent denominators qx. Every integer N > 1 admits a (unique) representation

m
N =" brar, 0 < by < agt1,
k=0

with the usual local admissibility constraint by, = apy1 = bp—1 =0 for k > 1.

Proposition N.5 (Digit-sum discrepancy bound). Let x, = {z¢o + na} and let Py(a) =
{zo,...,xn_1}. Write N = Y_1* brqi in Ostrowski form. Then

D3 (Px(a)) < + > b

Proof. Decompose the prefix {0,1,..., N —1} into consecutive blocks of lengths g, repeated by
times for each k (largest k to smallest). For each such block of length g, apply Lemma with
the intercept shifted to the block start (i.e. replace xg by z; for the corresponding start index t).
This bounds the star discrepancy of each length-g; block by 8/qk, equivalently its count error
(unnormalized) by at most 8. Summing count errors over all blocks yields a total count error
bounded by 8", by uniformly in the threshold a. Dividing by N and taking the supremum in
the definition of D}, gives the stated bound. O

N.5 Bounded type and why the golden branch is minimax
Corollary N.6 (Bounded-type logarithmic rate). Assume a has bounded partial quotients: aj <
A for all k. Then for every N > 1,

8A
Di(Py(e) < += (4+1og, N),  Ex:i=NDx(Py(a)) < 8A(4+]log, N).

Proof. Let N = Y /', brqr be the Ostrowski representation. Since by < ap41 < A, one has
Sitoby < A(m+1).

Next, since agy1 > 1 for all k, the denominators satisfy qri1 = agr1qx + Q-1 > qx + qr—1-
With go = 1 and ¢; > 1, this implies ¢, > Fn41 for all m > 1. By Binet’s formula, F,,4+1 >
@™ 1/y/5 for m > 1, hence if ¢, < N then

m—1 §logw(\/5N) <2+log, N.

Therefore m +1 < 4 +log, N.
Combining with Proposition yields

8 — 8A(m+1) 8A
Dy (P <= php<——~2<—(44+1og, N
N N(Oé))_Nkz:,; RS < 5 (4 log, N),
and multiplying by N gives the bound on Ey. O

Remark N.7 (Golden branch as a minimax bounded-type choice). The constant in Corol-
lary[N.6 depends monotonically on the bound A on continued-fraction digits. The golden branch
is characterized by ar = 1, i.e. it is the unique irrational of constant type with the minimal
possible bound A = 1. Thus, within the bounded-type class, it is the canonical minimax choice
for discrepancy certificates at finite N: it gives the smallest explicit worst-case upper bound in
the audited family of certificates derived from digit sums.
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O Folding-core proofs and technical details (supplement)

This appendix collects longer proofs and technical details underlying the folding core in Sec-
tion |4l It is intended to keep the main narrative short while preserving a fully explicit, auditable
mathematical layer.

Scope. All proofs in this appendix refer to the folding map and admissible language as defined
in Section {| (in particular the Zeckendorf-truncation definition of Foldg). The paper does not
claim invariance of the reported fiber statistics under arbitrary alternative maps from {0, ..., 63}
to Xg; a bounded counterfactual sensitivity sweep is recorded separately in Appendix

0.1 Defect operators and relaxation dynamics (optional interface semantics)

Definition O.1 (Defect operators on £2(€2,,)). Given a nonnegative defect function D : Q,, —
R>o, define the associated defect operator (still denoted D) on Hp, = (*(y) by pointwise
multiplication:

(DY) (w) := D(w) p(w), ¢ € L(Qm), w € Q.

If D1, Doy are defect functions, then the corresponding operators commuite.

Definition 0.2 (Defect relaxation on ¢2(Q,,)). Fiz m and consider the nonnegative o-defect
operator D, (Definition . Define the defect-relazation semigroup by the auziliary-time evo-
lution

d
U = -Deu(r),  (0) = € A (28)
where T > 0 indexes stabilization steps rather than scan iteration time.

Proposition 0.3 (Attractor: convergence to the admissible sector). The solution of is
given pointwise by

D(r)(w) = e TPy (w).
Consequently (1) — Py in (2(Q) as T — 0o, where P, is the orthogonal projection onto
?(X,,). Moreover the mismatch functional M(T) := HDw,D(ﬂH% obeys the explicit decay law

M(7) = e 2 M(0).

Proof. Since Dy, is a multiplication operator, decouples on the basis {0, }cq,, and yields the
stated closed form. Because Dy (w) € {0,1}, one has e ™P¢() — 1{D,(w) = 0} = 1{w € X,,}
as T — oo, which is exactly the action of P, on basis vectors and therefore gives ¢? convergence.
Finally, Dyt (1) = e " Dytbg, so M(1) = e=27 M(0). O

Remark 0.4 (Relation to least-discrepancy dynamics (context)). Equation is the minimal
linear relaxation that suppresses defect support and makes the admissible sector an attractor.
More general least-discrepancy dynamics can be formulated at the protocol layer as gradient
flows on bounded parameter families, trading discrepancy certificates against implementation
costs; see, e.q., [457]. In the present paper we use only as a dynamical semantics for the
static folding constraint and do not treat it as an additional premise for any theorem-level count.

0.2 Full proofs and auxiliary tables for Foldg

Full proof of Proposition[{.15 By Zeckendorf’s theorem [25|, every integer M € N admits a
unique expansion

M =" cpFpy1, cr € {0,1}, CrCrgp1 = 0.
k>1
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For 0 < M < 20, this expansion uses no Fibonacci weight beyond F7 = 13, hence the digit
vector (c1,...,cg) is well-defined and belongs to Xg, and satisfies V(¢; - - - ¢g) = M. This proves
that V' is surjective onto {0,1,...,20}.

For the range bound, if w € Xg has no adjacent ones, then the maximal value of V(w) is
attained by the alternating pattern w = 010101, giving

V(010101) = 2+ 5 + 13 = 20,

so indeed V' (Xg) C {0,1,...,20}. Finally, the Zeckendorf expansion is unique, so the digit vector
(and therefore the word in Xg) realizing a given M is unique, hence V' is injective. O

Full proof of Lemma[{.17. Let N € {0,...,63} and write its Zeckendorf digits as N =
Zk21 cpFr41. Since 63 < Fy; = 89, one has ¢, = 0 for all £ > 10, so

9 6
N =Y cpFiy1 =Y cxFrir + 21cr + 3dcg + 55cq.
k=1 k=1

If Foldg(N) = w, then ¢ = wy, for k =1,...,6, hence 22:1 ¢k Fri1 = V(w) =v and
N =v+21c; +34cg+ 55c¢y.

The Zeckendorf admissibility constraint is cxcg1 = 0. Thus if wg = 1 then cg = 1 forces ¢y = 0;
and since v > 13 in this case, one also has v + 55 > 63, so cg = 0. The remaining admissible
choices are cg € {0, 1}, giving N € {v,v + 34}.

If wg = 0 then ¢ = 0 imposes no restriction on c¢;. The admissible one-hot tail choices
(cr,c8,¢9) € {(0,0,0),(1,0,0),(0,1,0),(0,0,1)} produce the four candidates v, v + 21, v + 34,
v + 55. The candidate with c¢g = 1 is valid if and only if v + 55 < 63, i.e. v < 8. If 9 < v < 12,
then v+55 > 63, so only the first three candidates lie in {0, ...,63}. All listed candidates satisfy
Zeckendorf admissibility (no adjacent ones), hence their Zeckendorf digits have the same first
six digits, so they map to w under Foldg. O

Full proof of Theorem[{.18 Surjectivity follows from Lemmal[4.16] The explicit fiber description
in Lemma shows that |Foldg'(w)| € {2,3,4} for every w € Xg. Moreover, |Foldg ' (w)| =
2 holds exactly when wg = 1. The number of admissible length-6 words ending with 1 is
| X4| = Fs = 8 (fix the last two digits as 01 and choose any admissible 4-bit prefix), hence
|[Va| = 8. Among the remaining 13 words with wg = 0, Lemma gives preimage size 4
exactly when V(w) < 8, ie. for v € {0,...,8}, yielding |V4| = 9 by Proposition The
remaining 4 values v € {9,10, 11,12} yield preimage size 3, hence |V3| = 4. Finally, for each
boundary word w listed in Corollaryone has wg = 1 and V' (w) € {14,17,19}, so Lemma
gives the stated boundary-sector preimages. Appendix [AE] records the full table; the script
scripts/exp_fold6_stats.py deterministically reproduces the same finite enumeration and

writes the corresponding ITEX fragments (Appendix |AJ)). O
Preimage size |Foldg ! (w)] number of types
2 8
3 4
4 9

Table 26: Degeneracy histogram for Foldg : {0,...,63} — Xs. Rows are reproduced
by a deterministic enumeration over N € {0,...,63} implementing the definition of Foldg
(scripts/exp_fold6_stats.py).
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P The vacuum sector: ontology of protocol-unstable states

This section records diagnostics for the protocol-unstable complement Q,,\ X,,, (the ghost sector)
across window lengths. For the protocol-level vacuum interpretation and the relation of the ghost
sector to the folding core, see Section and Remark

A minimal instability witness. As a minimal instability witness on the full alphabet, define
the adjacent-ones count

Nn(w) = #{Z S {1,...,?’)7,— 1} DW= Wil = 1}.
Then X, = {w € Q,, : Ni1(w) = 0} and the protocol-unstable complement (ghost sector) is
Table records the ghost-sector size together with the distribution mass in the first few

violation bins and the mean violation count restricted to €y, \ X,,,. Rows are reproduced by the
deterministic script scripts/exp_ghost_sector_violation_stats.py.

m [ Xm| | \ Xon| frack Nijuy=1 Ni1=2 Ni3=3 Niz >4 mean Nij (ghost)
6 21 43 0.671875 20 13 7 3 1.8605
7 34 94  0.734375 38 29 16 11 2.0426
8 55 201  0.785156 71 60 39 31 2.2289
9 89 423 0.826172 130 122 86 85 2.4208

10 144 880  0.859375 235 241 187 217 2.6182

11 233 1815  0.886230 420 468 392 535 2.8209

12 377 3719 0.907959 744 894 806 1275 3.0288

13 610 7582  0.925537 1308 1686 1624 2964 3.2414

14 987 15397  0.939758 2285 3144 3222 6746 3.4583

15 1597 31171 0.951263 3970 5807 6304 15090 3.6793

16 2584 62952  0.960571 6865 10636 12189 33262 3.9039

Table 27: Vacuum-sector diagnostics in the adjacent-violation count Nj; for the protocol-
unstable complement £2,,, \ X,,,. The column “frac” is the fraction |[Q,, \ Xn|/|Q2m]-

Distance to admissibility. As an additional diagnostic, we define a minimal repair cost
¢(w) as the minimum number of bit flips 1 — 0 required to remove all adjacent-ones violations.
Equivalently, if a word contains maximal runs of consecutive ones of lengths L, then c(w) =
>-|L/2]. Table [28 summarizes the repair-cost distribution for the same m-sweep. Rows are
reproduced by the deterministic script scripts/exp_ghost_sector_repair_cost_stats.py.

m | Xm|  [Qm \ Xm| frac ¢=1 ¢=2 ¢=3 c¢=4 ¢>5 mean c (ghost)
6 21 43 0.671875 30 12 1 0 0 1.3256
7 34 94 0.734375 58 31 5 0 0 1.4362
8 55 201  0.785156 109 73 18 1 0 1.5572
9 89 423 0.826172 201 162 54 6 0 1.6809

10 144 880  0.859375 365 344 145 25 1 1.8102

11 233 1815  0.886230 655 707 361 85 7 1.9433

12 377 3719  0.907959 1164 1416 850 255 34 2.0804

13 610 7582  0.925537 2052 2778 1918 701 133 2.2209

14 987 15397  0.939758 3593 5358 4184 1806 456 2.3647

15 1597 31171 0.951263 6255 10188 8880 4425 1423 2.5113

16 2584 62952 0.960571 10835 19139 18422 10415 4141 2.6605

Table 28: Vacuum-sector diagnostics in the minimal repair cost ¢(w) to reach admissibility (no
consecutive ones) for the protocol-unstable complement €2, \ X,,. The column “frac” is the
fraction [Qp, \ X |/|Qm].
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Q Folding-map counterfactuals at the m = 6 anchor

This appendix records a bounded counterfactual family of deterministic maps from the dyadic
microstate index set {0,...,63} to the admissible set Xg. The purpose is audit clarity: it
makes explicit which finite combinatorial properties of the 64 — 21 folding picture are tied
to the specific folding map adopted in the paper, and which properties survive under nearby
low-complexity alternatives.

Q.1 A bounded counterfactual family

At the m = 6 anchor we identify microstates with a dyadic register {0,...,2% — 1} and identify
stable types with admissible words X¢ (no adjacent ones). The main text fixes the folding map
Foldg by truncating Zeckendorf digits (Section . To provide look-elsewhere context at the
level of the folding map itself, we compare Foldg to a small explicit family of counterfactual
deterministic maps of comparable discrete description complexity:

e FoldZ: the baseline Zeckendorf-truncation map Foldg as defined in ;
o FoldZ-shift: a one-digit shift of the Zeckendorf digit window (still a Zeckendorf substring);

o FoldZ-rev: reversal of the baseline output word (preserves admissibility as a word gram-
mar);

e Bin-repair: a direct dyadic-word repair rule that removes each occurrence of the substring
“11” by deterministically flipping the right bit in each offending pair.

Explicit definitions (self-contained). Let N € {0,...,63} and let (c;)x>1 be its Zeckendorf
digits.

o FoldZ. FoldZ(N) := (c1,...,cs) (Definition (12)).

o FoldZ-shift. FoldZ-shift(N) := (c,...,cr), padding by zeros if needed (i.e. set ¢, := 0
for k beyond the Zeckendorf expansion length).

o FoldZ-rev. FoldZ-rev(N) := rev(FoldZ(N)) where rev(wy - - - wg) := we - - - wy.

 Bin-repair. Write the dyadic word of N as b(N) = by ---bg € {0,1}°. Scan left-to-right
and whenever a substring b;b;+1 = 11 occurs, flip the right bit ;11 < 0. The resulting
repaired word lies in Xg by construction.

For each map we record: the image size (how many stable types are realized), whether
the image equals Xg, and the induced preimage-size histogram over {0,...,63}. Rows are
generated by scripts/exp_fold_family_sensitivity.py. Since the map family is defined
explicitly above, the script serves only as a deterministic reproducer of the same finite sweep
(audit artifact generation), not as an additional premise.

map Im| surj. onto X6  gmin gmax degeneracy histogram status
FoldZ 21 yes 2 4  2:8,3:4,4:9 OK
FoldZ-shift 21 yes 1 6 1:3,2:8,3:2,4:4,5:1,6:3 OK
FoldZ-rev 21 yes 2 4  2:8,3:4,4:9 OK
Bin-repair 21 yes 1 8 1:2,2:9,4:9,8:1 OK

Table 29: Bounded counterfactual sweep of deterministic folding maps at m = 6. Here g(w) :=
[Fold ! (w)] is the preimage size over {0, ...,63} for each map, and the histogram is reported as
a compact list “g : #types”. This table is an audit artifact: it shows which finite invariants are
map-dependent within the stated small family.
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Interpretation. Within this bounded family, surjectivity onto Xg is not unique. What varies
across maps is the induced fiber structure (the support and distribution of g(w)), which is
the protocol-native input for later compensation/connection constructions. The main text fixes
Foldg by the Zeckendorf-truncation definition and therefore fixes a specific fiber statistics package
(Section [4] and Appendix [O)).

A partial closure: a natural fixed-point property selects FoldZ in this family. Define
the Zeckendorf value map V' : X¢ — {0,...,20} by Definition [£.14]

Definition Q.1 (Value consistency at the anchor). A deterministic map F : {0,...,63} — Xg
1s value-consistent if
F(V(w)) =w for all w € Xg.

Proposition Q.2 (Within the bounded family, value consistency selects FoldZ). Within the
four-map family {FoldZ, FoldZ-shift, FoldZ-rev, Bin-repair}, the unique value-consistent map

(Definition is FoldZ.

Proof. Lemma shows FoldZ(V (w)) = w for all w € Xg, hence FoldZ is value-consistent.
To rule out the other three maps, take w = 100000 € Xg. Then V(w) = 1 by .
The Zeckendorf digits of 1 satisfy ¢; = 1 and ¢; = 0 for k > 2. Therefore FoldZ-shift(1) =
(c2,...,c7) = 000000 # 100000, so FoldZ-shift is not value-consistent. Also FoldZ-rev(1l) =
rev(FoldZ(1)) = 000001 # 100000, so FoldZ-rev is not value-consistent. Finally, b(1) = 000001
and Bin-repair leaves it unchanged, hence Bin-repair(1) = 000001 # 100000, so Bin-repair is not
value-consistent. O

Scope. All theorem-level statements in Section [4f and Appendix [O] apply to the folding map
as defined there. This appendix does not claim invariance under arbitrary map changes; it only
records sensitivity within an explicit bounded counterfactual family.

R Forced interface lemmas under the tick + CAP spine

This appendix records several short interface lemmas in a form suitable for audit. It introduces
no new axioms beyond the two declared primitives of the paper: tick as the executed input
stream (Axiom and CAP as the unique closure/selection rule on explicit finite candidate
families (Axiom . The purpose is to make explicit the sense in which several “interface
conventions” used in the main text are forced (or uniquely selected as minimal nontrivial choices)
once one commits to the tick + CAP discipline.

R.1 Minimal coarse locking: one bit per independent parameter

Lemma R.1 (Minimal nontrivial coarse binning forces one bit per independent parameter).
Let a protocol claim to coarsely distinguish k independent parameters in a single observation,
in the minimal nontrivial sense that for each parameter there exist at least two disjoint bins
whose membership is distinguishable in the readout. Then any single-shot readout alphabet that
supports such a coarse distinction must have size at least 25. In particular, if the single-shot
readout alphabet is binary length-m words Q,, = {0,1}™, then necessarily m > k.

Proof. For each parameter choose two distinguishable bins and label them by {0,1}. Inde-
pendence means that all 2¥ bin-combinations are admissible joint coarse states. Therefore
the readout alphabet must have at least 2¥ distinct outcomes. If the alphabet is €, then
Q| = 2™ > 2% s0o m > k. O
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Corollary R.2 (Single-window coarse rigid-frame budget). In a rigid-frame display dictionary
in bulk dimension d, a pose is an element of the Fuclidean group SE(d) with

d(d+1)

dim SE(d) = 5

Under the minimal nontrivial coarse-binning convention of Lemma a single length-m win-
dow can support a single-shot coarse rigid-frame display only if

d(d+1
m > dim SE(d) = (;)
Proof. Apply Lemma with £ = dim SE(d). The dimension formula for SE(d) is standard,;
see, e.g., [18]. O

Relation to the main text. Section uses exactly this minimal nontrivial convention at
the anchor m = 6 and then applies CAP to select the maximal admissible bulk dimension,
yielding d = 3 (Proposition . The quantization/metric-entropy scaling used there for finer
accuracy is standard [16,/17].

R.2 Unitarity forces compact internal redundancy groups

Proposition R.3 (Probability-preserving internal redundancy is compact (finite-dimensional
case)). Assume a continuum modeling dictionary in which local internal redundancy acts on a
finite-dimensional complex Hilbert space by transformations that preserve transition probabilities
between rays. Then the connected component of the internal redundancy group is (projectively)
unitary and is therefore compact (up to finite quotients).

Proof. By Wigner’s theorem, any bijection of rays preserving transition probabilities is im-
plemented by a unitary or antiunitary operator on the underlying Hilbert space, uniquely
up to phase [48|49,187]. Antiunitary operators form a disconnected component, so any con-
nected internal redundancy group is represented (projectively) by unitary operators. Thus
the redundancy group embeds as a (closed) subgroup of the compact projective unitary group
PU(N)=U(N)/U(1), hence is compact. O

Relation to the main text. In the interface language of this paper, “gauge redundancy”
is the freedom to relabel local readout bases without changing observable overlap/probability
data. Under a standard continuum dictionary that represents this freedom by internal unitary
rotations, compactness is therefore not an extra primitive but a consequence of probability
preservation in finite-dimensional local descriptions. This is the compactness input used in

Proposition

R.3 Three commuting channels force a three-factor redundancy structure

Lemma R.4 (Independent local redundancy across commuting channels factorizes). Assume
protocol mismatch certificates decompose into three commuting channel components and that, in
the interface dictionary, each channel admits an independent local basis redundancy. Then the
minimal local redundancy group factorizes as a direct product of three channelwise redundancies.

Proof. Since channels commute, a mismatch certificate can be compared channel-by-channel. If
the basis redundancy is independent in each channel, local gauge changes act independently on
each component. Therefore the channelwise covariance law is a direct-product action, and the
minimal redundancy group is the direct product of the three channel groups. O
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Relation to the main text. This is the structural content of Proposition in Section
Once a three-factor structure is fixed, CAP-minimal selection within the compact-factor can-
didate family yields the Standard Model triple up to finite quotients under the declared factor
complexity label (Proposition and Lemma ; a bounded sensitivity sweep across alterna-
tive labels is recorded in Appendix [Al]l

R.4 Why the minimal chiral closure selects a sterile vy

Proposition R.5 (Minimal anomaly-neutral one-multiplet-per-generation closure forces a ster-
ile singlet). Work under the PDG convention Q = T35 + Y. Consider extending the Standard
Model chiral fermion multiplet content by adding exactly one additional chiral multiplet per gen-
eration, with the requirement that: (i) local gauge and mized gravitational anomalies remain
canceled, and (ii) the global SU(2) consistency condition is preserved. Then the added multiplet
must be a gauge singlet with hypercharge Y = 0. Equivalently (up to charge conjugation), the
unique minimal closure is a sterile right-handed neutrino vg per generation.

Proof. The Standard Model anomaly-cancellation identities under Q = T35 + Y are standard
[1,12,/56]. If the added multiplet carries nontrivial SU(3) charge, it contributes to SU(3)? and
SU(3)2U(1) anomaly sums; with only one added multiplet per generation there is no compen-
sator, so anomaly cancellation forces it to be an SU(3) singlet.

If the added multiplet is an SU(2) doublet (or any half-integer isospin representation), the
parity of the number of SU(2) doublets changes and can violate the global SU(2) anomaly con-
straint [57]. With only one additional multiplet per generation and no compensator, preserving
the global consistency condition forces the added multiplet to be an SU(2) singlet.

Thus the only remaining possible charge is hypercharge. The mixed gravitational—
hypercharge anomaly is proportional to > Y and the cubic U (1)% anomaly to 3. Y3 over left-
handed Weyl fields with multiplicities; the Standard Model sums vanish per generation [1,56].
Adding a single SU(3) x SU(2) singlet multiplet contributes Y and Y3. To preserve both
anomaly cancellations without additional compensating matter, one must have Y = 0. ]

Relation to the main text. Section[9uses vg as the minimal anomaly-neutral closure of the
18 cyclic field-level targets and treats it as an interface choice audited by standard consistency
constraints (Proposition[9.6). Proposition records the stronger uniqueness statement within
the explicit minimal candidate family “one extra multiplet per generation”.

R.5 Scalar absence at the minimal alphabet is forced by the closed 21-type
contract

Proposition R.6 (No additional primitive stable type remains for a Higgs label at m = 6). At
the anchor (m,n) = (6,3), the stable sector splits as X¢ = Xg'* L ngry with | Xg"| = 18 and
]ngry\ = 3. Under the closed interface contract adopted in this paper—-cyclic types label the 18
field-level chiral multiplets and boundary types label the three gauge-factor connection classes—
there is no remaining element of Xg that can be assigned as an additional primitive stable-type
label for a Higgs-like scalar. Accordingly, any scalar sector must enter either as (i) an EFT-level
completion field in the continuum dictionary, or (ii) a protocol-emergent observable supported
by resolution uplift and coarse graining.

Proof. The split cardinalities are theorem-level facts at m = 6 (Section [4)). The closed labeling
map assigns the 18 cyclic types to the 18 chiral multiplets and assigns the 3 boundary types to
the three gauge factors (Theorem . Therefore all 21 stable types are already consumed by
the closed chiral/gauge interface at the anchor, leaving no unused stable label in Xg. O
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n m plaquettes 1 2 2x2 3 4 mean |J| (3/4) mean J (3/4) failures
1 2 1 1 0 0 0 0 0 +0 0
2 4 9 9 0 0 0 0 0 +0 0
3 6 49 24 19 1 3 2 0.0470847 40.0207138 0
4 8 225 126 44 3 42 10 0.0284115 +0.0101108 0
5 10 961 619 198 24 95 25 0.0325905  4-0.00800293 0
6 12 3969 2512 788 82 378 209 0.0191774  40.00111322 0
7 14 16129 11566 2623 268 1210 462 0.0104386 +0.000145988 0
8 16 65025 50323 10731 1420 1781 770 0.00748166 +0.000270661 0

Table 30: Balanced-chain sweep for the holonomy and phase-lifted CP signal across
(n,m) € {(1,2),(2,4),(3,6),(4,8),(5,10),(6,12),(7,14),(8,16)}. Rows are generated by
scripts/exp_holonomy_balanced_chain_sweep.py.

Relation to the main text. This is the audit-level content behind the Higgs-status remarks
in Section [J] (Remark and the scalar-sector closure statements in Section

S Extended holonomy sweeps and robustness diagnostics (sup-
plement)

This appendix records extended finite sweeps and robustness variants for the protocol-connection
holonomy diagnostics of Section [f] The main text focuses on definitions and representative
diagnostics at the minimal anchor; the material below provides additional evidence across refined
balanced pairs (n,m) and across bounded-complexity variant families.

Audit note (bounded scans, not free-form fitting). All tables in this appendix are pro-
duced by deterministic bounded scans over explicitly specified finite families (loop sizes, phase
denominators, phase-map families, and global relabelings), with deterministic tie-break rules.
The accompanying scripts write the resulting IXTEX fragments for reproducibility; they do not
introduce new degrees of freedom beyond the stated bounded families.

S.1 Balanced-chain sweep across (n,m) = (1,2),(2,4), (3,6), (4, 8), (5,10), (6,12), (7,14), (8, 16)

To probe how the finite connection/holonomy statistics behave under a minimal balanced re-
finement, we sweep the chain m = 2n for n € {1,2,3,4,5,6,7,8}. At each scale we build the
same deterministic Sy-valued edge transport by truncating/padding each Fold,, fiber to rank 4
and selecting the minimum-cost bijection under Hamming distance on m-bit microstates. We
then summarize plaquette holonomy cycle types and the phase-lifted CP-odd signal at the phase
denominator denom = 2™,

Balanced-chain permutation-robust mixing fits. Using the same phase-lifted holonomy
extraction at each (n,m) in the balanced chain, we can apply the same global S5 x S5 relabeling
fit to PMNS- and CKM-style target sines. Tables [31] and [32| report the resulting best fits at each
scale.

Loop-scale sweep (kxk square holonomies). The unit-plaquette holonomy is the small-
est closed loop. As an additional finite-resolution diagnostic, we can compute phase-lifted
holonomies around k x k square loops (for small k) and repeat the same 3/4-cycle restriction
and S3 x S3 permutation-robust mixing fits. Tables summarize the resulting cycle-type
counts and PMNS/CKM fit objectives for k € {1,2,3} on the n = 3 grid.
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n m plaquettes best (o, 0c) S19 593 S13 Foo F4 mean |J|
3 6 49 (2, 0, 1)/(1, 2, 0) 0.7387 0.8513 0.1546 0.288 0.476 0.00480456
4 8 225 (0, 2, 1)/(1, 0, 2) 0.8434 0.8706 0.1895 0.420 0.835 0.0068287
5 10 961 (1, 2, 0)/(0, 1, 2) 0.8658 0.9017 0.1881 0.446 0.889 0.00420356
6 12 3969 (1, 2, 0)/(0, 1, 2) 0.8721 0.9011 0.1730 0.454 0.811 0.00289537
7 14 16129 (1, 2, 0)/(0, 1, 2) 0.9114 0.9485 0.1116 0.498 1.028 0.00110661
8 16 65025 (0, 2, 1)/(1, 0, 2) 0.9318 0.9331 0.0879 0.520 1.272 0.00031132

Table 31: Balanced-chain permutation-robust fit to PMNS target sines (finite diagnostic). Rows
are generated by scripts/exp_holonomy_balanced_chain_perm_fit.py.

n m plaquettes best (or,0¢) s12 S923 s13  Foo E1 mean |J|
3 6 49 (2, 1, 0)/(2, 1, 0) 0.4036 0.2930 0.1546 3.670 6.195 0.00480456
4 8 225 (2, 1, 00/(2, 1, 0) 0.2964 0.3150 0.1612 3.712 6.000 0.0068287
5 10 961 (2, 1, 0)/(2, 1, 0) 0.2309 0.2424 0.1774 3.807 5.584 0.00420356
6 12 3969 (2, 1, 0)/(2, 1, 0) 0.2205 0.2398 0.1575 3.688 5.443 0.00289537
7 14 16129 (2, 1, 0)/(2, 1, 0) 0.1381 0.1643 0.0859 3.082 4.926 0.00110661
8 16 65025 (0, 1, 2)/(0, 1, 2) 0.1283 0.1247 0.0879 3.105 4.747 0.00031132

Table 32: Balanced-chain permutation-robust fit to CKM target sines (finite diagnostic). Rows
are generated by scripts/exp_holonomy_balanced_chain_perm_fit.py.

Single-loop best fits (bounded scan). Finally, instead of averaging over a loop family,
one can select a single loop together with a bounded phase denominator and a global S5 x S3
relabeling to best fit a target triple of sines. Table 36| reports the best single-loop fits for PMNS-
and CKM-style targets over a bounded search space.

Two-loop chains (bounded composition). One can also form a bounded family of effective
holonomies by composing two selected loops (allowing inverses) before extracting the sines.
Table reports the best two-loop chain fits over a finite search family built from 3/4-cycle
square loops.

Two-loop chains with mixed cycle types. If one enlarges the admissible loop pool to
include additional nontrivial holonomy cycle types (e.g. 2-cycles and 2 x 2 cycles), one can
obtain a substantially improved CKM-style fit within a still finite, auditable search box. Table
reports the best two-loop chain fits under a restricted phase family and a mixed-cycle loop pool.

Angle/CP trends under phase-denominator refinement. Finally, we can sweep the
phase denominator denom = 2P and record the induced mean angles (s12, $23, s13) and mean |J|
on the nontrivial holonomy subset (3/4 cycles), together with the log mismatch to Jyeo. Table
reports this diagnostic sweep.

A bounded-denominator PMNS fit (finite diagnostic). As an illustrative closure-style
diagnostic, we can select denom = 2P to fit representative PMNS sines (s12,S23,513) using
the same 3/4-cycle aggregated mean angles. Table reports the candidate sweep and the
minimax/sum objectives.

Permutation-robust fits (global relabeling search). The mapping from an effective 3 x 3
unitary matrix to PDG angles depends on how row/column indices are identified with fla-
vor/mass labels. As a bounded-complexity diagnostic, we therefore allow a global relabeling by
a pair of permutations in S3 x S5 and select the best pair for each denominator by the same
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k  loops 1 2 2x2 3 4 other
1 49 24 19 1 3 2 0
2 36 10 17 1 3 5 0
3 25 7 10 1 6 1 0
4 16 2 9 2 2 1 0
5 9 1 3 0 5 0 0
6 4 0 2 0 0 2 0
7 1 0 0 0 0 1 0

Table 33: Cycle-type counts of S4 holonomy permutations for k x k square loops on the n = 3
grid. Rows are generated by scripts/exp_holonomy_loop_scale_sweep.py.

k 3/4 loops mean angle [deg] min [deg] max [deg]
1 5 108.000 90.000 120.000
2 8 101.250 90.000 120.000
3 7 115.714 90.000 120.000
4 3 110.000 90.000 120.000
5 5 120.000 120.000 120.000
6 2 90.000 90.000 90.000
7 1 90.000 90.000 90.000

Table 34: Loop-scale sweep of rotation angles in the sign-twisted standard SO(3) C
SU(3) representation bridge, restricted to 3/4-cycle holonomies. Rows are generated by
scripts/exp_holonomy_loop_scale_su3_angle_sweep.py.

minimax objective on (s12, S23, $13). Tables 43| and |44| report the resulting denominator sweeps
for PMNS- and CKM-style target sines.

Phase-map family sweep (low-complexity index transforms). The phase lift attaches
a discrete phase to each microstate index. To bound look-elsewhere freedom, we restrict to a
small explicit family of low-complexity bit transforms 7 (identity, Gray map, bit reversal, and
complement) and rerun the bounded-denominator fits. Tables [45| and [46| report, for each map
in a fixed small family, the best (denom, o,., 0.) under the same objective, together with the log
mismatch of the resulting mean |J| (3/4 cycles) to Jgeo-

S.2 A soft transport variant (temperature-like smoothing)

The strict minimum-cost matching rule produces a discrete S4 transport on edges. As an
optional robustness diagnostic, one can form a soft transport matrix from the full 4 x 4 cost
matrix between padded fibers, weighted by a temperature-like parameter § via exp(—/ cost),
and then deterministically orthonormalize columns to obtain a unitary edge transport. Sweeping
B interpolates between a highly mixed transport (8 — 0) and a sharp near-minimum transport
(large ). Tables and report permutation-robust fits to PMNS- and CKM-style target
sines under this soft transport, together with the mean |.J| on the resulting effective holonomies.

T Protocol EFT embedding (supplement)

This appendix collects a concrete local field-theoretic embedding whose purpose is consistency
and translation to standard continuum language. The finite folding and labeling results of the
paper remain theorem-level statements in finite readout language; the present section is an
interface/matching supplement.
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k 3/4 loops mean W min W max W mean 1 — W
1 5 0.318352 0.168535 0.428145 0.681648
2 8 0.182942 -0.00151624 0.428145 0.817058
3 7 0.186643 0 0.377409 0.813357
4 3 0.117196 -0.0883019 0.441406 0.882804
5 5 0.399583 0 0.642398 0.600417
6 2 0.102449 -0.0017954 0.206693 0.897551
7 1 -0.00151624 -0.00151624 -0.00151624 1.00152

Table 35: Loop-scale Wilson-loop style diagnostics W = R(tr(Q))/3 from phase-lifted
effective holonomies, restricted to 3/4-cycle loops [42, 43]. Rows are generated by
scripts/exp_holonomy_wilson_loop_sweep.py.

target map denom k (z,y) cycle best (or,0c) s12 593 513 |J] Foo Eq E:(XQ)) A
PMNS gray 64 4 (1,0) 2 (0, 1, 2)/(2, 0, 1) 0.6159 0.8334 0.164866 1.12757e-17 0.121 0.337 0.121 0.000
CKM gray 512 3 (3,0) 2 (1, 0, 2)/(1, 0, 20 0.1137 0.0804 0.00457281 1.79584e-19 0.679 1.473 0.706 0.027

Table 36: Best single-loop fits to PMNS/CKM target sines under a bounded scan over k x k
loops (k < 7), phase denominators denom = 2P (6 < p < 18), and global relabelings in S3 x Ss.
Rows are generated by scripts/exp_holonomy_single_loop_bestfit.py.

T.1 A minimal effective field theory embedding (protocol EFT)

This subsection records a concrete field-theoretic embedding whose purpose is consistency, not
a full derivation from the folding layer. It answers a minimal technical question: given the
three-channel stable-sector template and the closed labeling of Section [0}, what is a well-defined
local action whose gauge structure is SU(3) x SU(2) x U(1), whose matter content matches the
18 cyclic labels, and for which anomaly cancellation holds in the standard sense?

Fields. Let {¢f}fecrg, denote the 18 left-handed Weyl fermion multiplets in one-to-one cor-
respondence with the cyclic labels of Theorem with quantum numbers (SU(3), SU(2))y
as recorded in Table Let G, = Gf}TA be an SU(3) gauge field, W, = Wir® an SU(2)
gauge field, and B,, a U(1) gauge field. Optionally (to form the usual renormalizable SM EFT),
include a complex scalar Higgs doublet H with (SU(3),SU(2))y = (1,2);/2. In the present
paper, this Higgs field is included only at the level of a standard EFT completion (Remark ;
it is not asserted to correspond to a distinct stable type at the minimal window length. The
corresponding protocol-level scalar-sector closure (scalar observables by coarse graining/uplift
and an EFT coupling dictionary) is recorded in Proposition

Gauge-invariant action. With standard normalizations [1},2,48], define the local Lagrangian
density

1 1 1
'Cprot—EFT = _*GA GAFW - EWEVW(Z“U - ZBMVB'UV

4
+ > whieh Dy
feFsm
+ (D H) (D'H) = V(H) + Lyw(H, ), (29)

where the covariant derivative is

Dy =0, —igs GaT —igs Wit —ig1 Y By, (30)
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target |©] map denom loop 1 loop 2 best (or,0c) S12 523 S13 |J]  Ex Eq Eg) A

PMNS 7195968 gray 256 (7,0,0,4,-) (2,5,4,4,+) (2,1,0)/(2,1,0) 0.5512 0.7422 0.149208  0.0262604 0.011 0.021 0.011 0.000
CKM 7195968 id 512 (6,0,1,4,-) (4,2,3,3,+) (1,2,0)/(2,1,0) 0.3490 0.0353 0.00287544 3.21877e-05 0.442 0.934 0.442 0.000

Table 37: Best two-loop chain fits to PMNS/CKM target sines under a bounded scan
over a finite family: (i) choose two square loops whose underlying S; holonomy is a 3/4-
cycle, allowing inverses; (ii) choose a phase map (id/gray/bitrev/not) and denominator
denom = 2P (6 < p < 18); (iii) choose a global relabeling in S3 x S3. Rows are generated
by scripts/exp_holonomy_two_loop_chain_bestfit.py.

target |©] map denom loop 1 loop 2 best (or,0c) S12 $23 s13 |J]  Ex E: ng) A

PMNS 7962624 gray 256 (7,0,0,4,-) (2,5,4,4,+) (2,1,0)/(2,1,0) 0.5512 0.7422 0.149208  0.0262604 0.011 0.021 0.011 0.000
CKM 7962624 gray 512 (1,3,4,2,+) (2,3,5,3,+) (2,1,0)/(1,2,0) 0.2776 0.0374 0.00445891 3.40912e-05 0.213 0.459 0.213 0.000

Table 38: Best two-loop chain fits to PMNS/CKM target sines under a bounded scan over
mixed-cycle square loops (cycle types in {2,2x2,3,4}), with a restricted phase family (map
{id,gray}, denom € {256,512,1024}) and a global relabeling in S3 x S3. Rows are generated
by scripts/exp_holonomy_two_loop_chain_mixed_cycles_bestfit.py.

with 7% and 7% the generators in the representation appropriate to the field and Y its hyper-
charge. The Yukawa sector Lyyk is included only if one wishes to match the renormalizable
Standard Model EFT; its detailed structure is not needed for the finite folding claims of this

paper.

Equations of motion (standard). Varying yields the standard gauge and matter field
equations [1},2,/48]. For the non-abelian sectors one obtains the Yang-Mills equations with
currents determined by the chiral matter and (optionally) the Higgs field,

(DI'Gu)t = g3 J) (DMWw)" = g2 I}, (31)
while the abelian hypercharge sector satisfies
"By = g1 Y. (32)

The fermions obey the chiral Dirac equations i6# D1 = 0Lyuk/ 8@[}}, and, when included, the
Higgs satisfies a covariant Klein-Gordon equation D*D,H+0V/OH t = —0Lyw/OHT. Thus the
protocol EFT provides an explicit dynamical embedding in standard field-theory language; the
folding layer enters only through the finite stable-sector selection and labeling that determine
which degrees of freedom are retained at the anchor.

Electroweak symmetry breaking and the Higgs mode (standard). If one chooses the
usual Mexican-hat potential V(H) = —p?H'H + AN(H'H)? with p? > 0 and A > 0, then the
vacuum selects (H) # 0 and breaks SU(2) x U(1) to U(1)em. In unitary gauge one may write

1 0
H(z) = ﬁ (v + h(x)) ’

so that three would-be Goldstone modes are absorbed as the longitudinal polarizations of W+
and Z, while h is the physical spin-0 Higgs excitation. This standard mechanism supplies gauge-
boson masses through (D, H)"(D*H) and fermion masses through Lyyk, but it is not used as a
premise for any of the finite-resolution folding or labeling statements in this paper.
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k loops 3/4 loops best (or,0c) S12 s23 s13 Eso Ei mean |J|

1 49 5 (1, 2, 0)/(2, 0, 1) 0.5890 0.7457 0.3389 0.831 0.902 0.0470847
2 36 8 (1, 2, 0)/(2, 0, 1) 0.5673 0.7137 0.3252 0.790 0.847 0.0350064
3 25 7 (1, 0, 2)/(2, 0, 1) 0.4841 0.7469 0.3028 0.718 0.865 0.0304645
4 16 3 (2,1, 00/(1, 2, 0) 0.6599 0.7382 0.2988 0.705 0.880 0.0172157
5 9 5 (2, 1, 0)/(2, 1, 0) 0.5003 0.7064 0.4070 1.014 1.160 0.0154748
6 2 (0, 1, 2)/(1, 0, 2) 0.5569 0.9274 0.1825 0.228 0.445 0.0281961
7 1 1 (2, 1, 0)/(1, 2, 0) 0.3556 0.8503 0.1623 0.443 0.679 0.0200472

Table 39: Permutation-robust fit to PMNS target sines for &k x k square
holonomies (finite diagnostic), restricted to 3/4-cycle loops.  Rows are generated by
scripts/exp_holonomy_loop_scale_sweep.py.

k loops 3/4 loops best (or,0c) S12 S23 s13  Fso E;  mean |J|
1 49 5 (1, 0, 2)/(2, 0, 1) 0.5890 0.6378 0.3389 4.455 8.136 0.0470847
2 36 8 (1, 0, 2)/(2, 0, 1) 0.5673 0.6476 0.3252 4.413 8.072 0.0350064
3 25 7 (1, 2, 00/(2, 0, 1) 0.4841 0.6172 0.3028 4.342 7.794 0.0304645
4 16 3 (2,0, 1)/(1, 2, 0) 0.6599 0.6368 0.2988 4.329 8.122 0.0172157
5 9 5 (2, 0, 1)/(2, 1, 0) 0.5003 0.6676 0.4070 4.638 8.201 0.0154748
6 2 (0, 2, 1)/(1, 0, 2) 0.5569 0.3740 0.1825 3.836 6.927 0.0281961
7 1 1 (2, 0, 1D/(1, 2, 0) 0.3556 0.5264 0.1623 3.718 6.703 0.0200472

Table 40: Permutation-robust fit to CKM target sines for k& x k square
holonomies (finite diagnostic), restricted to 3/4-cycle loops. Rows are generated by
scripts/exp_holonomy_loop_scale_sweep.py.

Where the ¢p—m—e channels enter. The folding layer provides three commuting defect pred-
icates/operators at finite window length (Section . In this EFT embedding, the three channels
enter as protocol constraints that restrict which local readout modes are treated as light degrees
of freedom:

o the p-channel selects admissible words (no adjacent ones), yielding a stable subspace of
dimension | X,,| = Fj,4+2 at window length m (Lemma ;

o the m-channel further splits the stable space into cyclic/boundary sectors, with | X°| &
| X2dry| given by Proposition

e the e-channel records the standard analytic normalization of the golden-mean shift via its
Artin—-Mazur zeta function (Lemma and Lemma {4.11)).

Operationally, one may view as the low-energy EFT after this selection: the fields 1y
represent the cyclic stable labels, and the three boundary labels select the three gauge-factor
classes (Section E[) This does not yet constitute a derivation of the SM gauge group from the
finite combinatorics; it is an explicit consistent embedding compatible with the interface axioms.

Anomaly cancellation. Because the gauge sector is chiral, the EFT is consistent only if
gauge and mixed anomalies cancel. For the Standard Model hypercharge assignments under
Q = T3+ Y, the anomaly sums vanish per generation [1,2,|56]. In our labeling closure, adding
vr with Y = 0 does not affect these sums (Proposition , SO is anomaly-free with the

stated matter content.

Remark T.1 (Status). The purpose of the protocol EFT is to make the “compensating connec-
tions” claim mathematically precise at the level of a local gauge-invariant action with the correct
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denom p mean s12 (3/4) mean sp3 (3/4) mean s13 (3/4) mean |J| (3/4) log(mean/Jgeo) [ -]
64 6 0.6836 0.8197 0.4799 0.0470847 +7.355 7.355

128 7 0.6934 0.7867 0.4642 0.034465 +7.043 7.043
256 8 0.7156 0.8792 0.4045 0.0221376 +6.601 6.601
512 9 0.7186 0.8895 0.3655 0.010419 +5.847 5.847
1024 10 0.7194 0.8916 0.3463 0.00511243 +5.135 5.135
2048 11 0.7196 0.8921 0.3366 0.00254376 +4.437 4.437
4096 12 0.7196 0.8922 0.3316 0.00127032 +3.743 3.743
8192 13 0.7196 0.8923 0.3291 0.000634963 +3.049 3.049
16384 14 0.7196 0.8923 0.3279 0.000317457 +2.356 2.356
32768 15 0.7196 0.8923 0.3272 0.000158725 +1.663 1.663
65536 16 0.7196 0.8923 0.3269 7.93623e-05 40.970 0.970
131072 17 0.7196 0.8923 0.3268 3.96811e-05 +0.276 0.276
262144 18 0.7196 0.8923 0.3267 1.98406e-05 -0.417 0.417

Table 41: Phase-denominator sweep for mean extracted angles and mean |J| on 3/4-cycle pla-
quettes at n = 3 (finite diagnostic), together with the log mismatch to Jgeo. Rows are generated
by scripts/exp_holonomy_phase_lift_angles_denom_sweep.py.

denom p  s12 (3/4)  s23 (3/4)  s13 (3/4) Ex Ey
64 6 0.6836 0.8197 0.4799 1.179 1.493

128 7 0.6934 0.7867 0.4642 1.146 1.433

256 8 0.7156 0.8792 0.4045 1.008 1.438

512 9 0.7186 0.8895 0.3655 0.906 1.353
1024 10 0.7194 0.8916 0.3463 0.853 1.302
2048 11 0.7196 0.8921 0.3366 0.824 1.275
4096 12 0.7196 0.8922 0.3316 0.809 1.260
8192 13 0.7196 0.8923 0.3291 0.802 1.253
16384 14 0.7196 0.8923 0.3279 0.798 1.249
32768 15 0.7196 0.8923 0.3272 0.796 1.247
65536 16 0.7196 0.8923 0.3269 0.795 1.246
131072 17 0.7196 0.8923 0.3268 0.794 1.245
262144 18 0.7196 0.8923 0.3267 0.794 1.245
best/second p = 18/17 - — — 0.794/0.794 A = 0.000

Table 42: Bounded-denominator fit to representative PMNS mixing sines using the
phase-lifted holonomy angle extraction (finite diagnostic). Rows are generated by
scripts/exp_holonomy_phase_lift_pmns_denom_fit.py.

group structure and anomaly constraints. Within the stated interface rules (three compensa-
tion classes, dimension-as-complexity for gauge factors, and the auditable ordering closure), the
gauge-factor assignment and the chiral representation content are uniquely fized at the minimal
anchor: the Lie-algebra factor dimensions (1, 3,8) pin the compact factors to u(1) ®su(2) ®su(3)
(Lemma , and the matter multiplet assignment is the unique closed labeling map (Theo-
rem . Accordingly, is recorded here as a closed EFT embedding consistent with those
uniquely fixed interface identifications and with standard anomaly constraints.

U Interface isomorphisms: stable sectors, mismatch certifi-
cates, and active correction

This appendix records a shared protocol-level template in the HPA—) program: finite-resolution
scan—projection readout induces symbolic words and coarse observables; stability/consistency
constraints select a compressed visible sector; and sustained low-entropy structure requires either
passive compensation (connections enforcing consistency) or active correction (feedback control
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denom p best (or,0¢) 512 S23 513 Ex Eq
64 6 (1, 2, 0)/(2, 0, 1) 0.5890 0.7457 0.3389 0.831 0.902

128 7 (1, 0, 2)/(2, 1, 0) 0.5263 0.7071 0.4583 1.133 1.227

256 8 (1, 2, 0)/(2, 0, 1) 0.5279 0.6661 0.2715 0.609 0.760

512 9 (1, 2, 0)/(2, 0, 1) 0.5273 0.6690 0.1979 0.293 0.441
1024 10 (1, 2, 00/(2, 0, 1) 0.5271 0.6693 0.1752 0.171 0.319
2048 11 (1, 2, 0)/(2, 0, 1) 0.5270 0.6693 0.1688 0.134 0.282
4096 12 (1, 2, 0)/(2, 0, 1) 0.5270 0.6693 0.1672 0.124 0.273
8192 13 (1, 2, 0)/(2, 0, 1) 0.5270 0.6693 0.1668 0.122 0.270
16384 14 (1, 2, 0)/(2, 0, 1) 0.5270 0.6693 0.1667 0.121 0.269
32768 15 (1, 2, 0)/(2, 0, 1) 0.5270 0.6693 0.1667 0.121 0.269
65536 16 (1, 2, 0)/(2, 0, 1) 0.5270 0.6693 0.1667 0.121 0.269
131072 17 (1, 2, 0)/(2, 0, 1) 0.5270 0.6693 0.1667 0.121 0.269
262144 18 (1, 2, 0)/(2, 0, 1) 0.5270 0.6693 0.1667 0.121 0.269
best/second — — — — — 0.121/0.121 A =0.000

Table 43: Permutation-robust bounded-denominator fit to PMNS target sines using a global
S3 x S3 relabeling. Rows are generated by scripts/exp_holonomy_phase_lift_perm_fit.py.

denom p best (or,0c) s12 $23 513 Ex Eq
64 6 (1, 0, 2)/(2, 0, 1) 0.5890 0.6378 0.3389 4.455 8.136

128 7 (1, 2, 00/(2, 1, 0) 0.5263 0.6556 0.4583 4.756 8.352

256 8 (1, 0, 2)/(2, 0, 1) 0.5279 0.6576 0.2715 4.233 7.835

512 9 (1, 0, 2)/(2, 0, 1) 0.5273 0.6469 0.1979 3.916 7.501
1024 10 (1, 0, 2)/(2, 0, 1) 0.5271 0.6448 0.1752 3.795 7.375
2048 11 (1, 0, 2)/(2, 0, 1) 0.5270 0.6443 0.1688 3.758 7.338
4096 12 (1, 0, 2)/(2, 0, 1) 0.5270 0.6441 0.1672 3.748 7.328
8192 13 (1, 0, 2)/(2, 0, 1) 0.5270 0.6441 0.1668 3.746 7.325
16384 14 (1, 0, 2)/(2, 0, 1) 0.5270 0.6441 0.1667 3.745 7.325
32768 15 (1, 0, 2)/(2, 0, 1) 0.5270 0.6441 0.1667 3.745 7.324
65536 16 (1, 0, 2)/(2, 0, 1) 0.5270 0.6441 0.1667 3.745 7.324
131072 17 (1, 0, 2)/(2, 0, 1) 0.5270 0.6441 0.1667 3.745 7.324
262144 18 (1, 0, 2)/(2, 0, 1) 0.5270 0.6441 0.1667 3.745 7.324
best/second — - — — — 3.745/3.745 A =0.000

Table 44: Permutation-robust bounded-denominator fit to CKM target sines using a global
S x S3 relabeling. Rows are generated by scripts/exp_holonomy_phase_lift_perm_fit.py.

reducing mismatch).

U.1 A shared interface template

We use the same auditable layering rule adopted in the main text: a mathematical layer (finite-
resolution definitions and computable statements) and a physical identification layer (interfaces
and falsifiable mapping hypotheses). Within the operational layer, a broad class of problems
can be organized by the following interface objects:

o Readout alphabet. A finite word alphabet 2, = {0,1}" (or a finite outcome set for a
POVM-like instrument) obtained by window projection [24].

o Stability /mismatch mechanism. FEither (i) explicit stability predicates/defect func-
tions that select a stable subset X,, C €, or (ii) computable mismatch certificates com-
paring finite readout statistics to an ideal reference (e.g. discrepancy-based certificates).

e Coarse-graining and degeneracy. Many-to-one maps from microstates to stable types
(or from microscopic configurations to discrete outputs) generate degeneracy distributions
that trade resolution for robustness.
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map denom p best (or,0c) $12 523 s13 Eoo By log(mean|J|/ Jgeo)

id 262144 18 (1, 2, 0)/(2, 0, 1) 0.5270 0.6693 0.1667 0.121 0.269 -0.417

gray 262144 18 (1, 2, 0)/(2, 0, 1) 0.5270 0.6693 0.1667 0.121 0.269 +0.013

bitrev 262144 18 (1, 2, 0)/(2, 0, 1) 0.5270 0.6693 0.1667 0.121 0.269 -0.245

not 262144 18 (1, 2, 0)/(2, 0, 1) 0.5270 0.6693 0.1667 0.121 0.269 -0.417
Table 45: Phase-map family sweep for the PMNS target sines. Rows are generated by
scripts/exp_holonomy_phase_lift_map_family_sweep.py.

map denom p best (or,0c) 512 523 $13 Ex By log(mean|J|/ Jgeo)

id 262144 18 (1, 0, 2)/(2, 0, 1) 0.5270 0.6441 0.1667 3.745 7.324 -0.417

gray 262144 18 (1, 0, 2)/(2, 0, 1) 0.5270 0.6441 0.1667 3.745 7.324 +0.013

bitrev 262144 18 (1, 0, 2)/(2, 0, 1) 0.5270 0.6441 0.1667 3.745 7.324 -0.245

not 262144 18 (1, 0, 2)/(2, 0, 1) 0.5270 0.6441 0.1667 3.745 7.324 -0.417
Table 46: Phase-map family sweep for the CKM target sines. Rows are generated by

scripts/exp_holonomy_phase_lift_map_family_sweep.py.

o Correction/compensation. Consistency can be enforced passively by compensating
connections (a protocol-geometric bookkeeping of local rephasing/transport) or actively
by feedback that reduces mismatch relative to a passive baseline.

¢ Audit closure under bounded complexity. Quantitative claims are framed as de-
terministic selections from finite candidate families under explicit complexity bounds, to-
gether with rigidity /stabilization diagnostics (cf. Definitions H.4)).

The measurement-theoretic notion of coarse readout as a finite-outcome instrument is stan-
dard in quantum information [24]. The feedback-control viewpoint on active mismatch reduc-
tion is standard in control theory, and the physical cost of logically irreversible operations has
a canonical lower bound in the Landauer principle [14,/15].

U.2 Isomorphism dictionary (stable sectors <+ AEC)

Table summarizes a protocol-level correspondence between (a) stable-sector constructions
in finite-resolution readout models and (b) predictive AEC mechanisms that suppress readout-

induced mismatch.

U.3 Transferable falsifiable problems

The interface dictionary yields cross-domain falsifiability questions that do not rely on post-hoc

freedom:

e Degeneracy-robustness link. Do observed many-to-one code degeneracies correlate
with reduced mismatch certificates under matched protocols, at the expected energetic

cost?

¢ Anti-locking selection. Under an operational tolerance d, do inferred coupling ratios
exhibit an upward shift in Qs relative to baselines that preserve sampling/noise structure?

e Thresholded sector growth.

If effective window length changes with environment
or scale, do stable-type counts and splits change in constrained batches dictated by the
underlying grammar /stability channel?
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B plaquettes best (or,0¢) S19 S93 S13 Feo Ei1  mean |J| failures

0 25 (0, 1, 2)/(0, 2, 1) 0.5151 0.7661 0.4074 1.015 1.125 0.0246486 64
0.25 25 (2, 0, 1)/(1, 2, 0) 0.6468 0.8308 0.4101 1.022 1.294 0.0351224 64
0.5 25 (2, 0, 1)/(2, 1, 0) 0.6458 0.8254 0.3966 0.988 1.253 0.0271959 64

1 25 (2, 0, 1)/(2, 1, 0) 0.6283 0.7472 0.4718 1.162 1.299 0.0372322 64

2 25 (0, 2, 1)/(0, 1, 2) 0.6554 0.6738 0.4933 1.206 1.466 0.0296337 64

4 15 (o0, 1, 2)/(1, 0, 2) 0.6508 0.7486 0.4525 1.120 1.295 0.0267211 93

Table 47: Soft-transport 3 sweep with permutation-robust fit to PMNS target sines (robustness
diagnostic). Rows are generated by scripts/exp_holonomy_soft_transport_beta_sweep.py.

B plaquettes best (or,0¢) S192 593 S13 Es Ei1  mean |J| failures
0 25 (0, 2, 1)/(0, 2, 1) 0.5151 0.5440 0.4074 4.639 8.026 0.0246486 64
0.25 25 (2, 1, 0)/(1, 2, 0) 0.6468 0.5017 0.4101 4.645 8.180 0.0351224 64
0.5 25 (2, 1, 00/(2, 1, 0) 0.6458 0.4799 0.3966 4.612 8.100 0.0271959 64
1 25 (2, 1, 00/(2, 1, 0) 0.6283 0.5826 0.4718 4.785 8.440 0.0372322 64
2 25 (0, 1, 2)/(0, 1, 2) 0.6554 0.6457 0.4933 4.830 8.630 0.0296337 64
4 15 (o0, 2, 1)/(1, 0, 2) 0.6508 0.5703 0.4525 4.744 8.412 0.0267211 93

Table 48: Soft-transport 8 sweep with permutation-robust fit to CKM target sines (robustness
diagnostic). Rows are generated by scripts/exp_holonomy_soft_transport_beta_sweep.py.

e Cost slopes. Does maintenance power admit a lower-envelope slope consistent with a
computational temperature scale when regressed against a protocol-matched mismatch-
rate estimator?

V  Functorial refinement under window uplift

This appendix records a minimal, auditable notion of functorial refinement of the field-level
labeling map under window uplift m — m/.

Audit note (tables as deterministic checks). All tabulated refinement multiplicities and
refinement-index catalogs below are theorem-level consequences of the prefix-projection defi-
nition together with Zeckendorf admissibility. Scripts referenced in captions reproduce these
deterministic counts and write WTEX fragments; they do not introduce additional free choices
beyond the stated definitions.

V.1 Prefix projection and a functorial lift

For m > 6, define the truncation (prefix) projection

Tm—6 :Xm_>X6, 7Tm_>6('w1...wm) = wi - We.

Lemma V.1 (Well-definedness and surjectivity of m,;,—6). For every m > 6, the map mp—6 is
well-defined and surjective.

Proof. If w € X,,, has no adjacent ones, then any prefix has no adjacent ones, hence 7,,_,¢(w) €
X and the map is well-defined. For surjectivity, given any u € Xg, the word w0---0 € X,,
(padding with m — 6 zeros) satisfies m,;,g(u0---0) = u. O

Given the closed labeling map Lgn @ X — Fsm U Gsm (Section @, we define its functorial
lift to window length m by composition:

Ly = Lsm © M6 © Xm — Fsm U Gsm.
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Interface object

Stable-sector language

AEC/biological language

finite readout alphabet

stability selection

mismatch/defect quantifier

coarse graining

consistency enforcement

resource accounting

observable signatures

window words w € £, = {0,1}"™

admissible/stable subset X, C
Q. defined by protocol constraints

defect predicates D(-) certifying
protocol inconsistency

many-to-one folding Q,, — X,
with degeneracy

compensating connections
(protocol-local ~ bookkeeping  of
transport/rephasing)

implementation cost as an audit
constraint  (bounded-complexity
closure)

rigid finite counts/histograms and
thresholded spectrum changes

discretized outcomes from finite-
resolution sensors/thresholds
viable operating region of the
agent under implementation and
readout constraints

discrepancy /mismatch certificates
D3y, En certifying readout bias ac-
cumulation

many-to-one coding (e.g. genetic
degeneracy) increasing robustness
under readout noise

feedback control and repair redi-
recting dissipation into waste
channels

Landauer-scale and architecture-
dependent costs bounding sustain-
able correction

statistical biases/scaling laws in
@5, En, ¥ under matched proto-

cols

Table 49: A protocol-level isomorphism dictionary: stable-sector constructions and predictive
AEC can be viewed as two realizations of the same interface template (finite readout, mis-
match /stability, correction, and bounded-complexity audit).

This definition makes the refinement under successive truncations explicit: for m > k > 6, one
has 6 = M6 © Tm—sk, hence Ly, = L o Ty,

V.2 Deterministic refinement multiplicities

Although L, uses only the first six digits to assign an SM label, each base type in Xg admits
multiple higher-window extensions in X,,,. This yields a computable refinement multiplicity per
base label.

Proposition V.2 (Extension counts depend only on the last bit). Fixm > 6 andu = uy -+ ug €
X6. Let
Exty,(u) :={w € Xy 1 mmoe(w) = ul.

Then |Ext,,(u)| depends only on ug:

Fm—47 U = 07

Ext,,(u)| =
[Exc (u) {Fm_&

Ue = 1,
where (Fy) are Fibonacci numbers with Fy = Fy = 1.

Proof. Let L := m — 6 be the extension length. If ug = 1, the next bit must be 0, and the

remaining L — 1 bits form an admissible word in X1, so [Exty,(u)| = | X11] = Fp_1)42 =
Fr—5 by Lemma If ug = 0, there is no forced initial 0 and the L extension bits form an
admissible word in X, so |Ext,,(u)| = |X| = Fr42 = Fi—4. O
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base type u € X¢ label Loni(u)  ug  [Exts(u)]  [Extio(u)] [Extio(u)]  [Extis(u)] [Extie(u)]
000000 v 0 3 8 21 55 144
100000 LtV 0 3 8 21 55 144
010000 eV 0 3 8 21 55 144
001000 o 0 3 8 21 55 144
101000 dyy 0 3 8 21 55 144
000100 uly) 0 3 8 21 55 144
100100 v 0 3 8 21 55 144
010100 el 0 3 8 21 55 144
000010 u'? 0 3 8 21 55 144
100010 L 0 3 8 21 55 144
010010 @ 0 3 8 21 55 144
001010 v 0 3 8 21 55 144
101010 L 0 3 8 21 55 144
000001 i 1 2 5 13 34 89
100001 U(1) 1 2 5 13 34 89
010001 ey 1 2 5 13 34 89
001001 ® 1 2 5 13 34 89
101001 SU(2) 1 2 5 13 34 89
000101 ) 1 2 5 13 34 89
100101 SU(3) 1 2 5 13 34 89
010101 ul?) 1 2 5 13 34 89

Table 50: Functorial refinement multiplicities under the prefix lift £,,, = Lgum © . Proposi-
tion predicts that each base type has 2 or 3 lifts at m = 8, 5 or 8 lifts at m = 10, 13 or 21
lifts at m = 12, 34 or 55 lifts at m = 14, and 89 or 144 lifts at m = 16, depending only on the
last bit ug. Rows are generated by scripts/exp_labeling_lift_consistency.py.

V.3 A canonical suffix index for lift refinement

The lift multiplicities in Table [50|depend only on the adjacency constraint between the prefix last
bit ug and the first extension bit. To obtain a concrete refinement of the coarse lift £,, (beyond
counting multiplicities), it is useful to attach a deterministic index to each lift in Ext,, (u).

Definition V.3 (Free suffix index). Fiz m > 6 and a base type u € X¢. Write any lift w €
Extp,(u) as w = us, where s is the length-(m — 6) suffiz. If ug = 0, define the free suffix to
be t :=s. If ug = 1, admissibility forces s to begin with 0, and we define the free suffix to be
t:= 89 8Sm—g (drop the forced leading 0). Define the free suffiz index

p(w) == Vz(t),

where Vy is the Zeckendorf/Fibonacci value computed from the binary word t using the standard
Fibonacci weights (starting at Fo =1).

At fixed (m, ug), the possible free suffixes form an admissible set and the index p enumerates
them deterministically. Table records the explicit suffix catalog for the balanced-coupling
uplifts m = 8 and m = 10.
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full suffix s

m  ug free suffix t p last bit s;—6
8 0 00 00 0 0
8 0 10 10 1 0
8 0 o1 01 2 1
8 1 00 0 0 0
8 1 o1 1 1 1

10 0 0000 0000 0 0

10 0 1000 1000 1 0

10 0 0100 0100 2 0

10 0 0010 0010 3 0

10 0 1010 1010 4 0

10 0 0001 0001 5 1

10 0 1001 1001 6 1

10 0 0101 0101 7 1

10 1 0000 000 0 0

10 1 0100 100 1 0

10 1 0010 010 2 0

10 1 0001 001 3 1

10 1 0101 101 4 1

Table 51: Canonical suffix catalog for the free suffix index p in Definition at m € {8,10}.
Rows are generated by scripts/exp_labeling_lift_refinement_indices.py.

V.4 Boundary subsets under the m-channel wrap-around defect

The m-channel boundary predicate on X,, is w1 = w,, = 1. Since wi; = u; is fixed by the base
type, the boundary subset within Ext,,(u) is determined by whether the last suffix bit equals 1.
Table [62] records the boundary-lift subsets in the p index language for m = 8 and m = 10.

base type u

label Lgn(w)

ul

<
=)

boundary p at m =8

boundary p at m = 10

000000
100000
010000
001000
101000
000100
100100
010100
000010
100010
010010
001010
101010
000001
100001
010001
001001
101001
000101
100101
010101

v
1
A
etD
Q"
4D

O = O H O O = O = O O = O OKF O F= OO = O

— R R R R R R0 0000000000 oo

@
{2}
@
@
{2}
@
{2}
@
@
{2}
@
@
{2}
@
{1}
@
@
{1}
@
{1}

%)

%)
{5,6,7}
%)

%)
{5,6,7}
%)
{5,6,7}
%)

%)
{5,6,7}
%)

%)
{5,6,7}
%)
{3,4}

%)

%)
{3,4}
%)

{3,4}

%)

Table 52: Boundary-lift subsets expressed in the free suffix index p (Definition [V.3|) un-

der the m-channel wrap-around defect predicate w;

scripts/exp_labeling_lift_refinement_indices.py.
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V.5 Audit: contiguity and Fibonacci boundary blocks

For completeness, Table 53| records a compact audit of the free suffix index. The audit is per-
formed at m € {8,10,12,14,16}. The index enumerates the admissible free suffixes contiguously
and the “ends in 1” subset occupies the top Fibonacci block of indices.

m ue freelength ¢ |©] prange boundary p block  status
8§ 0 2 3 0...2 {2} PASS
8 1 1 2 0...1 {1} PASS

10 0 4 8 0...7 {5,...,7} PASS

10 1 3 5 0...4 {3,...,4} PASS

12 0 6 21 0...20 {13,...,20} PASS

12 1 5 13 0...12  {8,...,12} PASS

14 0 8§ 55 0...54  {34,...,54} PASS

14 1 7 34 0...33  {21,...,33} PASS

16 0 10 144 0...143 {89,...,143} PASS

16 1 9 89 0...88 {55,...,88} PASS

Table 53: Audit checks for the free suffix index p (Definition [V.3) at
m € {8,10,12,14,16} and both cases ug € {0,1}. Rows are generated by
scripts/exp_audit_label_lift_refinement.py.

V.6 High-m invariants inside lift fibers

Beyond the purely combinatorial lift multiplicities and the suffix index p, the window length m
provides additional intrinsic invariants on X,,. As a minimal refinement diagnostic, Table
summarizes two such invariants inside each prefix fiber Ext,,(u): (i) the Fold,, degeneracy
gm(w) = |Fold,,}(w)| over N € {0,...,2™ — 1}, and (ii) the m-channel cyclic/boundary split on
X

Table 54: Intrinsic invariant summaries inside lift fibers at m €
{8,10,12,14,16}. The g histogram reports the Fold,, degeneracy counts
within Ext,,(v), while the Vi, range reports the minimum and max-
imum Zeckendorf values among the lifts. Rows are generated by
scripts/exp_labeling_lift_highm_invariants.py.

m base type u label  |Exty,(u)| cyc bdry gmin gmax g histogram V,,, range
8 000000 v 3 3 0 3 6 3:1, 6:2 0..34
8 100000 Lt 3 2 1 3 6 3:1, 6:2 1..35
8 010000 D) 3 3 0 3 6 3:1, 5:1, 6:1  2..36
8 001000 QM 3 3 0 3 6 3:1, 5:1, 6:1 3..37
8 101000 dy 3 2 1 3 6 3:1, 5:1, 6:1  4..38
8 000100 ul) 3 3 0 3 6 3:1, 5:1, 6:1  5..39
8 100100 v 3 2 1 3 6 3:1, 5:1, 6:1  6..40
8 010100 el 3 3 0 3 6 3:1, 5:1, 6:1  7..41
8 000010 u$? 3 3 0 3 6 3:1, 5:1, 6:1  8..42
8 100010 L 3 2 1 3 6 3:1, 5:1, 6:1  9..43
8 010010 QP 3 3 0 3 6 3:1, 5:1, 6:1  10..44
8 001010 v 3 3 0 3 6 3:1, 5:1, 6:1  11..45
8 101010 A 3 2 1 3 6 3:1, 5:1, 6:1  12..46
8 000001 a2 2 2 0 3 6 3:1, 6:1  13..47
8 100001 U(1) 2 1 1 3 6 3:1, 6:1  14..48
8 010001 e® 2 2 0 3 6 3:1, 6:1  15..49
8 001001 8 2 2 0 3 6 3:1, 6:1  16..50
8 101001 SU(2) 2 1 1 3 6 3:1, 6:1  17..51
8 000101 dy 2 2 0 3 6 3:1, 6:1  18..52
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m  base type u label |Extm(u)] cyc bdry ¢gmin gmax g histogram V,,, range
8 100101 SU(3) 2 1 1 3 6 3:1, 6:1  19..53
8 010101 u'P 2 2 0 3 6 3:1, 6:1  20..54
10 000000 v 8 8 0 5 9 5:3, 8:2, 9:3  0..123
10 100000 A 8 5 3 5 9 5:3, 8:2, 9:3  1..124
10 010000 el 8 8 0 5 9 5:3, 8:2, 9:3  2..125
10 001000 QW 8 8 0 5 9 5:3, 8:3, 9:2  3..126
10 101000 i) 8 5 3 5 9 5:3, 8:3, 9:2  4..127
10 000100 uld) 8 8 0 5 9 5:3, 8:3, 9:2  5..128
10 100100 v 8 5 3 5 9 5:3, 8:3, 9:2  6..129
10 010100 el 8 8 0 5 9 5:3, 8:3, 9:2  7..130
10 000010 uf? 8 8 0 5 9 5:3, 8:3, 9:2  8..131
10 100010 L 8 5 3 5 9 5:3, 8:3, 9:2  9..132
10 010010 % 8 8 0 5 9 5:3, 8:3, 9:2  10..133
10 001010 v 8 8 0 5 9 5:3, 8:3, 9:2  11..134
10 101010 A 8 5 3 5 9 5:3, 8:3, 9:2  12..135
10 000001 dyy 5.5 0 5 9 5:2, 8:2, 9:1  13..136
10 100001 U(1) 5 3 2 5 9 5:2, 8:2, 9:1  14..137
10 010001 ey 5 5 0 5 9 5:2, 8:2, 9:1  15..138
10 001001 Q¥ 5 5 0 5 9 5:2, 8:2, 9:1  16..139
10 101001 SU(2) 5 3 2 5 9 5:2, 8:2, 9:1  17..140
10 000101 ) 5 5 0 5 9 5:2, 8:2, 9:1  18..141
10 100101 SU(3) 5 3 2 5 9 5:2, 8:2, 9:1  19..142
10 010101 u'P 5 5 0 5 9 5:2, 8:2, 9:1  20..143
12 000000 v 21 21 0 8 13 8:8, 12:4, 13:9  0..356
12 100000 Lt 21 13 8 8 13 8:8, 12:4, 13:9  1..357
12 010000 el 21 21 0 8 13 8:8, 12:4, 13:9  2..358
12 001000 QW 21 21 0 8 13 8:8, 12:4, 13:9  3..359
12 101000 dy 21 13 8 8 13 8:8, 12:5, 13:8  4..360
12 000100 uld) 21 21 0 8 13 8:8, 12:5, 13:8  5..361
12 100100 v 21 13 8 8 13 8:8, 12:5, 13:8  6..362
12 010100 el 21 21 0 8 13 8:8, 12:5, 13:8  7..363
12 000010 u'? 21 21 0 8 13 8:8, 12:5, 13:8  8..364
12100010 L 21 13 8 8 13 8:8, 12:5, 13:8  9..365
12 010010 QY 21 21 0 8 13 8:8, 12:5, 13:8  10..366
12 001010 v 21 21 0 8 13 8:8, 12:5, 13:8  11..367
12101010 L 21 13 8 8 13 8:8, 12:5, 13:8  12..368
12 000001 dy 13 13 0 8 13 8:5, 12:3, 13:5  13..369
12 100001 U(1) 13 8 5 8 13 8:5, 12:3, 13:5  14..370
12 010001 ey 13 13 0 8 13 8:5, 12:3, 13:5  15..371
12 001001 ) 13 13 0 8 13 8:5, 12:3, 13:5  16..372
12 101001 SU(2) 13 8 5 8 13 8:5, 12:3, 13:5  17..373
12 000101 ) 13 13 0 8 13 8:5, 12:3, 13:5  18..374
12100101 SU(3) 13 8 5 8 13 8:5, 12:3, 13:5  19..375
12 010101 ufP 13 13 0 8 13 8:5, 12:3, 13:5  20..376
14 000000 v 55 55 0 12 20 12:21, 19:18, 20:16  0..966
14 100000 S 55 34 21 12 20 12:21, 19:18, 20:16  1..967
14 010000 ety 55 55 0 12 20 12:21, 19:18, 20:16  2..968
14 001000 QW 55 55 0 12 20 12:21, 19:19, 20:15  3..969
14 101000 dy 55 34 21 12 20 12:21, 19:19, 20:15  4..970
14 000100 uld) 55 55 0 12 20 12:21, 19:19, 20:15  5..971
14 100100 v 55 34 21 12 20 12:21, 19:19, 20:15  6..972
14 010100 el 55 55 0 12 20 12:21, 19:19, 20:15  7..973
14 000010 u$? 55 55 0 12 20 12:21, 19:19, 20:15  8..974
14 100010 L 55 34 21 12 20 12:21, 19:19, 20:15  9..975
14 010010 I 55 55 0 12 20 12:21, 19:19, 20:15  10..976
14 001010 v 55 55 0 12 20 12:21, 19:19, 20:15  11..977
14 101010 Lt 55 34 21 12 20 12:21, 19:19, 20:15  12..978
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m  base type u label |Extm(u)] cyc bdry ¢gmin gmax g histogram V,,, range

14 000001 ) 34 34 0 12 20 12:13, 19:12, 20:9 13..979
14 100001 U(1) 34 21 13 12 20 12:13, 19:12, 20:9  14..980
14 010001 e® 34 34 0 12 20 12:13, 19:12, 20:9  15..981
14 001001 8 34 34 0 12 20 12:13, 19:12, 20:9  16..982
14 101001 SU(2) 34 21 13 12 20 12:13, 19:12, 20:9  17..983
14 000101 i 34 34 0 12 20 12:13, 19:12, 20:9 18..984
14 100101 SU(3) 34 21 13 12 20 12:13, 19:12, 20:9  19..985
14 010101 ufP 34 34 0 12 20 12:13, 19:12, 20:9 20..986
16 000000 v 144 144 0 18 30 18:55, 29:7, 30:82  0..2563
16 100000 Ay 144 8 55 18 30 18:55, 29:7, 30:82  1..2564
16 010000 el 144 144 0 18 30 18:55, 29:7, 30:82 2..2565
16 001000 QW 144 144 0 18 30 18:55, 29:7, 30:82  3..2566
16 101000 i) 144 89 55 18 30 18:55, 29:8, 30:81  4..2567
16 000100 ul) 144 144 0 18 30 18:55, 29:8, 30:81 5..2568
16 100100 v 144 89 55 18 30 18:55, 29:8, 30:81  6..2569
16 010100 el 144 144 0 18 30 18:55, 29:8, 30:81  7..2570
16 000010 u$? 144 144 0 18 30 18:55, 29:8, 30:81  8..2571
16 100010 L 144 89 55 18 30 18:55, 29:8, 30:81  9..2572
16 010010 QY 144 144 0 18 30 18:55, 29:8, 30:81 10..2573
16 001010 v 144 144 0 18 30 18:55, 29:8, 30:81 11..2574
16 101010 Lt 144 89 55 18 30 18:55, 29:8, 30:81 12..2575
16 000001 ) 89 89 0 18 30 18:34, 29:5, 30:50 13..2576
16 100001 U(1) 89 55 34 18 30 18:34, 29:5, 30:50 14..2577
16 010001 e® 89 89 0 18 30 18:34, 29:5, 30:50 15..2578
16 001001 8 89 89 0 18 30 18:34, 29:5, 30:50 16..2579
16 101001 SU(2) 89 55 34 18 30 18:34, 29:5, 30:50 17..2580
16 000101 a 89 89 0 18 30 18:34, 29:5, 30:50 18..2581
16 100101 SU(3) 89 55 34 18 30 18:34, 29:5, 30:50 19..2582
16 010101 u$P 89 8 0 18 30 18:34, 29:5, 30:50 20..2583

W Inverse interface diagnostics: recovering quantum number
patterns from invariants

This appendix records inverse identification diagnostics on the physical identification layer: given
the closed labeling map and the intrinsic invariants available at window length 6, to what extent
can Standard Model quantum-number patterns be recovered by bounded-complexity rules built
from those invariants? These diagnostics are not premises for any result in the main text.
Because the cyclic sector consists of exactly the 18 fermion multiplets (three generations of
six chiral multiplets), the induced target class frequencies are fixed a priori. In particular,
chance/majority baselines are 1/6 for the six-class targets (6Y)? and Yum = 6Y, 1/2 for sign(Y))
and dim(SU(3)), 2/3 for dim(SU(2)), and 1/3 for the generation index.

Audit note (diagnostics vs. premises). All classifier searches reported below are determin-
istic bounded sweeps over explicit integer boxes (as stated in each subsection), and all reported
“best/second-best” rows are computed with deterministic tie-break rules. Scripts referenced in
table captions reproduce these bounded sweeps and write A TEX fragments; the inverse diagnos-
tics are post-hoc audits and are not used as premises anywhere in the main argument.
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W.1 A bounded-complexity classifier for (6Y)?

Under the PDG convention (Q = T35 4+ Y, the chiral fermion multiplets in one generation take
hypercharges with (6Y)? € {0,1,4,9,16,36}. Using the closed labeling Lsy (Section @, we can
treat (6Y)? as a supervised target on the cyclic stable types and ask whether a low-complexity
rule built from intrinsic invariants can recover it.

We test the simplest linear-score family on cyclic stable types:

S(w) = aV(w) +bg(w) +clwli +d,  abede,

and predict (6Y)? by snapping S(w) to the nearest allowed value in {0,1,4,9,16,36} with
a deterministic tie-break rule. Table reports the best and second-best solutions under a
bounded search box together with the accuracy gap.

search box best (a,b,c,d) accuracy second  gap complexity Y |a;] notes

lal,|b],lc],|d] <8  (0,—1,5,0) 0.389  (0,-2,4,5) 0.000 6 {0,1,4,9,16,36}

Table 55: Bounded-complexity inverse diagnostic for the hypercharge-squared class (6Y)?
from intrinsic invariants on cyclic stable types at m = 6. Rows are generated by
scripts/exp_inverse_hypercharge_fit.py.

W.2 Recovering the sign of hypercharge

The previous classifier targets (6Y)? and therefore ignores the sign of Y. As a complementary
diagnostic, one can attempt to recover sign(Y) € {—1,0,+1} from intrinsic invariants using
a bounded linear score and a two-threshold rule. Table |56| reports the best result in a fixed
bounded search box.

search box target best parameters errors  accuracy

lal, |b],]c| <4 sign(Y) (a,b,c t1,te,m) =(1,3,—-4,11,12,(-1,0,1)) 6 0.667
Table  56: Bounded-complexity inverse diagnostic for sign(Y) from intrin-
sic invariants on cyclic stable types at m = 6. Rows are generated by

scripts/exp_inverse_hypercharge_sign_fit.py.

W.3 Recovering the full hypercharge numerator

As a stricter test, one can attempt to recover the full hypercharge numerator Yy, = 6Y €
{-6,—-3,—2,0,1,4} from intrinsic invariants by searching for bounded score families and pro-
jecting to the nearest allowed value. Table [57 compares multiple bounded families, including
affine scores in (V,g,wt), affine scores on a fixed subset of word bits, a shallow bit-decision
tree with leaf labels chosen by deterministic majority vote, and an optimal bounded-depth bit-
decision tree computed by dynamic programming.
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search box target best parameters errors  accuracy

lal, |b],]cl,|d] <6 Yium (V,g,wt) (a,b,c,d) = (2,0,-5,0) 11 0.389
lei] < 3 Youm (bits 1.5)  (c1,...,¢c5,d) = (—3,2,1,3,~1,0) 6 0.667
depth = 3 Youm (bit tree)  bits = (2,1,0,0,4,4,4), leaf = (—2,-3,—6,1,1,0, -2, —3) 5 0.722
DP, depth <6 Yium (bit tree)  depth = 6, nodes = 27, bits = (0,1,2,3,4,5) 0 1.000

Table 57: Bounded-complexity inverse diagnostic for the full hypercharge numerator Youm =
6Y from intrinsic invariants on cyclic stable types at m = 6. Rows are generated by
scripts/exp_inverse_hypercharge_full_fit.py.

W.4 Recovering representation dimensions

As a simpler inverse diagnostic, one can ask whether the representation dimensions
dim(SU(3)) € {1,3} and dim(SU(2)) € {1,2} can be recovered from the same intrinsic in-
variants by a low-complexity rule. Table reports a bounded linear-threshold fit for each
target.

search box target best parameters errors  accuracy
lal, b, |c|,|d] <6 dim(SU@3)) (a,b,c,d,T)=(1,4,—3,—6,11) 3 0.833
lal, 0], |c],|d| <6 dim(SU(2)) (a,b,c,d,T)=(—1,—4,4,0,—14) 4 0.778

Table 58: Bounded-complexity inverse diagnostics for gauge-representation dimensions
from intrinsic invariants on cyclic stable types at m = 6. Rows are generated by
scripts/exp_inverse_rep_dim_fit.py.

W.5 Recovering the generation index

The closed fermion ordering in Definition is organized by a generation index g. As em-
phasized in Remark this index is a bookkeeping convention for the three copies of the
same gauge-quantum-number pattern (fixed here by the downstream mass-template anchor).
Accordingly, the following inverse diagnostic is conditional on that convention: it asks whether
the assigned g € {1,2,3} can be recovered from a simple intrinsic scalar score on w € X using
a two-threshold rule. Table [59| reports best thresholds for a small set of candidate scores.

score S(w) best thresholds errors  accuracy
V(w) (t1,t2) = (5,10) 1 0.944
ro(w) = V(w) + 3(g(w) — 2) (t1,t2) = (11,13) 1 0.944
S(w) = aV(w) + b deg(w) + cwt(w) (best) (a,b,c,t1,t2) = (1,0, 3,10, 16) 0 1.000

Table 59: Bounded-complexity inverse diagnostic for the generation index from intrinsic scores
on cyclic stable types at m = 6 using a two-threshold classifier. Rows are generated by
scripts/exp_inverse_generation_fit.py.

W.6 High-m inverse diagnostic from lift-fiber invariants

The inverse diagnostics above use only intrinsic invariants at window length m = 6. To probe
whether additional structure becomes available under window uplift, we can build supervised

targets on the cyclic base types u € Xg”° and attach to each u a small set of intrinsic invariants
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computed inside its lift fiber
Extp,(u) :={w € Xy, : mmoe(w) = u}.

As a minimal example, we test an affine score on a small lift-fiber feature set (fiber size, boundary
count, Fold,,, degeneracy extrema, and the Zeckendorf range width) and attempt to recover the
hypercharge-squared class (6Y)? by the same nearest-class projection rule. Table 60| reports the
best and second-best solutions at several uplift values.

m  features search box  best coeffs accuracy  second gap complexity
8 ext,bdry,gmin,gmax,Vwidth la;| <4 (0,-1,0,2,0,1) 0.333  (0,-2,0,2,0,1) 0.000 4
8 ext,bdry,gmin,gmax,Vmin,Vmax |a;| <3 (0,0,0,0,1,0,—1) 0.333  (0,1,0,0,1,0,—1) 0.000 2
8 ext,bdry,Vmin,Vmax la;| < 4 (0,0,1,0,—1) 0.333  (0,1,1,0,-1) 0.000 2

10  ext,bdry,gmin,gnax, Vwidth la;| < 4 (~1,2,0,1,0,0) 0389  (—1,2,0,1,0,1) 0.000 4

10  ext,bdry,gmin,gmax,Vmin,Vmax |a;| <3 (-1,2,0,1,0,0,0) 0.389 (-1,2,0,1,0,0,1) 0.000 4

10 ext,bdry,Vmin,Vmax la;| < 4 (—-2,4,1,0,3) 0.389  (4,-3,—-1,0,-2) 0.000 10

12 ext,bdry,gmin,gmax,Vwidth la;| < 4 (-1,2,2,0,0,0) 0.389 (-1,2,2,0,0,1) 0.000 5

12 ext,bdry,gmin,gmax,Vmin,Vmax |a;| <3 (-1,2,2,0,0,0,0) 0.389 (-—1,2,2,0,0,0,1) 0.000 5

12 ext,bdry,Vmin,Vmax la;| <4 (0,0,1,0,—1) 0.333  (0,1,0,0,1) 0.000 2

14  ext,bdry,gmin,gmax,Vwidth la;| <4 (0,-1,1,1,0,0) 0.333 (0,—-1,-1,2,0,0) 0.000 3

14  ext,bdry,gmin,gmax,Vmin,Vmax |a;| < 3 (0,-1,1,1,-2,0,0) 0389 (0,-1,1,1,-2,0,1)  0.000 5

14  ext,bdry,Vmin,Vmax la;| <4 (0,0,1,0,-1) 0.333  (1,-2,0,0,—1) 0.000 2

16  ext,bdry,gmin,gmax,Vwidth la;| <4 (0,-1,2,1,0,0) 0.333  (0,—1,0,2,0,2) 0.000 4

16  ext,bdry,gmin,gmax,Vmin,Vmax |a;| <3 (0,-1,2,1,-2,0,0) 0.389 (1,-2,-3,1,—2,0,1)  0.000 6

16  ext,bdry,Vmin,Vmax la;] <4 (0,0,1,0,-1) 0.333  (0,0,1,0,0) 0.056 2

Table 60: High-m inverse diagnostic for the hypercharge-squared class (6Y)? from lift-
fiber invariants inside Ext,,(u) for cyclic base types u € Xg'°. Rows are generated by
scripts/exp_inverse_highm_hypercharge_fit.py.

W.7 High-m inverse diagnostic for sign(Y’)

Using the same lift-fiber invariants, we can attempt to recover the sign class sign(Y) €
{—1,0,+1} by a bounded linear score and a two-threshold rule, analogous to Table [56/at m = 6.
Table [61] reports the selected best models at several uplifts.

m  features search box  best parameters errors  accuracy
8 ext,bdry,gmin,gmax,Vwidth |a;| <2 (a,...,t1,t2,m) = ( 1,1,1,0,0,0,0,1,(1,-1,0)) 7 0.611
8 ext,bdry,Vmin,Vmax la;| <2 (ay...,t1,t2,m) =(-1,1,0,0,2,—1,0,(1,-1,0)) 7 0.611
10  ext,bdry,gmin,gmax,Vwidth |a;] <2 (a,...,t1,t2,m) 7( 1,1,1,0,0,0,-3,0,(1,—1,0)) 7 0.611
10 ext,bdry,Vmin,Vmax la;| <2 (ay...,t1,t2,m) = (—1,2,1,0,—-2,0,2,(1,0,—1)) 7 0.611
12 ext,bdry,gmin,gmax,Vwidth |a;| <2 (a,...,t1,t2,m) = ( 1,1,0,1,0,0,-8,0,(1,—1,0)) 7 0.611
12 ext,bdry,Vmin,Vmax la;| <2 (ay...,t1,t2,m) = (2,-2,1,0,—2,42,50, (—1,1,0)) 4 0.778
14 ext,bdry,gmin,gmax,Vwidth |a;| <2 (a,...,t1,t2,7) =(-1,1,0,2,0,0,-15,6, (1,—1,0)) 7 0.611
14  ext,bdry,Vmin,Vmax la;| <2 (ay...,t1,t2,m) = (1 -1,1,0,-2,47,63,(—1,1 0)) 5 0.722
16  ext,bdry,gmin,gmax,Vwidth |a;| <2 (a,...,t1,t2,m) =(-1,1,2,2,0,0,—-48,7,(1,—1,0)) 7 0.611
16  ext,bdry,Vmin,Vmax la;| <2 (ay...,t1,t2,m) = (1 —1,2,2,-2,5276,5308, ( 1, 1,0)) 4 0.778
Table 61: High-m inverse diagnostic for sign(Y) from lift-fiber invariants in-
side  Exty,(u) for cyclic base types u €  Xg°. Rows are generated by

scripts/exp_inverse_highm_hypercharge_sign_fit.py.

W.8 High-m inverse diagnostic for the full hypercharge numerator

Finally, we can attempt to recover the full hypercharge numerator Yy, = 6Y using bounded-
complexity affine scores on lift-fiber invariants and the same nearest-allowed projection rule as in
Table Here Yyum € {—6,—3,—2,0,1,4}. Table|62|records the resulting best and second-best
solutions together with an accuracy gap.
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m  features search box  best coeffs errors  accuracy  second gap  complexity

8 ext,bdry,gmin,gmax,Vwidth |a;| <3 (1,-2,-1,0,0,-1) 11 0.389 (-3,1,1,0,0,1) 0.000 5
8 ext,bdry,Vmin,Vmax la;] <3 (0,-3,1,0,—-1) 12 0.333  (-2,3,0,0,—1) 0.000 5
10  ext,bdry,gmin,gmax,Vwidth |a;| <3 (O 1, 71 0,0,—-1) 12 0.333  (0,2,0,—1,0,0) 0.000 3
10  ext,bdry,Vmin,Vmax la;| <3 (1, -1,0,3) 11 0.389  (0,—-2,1,0,0) 0.056 7
12 ext,bdry,gmin,gmax,Vwidth |a;| <3 (0, —2 0,1,0 0) 12 0.333 (0,—1,-1,1,0,0) 0.000 3
12 ext,bdry,Vmin,Vmax lai| <3 (1,0,-2,0,0) 12 0333 (~1,2,0,0,1) 0.000 3
14  ext,bdry,gmin,gmax,Vwidth |a;| <3 (0, 1 —2,0,0,0) 12 0.333 (0,—1,0,1,0,—2) 0.000 3
14 ext,bdry,Vmin,Vmax la;| <3 (0,0,1,0,—-1) 13 0.278 (0,—1,1,0,-1) 0.000 2
16  ext,bdry,gmin,gmax,Vwidth |a;| <3 (-1,2,0,1,0,0) 12 0.333  (0,1,0,-2,0,1) 0.000 4
16  ext,bdry,Vmin,Vnax lai] < 3 (0,0,1,0, 1) 13 0278 (0,-1,1,0,—1)  0.000 2

Table 62: High-m inverse diagnostic for the full hypercharge numerator Y,,;, = 6Y from
lift-fiber invariants inside Exty,(u) for cyclic base types u € Xg'°. Rows are generated by
scripts/exp_inverse_highm_hypercharge_full_fit.py.

X Black holes and wormhole-like channels: rigidity beyond the
Standard Model (interface pointer)

This paper focuses on the minimal stable sector and the Standard Model interface at (m,n) =
(6,3). However, the same HPA—Q rigidity philosophy extends naturally to gravitational and
strong-field questions once one adopts the overhead/lapse dictionary (Section @ and treats
boundaries as readout screens. To keep the present manuscript self-contained, we also record
(i) a minimal overhead-to-gravity closure and (ii) an executable y(x) reconstruction protocol in
Appendices [AD.7 and [AD.8] For an extended treatment of a dynamical gravity interface in the
same programmatic language (routing overhead and deterministic closure), see the companion
CAP-IT manuscript [5]. We record here, as a pointer, two established rigidity targets.

X.1 Black-hole area law as boundary channel counting (external input, rigid
interface)

Black-hole thermodynamics provides a well-established link between boundary geometry and
entropy: semiclassically,

kpA

103

where A is horizon area and (3, = Gh/c3 [41}[70[/88-90]. This is consistent with the holographic
principle viewpoint that gravitational degrees of freedom admit an effective boundary description
[39-41]. In the HPA interface language, a boundary screen is a finite-resolution readout cut with
a maximal outcome count Ny(A,r), and the channel-count entropy is S = kglog Ny [17,/61].
Under the covariant entropy bound and saturation, the area law is the saturation of boundary
channel capacity [41]. This viewpoint is consistent with the present paper’s emphasis on finite
alphabets and stable-sector compression: horizons are extreme instances of “boundary-stable”
readout where channel counting dominates.

SBH =

X.2 Einstein—Rosen throat and inversion continuation (wormhole-like chan-
nel)

In isotropic coordinates, the Schwarzschild exterior admits an inversion symmetry and a
minimal-surface throat on the time-symmetric slice, giving the classical Einstein—Rosen bridge
template [71,91,92]. For a minimal explicit formula package (coordinate map, metric form,
and inversion), see Proposition Conceptually, throat/bridge geometries are aligned with
modern organizing principles that relate entanglement, horizons, and wormhole geometries (e.g.
ER=EPR in appropriate settings) [93].

144



X.3 Why these extensions are “forced” once rigidity is assumed (interface
logic)

The purpose of this appendix is not to import a full gravitational derivation into the present
paper, but to record the sense in which certain gravitational structures become the standard
rigid templates (and, in limited senses, unavoidable) once one adopts the same rigidity discipline
used throughout this manuscript:

e Boundary entropy is channel capacity. If horizons are treated as readout screens
and entropy is treated as log of a finite channel count (channel-count entropy), then the
covariant entropy bound supplies a canonical capacity bound, and saturation yields the
area law coefficient 1/4 as the rigid leading term (cf. [41]).

o Exterior geometry is unique under standard symmetry assumptions. In spher-
ically symmetric vacuum regions, the Schwarzschild exterior is the standard unique tem-
plate up to diffeomorphism (Birkhoff-type uniqueness; see, e.g., [71]), so any rigid “black-
hole sector” that aims to reproduce classical tests has essentially no freedom in the exterior
once the mass parameter is fixed.

o Endpoint avoidance naturally uses the Einstein—Rosen/Kruskal throat tem-
plate. The maximal analytic extension of Schwarzschild contains an Einstein—Rosen
bridge on a time-symmetric slice [71,91;92]. If one seeks a minimal continuation that
removes coordinate endpoint pathology while preserving the exterior, then using the
throat/inversion structure as a gluing/continuation template is the most economical geo-
metric move.

¢ Wormbhole-like channels are topological shortcuts in readout geometry. In a
protocol where boundary transport can be impedance-limited (delay) while bulk access can
provide chord-like shortcuts, “wormhole-like” behavior can be interpreted as a controlled
bulk-to-boundary interaction channel rather than as a violation of locality. This viewpoint
is compatible with standard wormhole terminology in GR [94,95].

X.4 Interface closure statements (audit form)

For completeness, we record the preceding logic in a compact “input = output” form, sepa-
rating standard external inputs from interface identifications. In addition to entropy bounds,
we also use standard kinematic delay/lapse templates as external targets at the matching layer:
Section |Y|records the operational Wigner—Smith proxy and the GR reference formulas and
. Within this paper, the protocol-level overhead-to-gravity bridge that interprets these tem-
plates is recorded explicitly in Appendix and an executable data protocol to reconstruct

x(x) is recorded in Appendix

Proposition X.1 (Area law as boundary channel saturation (standard input)). Assume (i)
boundary entropy is channel-count entropy S = kplogNy for a screen of area A, (i) the co-
variant entropy bound S < kpA/(44%) holds, and (iii) horizons saturate this bound at leading
order. Then the Bekenstein—Hawking area law holds at leading order,

kpA A
SBH = ——5, Na(A) = exp <> .
107, 1%
Proof. This is the covariant entropy bound together with the channel-count definition of entropy;
see, e.g., |41]. O

Remark X.2 (Bekenstein bound route to the coefficient 1/4 (standard)). The Bekenstein
bound states S < 2rkpER/(hc) for a system of energy E contained in radius R [96]. For
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a Schwarzschild black hole, take E = Mc* and R = Ry = 2GM/c?, and recall A = 4w R? [71].

Then
(Mc*)(2GM/c*)  4nkpGM?* L A
he T e "Parry

where €% = Gh/c®. Equality is attained (at leading order) for black holes.

S < 2nkp

Proposition X.3 (Bekenstein bound in the r-coordinate (matching form)). Let p be a mass
scale and define the resolution coordinate () = log,(11/me) as in (equivalently (43)). Let
ACe = h/(mec) be the electron Compton wavelength. Then the Bekenstein bound can be written
as

S < 27kp )\R o).

Cie
For a Schwarzschild black hole with u = M and R = Ry = 2GM/c?, this reproduces the leading
area-law scaling S oc o> M) and is equivalent to the kpA/(46%) form.

Proof. By the Bekenstein bound [96], S < 2nkpER/(hc). With E = uc?, this is § <
omkp(ucR/h) = 2nkp(R/Ac(p)), where Ao (p) = h/(uc). Using g = mee™ ™ and Ao(p) =
AC.e (Mme/ 1), one obtains
B _Rp_ R
)\C(:U’) )\C,e Me )\C,e 4
For y = M and R = 2GM/c?, the bound becomes S < 4rkpGM?/(hc) = kpA/(4(%) as in the
preceding remark. O

Remark X.4 (Schwarzschild thermodynamic scaling in the r-coordinate (external)). For a
Schwarzschild black hole, Sgy o< M? while the Hawking temperature scales as Ty oc 1/M [70,71).
Therefore, in the r-coordinate one has the linear log-laws

log,, Spu = 27(M) + const, log,, Ty = —1(M) + const.

This highlights why a logarithmic mass coordinate is a canonical matching language across mi-
crophysical scales and gravitational thermodynamics.

Proposition X.5 (Schwarzschild exterior as the rigid spherically symmetric vacuum template
(standard)). In a spherically symmetric vacuum region, the Lorentzian metric is locally isometric
to the Schwarzschild exterior (Birkhoff-type uniqueness), hence classical weak-field tests in such
a region have no additional functional freedom beyond the mass parameter.

Proof. Standard; see, e.g., |71]. O

Proposition X.6 (Einstein-Rosen throat and inversion symmetry in isotropic radius (stan-
dard)). Let Ry := 2GM/c? denote the Schwarzschild radius of a mass M. Here r denotes the
Schwarzschild areal radius coordinate (not the resolution coordinate r(u) = log,(u/me) used
elsewhere in this paper). Introduce the isotropic radius p > 0 by the standard change of variables

Ry\?
=pll+—]) . 33
rT=2p ( + 4p) (33)
Then the Schwarzschild exterior metric can be written in isotropic form as
1— R 2 R 4
ds? = — [ — 22 c2dt2+<1+5> dp? + p2d0?) , 34
(1 Y 1 (dp? + p? d2?) (34)

where dQ? := d0? + sin? 0 d¢>. Define py, := Rs/4 and the inversion map

p2
T:prs ?h. (35)
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Then r(p) = r(Z(p)), and the isotropic form is invariant under p — I(p). The horizon
r = Rgs corresponds to p = pp, and the isotropic chart covers the exterior region v > Rs. In
particular, the time-symmetric spatial slice admits a two-ended completion with asymptotically
flat ends (p — oo and p — 0) glued at the minimal surface p = py, (the Einstein-Rosen throat),
rather than a coordinate chart of the Lorentzian black-hole interior.

Proof. The coordinate transform and the isotropic form are standard; see, e.g., [71].
The inversion identity r(p) = r(p}/p) follows by direct substitution into (33). Under p = p7./p,
one has dp? + p2d02 = (pt /") (d5* + p*d0?) and (1 + Rs/(4p))* = (5 + pn)*/p}, so the spatial
conformal factor in is invariant. The throat statement is the classical Einstein—-Rosen bridge
template on the time-symmetric slice; see [71},91,92]. O

Definition X.7 (Wormhole-like channel as a pointer jump (protocol-level)). Fizx a Hilbert order
n and a locality-preserving address map H,, : {0,...,4" — 1} — {0,...,2" — 1}% (Section @ A
wormhole link is a directed (or undirected) pointer

ptr

b abedo,...,4" —1},

interpreted as an additional readout-level shortcut channel that bypasses the nearest-neighbor
scan traversal between indices a and b induced by the Hilbert path. FEquivalently, it explicitly
relazes the scan adjacency constraint by augmenting the protocol with a nonlocal pointer edge in
index space.

Remark X.8 (Traversability is not assumed in the present paper). Classical traversable worm-
holes in Lorentzian GR require additional conditions and are typically associated with violations
of standard energy conditions; see, e.qg., [94,(95]. Accordingly, the “wormhole-like channel” lan-
guage used here is protocol-level and refers to a controlled bulk—boundary interaction/shortcut
template in readout geometry, not to a claim of a traversable Lorentzian wormhole in vacuum
GR. In particular, the only concrete object fized in this paper is the protocol-level pointer-jump
model of Definition together with the delay/overhead dictionaries used for matching (Sec-

tion @)

Remark X.9 (Topological censorship constraint (standard)). Under standard global assump-
tions and energy conditions (e.g. the null energy condition), topological censorship theorems
constrain macroscopic traversable wormholes connecting asymptotically flat regions in classical
GR; see, e.g., [97,98]. This provides an additional reason to keep the present paper’s “wormhole-
like” language explicitly at the protocol/interface level.

For the present paper, the role of this pointer is conservative: it indicates that the same
rigidity discipline used here (finite alphabets, auditable closures, explicit mismatch/overhead
proxies) can be extended beyond the Standard Model interface to strong-field geometry, while
keeping the theorem-level folding layer clean of continuum assumptions.

Y Time and mass as delay: scattering and relativistic lapse
dictionaries (interface)

This section records the matching-layer dictionaries underlying the mass-as-delay discussion
in Section It connects protocol-level cost/overhead coordinates to standard measurable
proxies (scattering delay, redshift /lapse) and to standard kinematic relations (special and general
relativity), while keeping these statements at the interface layer rather than as theorem-level
consequences of the folding core.
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Y.1 Unified phase—delay dictionary (phase advance, frequency, and group
delay)

Two complementary derivatives. [Interface]Frequency is the canonical “phase per tick”
quantity in the frequency-first spine: Definition fixes w = AA/At in tick units. Time
delay is the complementary “phase per frequency” quantity: in any setting where a complex
response has a measurable phase §(w) as a function of angular frequency w, the group-delay

observable is the phase derivative
do

These are inverse-facing dictionaries built from the same primitive object (phase as a readout).

T(w) :

Scattering as a phase-response interface. [Interface]ln scattering platforms one measures
complex S-parameters as functions of frequency. When scattering is (nearly) unitary over a
stated band, the phase response is the most stable observable and the delay 7(w) provides a
direct operational bridge from phase to time. The Wigner—Smith construction below is precisely
the multi-channel, basis-invariant generalization of this group-delay dictionary.

Y.2 Scattering delay as an operational proxy: Wigner—Smith

In platforms where a scattering description is available, delays are directly measurable from
complex S-parameters as functions of frequency. Let S(w) be a unitary scattering matrix (lossless
elastic scattering) at angular frequency w. The Wigner-Smith time-delay matrix is defined
by [20121]

ds
— T2
Qw) = —-iSw) o’ (36)
and a common scalar summary is the total delay
rws(w) = TrQ(w). (37)
In a one-channel setting S(w) = €%, reduces to the group/phase derivative
dé
=, 38
Tws(w) dw (38)

Trace/logdet identity and basis invariance (unitary case). [Interface]For unitary S(w)
one has S~ = ST, hence

. d
TrQ(w) = —i O log det S(w).

Writing det S(w) = €€ yields mws(w) = dO/dw, so the WS trace is the derivative of a
total scattering phase. Moreover, under any energy-independent channel basis change S’(w) =
U S(w) Ut with U unitary, one has Q'(w) = U Q(w) U'; therefore TrQ and the eigenvalues of Q
are basis-invariant scalar observables in multi-channel settings.

Non-unitarity, losses, and calibration. [Interface]ln realistic settings absorption and imper-
fect calibration can make S non-unitary; one should then either restrict to frequency bands
where unitarity holds to a stated tolerance or adopt an explicit loss model and treat Twsg as an
effective delay proxy. A minimal auditable measurement pipeline is recorded in Remark and

Appendix
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Y.3 Phase shifts and cross sections (interface note)

[Interface] Phase information is simultaneously an interface for cross sections and for time delays.
For example, in standard elastic partial-wave conventions one writes Sy(E) = e%%(E): then the
same phase shifts d; determine both the elastic cross sections (via sin? §;) and the corresponding
one-channel delays (via energy /frequency derivatives of the phase). The WS one-channel formula
applies once the phase convention is fixed: if the measured phase is arg Sy(E) = 26,(F),
then the delay is 7(F) = d(arg Sy)/dw = 2dd;/dw (equivalently 7,(FE) = 2hdd,/dE under
E = hw). Thus, phase-shift datasets provide a unified operational channel where “scattering
cross section” and “scattering time delay” are two facets of the same measured phase response.

Y.4 From delay to overhead and lapse (clock-rate dictionary)

Fix a reference tick duration 75 > 0 that defines one unit of baseline protocol time in physical
units (seconds). We compress delay into a dimensionless overhead proxy

Tws(w)

rws(w) = , (39)
70
and define an associated lapse proxy by
Ko
Nwys(w) := , 40
ws(w) (@) (40)

where kg is a chosen reference overhead (a normalization convention). Operationally, larger
delay corresponds to larger overhead and hence to a smaller lapse proxy.

This matches the general “computational lapse” dictionary used elsewhere in the HPA-(Q2
series: a local overhead field x induces a clock-rate factor N = kg/k so that local proper time
satisfies

d7ee(z) = N(z) dt. (41)

In this paper, we use the dictionary only as a matching layer: it is not used as a premise for any
folding or labeling theorem.

Relation to the y-based gravity dictionary (the v map). [Interface]Appendix defines
s = Kk/Ko, X = log s and a one-parameter lapse family N = e™7X = (ko/k)?. Therefore, given a
delay-derived overhead proxy kyws(w) one can form

xws(w) == log<,€ws(w)> , N(w) = e PWs®@) — Nyg(w)?,
Ko

SO corresponds to the special case v = 1 (the base overhead ratio). This makes clear

how scattering-delay lapse ratios can be compared to redshift/time-delay data under the same

calibrated ~ used in the weak-field gravity dictionary.

Y.5 Mass as a time scale: Compton clocks and the depth coordinate

Independently of any specific dynamics, a mass scale defines a frequency scale by combining the
standard relations E = mc? and E = hw [24,58]. Define the Compton angular frequency and

time scale )
e 1 h
wo(p) == —, To(p) = = —. 42
() =~ ) wol) (42)
Because the present paper works primarily with ratios relative to me, the constants ¢ and A
cancel:

welp) — p To(p)  me

wo(me)  me’ 7o (me) i
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Consequently the resolution coordinate used in the mass-spectrum closure (Section can be
read equally as a log-frequency or log-time coordinate:

r(p) = log, <:Le> = 10g¢(wcw))) = 10g¢< e (p) > . (43)

we(me 7o (me)

This gives a strong interface meaning to “mass as depth”: it is also “mass as a clock-rate
coordinate” in the standard Compton sense.

Relativistic reference formulas (supplement). General-relativity lapse/redshift and
Shapiro-delay formulas, as well as special-relativity time dilation/dispersion reference relations,
are recorded in Appendix [Z]

Z Relativistic delay and lapse reference formulas (supplement)

This appendix records standard SR/GR reference relations and optional scattering-delay bench-
marks used as external matching-layer targets in the interface dictionaries of Section

Z.1 Wigner—Smith delay: calibration and a one-channel resonance bench-
mark

Remark Z.1 (Calibration and losses). The definition is standard for unitary S. In realistic
settings, absorption and imperfect calibration can make S non-unitary; one should then either
restrict to frequency bands where unitarity holds to a stated tolerance or adopt an explicit loss
model and treat Tws as an effective delay proxy [20,21]. An auditable measurement pipeline
can be implemented by phase unwrapping, finite differencing, and explicit stability checks under
smoothing and step-size variation.

One-channel resonance check (Breit—Wigner). As a minimal analytic benchmark, con-
sider a one-channel exactly unitary resonance model

 w—wo—il'/2

Sw) = w—wp+il'/2’

(44)

whose phase rises by 7 across the resonance. Writing S(w) = ¢%@) one obtains the Lorentzian
delay profile

dé r
= — = 4
ws(@) = 35 (w—wo)? + (I'/2)2 (43)
and, at resonance, A
Tws(wo) = f- (46)

Thus the dimensionless overhead proxy is proportional to the inverse linewidth, rws(wp) =
4/(I'1p). This is the simplest concrete instance of the interface slogan “stable obstruction =
additional delay” and provides an experimentally extractable handle (linewidth from phase-jump
width) [20521].

Z.2 General relativity reference: lapse and Shapiro delay (external target)

In a 341 decomposition, the relativistic lapse N(x) relates coordinate time to proper time of
static observers by dr = N dt [71]. Thus, identifying N(x) = ko/k(z) is a direct interface map
between overhead and GR clock rates.
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Proposition Z.2 (Static redshift law in lapse form (standard)). In a static spacetime with lapse
N(x), the frequency ratio of the same signal measured by two static observers at Temit and Tops
satisfies

Wobs N (Temit)

Wemit N(xobs) ’

Equivalently, under the interface identification N = kKo/Kk, one has Wobs/Wemit =
K(Zobs) /K (Temit)-

Proof. This is the standard gravitational redshift law for static observers in a static metric with
g = —N?c?; see, e.g., [71,99]. O

Schwarzschild lapse. In Schwarzschild coordinates, a static clock at radius r satisfies

_2GM (47)

dr = (/1 ,
T rc?

so N(r) = /1 —2GM/(rc2) |71]. Under the interface identification x(r)/ko = 1/N(r), one

obtains /2 S
2GMN\~ M M

~(r) (1— “ ) =14 G +O<G24>-

rc r<c

(48)

Shapiro delay. For light propagation past a gravitating body, the Shapiro time delay for a
radar signal is, at leading post-Newtonian order,

2GM 4r1r9
3 lo 2 ,

AtShapiro ~ (49)

for endpoints at radii r1, 79 and impact parameter b [99,[100]. These standard formulas provide
external operational targets for any scan-based identification of additional protocol overhead
with effective delay/clock slowing.

7.3 Special relativity reference: kinematic time dilation and dispersion

In special relativity, proper time and coordinate time relate by the Lorentz factor

dt 1
d7‘ = —, = Y 50
v 7 V1—02/c? (50)

and a relativistic particle satisfies the dispersion relation
E% = p?c® + m?ct, (51)

with group velocity v = dE/dp = pc?/E [58,[101]. In a scan/protocol interpretation, is
treated as a matching dictionary: once a locality basis and a baseline signal speed ¢ are fixed
(Remark , any additional protocol overhead that reduces the available local update bud-
get can be encoded as an effective y-factor or lapse factor. This provides a clean place to
connect the discrete cost coordinates used in the present paper (depth, fiber multiplicity, con-
nection/holonomy overhead) to standard relativistic observables without importing relativistic
axioms into the folding layer.
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AA Equivalence semantics and the frequency-first dictionary
(protocol < physics)

This appendix upgrades a recurring narrative claim in the HPA—) program into an audit-facing
contract: physical-language statements are to be read as statements about explicit mathemat-
ical objects, modulo declared equivalence relations, and all additional closure choices are to be
performed by CAP on explicit finite candidate families. It introduces no new axioms beyond
the two declared primitives: tick as the executed input stream (Axiom and CAP as the
unique deterministic closure/selection rule (Axiom [1.5)).

Why an “equivalence appendix” is needed. The main text already uses several invariance
doctrines (tick-origin shift, local fiber relabelings, holonomy cycle-type invariance, log-mismatch
invariance under unit changes), but they are distributed across sections. Here we collect them
as a single semantic layer so that later continuous dynamical closures (Appendices AD.6))
can be stated as mathematical closures on equivalence classes rather than as informal matching
dictionaries.

AA.1 Physical objects as equivalence classes

Protocol objects. [Math]At fixed window length m, protocol microstates are m-bit words in
Q,, = {0, 1}™ and stable readout labels are stable types w € X,, (Sections|2H4). At fixed Hilbert
order n on the chosen screen, locality is represented by the display graph G,, (Definition [3.2).

Semantic contract. [Interface]A physical object in this paper is an equivalence class of protocol
objects under declared equivalence relations that capture representational freedom (e.g. choice of
origins, basis relabelings, coarse-graining maps). A physical observable is an invariant functional
on these equivalence classes, or (when coarse graining is included) a functional that is monotone
under the declared coarse-graining preorder.

AA.2 Minimal equivalence relations used implicitly in the main text

We record the minimal equivalence relations that are already used (often implicitly) throughout
the paper. Each item below is a semantic quotient: it does not add new dynamical assumptions;
it fixes what is meant by “the same physics”.

(E1) Tick-origin shift. [Interface]Since protocol observables depend on tick differences, ¢ ~
t + to is a coordinate convention (Section [3.2).

(E2) Projection-fiber equivalence (finite observability). [Math]At fixed m, microstates
k. k" € {0,...,2™ — 1} are observationally equivalent if they project to the same stable type:
k ~p, K" iff Fold,, (k) = Fold,,(k’). This is the formal core of finite observability and is the origin
of degeneracy/fiber data.

(E3) Local fiber-slot relabelings (finite gauge redundancy). [Math]In the padded-fiber
connection model (Section @, relabeling local fiber slots at a vertex is g, € S, and acts by
conjugation on loop products (Deﬁnition. Therefore, loop holonomy is physical only through
conjugacy invariants (e.g. cycle type; Proposition .
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(E4) Coarse graining (stochastic/Markov morphisms). [Interface]Any finite observer in-
duces a coarse-graining preorder: one readout description is less informative if it is obtained
from another by a stochastic map (a Markov morphism). This is the semantic input behind
monotonicity requirements used when selecting canonical statistical quadratic forms (cf. Céncov
uniqueness in the CAP action closure; Appendix .

(E5) Action equivalence (boundary terms and field redefinitions). [Interfacel When we
speak of “an action” at the continuum closure level, the physical content is the induced equations
of motion. Accordingly, actions related by adding a boundary term, or by invertible local field
redefinitions, are treated as physically equivalent. CAP selection is applied to equivalence classes
(by choosing canonical representatives under a stated tie-break) rather than to raw coordinate
expressions.

AA.3 Frequency as a primary derived quantity (frequency-first spine)

Motivation. [Interface]ln a tick-first ontology, the most primitive quantitative notion is count-
ing. The next forced notion is a rate of change per tick. Frequency is the canonical rate: it
is dimensionless in tick units and becomes the universal bridge to energy, mass, temperature,
redshift, and delay once matching dictionaries are chosen.

Definition AA.1 (Frequency from phase advance (tick units)). Let 0(t) be a phase variable
taking values in a circle R/27Z (or in a dyadic phase register Zapr embedded into T ). Forty # ta,
define the (average) angular frequency in tick units by

Af .
w(tl,tg) = Xt with At := t2 — tl,
where Af denotes the phase increment in a chosen unwrapping convention (or in the discrete
register).

Remark AA.2 (Operator-spectrum and DFT viewpoints (equivalent dictionaries)). Frequency
can also be defined as a spectral parameter: time translation by one tick is represented by a shift
operator whose eigenphases define frequencies (Weyl-pair viewpoint; Appendz’x@). Operationally,
for any tick-indexed observable q(t) on a finite horizon, a discrete Fourier transform yields a
finite spectrum; dominant peaks define effective frequencies. In the present paper we treat these
as equivalent interface dictionaries once a specific readout/phase convention is fized.

AA.4 Concept index: physical quantities as invariants/closures

Table [63| records an audit-facing concept map. Each physical-language quantity is assigned (i)
an invariant mathematical object, and (ii) the section(s) where it is defined/closed within the
tick + CAP discipline.

Table 63: Concept index (frequency-first): physical quanti-
ties as invariants or CAP-closed outputs.

concept mathematical object (invari- where fixed/closed operational  proxy
ant / closure output) (matching layer)
time tick ¢t € Z (differences only)  Axiom Section laboratory clock
ticks after calibra-
tion
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concept mathematical object (invari- where fixed/closed operational  proxy
ant / closure output) (matching layer)
phase dyadic register Zgr and em- Appendix Sec- phase readout / in-
bedding ' tion [I.§] terferometry / com-
plex S-parameters
frequency w = Af/At in tick units Appendix spectral peaks; clock

space (display)
distance

velocity

gauge connection

curvature (finite)

metric  (contin-
uum)

curvature (con-
tinuum)

gauge curvature

mass/energy
scale

lapse / redshift
action  (contin-
uum)

equations of mo-
tion
stress-energy

entropy

temperature

force

overhead proxy

effective po-
tential (weak
field)

effective density
(weak field)

(Definition [AA.1)
addressing map A,
graph G,

d,, (graph metric)

and

v = Ad/At (tick units)

edge transports modulo local
relabeling

holonomy conjugacy invari-
ant (cycle type)

Lorentzian metric represen-
tative g, (CAP-closed fam-
ily)

Rpo, Gy from g,

F,, (field strength / curva-
ture of connection)
frequency/clock

r(n) = log, (p/me)
N = ko/k from overhead x

ratio;

CAP-selected action class [5]
on a finite candidate family
Euler-Lagrange / Einstein—
Yang—Mills equations from S
T,  (including  informa-
tion/overhead sector)
channel-count  /
grained state-count
tional

conjugate to entropy via
free-energy closure

coarse-
func-

response functional (e.g.
—V of effective free en-
ergy/action)

x = log(k/ko) and lapse

N =e 7X
® = —vc*(x — xo0)

Peft X —AX
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tion
Definition
Definition
Section |§|

Proposition
Appendix

Defini-

Appendix
Appendix

Section
pendix |Z|
Appendix E
Appendix
Appendix
Appendix

Appendix

Ap-

Appendix

Appendix Ap-
pendix
Appendix

Appendix

Appendix

ratios; redshift
locality graph wused
for audits

hop count / minimal
transport steps
propagation rate; c
after calibration
Wilson /plaquette
statistics
loop/plaquette
statistics

redshift /lensing /clock-
rate templates

weak-field/PPN lim-
its; classical tests
scattering/transport;
effective couplings
Compton clock; scat-
tering delay

redshift; Shapiro de-
lay templates
effective-field fit /
coarse-grained cost
dynamical response;
weak-field tests
energy density, pres-
sure, fluxes

log counts; thermo-
dynamic entropy

kT scale;
noise/thermal spec-
tra

acceleration;  pres-
sure/gradient forces

redshift /time de-
lay /clock slowdown
Newtonian potential
proxies

lensing/dynamical
mass comparisons



concept mathematical object (invari- where fixed/closed operational  proxy

ant / closure output) (matching layer)
x reconstruction Hilbert binning — window Appendix surveys / simulations
protocol words — folding stats — / lab arrays

x(x)
Born probabili- P, = Tr(pEy) (POVM) Appendix [AD.10 empirical  outcome
ties frequencies
RG / running in dg/dr = (logv)5(g) Appendix [AD.11 running couplings /
r threshold matching
cosmology as res-  fstap(m) = Fpyy2/2™, dy, = Appendix |AD.12 energy-budget  fits;
olution flow 2" [ Frto capacity growth

Remark on scope. [Audit]The table focuses on the quantities required for the frequency-first
dynamical closure. Standard external unit conventions (%, ¢, kp) are treated as matching-layer
calibration inputs, not as additional primitives of the tick + CAP spine.

AA.5 Curvature as loop invariants (finite and continuum)

Finite curvature from holonomy. [Math]In the finite protocol language, curvature is de-
fined operationally by loop transport: the plaquette holonomy pg is a loop product of edge
transports, and its conjugacy invariants (cycle type) are gauge invariant under local relabelings
(Proposition [6.6). This is the minimal, fully finite analogue of “curvature is holonomy”.

Continuum curvature as an interface limit. [Interface]ln a continuum dictionary where a
(gauge or Levi-Civita) connection one-form A is available, holonomy around an infinitesimal
loop is controlled by the curvature two-form F = dA+ AA A. In that dictionary, the finite-loop
invariant above is interpreted as a coarse-grained proxy for curvature flux through the loop.
Appendix records the resulting continuum field equations after CAP closes a minimal
action family.

AA.6 Force as response: gradients of action and free energy

Response definition (action). [Interface]Once a continuum representative action S is fixed
(as a CAP-closed output; Appendix[AD.4]), “force” is defined as the response of S (or an effective
reduced action Seg) to a displacement/boundary perturbation, e.g.

_ aSeff

F; = Oz

in any setting where a coordinate x’ is part of the chosen continuum representative. This is
an equivalence-class notion: adding a boundary term changes S but not its Euler-Lagrange
equations, so “force” is to be read as an invariant of the equations-of-motion class rather than
of a raw action expression.

Response definition (free energy / entropic force). [Interface]ln a thermodynamic closure,
an effective free energy functional F is defined on coarse-grained state variables, and force is
likewise a response

_OF
YT dat
When F = F — TS is used, this yields the standard decomposition into energetic and entropic
components. Appendix records the corresponding CAP closure and the frequency-first
thermodynamic dictionary.
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AA.7 Entropy as state counting under equivalence and coarse graining

Counting viewpoint. [Interface]Under finite observability, an observed stable label w € X,
represents a whole microstate fiber P(w) = Fold,!(w). The simplest protocol-level entropy
associated with this residual uncertainty is therefore a counting entropy

Stin(w) = log [ P(w)],

optionally scaled by kp in physical units. More generally, any coarse-graining map induces
macrostates as equivalence classes; entropy is the logarithm of the macrostate multiplicity, or of
an effective channel capacity in boundary settings (Appendix .

Second-law semantics. [Interface]A key reason “irreversibility” can be discussed without
adding a new axiom is that the map from microscopic histories to observable records is many-
to-one (Section : coarse graining and stability folding discard information, so entropy in
the counting sense is naturally nondecreasing along protocol time when described only at the
coarse level. Appendix [AD.6| makes this monotonicity precise in the CAP closure language used
throughout the paper.

AB Modular geodesic flow and Gauss-map renormalization
(notes)

[Audit] This appendix records standard “mother space” facts connecting continued fractions to
modular dynamics. It provides a canonical source for the continued-fraction/Ostrowski struc-
tures that appear throughout the golden-branch layer (Section and Appendix . These

results are not used as premises in theorem-level folding proofs; they serve as an audit-facing
justification for why the continued-fraction module is not an ad hoc digitization.

AB.1 Modular surface and the Gauss map

Let H = {7 € C: Im(7) > 0} be the upper half-plane. The modular group is generated by
1
T:7—71+1, ST ——,
-

and the modular surface is the quotient orbifold
M = PSLy(Z)\H.

The geodesic flow on M admits a classical symbolic coding whose base map is the Gauss map

ce) -{¢}. €co.

and whose symbols are the continued-fraction digits of £ = [0; a1, ag, .. ..

Theorem AB.1 (Series suspension model (classical)). [Math]There exists a Poincaré cross-
section for the geodesic flow on M whose first-return map is conjugate to the Gauss map G on
(0,1). Moreover, the geodesic flow is measurably isomorphic to the suspension flow over G with
roof function

r(§) = —2logé.

In particular, the continued-fraction digits of & arise as the symbolic itinerary of successive
returns.

Remark AB.2. See [102,105] for standard constructions and proofs.
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AB.2 Invariant Gauss measure and digit law

Theorem AB.3 (Gauss invariant measure and digit distribution (classical)). [Math]The Gauss
map G(§) = {1/&} preserves the probability measure

1 d¢
d = — 1
1(§) g2 11 € §€(0,1),
and is ergodic with respect to p. Writing § = [0; a1, aq,...], the first digit satisfies

iay = k) = 10g2<1 + k(k1+2)> (k> 1).

Remark AB.4. See [104] for proofs and further quantitative results.

AB.3 Gauss—Kuzmin convergence (finite-time relaxation)

Theorem AB.5 (Gauss—Kuzmin exponential convergence (classical)). [Math]Let v be a prob-
ability measure on (0,1) that is absolutely continuous with respect to Lebesgue measure with a
density of bounded variation. Then there exist constants C > 0 and 0 < p < 1 such that for all
n >0,

sup [v(G"(§) < x) — p((0,2])] < Cp",
z€(0,1)

where 1 is the Gauss invariant measure from Theorem [AB.3. The optimal p is known as the
Gauss—Kuzmin—Wirsing constant (numerically p ~ 0.30366 ).

Remark AB.6. See [104)] for proofs and numerical constants.

AB.4 Relation to Ostrowski numeration used in the paper

[Audit] The modular-geodesic origin above provides a canonical meaning to the continued-fraction
digits of a boundary irrational parameter. In the present paper, the scan slope « is such a
boundary irrational (Section [2.1)), and the Ostrowski/Zeckendorf module used for discrepancy
certificates (Appendix is the corresponding canonical integer coordinate system built from
the continued fraction of .. This appendix does not identify the scan orbit with geodesic flow;
it records that, once the modular stage is adopted, the digit module is not an arbitrary choice.

AC Modular scale exchange, Morita equivalence, and Fourier
exchange (notes)
[Audit] This appendix records standard symmetry/equivalence structures that strengthen the

“equivalence semantics” viewpoint (Appendix [AA)). It introduces no new axioms beyond tick
and CAP and is not used as a premise in theorem-level folding proofs.

AC.1 Modular inversion as a scale-exchange template

Consider the upper half-plane H = {r =z + iy : y > 0} and the modular generators

1
T:17—7+1, ST ——.
T

Writing 7 = x + iy, one has
e (S = 7

S(r)= -2 — Y - Y
(7) z? 4+ y?’ x2 + o2

[Interface] Thus, away from large |z|, the transformation S exchanges large and small imaginary
parts (height) at the level of scale magnitude. On the modular curve X (1), the cusp orbit
is unique, so 0 and oo represent the same cusp in the quotient; the involution S provides a
canonical endpoint exchange on the quotient.
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AC.2 Morita equivalence of rotation algebras and the SLy(Z) action

Let A, be the (irrational) rotation algebra generated by unitaries U, V' with
UV =e*™VU, acR\Q.

There is a canonical SLa(Z) action on the slope parameter

, aa+b a b
= — = Lo (Z).
o COé—f—d’ Y <C d)es 2( )

Theorem AC.1 (Morita equivalence classification for noncommutative tori (standard)).
[Math]For irrational parameters o, € R\ Q, the rotation algebras A, and Ag are (strongly)

Morita equivalent if and only if there exists v = (Z Z) € SLo(Z) such that
acc+b
b= ca+d

Remark AC.2. See [105-107] for proofs and further structure (projective modules and K -theory
invariants).

[Audit]In the scan algebra language of this paper, the parameter « controls the commutation
phase between shift and multiplication (Definition . Morita equivalence provides a hard
mathematical mechanism for treating different o as “the same geometry” once the equivalence
class is declared.

AC.3 Fourier exchange: swapping scan shift and phase multiplication
We record a concrete scan—readout exchange for the canonical Weyl-pair model.

Proposition AC.3 (Fourier exchange for the covariant Weyl pair). [Math]Let H = L*(R/Z)
and define, for fized a € R,

U)(@) =9z +a),  (Vy)(z) =e().
Let F : H — (*(Z) be the Fourier transform
1 ‘
FO®) = [ v@)e = da.
Then on (*(Z) one has
FUF (k) = ™ Fog(k),  FVF k) = ¢k —1).

In particular, translation (scan shift) becomes phase multiplication in Fourier space, while phase
multiplication becomes an index shift, realizing a concrete scan—readout exchange.

Proof. For the first identity,

1 . . 1 . .
(IU¢)(k) — / ¢($ + a)e—27r1k:z dr = e27r1ka/ w(u)e—kau du = e2mka(]:’¢)(k),
0 0

using the substitution u = = + « and periodicity on R/Z. For the second identity,

_ ! 2mix —2rikx _ ! —2ri(k—1)x _ _
(FV)(k) /e (z)e dx /Ow(ac)e de = (Fy)(k —1).

0
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AD Hecke operators and the prime skeleton (notes)

[Audit] This appendix records a standard arithmetic “prime skeleton” template: a commuting fam-
ily of symmetry-preserving operators generated by primes and constrained by rigid multiplicative
relations. It is included as an optional mathematical backbone for cross-scale consistency dis-
cussions; it introduces no new axioms and is not used as a premise in theorem-level folding
proofs.

AD.1 Hecke operators on ¢g-expansions

Let My, denote a space of modular forms of weight k (for PSLa(Z) or a congruence subgroup).
If

fr)=3 amg™,  q=e",

m>0

then the Hecke operator T, is defined on g-expansions by
(Tuf)(r) =" | D d" e | 4™ (52)
m>0 \d|(m,n)

Hecke operators preserve modular symmetry and, on standard cusp-form subspaces with Pe-
tersson inner product, form a commuting family that can be simultaneously diagonalized;
see [108,(109].

AD.2 Prime generation and multiplicative relations

The “prime skeleton” is not a restriction to primes; it is the statement that primes generate the
full Hecke algebra. Two standard relations are:

TnTn= Y d T, (53)
d|(m,n)
and, for prime powers,
Tyr1 = TpTyr — p" ' Tpmr. (54)

Thus the full family {7}, },>1 is determined by the prime-indexed generators {T},} together with
these relations [108,109].

AD.3 Eigenforms and Euler products

If f is a normalized simultaneous eigenform, then for all n > 1,

Tnf = Mnf,

and in standard normalizations one has \,, = a,,. The associated Dirichlet series
27

D =Y o

n>1

admits an Euler product whose local factors are determined by primes. For level 1 one has the
standard shape

L(f.s) =TT (1 -+ %) (55)
p

see [108},/109].

[Audit]In protocol language, this provides a canonical model of “cross-scale stability under
symmetry-preserving coarse operations”: commuting generators indexed by primes propagate
rigid constraints to all composite scales via the multiplicative relations above.
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AD.4 CAP closure of a continuum action: from equivalence semantics to
dynamical field equations

This appendix records a single purpose: to make explicit how the familiar continuum “least-
action” machinery can be treated as a CAP-closed representative of the tick + CAP spine, rather
than as an extra ontic postulate. The output is an action skeleton whose terms are fixed by
declared equivalence semantics (Appendix together with CAP minimality on an explicit
finite candidate family, in the audit form of Appendix [H]

Status. [Interface]The continuum closure is an interface representative: it does not alter the
finite folding core. It is introduced so that frequency/lapse/holonomy diagnostics can be trans-
lated into standard continuum field equations in a way that is auditable (no hidden knobs) and
compatible with the paper’s layering doctrine.

AD.4.1 Closure problem statement

Input data (from the tick+CAP spine). [Interface] The protocol provides: (i) a tick-indexed
readout stream, (ii) finite stable-sector types with fibers under projection, (iii) a locality display
dictionary via addressing, and (iv) measurable overhead/delay proxies that act as clock-rate
dictionaries (Appendix [Y]). Appendix formalizes the semantic quotients (tick-origin, local
relabelings, coarse graining, action equivalence).

Desired output (continuum representative). [Interface]l We seek a local covariant effective
description in which:

o frequency/clock-rate variation is represented by a lapse-like field (or equivalently by an
overhead field k),

e compensating transport is represented by gauge connections with curvature,

e dynamics is specified by stationarity of a CAP-selected action within a bounded candidate
family.

AD.4.2 Candidate family: local covariant invariants under the equivalence seman-
tics

Finite candidate family requirement. [Audit|To keep CAP well-posed, we restrict to finite
families by construction (Appendix [H]). Concretely, we (i) restrict the list of admissible term
types, and (ii) discretize coefficient choices into a bounded rational box.

Term dictionary (types). [Interface]l We restrict to local scalars built from fields and at most
two derivatives, consistent with minimal description complexity and with the operational mean-
ing of locality on the addressing graph. The candidate term types are:

o gravity sector: \/—g, /—g R (cosmological constant and Einstein—Hilbert);
« gauge sector: \/—gTr(F,, F") for each compact gauge factor;

o information/overhead sector: a scalar amplitude x > 0 with a quadratic gradient
penalty /=g g™ (V,x)(V,X) and a local potential v/—g V (x?);

« matter sector: a placeholder \/—g L,, for additional effective degrees of freedom already
closed at the protocol interface (e.g. the SM labeling sector).
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Why these terms are “forced” (uniqueness inputs). We record three standard unique-
ness inputs, each aligned with an equivalence semantic already present in this paper.

o Diffeomorphism covariance as representation independence. [Interface]A contin-
uum representative should not depend on coordinate reparametrizations of the representa-
tive manifold; this is the continuum analogue of the “no privileged addressing coordinate”
stance (Appendix. Under the additional restriction to at most second derivatives, the
lowest-complexity gravitational scalar is R (Lovelock-type uniqueness in 4D; [110]).

e Probability preservation = compact internal redundancy. [Interface]Treating in-
ternal redundancy as probability preserving forces (projective) unitarity (Wigner; [87]),
hence compactness of the connected gauge redundancy (Proposition . Given a com-
pact gauge group, the unique gauge-invariant local quadratic kinetic term is Tr(F),, F'*")

(Propositions and [3.5)).

e Coarse-graining monotonicity = Fisher-type quadratic form. [Interface]Coarse
graining is modeled by stochastic maps (Appendix . On finite probability simplices,
Céncov’s theorem implies that (up to overall scale) the Fisher information metric is the
unique Riemannian metric monotone under Markov morphisms [111]. Therefore the mini-
mal covariant quadratic penalty that measures spatial variation in statistical distinguisha-
bility is Fisher-like; we encode it by a scalar “Fisher amplitude” x and a gradient term

9" (Vux)(Vux).

AD.4.3 Coefficient discretization and CAP selection (audit form)

Finite coefficient box. [Audit]Fix a bound B € N. Let coefficients be chosen from a bounded
rational set, e.g.

cB)={2: paez 1<pl<B 1292 BjU0).
q
This makes the candidate action family finite once the term-type dictionary is finite.

Complexity key (tie-break). [Audit)We use a deterministic lexicographic complexity key that
prefers: (i) fewer derivatives, (ii) fewer distinct term types, (iii) smaller denominator/height in
C(B), (iv) smaller gauge-algebra dimensions when gauge-factor choice is still open. This mirrors
the “no hidden knobs” contract: every refinement is an explicit enlargement of a finite box.

AD.4.4 CAP-minimal action skeleton (closure output)

Proposition AD.1 (CAP-minimal covariant action skeleton (interface closure)). Adopt the
equivalence semantics of Appendix (tick-origin shift, local redundancy/gauge, coarse-graining
preorder, action equivalence). Restrict to local covariant term types with at most two derivatives

as in Section [AD.4.3, and discretize coefficients into a finite box as in Section [AD.].3 Then
CAP selects a minimal representative action of the form

R —2A
167G

1
—Ar 0" (V) (Vux) = V(X% — Z@Tr(F,EZ)F @y 4 L,
a
(56)
where g, is a Lorentzian metric representative, F;S‘;) are curvature tensors for each compact

gauge factor, and x is a nonnegative scalar amplitude encoding coarse-grained distinguishabil-
ity /overhead.

Seﬁ:/d4x\/jg [
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Proof sketch (audit viewpoint). The term-type dictionary is constructed precisely to list the
lowest-complexity local covariant invariants compatible with the equivalence semantics: the
gravitational sector contributes \/—¢g and /—gR at the minimal derivative order; the gauge
sector contributes Tr(F?) as the unique local quadratic gauge-invariant kinetic term; the coarse-
graining semantics forces a Fisher-type quadratic penalty for distinguishability variation, rep-
resented by x. Discretizing coefficients makes the family finite; CAP then selects a canonical
representative under the stated lexicographic tie-break. Numerical values of (G, A, A\, g,) are
treated as matching/calibration data unless further protocol-level closures are imposed. O

Frequency-first interpretation. [Interface] The field y can be read as an information-density
amplitude and therefore as a proxy for local clock/frequency structure once a cost-to-clock
dictionary is fixed: overhead x defines a lapse N = ko/k (Appendix @, and frequency ratios
are primary observables (Appendix . Appendix records the resulting field equations

obtained by varying .
AD.5 Field equations from variation (Einstein—Yang—Mills 4+ information
sector)

This appendix records the standard variational consequences of the CAP-closed continuum ac-
tion skeleton in Appendix The role here is not novelty in calculus, but audit alignment:
the dynamical equations used in later interface interpretations are explicitly the Euler—Lagrange
equations of the declared action class.

AD.5.1 Reference action
We take as reference representative (Appendix [AD.4))

R —2A
167G

1
~Ar g (V) (Vox) = V) = > 5T EQFO) 4 Ly,

Set = / diz =g [ i
(57)

a

AD.5.2 Metric variation: Einstein equation with gauge and information stress

Theorem AD.2 (Einstein equation with total stress tensor). Varying (57) with respect to the
metric yields
G + Mgy = 87G (T + TR + THM) (58)

(x)

where T, ,ST) is the matter stress tensor, Ty

TS,(M) is the gauge-field stress tensor.

is the information/amplitude stress tensor, and

Proof sketch. This is the standard metric variation of a diffeomorphism-invariant local action.
The Einstein-Hilbert term yields G, ; the constant term yields Ag,,. The remaining contribu-
tions are, by definition, the stress tensors obtained from varying the corresponding Lagrangian
densities with respect to g"”. O

Proposition AD.3 (Information/amplitude stress tensor). The contribution of the x-sector in

1
TiY) = 2Ar (Vux Vix - 2g,w<V><>2) —gwVOP), (V)= VaxVex.  (59)

Proposition AD.4 (Yang-Mills stress tensor (per factor)). For each gauge factor a, the cur-
vature term contributes

uv

1 1 a
T(YMa) _ —Tr <F153)Fl£a)a _ 4gHVFO([6)F(a)a5) ’ (60)

a
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and T = 5, TN,

AD.5.3 Gauge variation: Yang—Mills equations

Proposition AD.5 (Yang-Mills equation (schematic)). Varying with respect to the gauge
connection of factor a yields

1 a 4 a)v
v, (92F< i ) _ Jlaw (61)

a

where J @Y is the matter current induced by Ly, (and any explicit x couplings, if present).

Remark. [Interface] Equation (61]) is the continuum dictionary corresponding to the finite con-
nection/holonomy skeleton (Section@, where “curvature” is read as loop holonomy and sources
correspond to persistent mismatch/defect sectors.

AD.5.4 Amplitude variation: the y equation
Proposition AD.6 (Amplitude equation). Varying with respect to x yields

AD.5.5 Conservation and frequency-redshift semantics

Covariant conservation. [Math]By diffeomorphism invariance one has V#G,, = 0 (Bianchi
identity), hence implies covariant conservation of the total stress:

v (Tl + 1) + T ) =0, (63)
with exchange terms between sectors determined by explicit couplings in L,,.

Frequency-first interpretation (lapse/redshift). [Interface]ln a static or adiabatic regime,
the lapse N (Appendix @ can be identified with \/—ggop in a suitable gauge. Then a primary
observable is the frequency ratio between two locations:

wobs(x) _ N(y)

wobs(y) N(x) ’

which is the continuum encoding of the tick-first idea that mass/energy and redshift are fre-
quency dictionaries.

AD.5.6 Weak-field limit: Poisson equation and a 1/r potential

Newtonian template. [Interface]ln the weak-field, slow-motion regime one writes gog ~ —(1 +
2¢) with Newtonian potential ¢. Keeping only leading order and taking the 00 component of
yields a Poisson-type equation

A¢ =4rG Peft s

where pef is the effective energy density extracted from the total stress tensor. In vacuum outside
localized sources, A¢ = 0 and the spherically symmetric exterior solution is ¢(r) = —GM /r.

Relation to delay/lapse dictionaries. [Match]The standard GR lapse and Shapiro-delay
formulas used elsewhere in this paper as matching templates are recorded in Appendix [Z] In
the frequency-first reading, these are equivalently statements about how clock rates and signal
frequencies vary in the weak-field potential.
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AD.6 Thermodynamics from equivalence: entropy, temperature, and en-
tropic force (frequency-first)

This appendix closes a thermodynamic dictionary compatible with the tick + CAP spine and
the equivalence semantics of Appendix [AA] The goal is not to import thermodynamics as an
independent axiom set, but to record how the standard thermodynamic notions can be treated
as derived from: (i) finite observability (many-to-one coarse graining) and (ii) CAP selection of
minimal-cost macroscopic representatives.

AD.6.1 Entropy as coarse-grained state counting

Macrostate as an equivalence class. [Interface]Fix a coarse-graining map C from microscopic
protocol data to macroscopic descriptors. Two microdescriptions are macroscopically equivalent
if they map to the same coarse descriptor. This is the semantic content of the coarse-graining

equivalence in Section

Counting entropy (finite). [Interface]For a macrostate M with microstate set I'(M), define
the counting entropy
S(M) :=log [L(M)], (64)

optionally scaled to physical units by kp. At fixed window length m, the simplest instance is
the fiber-count entropy Sg,(w) = log |P(w)| for a stable type w € X,,, (Appendix [AA.7)).

Boundary/channel entropy. [Interface]In boundary-screen settings (black-hole or holographic
cuts), the same idea is channel capacity: if Ny is the maximum number of distinguishable
boundary outcomes at a given resolution, then S = kg log Ny (Appendix .

AD.6.2 Energy and temperature as frequency dictionaries

Energy as frequency (ratio-first). [Interface]ln the tick-first stance, a primary dimensionless
quantity is a frequency ratio. Mass/energy scales are therefore organized by the log-frequency
coordinate r(u) = logg(,u /me) (Section and Appendix E[]) In matching form one may use
E = hw and E = mc* (Appendix @, but the present program prefers ratios where constants
cancel.

Temperature as a frequency scale. [Interface] Temperature is the natural “frequency scale”
of coarse excitations: in thermal field theory one has Matsubara frequencies w,, = 2mnkgT/h,
and in classical statistical mechanics kT sets typical energy increments. Accordingly, in the
frequency-first dictionary we treat 1" as the scale conjugate to entropy, with the kg and A
conversion treated as matching-layer calibration.

Definition AD.7 (Thermodynamic temperature (conjugate definition)). Let E(M) be an ef-
fective energy functional of macrostates and S(M) an entropy functional. In regimes where E
can be treated as a function of S along a one-parameter family, define temperature by

1 8S

T = 0E
AD.6.3 CAP as a free-energy principle

Free energy as CAP objective. [Interface]A standard thermodynamic closure defines a free
energy functional
F(M):=EM)-TS(M),
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and asserts that equilibria minimize F subject to constraints. In the present program, this is read
as a CAP closure: among all coarse representatives compatible with the protocol constraints,
the realized representative minimizes a total cost that includes (i) mismatch/overhead and (ii)
residual uncertainty.

Proposition AD.8 (CAP free-energy closure (audit form)). Fiz a finite coarse-graining family
{Cp: 0 € O(B)} and a finite parameter family of macroscopic representatives M(0). Define an
objective of the form

J(0) = k E(M(0)) + rs (=S(M(0))) + £ Comp(0),

with a deterministic tie-break key as in Appendiz[H. Then CAP selects a unique minimizer g
and therefore a unique macroscopic representative M (0p) within the declared finite family.

Interpretation. [Interface]The minus sign in —S reflects the conventional role of entropy as a
stabilizing /typicality factor in equilibrium selection. Whether one writes the objective as E—T'S
or as a weighted sum depends on which quantities are treated as fixed constraints and which as
adjustable parameters; the audit requirement is only that the candidate family is finite and the
tie-break is explicit.

AD.6.4 The three laws (protocol reading)

First law (bookkeeping identity). [Interface]Once an energy functional E is fixed at the
coarse level, the first law is a bookkeeping identity for how E changes under (i) changes of
macrostate multiplicity (heat) and (ii) changes of external constraints (work). In a frequency-
first description, the “internal energy” is a frequency/clock-rate functional, and work corresponds
to controlled changes in constraints that shift that functional.

Second law (monotonicity under coarse graining). [Interface]lrreversibility does not re-
quire a new axiom here: it follows from many-to-one projection and coarse graining. When only
macrovariables are tracked, information about microhistories is discarded (Section [3.2)), and the
counting entropy is naturally nondecreasing under refinement-forgetting operations. CAP
additionally selects representatives of minimal cost, giving a Lyapunov-style monotonicity for a

total objective (Proposition [AD.8]).

Third law (stability floor and unattainability). [Interface]In protocol terms, the third law
is a statement about the existence of a minimal stable background (a reference macrostate)
and about the cost of reaching lower-entropy configurations: as 7' — 0 (frequency scale of
fluctuations collapses), the reachable macrostates shrink toward a stable sector whose residual
entropy is determined by the remaining coarse-grained degeneracy (e.g. fiber multiplicities at
the anchor). In the CAP language, reaching strictly zero entropy would require eliminating all
residual equivalence-class multiplicity, which generally requires unbounded resources/resolution.

AD.6.5 Entropic force and the gravity/delay dictionary

Entropic force as response. [Interface]Given a free energy (or any CAP objective) depending
on a position-like parameter x, force is defined as the response

F(z) = -V, F(x).
If F is approximately constant while S varies with z, this yields the entropic-force form

F(x) = TV,S(x).
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Relation to lapse and delay. [Interface] The delay/lapse dictionary (Appendix [Y]) identifies
overhead with clock-rate slowdown, so spatial variation of overhead induces spatial variation of
local clock frequency. In the weak-field limit of Section the same variation is encoded by
goo = —(142¢) and therefore by a potential ¢. Thus, in a frequency-first language, “gravitational
force” is equivalently the response of frequency/clock-rate structure to spatial displacement,
consistent with the response definition above.

AD.7 Overhead-to-gravity closure: from x/x to lapse, potential, and weak-
field tests
This appendix makes the k/x — N — goo — @ chain fully explicit within this paper, so that

the weak-field gravity dictionary is no longer only a pointer to external companion manuscripts.
The logic is interface-level: it does not modify the finite folding core, but it closes a minimal,
testable mapping from protocol overhead to gravitational proxies.

AD.7.1 Overhead, lapse, and the y field

Definition AD.9 (Routing/implementation overhead and lapse proxy). Let k(z) denote a local
implementation overhead (e.g. routing/compilation depth) and fix a reference ko > 0. Define
the dimensionless overhead ratio and its logarithm,

s(2) =28 (@) = logs(a),
and define a lapse-like factor
N(z) := e @) = 5(z)77, v >0, (65)

where v is a dimensionless coupling constant.

Operational reading. [Interface]Larger overhead means fewer effective local logical updates per
unit tick budget, hence a slower local clock. Equation is the minimal monotone dictionary
that turns an overhead proxy into a clock-rate factor. The exponent « is a single-parameter
calibration to be constrained empirically (Section |[AD.7.4]).

AD.7.2 Effective metric dictionary and weak-field potential

Metric representative (static gauge). [Interface]ln a static or adiabatic regime, adopt the
standard continuum identification
goo(x) ~ =N (z)*. (66)

This is the GR lapse dictionary written in protocol variables.
Weak-field expansion. [Interface]ln the Newtonian limit one writes
goo ~ —(1 + 2@/62),

where @ is the Newtonian potential. Using f and expanding e 27X ~ 1 — 2y gives the
leading-order identification

®(x) = —v¢* (x(2) = x0), (67)

where xq is an arbitrary reference (constant shifts of y do not change forces).
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AD.7.3 Closed weak-field source and Poisson template
Poisson form. [Iinterface] Taking AP = 47 G peg as the standard weak-field template, @ yields

ye?
peff(x) = T anG AX(I')’ (68)

so the overhead proxy x defines an effective source through its Laplacian.

1/r exterior. [Interface]Outside compact sources, A® = 0 and the spherically symmetric exte-
rior solution is ®(r) = —GM/r. In the present dictionary, this corresponds to x(r) behaving
(up to constants) as a harmonic potential in the exterior region.

AD.7.4 Rotation curves and a one-parameter fit for ~
Circular velocity. For a static, spherically symmetric potential, the circular velocity satisfies

v2(r) = r &' (r).

[

Using , this becomes
ve(r) = = rx/(r). (69)

Weighted least squares for . [Interface] Given measured (7, v, 0;) and a reconstructed profile
x(r) (Appendix |AD.8), define y; := v? and x; :== —c®r;X/(r;). In the small-error regime, o, ; ~
2v;0;, and the one-parameter weighted least-squares estimator is

. i(ziyi/og ;)
7T Y@t

Uncertainty propagation (audit). [Audit]If one treats the x; as known (design-known model)
and assumes Var(y;) = szi, then Appendix [AD.9| records the standard WLS variance formula
Var(y) = 1/ 3 (2?/ aii) (Proposition |AD.19), yielding an immediate confidence interval under
an approximate normality heuristic. In the present application, however, x; depends on a nu-
merical derivative of y; Appendix makes explicit the corresponding bias—noise tradeoff
for x/ estimation (Proposition . Audit-facing practice is therefore to declare the deriva-
tive/smoothing rule and to report the stability of 4 under counterfactual step/regularization

choices (Appendix [AD.8g).

Discrete Laplacian and noise amplification (audit). [AuditfWhen forming peg from a
reconstructed grid field Yj, one necessarily implements Ay by a discrete Laplacian Aj. Ap-

pendix records the standard second-order truncation bound |Ax — Ax| < k% (Theo-
rem [AD.15)) and the explicit noise amplification |Apn| < (4d/h?)e, for bounded pointwise noise

(Corollary |AD.16|), yielding an auditable error budget for peg (Corollary |AD.18|).

Relation to frequency-first observables. [Interface]Since N = e~ X controls local clock
rate, the same « is in principle constrained by redshift and time-delay data: frequency ratios
are primary observables in the tick-first semantics (Appendix and Appendix .

AD.8 Protocol to reconstruct an overhead proxy field x(z) from data or
simulations

This appendix records an executable, audit-facing protocol for reconstructing an overhead proxy
field x from data. It is written to be self-contained: the only inputs are (i) a spatial dataset
(survey, simulation, or laboratory array), and (ii) the folding vocabulary already defined in this
paper (windows, words, and the folding degeneracy proxy).
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AD.8.1 Step 0: choose resolution and addressing

Fix a spatial order n and a bounding box for the data. Discretize the region into a 2™ x 2™ grid
(for a 2D screen) or a 2" x 2" x 2" grid (for a 3D volume with a chosen space-filling curve). Use
Hilbert addressing (Section to assign an index s to each cell. This produces a one-dimensional
sequence of cell-level statistics {xs} in Hilbert order.

AD.8.2 Step 1: window words from a thresholded statistic

Choose a window length m and define sliding windows Wy = (s,s + 1,...,8 +m — 1) on the
Hilbert index axis. Choose a scalar statistic per cell, e.g. density contrast ds. Fix a threshold
7 (two common choices are 7 = 0 or a fixed quantile to control sparsity), and define the m-bit
word

ws,j = 1{0s4; > T}, j=0,....,m—1,

so that ws := wso -+ Wsm-1 € Q. Map the word to an integer index Ny := int,,(w,) (the
standard binary-to-integer map used throughout this paper).
AD.8.3 Step 2: folding statistics inside each window

For each window Wy, compute at least one of the following coarse statistics:

o Degeneracy proxy (primary). Define the folding degeneracy for an index N by
gm(N) := |Fold;,! (Fold,, (N))|.

Within window W, define the local mean degeneracy proxy by an empirical average

B 1 m—1
gm(Ws) = m Z gm(NS-‘rj)'
=0

At m = 6, gg is exactly computable from the finite Foldg preimage table (Section @ and the
generated tables appendix); at larger m one uses the corresponding Fold,,, computation
pipeline already used in the scripts in this repository.

o p-defect proxy (fallback). If full g, evaluation is unavailable, compute the local
forbidden-word defect rate (adjacent-11 frequency) as a proxy for leaving the admissible
sector.

AD.8.4 Step 3: reconstruct y and map back to space

Fix a baseline degeneracy gy > 0 (e.g. global mean or median over the dataset). Define the
overhead proxy on the index axis by

x(s) :=log M (70)
90

Map x(s) back to a spatial field x(z) by inverting the Hilbert indexing on the grid.

AD.8.5 Step 3b: uncertainty quantification and stability outputs (audit)

The reconstruction above is deterministic once the discrete choices (m,n), the threshold rule for
words, and the baseline gy are fixed. To make the output auditable as a quantitative protocol
object rather than as a visualization, one should also report (i) a statistical fluctuation scale for
gm and hence for y, and (ii) stability under declared counterfactual baselines.

168



A conservative high-probability fluctuation scale. [Audit]Let Z1, ..., Zk denote the finite
sample of bounded folding-derived statistics used to form the local empirical mean g, (the exact
sampling rule should be stated explicitly; for example: non-overlapping subsampling vs. sliding
windows). Assume Z; € [a,b] almost surely for known bounds a < b. If the sampling scheme
admits an effective sample size K5 < K (exact under independence; otherwise justified by block
subsampling/mixing assumptions), then Appendix gives the explicit bound

_ log(2/9)
€§(0) :==(b—a) Ko
such that |G, —Egm| < €5(5) holds with probability at least 1—¢ (Theorem|AD.11)). Propagating

through the log ratio then yields a conservative error bar for x (Corollary |AD.14]). At the m =6
anchor one may take (a,b) = (2,4) for g¢ (Remark [AD.12]).

Counterfactual stability outputs. [Audit]In addition to point estimates, the following dis-
crete choices should be reported and swept where feasible, in the same audit spirit as the rest
of this paper:

e (m,n) and the window stride / overlap rule (controls dependence and thus Keg);

o the threshold rule for words (e.g. 7 = 0 vs. a fixed quantile), and the baseline definition
9o;

o any smoothing / regularization used before computing spatial derivatives (needed for Ay

and x’; see Appendix [AD.9).

The output should include at least one stability metric, e.g. [[x®") — x(®2s)|| on the grid,
together with the induced stability of downstream quantities such as 4 and peg.

AD.8.6 Step 4: comparison tests and the ~ fit
Use the reconstructed x(z) as input to the overhead-to-gravity dictionary in Appendix

62
N(@)=e 0, #(@) = 1@ (x(@) ~ x0).  pene) = — -5 Ax(@).

Depending on available data, compare against:
e Rotation curves: fit v using and weighted least squares (Section [AD.7.4)).

o Lensing: compare the predicted convergence (a Laplacian of an integrated potential) to
reconstructed lensing maps; the prediction is linear in ~ at fixed x.

o Time delays / redshifts: compare frequency/clock-rate variations implied by N(x) to
time-delay proxies (Appendix .

Audit note. [Audit|The protocol above has only discrete choices (the pair (m,n), the threshold
rule for words, and the baseline gy definition) plus the single continuous fit parameter . All
discrete choices should be declared and swept as counterfactual baselines where feasible, in the
same audit spirit as the rest of this paper.

AD.9 Protocol-to-continuum error control: from discrete readout to stable
fields

This appendix closes a single audit gap flagged in theory_closure_tracker.md: an explicit
error-control bridge from protocol-level discrete reconstructions to continuum representative
fields. It is an interface-level module: it does not alter any theorem-level finite folding statement.
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Scope. [Interface]The objects whose uncertainty we track are the reconstructed overhead proxy
field x(x) (Appendix and its downstream weak-field representatives ®(z) and peg ()
(Appendix . We separate: (i) statistical error from finite sampling / thresholded readout,
(ii) discretization error from mapping and finite differences, and (iii) interface/model error from
optional matching dictionaries (weak-field regime, choice of smoothing/regularization).

AD.9.1 Error objects and a minimal decomposition

Discrete estimator and continuum representative. [Prot] The reconstruction pipeline
outputs a grid field x5, at some addressing resolution (Hilbert order n) and word resolution m
(Appendix. To compare with a continuum representative x (e.g. the smooth field entering
the action representative in Appendix, we treat Y, as a piecewise-constant or interpolated
field on a grid with spacing h.

Decomposition. [Interface]For any grid point = at spacing h, we decompose

~

Xn(r) = x(x) = (Xn(@) = Exn(z)) + (EXn(z) — xn(2x)) + (xn(z) —x(2)),

statistical protocol bias discretization/model

where x}, denotes the grid restriction (or projection) of the continuum representative. The first
term is controlled by concentration inequalities; the last term is controlled by standard finite-
difference truncation bounds; the middle term captures thresholding and modeling choices and
must be addressed by explicit counterfactual sweeps (Appendix Audit note therein).

AD.9.2 Concentration of window-level folding statistics
We state a concentration bound for the empirical folding statistic used in the x reconstruction.

Assumption AD.10 (Bounded folding statistic and effective sample size). Fizx a window length
m and a reconstruction rule that produces samples Z1, ..., Zk of a folding-derived statistic (e.g.
Zj = gm(Nj) or any bounded prozy used in Appendz'x. Assume Z; € [a,b] almost surely for
known bounds a < b. Assume further that the sampling scheme admits an effective sample size
Keg < K such that a Hoeffding-type tail bound holds with Keg (this is exact under independence;
for dependent samples one may enforce it by non-overlapping subsampling or block methods, or
justify it under a mizing assumption; see [75,/112]).

Theorem AD.11 (High-probability bound for the empirical folding statistic). Under Assump-
tion let

Then for any € > 0,
2
]P’(|7—E7| > e) < 2€Xp<— 2Kt )

(b—a)?
Equivalently, for any confidence level § € (0,1), with probability at least 1 — ¢,

o log(2/0)

Z —EZ| < (b— —_—

7-57| < (b)) B2
Remark AD.12 (Specialization to the m = 6 anchor). At the (m,n) = (6,3) anchor, the exact
folding degeneracy values satisfy ge € {2,3,4} (Definition[8.9), so one may take (a,b) = (2,4)
when Z; = g6(N;). At larger m, one can either compute (or upper bound) the range of the
chosen statistic from the audited Fold,, tables/scripts, or replace g, by a bounded defect-rate

prozy (Appendiz .
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AD.9.3 Propagation through the log-ratio: bounds for Y
Lemma AD.13 (Log-ratio perturbation bound). Let u,v,u,v > 0. Then

|t — ul |v — v
<

min{u, a} min{v, 0}

Proof. By the mean value theorem, |logu — logu| < |u — u|/min{u,u} and similarly for v.
Subtract log(u/v)—log(u/v) = (log u—log u)—(log v—log v) and apply the triangle inequality. [

Corollary AD.14 (A usable error bar for ). In the reconstruction protocol of Appendz'x
write

~ Z VAl
X = log =, X" =log =,
ZO ZO

where Z is the empirical statistic (e.g. gm) computed on a local sample set and Z is the base-
line statistic (global mean/median), while Z" 76 denote the corresponding population quantities
under a declared data- genemtmg model. Assume zZ" Zo are bounded away from 0 and that

high-probability bounds ]Z Z"| < € and |Z0 — Zy| < € hold. Then Lemma m yields the

deterministic bound . .
R 0

‘X - X*| < —x = = .
min{Z", Z} min{Z, Zo}
In particular, one may take € (and €y) from Theorem|AD.11| for the chosen statistic and declared
Ko

AD.9.4 Finite differences: truncation error and noise amplification
The weak-field template peg x —Ax depends on spatial derivatives; these operations can amplify

protocol noise. We record standard, explicit bounds that make this amplification auditable.

Discrete Laplacian. Let d be the spatial dimension (typically d = 2 for a screen or d = 3 for
a volume) and let h > 0 be the grid spacing. Define the standard 2d+1 point Laplacian

(A f) e fo—i—hek —2];L(2)+f(x—hek)‘

Theorem AD.15 (Second-order truncation error of the central-difference Laplacian). Assume
f € C* on a neighborhood of a grid point z. Then there exists a constant Ct(x) depending on
fourth derivatives of f near x such that

(Anf) (@) = (Af)(@)] < Cpa) h*.
In particular, one may take

1A
Cy(x) = sup |94 f(9)],
12k 11é=z|lw<h

so that |(Anf)(z) — (Af)(z)] < Cy(x) h? holds pointwise. See, e.g., standard finite-difference
truncation analyses [72].

Corollary AD.16 (Noise amplification under Ay). Let f = f+n be a noisy grid field with
In(z)| < e for all grid points in the stencil of x. Then

(AnF)(e) ~ (Anf)(a)] < e,

Proof. Expand Ayn and bound each term by e: for each k, |n(z+heg) —2n(x) +n(x—he)| < 4e.
Sum over k and divide by hZ. O

171



First derivatives (for the v fit). When fitting v via rotation curves in Appendix one
needs x’(r). The following bound makes explicit the noise-resolution tradeoff.

Proposition AD.17 (Central-difference derivative error (bias—variance tradeoff)). Let f € C3
in a neighborhood of r and define the central difference estimator

flr+h) = flr—h)
2h ’

(Dnf)(r) =

Assume the observed field is f = f +n with |n(r £ h)| < e. Then

N / h2 €
((Drf)(r) = /(] < & sup IRGE -

[§—r|<h

See, e.g., [72].

AD.9.5 Propagation to p.s, ®, and the v fit

Discrete p.g from reconstructed x. [Interface]ln practice, given a reconstructed grid field

Xh, one forms a discrete estimate
e

4G

Pefi () 1= — (AnXn) (),

which is the direct discrete analogue of .

Corollary AD.18 (Error budget for peg). Let Xp = xn + n with |n| < €, on the Laplacian
stencil, and let ¥ = v+ 6. Then at any grid point x,

62
Pesr(2) = pea(@)| < 5 (171 [(Aaxn) (@) = (A0 @) + bl [(Qum)(@)] + 18] [(An%n)@)])

where pog = —(yc?/(47G))Ax is the continuum representative. Using Theorem and
Corollary the first two terms are controlled as |(Apxn) — (AX)] < k% and |(Apn)| <
(4d/h?)e, .

® from . Under the weak-field dictionary ® = —yc?(x — xo) (equation ), constant shifts
X — X + const do not affect forces. At the field level, the error propagation is immediate: for
® = —7c*(X — Xo),

[® — @] < (1071 [X = %ol + Il 1X = x1)-

The ~ fit: WLS variance and propagation. Appendix uses the one-parameter
weighted least-squares estimator

Zi W;TiY; =2 e
= wi =05, Y ==V
Zi w;T;

Proposition AD.19 (WLS variance in the ideal design-known model). Assume the model

yi = yx; + €; with Ee; = 0 and Var(g;) = Ufm-, and assume the design values x; are treated as

deterministic (known). Then 7 is unbiased and

y= Ti = —CQTiX/(Tz‘)~

_ 1
> wir
Moreover, under approzimate normality (e.g. by a central limit heuristic), a (1 — §) confidence

interval can be reported as 7 + zl_(;/Q\/Var('Ay) with the standard normal quantile z_g5/9; see,
e.g., classical asymptotic theory [74)].

Var(7)
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Remark AD.20 (When z; is estimated from Y). In the present application, x; depends on
a numerical derivative of x and is therefore itself noisy. If one uses a central difference for
X'(ri), Proposition shows an explicit bias—noise tradeoff of order O(h?) + O(ey/h). At
audit level, this is handled by: (i) declaring the derivative/smoothing rule, (ii) sweeping the
step /reqularization scale, and (iii) reporting the stability of ¥ under these counterfactual baselines
(Appendiz . A fully corrected errors-in-variables treatment is possible but is beyond the
minimal self-contained scope here.

AD.10 Quantum readout and Born probabilities (self-contained interface clo-
sure)

This appendix records a minimal quantum interface package compatible with the tick + CAP
discipline: finite observers have an effective Hilbert space; readout is finite resolution; probabil-
ities are Born probabilities for that readout. We then record two complementary closure routes
for the Born rule: (i) a protocol-counting template aligned with projection-fiber semantics, and
(ii) a mature uniqueness theorem (Gleason-Busch) that characterizes quantum probabilities
from noncontextual additivity.

AD.10.1 Finite-resolution readout as POVMs and instruments

POVM readout. Let Heg be an effective observer sector and let p be a density operator on
Hesr- Finite-resolution readout is modeled by a POVM {Ej}, with Ey = 0 and >, By, = 1,
giving Born probabilities

P, =Tr(p Ey). (71)

Instruments and state update. An associated instrument can be written in Kraus form
p > MypM, /Py, with Ey, = M M. Any POVM can be realized by a dilation (system-ancilla
unitary followed by a projective measurement on the ancilla), by Naimark/Stinespring theorems;
see, e.g., [113H116].

AD.10.2 Born weights from projection-induced counting (protocol template)

Counting semantics. [Interface]Finite observability already induces equivalence classes: many
microdescriptions map to the same coarse outcome. If a coarse outcome label k corresponds to
a degeneracy class of n; admissible micro-realizations within a fine-grained protocol ensemble,
and if the induced micro-measure is uniform over admissible micro-realizations (a sharp-readout
symmetry hypothesis), then coarse probabilities are counting ratios Py = ng/N.

Theorem AD.21 (Born weights as counting under a uniform micro-measure (template)). Let
|Y) = > cklk) be a normalized state. Assume a fine-grained realization in which each coarse
branch k corresponds to ny admissible micro-realizations in a finite ensemble of size Npjcro,
and assume the induced micro-measure is uniform on admissible micro-realizations. If |ci|? ~
Nk /Nmicro 1 the fine-graining limit, then the induced coarse outcome probabilities satisfy

ng

Pk = — K |Ck 2
Nmicro ‘ | ’

and in the limit one obtains Pj, = |cx|?.

Relation to z128 fibers. [Interface]ln the z128 finite folding language, stable readout labels
already carry fibers P(w) = Fold,,}(w). The counting template above is the quantum-probability
analogue: a coarse outcome corresponds to a multiplicity class in a fine-grained ensemble, and
probabilities arise as normalized multiplicities.
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AD.10.3 Born rule as the unique noncontextual probability rule (mature theorem)

Theorem AD.22 (Gleason-Busch characterization of quantum probabilities). Let H be a com-
plex Hilbert space. Suppose a probability assignment p maps each orthogonal projector P to
w(P) € [0,1] and is finitely additive on orthogonal families: for any pairwise orthogonal pro-
jectors {P;} with >, P; = I, one has Y ; u(P;) = 1. If dimH > 3, then there exists a unique
density matriz p such that

w(P) =Tr(pP) for all projectors P.

For dimH = 2, an analogous conclusion holds if one assumes the same additivity on the full set
of POVM effects (Busch’s extension).

Reference. See Gleason’s theorem [117] and Busch’s POVM extension [118]. O
Interpretation in the tick+CAP discipline. [Interface] The theorem can be read as a rigidity
statement: once one commits to noncontextual additivity for readout probabilities on an effective
Hilbert space (a natural semantic stance for finite observers), the Born form is forced. In that

sense, the Born rule is not an extra dynamical axiom but the unique probability rule compatible
with the declared readout semantics.

AD.11 Running couplings as resolution flow in the r coordinate (self-
contained interface)

This appendix makes the RG dictionary in the Fibonacci resolution coordinate r self-contained.
The main text already records the basic chain rule (Proposition ; here we add the standard
one-loop templates and the semantics of threshold matching and scheme shifts, in a form aligned
with the tick + CAP stance (ratio-first, then matching).

AD.11.1 Scale map and chain rule
Resolution map. Work with the Fibonacci map
u(r) = poe”,

so that log u = log o + rlog ¢ and therefore d/dr = (log ¢) d/dlog v (Proposition [8.17)).

RG in r. If a coupling g(u) satisfies an RG equation

dg
then in the r coordinate,
dg
(1 . 2
3. — logw) 5(g) (72)

AD.11.2 One-loop QED running (leading log)

At one loop (mass-independent scheme, away from thresholds), QED running gives

_ _ b I 2
L) ~ o Yup) — — log [ 2= b= NUVQ? 73
@ ) % o7 (o)~ - log (). DI (73)
so in the r coordinate one obtains a linear flow
_ _ blog
a~t(r) = a (0) - 5 T (74)

174



AD.11.3 One-loop QCD running and dimensional transmutation

For QCD, the beta function has the opposite sign; at one loop,

- bo=11— =
dlog p om e 0 3" (75)
S0 )
7
as(p) = ————, 76
(#) bo log(p/A) (76)

where A is a scheme-dependent transmutation scale. In the r coordinate, a constant rescaling of
A is an additive shift of r, so “scheme dependence” becomes an explicit equivalence-class shift
rather than an uncontrolled knob.

AD.11.4 Threshold matching as discrete uplifts

[Interface] Effective-field-theory decoupling implies that charged fields contribute to running only
above their thresholds; across a threshold one matches schemes by a finite jump/offset. In the
protocol language, thresholds are resolution-uplift points: as meg (1) changes discretely, effective
degrees of freedom appear/disappear and induce discrete changes in (-coefficients. This is the
semantic link between RG matching and the discrete staircase used elsewhere in this paper

(Section (14.2.1)).

AD.12 Cosmology as resolution flow (self-contained interface extension)

This appendix records a minimal cosmology interface in the same protocol language used
throughout this paper. The central idea is that changing resolution parameters (m,n) is a
physical operation (a protocol flow step), and the growth laws of the stable sector |X,,| = Fi, 42
and of the mean degeneracy 2 /| X,,| provide a quantitative capacity-growth backbone.

AD.12.1 Initialization: the big bang as resolution bootstrapping

[Interface]In a readout cosmology, the “big bang” is interpreted as resolution initialization of the
readout hardware: the system starts at small window length m and small addressing order n,
and rapidly enters a regime where nontrivial stable types exist and can be maintained under
projection. The balanced interface m = 2n provides a minimal coupling between a spatial grid
and a local readout alphabet, and the anchor (m,n) = (6,3) supplies the smallest fully explicit
computable layer with nontrivial folding 64 — 21.

AD.12.2 Inflation as exponential growth of stable capacity

As window length increases by Am, the stable type count grows as

(pm+2

V5
so stable capacity grows exponentially in m. If an early epoch has approximately linear resolution
growth m(t) = mgy + at, then

|Xm| - Fm+2 ~

| Xon(y] = gpm(t) = e(alogw)t7

which provides a purely combinatorial capacity-growth analogue of an inflationary exponential
stage (no additional inflaton field is introduced at the protocol level).
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Discrete energy-budget fit (resolution matching)

= fitab(M)
——- target Qyis, 0

0 5 10 15 20 25 30 35 40

window length m

Figure 6: Discrete matching curve for fsan(m) = Fp12/2™ against the target Qyis o used in the
text. The figure is generated by scripts/exp_cosmology_energy_budget_fit.py.

AD.12.3 Hidden-sector dominance at high resolution

The folding map compresses 2" microstates into Fy, o stable types. Define the stable fraction
and hidden fraction at window length m by

X F
fstab(m) = |‘Qm|’ = ;1:27 fhid(m) =1- fstab(m)a
m
and the mean degeneracy
e |Xm’ Fm+2 ’

Since Fi42 < @™ and ¢ < 2, one has fsan(m) — 0 and fria(m) — 1 as m — oo; equivalently
dm =< (2/p)™ grows exponentially.

AD.12.4 A discrete energy-budget fit (interface hypothesis)

Assumption AD.23 (Readout-occupancy energy accounting (interface)). Fizx an effective win-
dow length m. Assume that, on sufficiently coarse scales, the fractional contribution of a sector
to the cosmic energy budget is proportional to long-time occupancy of the corresponding readout
microstate subset. Under a mazximal-ignorance approximation at fixed resolution, this occupancy
s approximated by counting measure on $y,, so that

QVis,O ~ fstab(m)7 Qdark,O ~ fhid(m) =1~ fstab(m)-

[Interface] Given a target present-day visible fraction Qyis (e.g. baryon fraction as a minimal
proxy), Assumption selects an effective integer window length m, by discrete matching.
Because fstan(m) is strictly decreasing in m, this selection is unique once a target is fixed. In the
companion cosmology analysis in this program, the Planck-2018 baryon fraction €y, o ~ 0.0493

is matched near
Fiz 1597

215 32768
suggesting m, ~ 15 as a minimal discrete fit point. Figure [6] provides a direct visualization of
the discrete matching curve.

~ 0.0487,
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Status and falsifiability. [Audit]The assumption is explicitly flagged as an interface hypoth-
esis. Its falsifiability route is to compare the implied hidden/stable ratio d,,, — 1 with the
observed dark-to-baryon ratio, and to test whether the reconstructed overhead proxy fields (Ap-
pendix show the predicted address-aware invariances and correlations.

AD.13 Gamma cross-observation consistency: lensing, delays, redshift, and
rotation curves (audit)

This appendix closes an interface-audit deliverable flagged in theory_closure_tracker.md: a
concrete multi-channel consistency test for the single parameter v in the dictionary

N = ei'yx7 ¢ = _762(X - X0)7

connecting a reconstructed overhead proxy field x to clock-rate (lapse) and weak-field gravita-
tional proxies (Appendix and Appendix [Z).

Scope and status. [Interface]The purpose of this module is not to import external physics as
theorem-level premises. It is an audit-facing interface object: given declared data channels and a
declared reconstruction/matching pipeline, it produces a deterministic estimate (and a declared
uncertainty /stability envelope) for .

Reproducible artifact. [AuditfThe estimates, stability sweeps, and figure in this appendix
are generated by the deterministic script scripts/exp_gamma_cross_observation.py
from a small vendored data subset under data/gamma_crossobs/. The script
writes the LaTeX fragments sections/generated/gamma_crossobs_rows.tex
and sections/generated/gamma_crossobs_stability_rows.tex and the figure
figures/gamma_crossobs_consistency.png.

AD.13.1 Channel-level estimators (summary)

Rotation curves (SPARC). [InterfacelWe implement the one-parameter weighted least-
squares estimator in Appendix with y; = vl-2 and x; = —02rix’ (ry), fit y; = yx; un-
der weights w; = o, ZQ with oy ; = 2v;0;. The x field is reconstructed from an auxiliary scalar
profile (disk surface brightness) using a minimal 1D specialization of Appendix the deriva-
tive/smoothing rule is declared and audited by a sweep (Appendix .

Lensing / time-delay / redshift matching proxies. [Interface]For compact vendored cross-
check channels, we use published summary parameters as small-footprint audit inputs. These
are treated as matching-layer constraints and are not premises for the folding core.

AD.13.2 Results and consistency diagnostics
AE Generated tables and finite checks

Audit note (deterministic generation). All fragments in this appendix are outputs of
deterministic finite enumerations or bounded sweeps over explicitly stated finite domains (e.g.
all words in X, for a fixed m, or all candidates in a bounded coefficient /denominator box). When
a caption says “rows are generated by” a script, the intended meaning is: the script implements
the stated finite enumeration/sweep and writes a INTEX fragment to avoid manual transcription
errors. No hidden continuous parameters, stochastic training, or non-audited optimization is
used in generating these rows.
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Table 64: Cross-observation v estimates from the vendored audit channels. The “pull” is (7 —
Yioint) /0 under the joint inverse-variance estimate.

Channel Dataset Fto Pull

solar system_ lensing vlbi_deflection_2009  9.999000 x 10~! 4 1.500000 x 10~* +6665.43
solar_ system_ redshift galileo_redshift_2018 1.000002 £ 2.480000 X 107° +40319.20
solar_system_ time_ delay cassini_shapiro_2003 1.000011 + 1.150000 x 10> +86949.97
weak_lensing_maps planck2018_A_L 1.086278 4 2.991868 x 10~2 +36.30
strong_lensing time delay hOlicow_xiii_flatlcdm 1.087537 £ 2.718895 x 1072 +40.00
rotation__curves_ sparc combined 4.392135 x 1077 +9.619424 x 10~ -887.98
joint all 8.585745 x 107° £ 9.619013 x 1078 4-0.00

Table 65: Stability under declared counterfactual baselines (Appendix [AD.8)) for the rotation-
curve pipeline, and leave-one-channel-out joint estimates.

Block Dataset Fto Ymin
rotation_ curves__sparc combined 4.392135 x 1077 £ 9.619424 x 10~%  9.083157 :
joint__ LOO rotation_curves_sparc 1.000008 £ 1.040775 x 107°

joint_ LOO solar_system_lensing 8.544630 x 107° £ 9.619015 x 1078

joint_ LOO solar_system_redshift 7.081468 x 107° + 9.619085 x 10~8

joint__ LOO solar_system_time_delay 1.589533 x 107° £ 9.619349 x 1078

joint_ LOO strong_lensing_time_delay 8.585744 x 107> £ 9.619013 x 10~8

joint_ LOO weak_lensing_maps 8.585744 x 107° £ 9.619013 x 1078

AE.1 Admissible set statistics for X

Hamming weight |w|; count in Xg
0 1
1 6
2 10
3 4
X571 XM
18 3

Boundary words: ngry = {100001, 100101, 101001}
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solar_system_lensing | PS
vlbi_deflection_2009

solar_system_redshift | PS
galileo_redshift_2018
solar_system_time_delay | °

cassini_shapiro_2003

weak_lensing_maps |
planck2018_A_L

strong_lensing_time_delay |
hOlicow_xiii_flatlcdm

¢ ¢

rotation_curves_sparc | ®
combined
solar_system_time_delay | ¢
combined
0.0 0.2 0.4 0.6 0.8 1.0

gamma estimate

Figure 7: Visual summary of the vendored cross-observation ~ estimates with the joint estimate
shown as a vertical band.

AE.2 Full Foldg table

weXg V(w) Foldg'(w)

000000 0 {0,21,34,55}
000001 13 {13,47}
000010 8 {8,29,42, 63}
000100 5 {5,26,39,60}
000101 18 {18,52}
001000 3 {3,24,37,58}
001001 16 {16,50}
001010 11 {11, 32,45}
010000 2 {2,23,36,57}
010001 15 {15, 49}
010010 10 {10,31, 44}
010100 7 {7,28,41, 62}
010101 20 {20,54}
100000 1 {1,22,35,56}
100001 14 {14, 48}
100010 9 {9,30, 43}
100100 6 {6,27,40, 61}
100101 19 {19,53}
101000 4 {4,25,38,59}
101001 17 {17,51}
101010 12 {12,33,46}

AE.3 Hilbert chirality index check at n =3
For Hilbert order n = 3: x(path) = —2, x(reversed path) = 2, and x(reflected path) = 2.

AE.4 Resolution uplift sweeps

This subsection records small sweeps that support the paper’s uplift and rigidity narrative. The
m-sweep (m = 6,...,16) corresponds to increasing window length at fixed low resolution, and
it also contains the balanced-coupling chain m = 2n for n = 3,4,5,6,7, 8.
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mo XX XY
6 21 18 3
7 34 29 5
8 55 47 8
9 89 76 13
10 144 123 21
11 233 199 34
12 377 322 55
13 610 521 89
14 987 843 144
15 1597 1364 233
16 2584 2207 377

Table 66: Admissible-set sizes and 7-channel cyclic/boundary split in an m-sweep.

m | Xm| mean |w|i var|w|i  weight histogram

6 21 1.8095 0.6304 0:1, 1:6, 2:10, 3:4

7 34 2.0882 0.7275 0:1, 1:7, 2:15, 3:10, 4:1

8 55 2.3636 0.8132 0:1, 1:8, 2:21, 3:20, 4:5

9 89 2.6404 0.9044 0:1, 1:9, 2:28, 3:35, 4:15, 5:1

10 144 2.9167 0.9931 0:1, 1:10, 2:36, 3:56, 4:35, 5:6

11 233 3.1931 1.0829 0:1, 1:11, 2:45, 3:84, 4:70, 5:21, 6:1

12 377 3.4695 1.1721 0:1, 1:12, 2:55, 3:120, 4:126, 5:56, 6:7

13 610 3.7459 1.2617 0:1, 1:13, 2:66, 3:165, 4:210, 5:126, 6:28, 7:1

14 987 4.0223 1.3511 0:1, 1:14, 2:78, 3:220, 4:330, 5:252, 6:84, 7:8

15 1597 4.2987 1.4405 0:1, 1:15, 2:91, 3:286, 4:495, 5:462, 6:210, 7:36, 8:1
16 2584 4.5751 1.5300 0:1, 1:16, 2:105, 3:364, 4:715, 5:792, 6:462, 7:120, 8:9

Table 67: Hamming-weight statistics in an m-sweep of admissible sets X,,, (no consecutive ones).
Rows are generated by scripts/exp_xm_weight_sweep.py.

Im(Foldm)| gmin ¢gmax degeneracy histogram

m [ Xm|
6 21
7 34
8 55
9 89
10 144
11 233
12 377
13 610
14 987
15 1597
16 2584

21 2 4 2:8, 3:4, 4:9

34 3 5 3:13, 4:16, 5:5

55 3 6 3:21, 5:11, 6:23

89 4 7 4:34, 6:9, 7:46

144 5 9 5:55, 8:52, 9:37

233 6 11 6:89, 10:70, 11:74

377 8 13 8:144, 12:85, 13:148
610 9 16 9:170, 10:63, 16:377
987 12 20 12:377, 19:340, 20:270
1597 14 24 14:70, 15:540, 24:987
2584 18 30 18:987, 29:140, 30:1457

Table 68: Fold,, surjectivity and output degeneracy histograms in an m-sweep. Here g(w) =
[Fold,,} (w)| over N € {0,...,2™ —1}.
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n points 4" x(path) x(rev) X (ref)
3 64 -2 2 2
4 256 0 0 0
5 1024 -2 2 2
6 4096 0 0 0
7 16384 -2 2 2
8 65536 0 0 0

Table 69: Hilbert chirality index sweep across Hilbert orders n. The sign-flip identities of

Proposition [5.4] are verified at each n listed.

AE.5 Audit summary (pass/fail checks)

check expected observed status
| X6 21 21 PASS
| X6¥ 18 18 PASS
|xpdry| 3 3 PASS
boundary words 100001,100101,101001  100001,100101,101001 PASS
[Im(Foldg)| 21 21 PASS
degeneracy hist 2:8, 3:4, 4:9 2:8, 3:4, 4:9 PASS
X (path) -2 -2 PASS
x(rev) +2 2 PASS
X (ref) +2 2 PASS
>(6Y)2 (1 gen) 120 120 PASS
anomaly tuple (0,0,0,0) (0,0,0,0) PASS
gy simplex winner (4,1,1) (4,1,1) PASS
aY(uz) nm? winner 13 13 PASS
sin? Oy (uz) p/q winner 3/13 3/13 PASS
J (a,n) winner (11,7) (11,7) PASS
rigidity winner at B = 20 (2,5,1) (2,5,1) PASS
Tstep Winner (1 anchor) 27 27 PASS
Tstep Winner (2 anchors) 27 27 PASS
plaquette holonomy cycle hist 1:24,2:19,2x2:1,3:3,4:2 1:24,2:19,2x2:1,3:3,4:2 PASS
phase-lift CP signal nonzero on 3/4 cycles  |J| mean (1,2,3,4)=(1.25¢-50,1.06e-17,0.0634,0.0226)  PASS
PMNS perm-fit E <0.2 0.121 PASS
loop-scale PMNS E finite finite 0.228 PASS
loop-scale SO(3) angle range [0, 180] count=31, range=[90.0,120.0] PASS
Wilson W range [-1,1] [-0.088,0.642] PASS
single-loop PMNS E <0.25 0.121 PASS
single-loop CKM Eo, <1.0 0.679 PASS
two-loop PMNS E., <0.05 0.011 PASS
two-loop CKM E, <0.5 0.442 PASS
two-loop (mixed) PMNS E, <0.05 0.011 PASS
two-loop (mixed) CKM Eo <0.3 0.213 PASS
inverse generation acc 1.000 1.000 PASS
inverse sign(Y) acc >0.6 0.667 PASS
inverse Yium acc > 0.6 1.000 PASS

AE.6 Audit metrics for bounded-complexity closures

For a positive reference target 2™ and a candidate prediction z(6), we use the (dimensionless)

- ()]

log-mismatch
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For multi-target closures we report the minimax objective
Eo(0) := maxe;(0).
(2

Tables and record candidate-domain sizes, uniqueness gaps, and (for large candidate
domains) distribution quantiles. For a fixed candidate family © equipped with the uniform
prior, the empirical frequency N<./|O| can be read as the probability that a uniformly random
candidate achieves F,, < e. When the minimizer is unique, the probability that a uniformly
random candidate matches as well or better than the reported minimizer is 1/|0|. These within-
family probabilities provide explicit look-elsewhere context for the stated hypothesis classes; they
do not claim a global significance over unrestricted expression grammars.

182



€81

closure candidate family |©| minimizer best Foo second gap N<o.01 N<o.05

—1

Qom an® + br? + cm, at+btc <10 285 (4,1,1) 2.22344e-06  0.0032491 0.00325 2 19
a Hugz) nr2, 1 <n <50 50 n=13 0.00273049  0.0768385  0.0741 1 1
sin? Oy (pz) p/q, 1< q<50 773 3/13 0.00195143 0.00577062 0.00382 4 19
J (CKM) 1/(am™), a < 50, n < 20 1000 (11,7) 0.0033087  0.0094142 0.00611 2 5
CKM magnitudes [Vus|=1/Vd, |Vep|=p528/2 |Vyy|=pF18/2 32000 (d, k23, k13) = (20, 13,23) 0.0374582  0.0374582 0 0 3
PMNS sines s12=+/P12/q12, 523=+/P23/q23, s13=p ¥13/2 655360 (p12/q12,P23/q23,k13) = (4/13,6/11,8)  0.0119246  0.0119246 0 0 98
PMNS § §=kn/q, 1<q<12 91 §=137/12 0.010856  0.0739731  0.0631 0 1
mass depth (leptons) 7 =aAV +bAg+ cAlw|, |al,|b],|c| < 20 34460 (2,5,1) 0.0382687  0.0382687 0 0 5

Table 70: Audit metrics for bounded-complexity closures. E,, is a minimax log-mismatch across the targets of each closure; for scalar targets it
reduces to the single absolute log mismatch.



closure E] min  median p90 p99 max

CKM magnitudes (B = 20) 32000 0.0374582  3.57163  5.49648 6.4589 6.4589
PMNS sines (B = 20) 655360  0.0119246 3.1398  6.74889  7.71131 7.71131
mass depth (B = 20) 34460  0.0382687  55.8472  108.299 131.397 145.834

Table 71: Quantiles of the minimax log-mismatch E., over large candidate domains at B = 20
(for the CKM-magnitude, PMNS-sine, and mass-depth closures).

AE.7 Uncertainty robustness (minimizer stability under target perturba-
tions)

To stress-test how stable the selected minimizers are under perturbations of the reference tar-
gets, we sample reference values within explicit uncertainty models and recompute the min-
imizer under the same tie-break rules. The sampling is deterministic (fixed RNG seed) and
is intended as an audit-oriented robustness check. We use simple truncated-normal models de-
signed to keep targets in their admissible domains: for positive scalar targets z'f > 0, we sample
2’ ~ N (2, o) truncated to remain positive; for mixing-angle targets quoted as sin® @, we sam-
ple sin? ' ~ A (sin? §, o) truncated to (0,1) and then use s = V/sin? §; and for a phase reference
d we sample &' ~ N(4,04) truncated to [0,360] degrees. When a standard reference uncer-
tainty is explicitly quoted (e.g. PDG for J), we use it directly; otherwise (e.g. scheme-dependent
electroweak quantities and matching-layer anchors) the adopted o values are recorded as con-
servative audit stress-test scales rather than as a statistical claim.
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closure reference uncertainty model samples  baseline minimizer stability

Qo 137.035999084000 c=21x10"8 200 (4,1,1) 1.000

a " (uz) 127.955 o =102 200 n=13 1.000

sin? Oy (z) 0.23122 c=3x10"° 200 3/13 1.000

J (CKM) 3.00 x 1075 o=15x10"6 200 (11,7) 0.120

CKM magnitudes (|Vasls [Ves], | Vus]) = (0.2243,0.0422, 0.00394) o=(5,8,36) x 10~* 200 (d, ka3, k13) = (20,13, 23) 0.760

PMNS sines (sin® 012, sin? fa3, sin? f13) = (0.307,0.545,0.0218)  o(sin? 6) = (0.013,0.021,0.0007) 200  (p12/q12,p23/q23, k13) = (4/13,6/11,8)  0.025

PMNS § (bounded denom.) & = 195° os = 30° 200 6 = 195° 0.335

mass depth (leptons) (my,ms) = (0.10565838,1.77686) GeV o/u="5x10"* 200 (2,5,1) 1.000
Table 72: Minimizer stability rates under sampled target perturbations for selected closures, as  generated

scripts/exp_audit_uncertainty_robustness.py.
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AE.8 Resolution calibration robustness

We also stress-test the robustness of the resolution-step calibration minimizer (Section [14.2.1))
under explicit perturbations of the reference anchors.

calibration model uncertainty model samples  baseline minimizer  stability

single anchor (m =10 — my) oz =0.1 GeV 500 k=2 1.000

two anchors (m =10 = mz, m =8 — uqcp) (0z,09) = (0.1,0.05) GeV 500 k=2 1.000
Table  73: Minimizer  stability = rates  for  the  resolution-step  calibra-
tion under sampled anchor perturbations. Rows are  generated by

scripts/exp_audit_resolution_calibration_robustness.py.

AE.9 Counterfactual baseline comparisons

To provide look-elsewhere context, we compare the best achievable mismatch under the struc-
tured candidate families used in the paper to simple counterfactual families of comparable dis-
crete complexity.

closure candidate family |©]  minimizer best Eoo
Qo amd +br? + cr 285  (4,1,1) 2.22344¢-06
aot ae3 4 be? + ce 285  (5,5,0) 0.00245594
CKM magnitudes p-family 32000  (d, ko3, k13) = (20,13,23) 0.0374582
CKM magnitudes e-family 32000  (d, k23, k13) = (20,6,11) 0.165335
CKM magnitudes 2-family 32000  (d, k23, k13) = (20,9, 16) 0.0461727
PMNS sines o-family 16000  (3,2,8) 0.0430888
PMNS sines e-family 16000 (3,2,4) 0.0870773
PMNS sines 2-family 16000 (3,2,6) 0.166519
Holonomy PMNS perm-fit Hilbert addressing 468 (262144, (1,2,0),(2,0,1)) 0.121164
Holonomy PMNS perm-fit row-major addressing 468 (262144, (0,2,1),(1,0,2)) 0.611674
Holonomy single-loop PMNS  Hilbert addressing 262080 (gray,64,4,(1,0),2,(0,1,2),(2,0,1)) 0.12128
Holonomy single-loop CKM Hilbert addressing 262080 (gray,512,3,(3,0),2,(1,0,2),(1,0,2)) 0.679211
Holonomy single-loop PMNS  row-major addressing 262080 (gray,64,2,(0,2),3,(0,2,1),(2,0,1)) 0.110299

Holonomy single-loop CKM row-major addressing 262080 (gray,1024,1,(1,6),2,(1,0,2),(1,0,2)) 0.675787

Table 74: Counterfactual baseline comparisons for selected closures. Rows are generated by
scripts/exp_audit_counterfactual_baselines.py.

AE.10 A broader null baseline for o ! from bounded 7-polynomials

As an additional look-elsewhere diagnostic beyond the narrow candidate families used in the
main text, we also sweep a larger explicit grammar: integer polynomials in 7 of degree < 3 with
bounded coefficients. This produces a finite hypothesis class that contains the specific closed
target ag_e}) = 473 4+ 12 4 7 as one point, while allowing many nearby expressions of comparable
syntactic form. Table [75| reports the best achievable log mismatch over the full domain together
with the counts of candidates below fixed mismatch thresholds.

target family |©] minimizer best e ties N<g.o01 N<o.05

Qe (CODATA) ijo a;ml, aj € [~10,10] 194481 4n3 + 72 + 7 2.22344e-06 1 820 4087

Table 75: Null baseline over bounded integer m-polynomials (degree < 3 with coefficients in a
fixed box). Here e = |log(x/z™")| is the absolute log mismatch to the reference target. Rows
are generated by scripts/exp_audit_pi_polynomial_null.py.
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AE.11 Rigidity enumerations for closed constant targets

Remark AE.1 (Why the coefficient-sum bound is not vacuous (order-of-magnitude check)).
In the simplex search domain a,b,c € Z>o with a+b+c < S, one always has

ar® + b’ 4 er < (a+b+c)n® < S

Using the classical bound ™ < 22/7 gives ™ < (22/7)% =~ 31.1 and therefore S < 4 = an® +
br? + cm < 125. Since the reference electromagnetic inverse coupling satisfies ot ~ 137 > 125
(CODATA/PDG; Table @), any nontrivial match requires a + b+ c > 5. Thus the bounded
search a + b+ ¢ < 10 is small but already above the minimal order-of-magnitude threshold.

rank  (a,b,c¢) candidate value |z — x| rel. error |log(x/z"eh)|
1 (4,1,1) 4nd 4247 137.0363037759  3.047e-04  2.223e-06 2.223¢-06
2 (4,0,4) 4n® 44w 136.5914773356  4.445e-01  3.244e-03 3.249¢-03
3 (3,4,1) 3m344n2 471 135.6388402988  1.397e+00  1.020e-02 1.025e-02
4 (3,4,2) 373 44n% 27 138.7804329524  1.744e+00  1.273e-02 1.265e-02
5 (3,3,4) 33 4+3w24+4r  135.1940138585  1.842e+00  1.344e-02 1.353e-02
6 (4,0,5) 4w+ 57 139.7330699891  2.697e+00  1.968e-02 1.949¢-02
7 (2,7,1) 2m3+Tml 47 134.2413768218  2.795¢+00  2.039e-02 2.060e-02
8 (4,1,2) 4m3+ 72 +2r  140.1778964295  3.142e+00  2.293e-02 2.267e-02
9 (4,1,0) 473472 133.8947111223  3.141e+00  2.292e-02 2.319¢-02
10 (4,0,3) 473+ 37w 133.4498846820  3.586e+00  2.617e-02 2.652e-02

domain |©] = 285; best/second gap Ae = 3.247e — 03

Table 76: Finite simplex search for a} over a3 +br? + cr with a,b, ¢ € Z>g and a+b+c¢ < 10,

ranked by the audit-norm log mismatch e = |log(z/x")| with deterministic tie-break rules.
Rows are generated by scripts/exp_alpha_coeff_rigidity.py.

Remark AE.2 (Why the integer-m2 sweep is effectively local (order-of-magnitude check)). Let
zref = oz;]l)G(,uZ) be the reference value (Table Any integer n for which nw? can compete
must satisfy n ~ z"f /72, Using 9 < m% < 10 gives the crude localization

ref ref

0 "< 9

Since " ~ 128, only n in a narrow band around 13 can be relevant; the sweep 1 < n < 50 is a
small explicit overbound that contains this band.

rank n nm? |z — xref| rel. error | log (/)|
1 13 128.3048572142 3.499e-01 2.734e-03 2.730e-03
2 14 138.1744616153 1.022e+01 7.987e-02 7.684e-02
3 12 118.4352528131 9.520e+00 7.440e-02 7.731e-02
4 15 148.0440660163 2.009e+01 1.570e-01 1.458e-01
5 11 108.5656484120 1.939e+01 1.515e-01 1.643e-01
6 16 157.9136704174 2.996e+-01 2.341e-01 2.104e-01
7 10 98.6960440109 2.926e+01 2.287e-01 2.596e-01
8 17 167.7832748185 3.983e+01 3.113e-01 2.710e-01
9 18 177.6528792196 4.970e4-01 3.884e-01 3.282e-01
10 9 88.8264396098 3.913e+01 3.058e-01 3.650e-01

domain |©| = 50; best/second gap Ae = 7.411e — 02

Table 77: Finite search for an integer—w2 approximation to ofl(u 7) over nr? with 1 <n < 50,
ranked by the audit-norm log mismatch e = |log(z/2™f)]| to the PDG reference value appq (1)
with deterministic tie-break rules. Rows are generated by scripts/exp_ew_rigidity.py.
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Remark AE.3 (Why the bounded-denominator rational sweep is nonvacuous). For any real x
and any QQ > 1, Dirichlet’s approximation theorem implies the existence of a reduced rational
p/q with 1 < q < Q and
‘x _ p’ P
al qQ T Q*
Thus the choice @ = 50 guarantees (a priori) the existence of candidates within absolute error
< 4 x 10~* while keeping the hypothesis class finite and auditable.

rank  p/q value | — xref| | log(z/2t)|
1 3/13 0.2307692308 4.508e-04 1.951e-03
2 10/43 0.2325581395 1.338e-03 5.771e-03
3 11/48 0.2291666667 2.053e-03 8.920e-03
4 7/30 0.2333333333 2.113e-03 9.098e-03
5 8/35 0.2285714286 2.649e-03 1.152e-02
6 11/47 0.2340425532 2.823e-03 1.213e-02
7 5/22 0.2272727273 3.947e-03 1.722e-02
8 4/17 0.2352941176 4.074e-03 1.747e-02
9 7/31 0.2258064516 5.414e-03 2.369e-02
10 9/38 0.2368421053 5.622e-03 2.402e-02

domain |©] = 773; best/second gap Ae = 3.819¢ — 03

Table 78: Finite search for a reduced rational approximation to sin® @y (uz) over p/q with
1 < ¢ < 50, ranked by the audit-norm log mismatch e = |log(z/z™)| to the PDG ref-
erence value sin? Owrpa(pz) with deterministic tie-break rules. Rows are generated by
scripts/exp_ew_rigidity.py.

Remark AE.4 (A nonvacuous magnitude window for the Jarlskog (a,n) box). Let Jut ~
3 x 107° be the PDG-scale target used in the paper [2]. Within the bounded box 1 < a < 50, if

n <5 then
1 1 1

> >
ar™ — 507® ~ 50(22/7)°
so the entire n < 5 slab is too large to match J.s even at maximal a. Thus any nontrivial
rigidity search with a < 50 must include n > 6; the chosen domain 1 < a < 50, 1 < n < 20
contains this minimal magnitude-viable window.

~ 6.5 x 1079,

rank (a,n) value |z — xref| rel. error |z — z*f| /o | log(xz/z"eF)|
1 (11,7) 3.0099425471e-05 9.943e-08 3.314e-03 6.628e-02 3.309e-03
2 (35,6) 2.9718899237e-05 2.811e-07 9.370e-03 1.874e-01 9.414e-03
3 (34,6) 3.0592984509e-05 5.930e-07 1.977e-02 3.953e-01 1.957e-02
4 (36,6) 2.8893374258e-05 1.107e-06 3.689e-02 7.378e-01 3.759e-02
5 (33,6) 3.1520044645e-05 1.520e-06 5.067e-02 1.013e+4-00 4.943e-02
6 (37,6) 2.8112472251e-05 1.888e-06 6.292e-02 1.258e+-00 6.498e-02
7 (32,6) 3.2505046040e-05 2.505e-06 8.350e-02 1.670e+-00 8.020e-02
8 (12,7) 2.7591140015e-05 2.409e-06 8.030e-02 1.606e+4-00 8.370e-02
9 (38,6) 2.7372670350e-05 2.627e-06 8.758e-02 1.752e+4-00 9.165e-02
10 (10,7) 3.3109368018e-05 3.109e-06 1.036e-01 2.073e+00 9.862e-02

domain |©] = 1000; best/second gap Ae = 6.105e — 03

Table 79: Finite rigidity search for the Jarlskog invariant over the ansatz J = 1/(an™)
with 1 < a < 50 and 1 < n < 20, ranked by the audit-norm log mismatch e =
|log(z/x™")| to the PDG central value with deterministic tie-break rules. Rows are generated
by scripts/exp_jarlskog_pi_rigidity.py.
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AF Closure audit details: couplings, mixing, and CP (supple-
ment)

This appendix collects the detailed finite constructions, bounded-complexity searches, and re-
construction tables underlying the coupling/CP normalizations and the CKM/PMNS closures
reported in Part IV.

This section records two interface points: (i) coupling constants as geometric normalization
costs, and (ii) CP violation as a CP-odd phase-space volume with discrete multiplicity. We treat
the closed expressions below as CAP-closed interface normalizations: they follow from explicitly
declared finite candidate families and canonical geometric data, and their mismatch to scheme-
/scale-dependent experimental conventions is recorded as a matching-layer factor. The same
normalization philosophy is pursued, in a broader constant-geometry context, in the companion
manuscript [8].

AF.1 Three-channel impedance and the fine-structure constant

The inverse fine-structure constant admits a closed three-stratum geometric impedance expres-
sion:

Qmgeo = 47 + 72 + 1 & 137.0363037759. (77)

We make the interface closure declarations explicit.

Tick-first bridge: from periodic phase to geometric normalization cost. In the tick-
first dictionary (Section , the only primitive input is the sequential update count and the only
primitive closure rule is CAP. Any internal phase variable is therefore a periodic datum attached
to tick evolution, with the canonical low-complexity period 27 (circle normalization). When in-
dependent protocol constraints must be satisfied in series, their combined effect is multiplicative
at the level of weights and additive after the logarithmic readout map (Proposition . The
role of compact phase spaces and their canonical volumes in the definitions below is to supply
protocol-invariant, finite-description normalization costs for such periodic data, compatible with
ray-space Zo identifications intrinsic to finite readout.

Proposition AF.1 (Serial composition and logarithmic impedance (interface)). If a readout
protocol must satisfy independent constraints in a fixved hierarchy (“strata”) in series, assign
each stratum j a multiplicative weight w; € (0,1] and define its log-cost V; := —logw; [(17,61].
If the total weight is wior, = []; wj, then the corresponding impedance is the additive cost

-1 ._ — .
ageo = - lOg Witot = Z ‘/J
J

Proof. This is the identity — log(l_[j wj> = > ;(—logwy). O

Definition AF.2 (Geometric cost as canonical phase volume (CAP closure form)). For each
stratum j, let M; be a compact phase space drawn from a declared finite candidate family. Define
the cost as the canonical volume

Vj = Vol(M;),

where Vol is computed using the standard bi-invariant metric on compact Lie groups together
with induced quotient metrics for projective Zsy identifications (Lemma . The choice of
M is treated as a bounded-complexity CAP closure within the stated family (Axziom and

Definition .
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Remark AF.3 (Metric normalization and matching-layer rescaling). Throughout this section
we use the standard unit-radius normalizations for compact groups (Lemma , so that
SU(2) = 83 has Vol(SU(2)) = 27%. Any alternative overall metric rescaling on a stratum
rescales Vol(M}) by a fized factor and therefore shifts the corresponding impedance contribution
V; by a matching-layer normalization change rather than introducing additional internal degrees
of freedom.

Definition AF.4 (Electromagnetic three-stratum phase spaces (CAP closure form)). For the
electromagnetic normalization channel, select the three strata within an explicit finite candidate
family built from the primitive set

= {U(1),SU(2),SO(3),RP'},

equipped with canonical volumes (Lemma and with projective quotients encoding the ray-
space Zo identification intrinsic to readout. At the m = 6 anchor, the CAP-minimal choice
yields

Mbulk = U(l) X SU(2), Mboundary = 50(3)7 Mline = RPI

(Proposition [AF.7).

Remark AF.5 (Geometric meaning of the three electromagnetic strata). The three strata in
Definition are chosen to align with three protocol-level geometric objects that are present
once one insists on finite-resolution readout and transport. The factor U(1) models phase, SU(2)
captures the spinorial double cover of rotations, SO(3) encodes the orientation of a local rigid
frame, and RP' = U(1)/{%1} models the projective ray identification of a one-dimensional
phase degree of freedom [18,47]. The purpose of the definition is not to claim an ontic manifold,
but to fix a minimal closed normalization dictionary in which ray-space Zo quotients are treated
explicitly rather than absorbed into conventions.

Lemma AF.6 (Canonical volumes of U(1), SU(2), SO(3), and RP'). With the standard unit-
radius normalizations,

Vol(U(1)) = 2m,  Vol(SU(2)) = Vol(S?) = 2z
Moreover, the Zo quotients satisfy
Vol(SO(3)) = Vol(SU(2)/{£1}) =%,  Vol(RP') = Vol(U(1)/{+£1}) = .
Consequently, Vol(U (1) x SU(2)) = 4x3.

Proof. The first identity is the circumference of the unit circle. For SU(2) = S3, integrating
the standard volume form on the unit 3-sphere gives Vol(S3) = 272 [18//47]. The quotient maps
SU(2) — SO(3) = SU(2)/{#1} and U(1) — RP! = U(1)/{£1} are two-sheeted Riemannian
coverings under the induced quotient metrics, so the quotient volumes are halved. The product
identity follows by multiplicativity of product volumes. O

Proposition AF.7 (Primitive factorization rigidity for the electromagnetic strata). Fixz the
primitive candidate set

B = {U(1),SU(2),SO(3),RP'},

equipped with the canonical volumes of Lemma[AF.0. Restrict the bulk stratum to be a product
of two primitives and restrict the boundary and line strata to be single primitives. Impose the
target scalings

Vol(Mpui) = 47%,  Vol(Mboundary) = 72, Vol(Miine) = .
Then, up to ordering, the strata are forced as

Mbulk = U(l) X SU(2)7 Mboundary = 50(3)7 Mline = RPl
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aggregation rule value log(value/ aEéD ATA)
serial sum 137.0363037759 +2.22 x 1079
FEuclidean 124.4568430929 —9.63 x 1072
max 124.0251067212 —9.98 x 1072
parallel 2.3381204994 —4.07
arithmetic mean 45.6787679253 —1.10
geometric mean 15.6670204088 —2.17

Table 80: Aggregation baselines for the three-stratum a_,! impedance dictionary. The base-
line serial rule corresponds to Proposition alternative rows are counterfactual aggregation
semantics and are included only as look-elsewhere context. Rows are reproduced by the deter-
ministic script scripts/exp_aggregation_baselines.py.

Proof. By Lemma the one-factor values in B are 2w, 272, 72, and 7. Any two-factor
product has the form 2™7* with m € {0,1,2} and k € {2,3,4}. The constraint Vol(Mpy) =
473 forces exponent pattern (1,2) and coefficient 4, hence the factors must be U(1) and SU(2).
For one-factor realizations, 72 occurs only for SO(3) and 7 occurs only for RP! in 3, forcing
the boundary and line strata. O

Remark AF.8 (Serial aggregation is not interchangeable). Under the serial semantics of Propo-
sition [AF.1}, the impedance is additive after the logarithmic readout map. For context, Table[80
records a small systematic baseline sweep over several standard alternative aggregation rules act-
ing on the three stratum costs Vi = 472, Vboundary = 72, and Vime = , together with their log
mismatches to the CODATA reference.

Theorem AF.9 (Three-stratum geometric impedance for aep). Under Proposition and
the CAP-closed phase-volume dictionary in Definitions [AF.2HAF"], one has

Qo geo = VOL(U(1) x SU(2)) + Vol(SO(3)) + Vol(RP') = 4r® + 72 + T,

hence .

Proof. By Proposition [AF.1] and Definition [AF.2] the impedance equals the serial sum of the
three stratum volumes. By Definition and Lemma Vol(U(1) x SU(2)) = 4n3,
Vol(SO(3)) = 2, and Vol(RP') = . Summing gives (77). O

This matches the philosophy of the present paper: coupling strength is not an arbitrary
input, but a normalization cost induced by finite-resolution readout and compensation.

Interface reading. If each defect channel induces a compensation “impedance” (a normaliza-
tion cost for maintaining protocol-consistent phase transport), then the electromagnetic coupling
is the effective cost seen after channel composition. In this sense, is a numerical instance of
the same template as Proposition [8:1], specialized to a dimensionless normalization observable.

CODATA comparison and explicit mismatch size. Let O‘E%)D ara denote the CODATA

recommended inverse fine-structure constant |59]. The mismatch in inverse impedance is:
Aa!

aGopaTA & 3.046 x 1071, ————

- ~ 2.22 x 1076, (78)
QCODATA

-1._ -1
Aa™" = agngeo —

Since the CODATA uncertainty on a~! is at the 1078 level [59], the ppm-scale deviation in
should be read as a protocol-level matching factor between a closed normalization target
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and a renormalized experimental convention, not as an “agreement within error bars” claim.
Equivalently, in the multiplicative weight variable w = exp(—a~!), the interface mismatch is a
single factor s, = exp(Aa~!) ~ 1.0003046. Using the one-loop dictionary in Remark
the additive mismatch Aa~! can be equivalently represented as a matching-layer scale ratio
ps/ pto = exp(—(27/b)Aa~1) at fixed one-loop coefficient b.

Rigidity at bounded coefficient complexity. At bounded coefficient complexity (small
nonnegative integers in the ansatz an3 +br? + cr), the triple (a,b, c) = (4,1,1) is rigidly singled
out as the unique best fit in a finite search domain in the audit log-mismatch norm.

Proposition AF.10 (Bounded-coefficient rigidity for ag}). Within the finite domain a,b,c €

1
Z>o with a 4+ b+ ¢ < 10, the unique minimizer of the absolute log mismatch

3 b 2
e(a.b.) = ‘log(w>|
QCODATA
under deterministic tie-break rules (coefficient sum, then lexicographic (a,b,c)) is (a,b,c) =
(4,1,1).

Proof. This is a finite exhaustive enumeration over 286 triples in the simplex a4+ b+ ¢ < 10 with
deterministic tie-break rules. The top candidates and runner-up gap are recorded in Table [70]
and are reproducible by scripts/exp_alpha_coeff_rigidity.py. O

Remark AF.11 (A broader m-polynomial null baseline). To provide look-elsewhere context

beyond the nonnegative-coefficient simplex used in Proposition[AF. 10, Appendiz[AE.10 reports a
larger sweep over the explicit grammar Z?:o ajm with a; € [—10,10] (a domain of size 194,481 ).
Within this broader class, the unique best candidate is still Aw®+m2 41 with absolute log mismatch
e~ 222 x 107% (Table[75).

AF.2 Electroweak normalization and the Weinberg angle
At the Z scale, we record a closed-theory electroweak matching normalization:

3

.92 _ 9
sin w (1z) = 3 (79)
and the gauge-sector normalizations can be written as
ay'(nz) =37%  ay'(uz) =107%, o '(uz) = 1377 (80)

under a canonical volume assignment consistent with the Standard Model relation between gauge
couplings and the electromagnetic coupling [1,2,{119-121].

Definition AF.12 (Electroweak inverse couplings as weighted volumes (CAP closure form)).
At the matching scale = pz, define the inverse couplings by weighted canonical volumes

0y, (nz7) = dim(su(2)) VoI(SO@), oyt (uz) = (3 YF)Vol(SO(3)),
fesMm

with hypercharge normalized by Q = T3 + Y. The normalization is treated as a CAP-closed
interface dictionary: the weights are discrete invariants already fixed by the closed labeling at
the anchor (Lemma and Lemma , and the remaining numerical comparison to Z-scale
MS conventions is recorded as a matching-layer mismatch (Table|77 and Table @
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Remark AF.13 (Why the weight > Y2 is canonical at the interface). In standard gauge theory,
the normalization of an abelian coupling is tied to the choice of charge generator, and the leading
vacuum-polarization/running coefficients depend on sums of squared charges (with multiplicities)
[1,|2]. Thus the appearance of 3. Y? as a discrete weight in Deﬁm’tion s compatible with
the conventional role of hypercharge-squared sums in U(1) normalization and renormalization,
even though this paper treats the relation only as a matching-layer dictionary rather than as a
derived (-function statement [80).

Theorem AF.14 (Electroweak normalization and the Weinberg angle). Under Defini-
tion one has (80) and, consequently, (79).

Proof. One has dim(su(2)) = 3 (Lemma and - requm Yf2 = 10 for three generations
(Lemma . With the canonical quotient metric, Vol(SO(3)) = 72 [47]. Thus ay'(uz) = 372
and ay'(uz) = 1072, giving = (uz) = ag! + ay' = 1372, Finally, using the standard elec-
troweak identity sin? Oy = a/an, = ayt/at [1L2] yields sin? Oy (uz) = 3/13. O

Remark AF.15. We use a, as the SU(2) coupling (often denoted g in standard notation),
and ay as the hypercharge coupling.

Interface reading. The integer decomposition 13 = 3 + 10 in aligns with the SU(2)
gauge-sector dimension 3 (Lemma and the three-generation hypercharge-squared sum 10
(Lemma , providing a shared integer backbone across the labeling interface and the elec-
troweak normalization interface. Here it is recorded as a consistency check that the three-channel
template can support the SM electroweak mixing pattern.

PDG comparison (explicit deviations). The closed model gives
3
o Hpy) = 1372 ~ 128.3048572142, sin? Oy () = 13~ 0:2307692308. (81)

PDG quotes app(pz) = 127.955 and sin? fyppg(pz) =~ 0.23122 in the MS convention [2).
Thus,

137% — 127.955 ~ 3.50 x 1071 (2.73 x 1073 relative), (82)
and 3
13~ 023122 % —4.51 1071 (=1.95 x 1073 relative). (83)

Remark AF.16 (Unification-scale benchmarks vs. Z-scale conventions). The electroweak miz-
ing angle is scale dependent. In minimal SU(5)-type grand-unified models, one has the familiar
tree-level unification-scale relation sin® Oy, = 3/8 [85,/84). Running and threshold corrections
then relate unification-scale parameters to Z-scale MS conventions [1,|2]. Accordingly, our Z-
scale targets in are recorded as matching-layer normalizations at .z, not as unification-scale
relations.

Bounded-complexity rigidity. Within the finite search domain 1 < n < 50 in the ansatz
a Y (uz) = nn?, the coefficient n = 13 is the unique minimizer of the audit mismatch e(n) :=
| log((nm?)/appa(112))] (Table. Within the rational search domain 1 < g < 50 for reduced ra-
tionals p/q, the fraction 3/13 is the unique minimizer of e(p/q) := |log((p/q)/ sin? Ow.ppc(pz))|
under the deterministic tie-break (g, p) (Table . Combining the two fixes yields a;,! = 372

and a;/l = 1072 by .

Proposition AF.17 (Integer and rational rigidity at the electroweak scale). Let aEﬂDG (bz) ~
127.955 and sin? 0w ppc(uz) ~ 0.23122 be the PDG reference values [2]. Within the finite
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domains 1 < n < 50 in the ansatz o' (uz) = na? and 1 < q < 50 in reduced rationals p/q for
sin? Oy (uz), the unique choices are

a Npz) =13n%,  sin® O (uz) = 3

and consequently o' (11z) = 372 and oy’ (uz) = 1072

Proof. Finite exhaustive enumeration with deterministic tie-break rules; reproduced by
scripts/exp_ew_rigidity.py and recorded in Tables [77] and [78] O

Remark AF.18 (One-loop scale shifts and additive mismatch). At one loop, gauge couplings
run logarithmically: in a standard normalization one has an affine dependence

_ _ b 1
al(p) =a 1('“0)_27r10g<u0> +oee

where the coefficient b is fixed by the charged field content and convention [1,48]. Therefore an
additive mismatch Aa~' can be equivalently represented as a multiplicative scale ratio

2
B exp(—ﬂ Aa_1>

b
at fixed one-loop coefficient. This is the sense in which we interpret ppm- to per-mille-level
deviations as matching-layer scale shifts rather than as “agreement within error bars” statements.

Remark AF.19 (RG flow expressed in the resolution coordinate). The paper uses the resolution
coordinate r(p) = log(u/me)/log . Since log u = logm, + rlog ¢, derivatives convert as

d
— =1 .
dr (log ) dlog u

Thus any standard renormalization-group equation dg/dlogu = [(g) becomes

% = (log ¢) B(9).

In particular, the one-loop affine running of a~' in Remark corresponds to a constant
slope da=!/dr = —(blog ¢)/(27). We use this only as a translation dictionary between standard
scheme-dependent running and the protocol resolution language; the paper does not derive [3-
functions from the folding layer.

A Fibonacci-scale interface remark. Using the one-loop scale-shift dictionary in Re-
mark |AF.18), the mismatch 1372 — 0‘5113(; (11z) can be phrased as a logarithmic scale ratio p./uz.

AF.3 A CP-odd phase space and the Jarlskog invariant

For quark mixing, a basis-independent measure of CP violation is the Jarlskog invariant J [45].
We record the resulting canonical closed value as a CAP-closed normalization dictionary.

Definition AF.20 (CP-odd phase space (CAP closure form)). Within the primitive candidate
set P = {U(1),SU(2),SO(3),RP'} with canonical volumes (Lemma , define the CP-odd

readout sector by

Mcp =2 S0(3) x SO(3) x SO(3) x RPL. (84)

This choice is CAP-closed within the stated family by the volume-factorization rigidity in Propo-
sition [AF.2J)
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multiplicity rule dcp J =1/(dcpn”) log(J/Jepag)

dim(su(3)) + dim(su(2)) 11 3.009942547 x 107°  +3.31 x 1073
dim(su(3)) + dim(su(2)) +dim(u(1)) 12 2.759114001 x 107>  —8.37 x 102
dim(su(3)) 8  4.138671002 x 107°  +3.22 x 10!
dim(su(2)) 3 1.103645601 x 10~4 +1.30
dim(su(3)) + dim(u(1)) 9  3.678818669 x 107°  +2.04 x 107*
dim(su(2)) + dim(u(1)) 4 8.277342004 x 1075 +1.01

Table 81: Multiplicity baselines for the CP-odd normalization J = 1/(dcpn’) within the fixed
primitive phase-space choice Vol(Mcp) = 7’ (Lemma . The bold row is the paper’s
default dcp = 8 4 3; alternative rows are counterfactual multiplicity dictionaries. Rows are
reproduced by the deterministic script scripts/exp_aggregation_baselines.py.

Remark AF.21 (Structure of SO(3)® x RP!). In the PDG parameterization of a three-
generation mixing matriz, the real miring degrees of freedom can be organized as three inde-
pendent rotations, while the physically relevant complex phase is defined only modulo rephasings
and discrete identifications. The factor SO(3)? models the three rotation degrees of freedom, and
the RP' factor models a projective phase degree of freedom after the Zs ray identification, con-
sistent with expressing CP wviolation through rephasing-invariant quantities such as the Jarlskog
invariant J [2,145,47).

Lemma AF.22 (Canonical volume of Mcp). Under the canonical quotient metrics,
Vol(Mcp) = 7.

Proof. By LemmalAF.6 Vol(SO(3)) = 72 and Vol(RP!) = w. Therefore Vol(Mcp) = (72)*-7
7
.

Ol

1 1

dop = dim(su(3)) + dim(su(2) =8 +3 =11, Jyeo = G = 77

(85)

Remark AF.23 (Why the multiplicity excludes the abelian factor). The nontrivial CP-odd
rephasing-invariant residue encoded by J is tied to genuinely non-abelian mixing structure in a
three-generation setting [2,|45]. Accordingly, in the low-complexity multiplicity count we weight
only the non-abelian gauge-sector dimensions 8 and 3; the abelian U(1) factor is treated as
part of the phase normalization already accounted for in the ray/projective quotient structure.
Table records a small baseline sweep over alternative multiplicity counts within the same w"
phase-space normalization.

Proposition AF.24 (Primitive factorization rigidity for the CP-odd phase space). Fiz the prim-
itive candidate set B = {U(1),SU(2), SO(3),RP'} with canonical volumes as in Lemma .
Among products of primitives with Vol(M) = 7, the factorization is unique (up to ordering):

M = S0(3) x SO(3) x SO(3) x RP!.

Proof. From Lemma each primitive volume is one of 27, 272, 72, w. Any product therefore
has the form 2™7* with m € Z>o. The constraint Vol(M) = 77 forces m = 0, hence no factor
can be U(1) or SU(2), and all factors must be chosen from {SO(3),RP'}. To achieve exponent
7 with SO(3) contributing 72 and RP' contributing 7, the only possibility is three SO(3) factors
and one RP! factor. O
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The interpretation compatible with the present protocol picture is that attempting to “pull
back” C'P (conjugation plus reflection) into a fixed readout protocol leaves an unavoidable
residual geometric phase (holonomy), whose magnitude is controlled by a CP-odd phase-space
volume and a discrete gauge-sector multiplicity.

Connection viewpoint. In the Standard Model, the CKM matrix is the unitary mixing
matrix for quarks, with CP violation originating from an irreducible complex phase (three gen-
erations) [2,/122,|123]. The protocol picture naturally expresses such phases as holonomy data
of a connection on a protocol parameter manifold. The CP-odd invariant is then a rephasing-
invariant residue of holonomy, consistent with the volume/multiplicity expression .

PDG comparison and rigidity signal. PDG quotes Jppg = (3.00 £ 0.15) x 107° [2]. The
closed reference value (85) gives

1 -5
Jgeo = I = 3.009942547 x 10™°, (86)
with relative deviation ~ 3.31 x 10~2 at the PDG central value. Numerically, Jgeo —JPDG,central ~
9.94x 1078, corresponding to &~ 6.6 x 1020 under the quoted PDG uncertainty. Moreover, within
the bounded search domain 1 < a < 50 and 1 < n < 20 in the ansatz J = 1/(an™), the pair
(a,n) = (11,7) is uniquely selected by finite rigidity enumeration (Table[79).

Proposition AF.25 (Bounded-complexity rigidity for CKM CP violation). Let Jppg = 3.00 x
1075 be the PDG central value [2]. Within the finite domain 1 < a < 50 and 1 < n < 20 in the
ansatz J = 1/(axw™), the unique minimizer of the audit mismatch

()

e(a,n) = —

under deterministic tie-break rules (minimize a+mn, then lexicographic (a,n)) is (a,n) = (11,7),
yielding Jgeo = 1/(1177).

Proof. Finite exhaustive enumeration with deterministic tie-break rules; reproduced by
scripts/exp_jarlskog_pi_rigidity.py and recorded in Table O

AF.4 CKM mixing magnitudes as bounded-complexity depths

The protocol interface naturally expresses small dimensionless amplitudes in the golden resolu-
tion coordinate

log x
logy
analogous to the mass-resolution coordinate used in Section We test a minimal bounded-
complexity closure for the three small CKM magnitudes |Vys|, |[Ves|, and |Vp| (PDG conventions)
[2].

Tmix(Z) := (x > 0), (87)

Candidate-family status (audit). [Audit]All “rigidity” and “uniqueness” statements in the
mixing closures of this paper are conditional: they hold within the explicitly declared finite can-
didate family and complexity bound, with deterministic tie-break rules (Definition . The
candidate families used below are chosen to be protocol-native (normalization/equipartition
and golden depth) and to remain discrete and auditable; alternative families are not excluded
in principle and are treated, when needed, as counterfactual baselines in the audit tables (Ap-

pendix |AE]).

196



Forcing rationale (normalization and depth). In the protocol viewpoint, mixing mag-
nitudes are overlap amplitudes between normalized readout modes. We restrict to a bounded
candidate family fixed by two protocol-native mechanisms: (i) normalization/equipartition in
an effective d-dimensional mixing subspace. For a Haar-uniform unitary matrix U € U(d) one
has E|U;;|?> = 1/d, so the minimal-description overlap scale is |Uy;| ~ 1/v/d [124,]125]. (ii)
golden-branch depth costs produce exponentially small weights with base ¢; taking square roots
at the amplitude level yields half-depth factors go_k/ 2 (cf. the zeta/Abel pole-barrier scaling in
Section . Accordingly, we treat CKM hierarchies as a bounded-complexity closure problem
in discrete depth/normalization variables rather than as free continuous parameters.

Candidate family. Let Viax = maxyex, V(w) = 20 at (m,n) = (6,3). We consider the
bounded family

1
V'
and select coefficients by a bounded-complexity minimax search. Here d is a normalization-
dimension parameter (unrelated to the fixed window length m = 6 used elsewhere in the paper).

|Vus| = 1< d < Vmaxa |‘/;b| = Sp_k23/27 |Vub| = 90_]“3/27 k23a k13 S Na (88)

Remark AF.26 (Why d < Viyax and why k& < 2B). The bound d < Viax ties the normalization
parameter to the intrinsic finite invariant range at (m,n) = (6,3): by Proposition V(w)
takes exactly the values {0, ..., Vinax}, $0 Vinax = 20 is a protocol-intrinsic integer cutoff available
without tmporting external scales. For the depth exponents, the amplitudes are written in half-
depth form @~ */2 (cf. (87)); therefore restricting k to a box of size O(B) makes the exponent
complexity comparable to the integer search radius B used for other closures. The choice k < 2B
s a minimal symmetry between integer and half-integer depth budgets: it allows exponents up to
depth B in the amplitude-squared scale, while keeping the candidate domain finite and auditable.

Proposition AF.27 (Bounded-complexity rigidity for CKM magnitudes). Fiz PDG reference
magnitudes |Vus|, |[Veo|, [Vus| [2]. For each bound B € {1,...,20}, minimize the objective

max{|10g(’Vus’pred/’vus’PDG)‘a “Og(“/cb’pred/“/cb‘PDG)L ‘log(’Vub’pred/’Vub‘PDG)|}7

over the finite domain 1 < d < min(B, Vipax) and 1 < kos, k13 < 2B, using lexicographic tie-break
rules (sum error, then coefficient sum, then (d, ka3, k13)). At B = 20 the unique minimizer is

(d, ka3, k13) = (20, 13, 23),

and, within the tested range B = 1,...,20, the pair (kos, k13) stabilizes at B = 12 and remains
constant for all B with 12 < B < 20 (Table .

Proof. Finite exhaustive enumeration with deterministic tie-break rules; reproduced by the ac-
companying script. O

Remark AF.28 (Candidate-domain size). At bound B, the search domain has size
|©(B)| = min(B, Vinax) - (2B)%.

At B = 20 and Vipax = 20, this is |©] = 20 - 40? = 32000 candidates.

Audit context. Candidate-domain size, best/second-best mismatch context, and distribution
quantiles are recorded in Appendix (Tables 71). Counterfactual baseline comparisons
are recorded in Table [74l
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B minimizer max abs. log mismatch sum abs. log mismatch
1 (d, ko3, k13) = (1,2 2) 5.055363 9.234257
2 (d, ko3, k13) = (2,4,4) 4.574151 7.925260
3 (d, ko3, k13) = (3,6,6) 4.092939 6.760103
4 (d,kos, k13) = (4,8,8) 3.611727 5.653839
5 (d, ko3, k13) = (5,10,10)  3.130515 4.579843
6 (d,kos, k13) = (6,12,12)  2.649304 3.526259
7 (d,kas, k13) = (7,13,14)  2.168092 2.727366
8 (d, kos, k13) = (8,13,16) 1.686880 2.179388
9  (d, kos, ki13) = (9,13,18) 1.205668 1.639285
10 (d, ka3, k13) = (10,13,20)  0.724456 1.105393
11 (d, ko3, k13) = (11,13,22)  0.295823 0.576526
12 (d, ko3, k13) = (12,13,23)  0.252318 0.292414
13 (d, kas, k13) = (13,13,23) 0.212296 0.252393
14 (d, ka3, k13) = (14,13,23)  0.175242 0.215339
15 (d, ko3, k13) = (15,13,23)  0.140746 0.180842
16 (d, ka3, k13) = (16,13,23)  0.108476 0.148573
17 (d, ka3, k13) = (17,13,23)  0.078164 0.118261
18  (d, ka3, k13) = (18,13,23)  0.049585 0.089682
19 (d, ko3, k13) = (19,13,23)  0.037458 0.062648
20 (d, kos, k13) = (20,13,23) 0.037458 0.043192

Table 82: Bounded-complexity minimax search for CKM magnitudes within the candi-
date family at (m,n) = (6,3). Each row reports the unique minimizer in the
domain 1 < d < min(B,Vpax) and 1 < ko3, k13 < 2B under the objective and
tie-break rules of Proposition [AF.27 Rows are reproduced by the deterministic script
scripts/exp_ckm_mixing depth_rigidity.py.

AF.5 CKM matrix closure from three magnitudes and a Jarlskog anchor

To turn the magnitude closure of Table [83]into a fully specified 3 x 3 mixing matrix, we use the
PDG standard CKM parameterization by three angles and one CP phase [2]. In this convention,
[Ven| = sa3cas,

|Vub| = 813, |Vus| = S12€13,

and the Jarlskog invariant is
2 .
J = §12523513C12€23C13 SIN 0.

We therefore (i) extract (si2, S23, s13) from the magnitude triplet, (ii) solve for ¢ using a chosen
J normalization, and (iii) reconstruct the full CKM matrix.

Reference reconstruction. To avoid mixing incompatible PDG conventions for different
entries, we define a single “PDG reference reconstruction” by taking the PDG central values of
|Viusls |Veb|, |Vus|, and J used elsewhere in this paper, extracting (si2, S23, s13,0) via the above
identities, and then generating all |V;| from the PDG parameterization. The closed prediction
uses the bounded-complexity minimizer for (|Vis|, |[Ve|, |Vus|) and the rigid Jeeo value .

This section extends the bounded-complexity closure program to the lepton sector. We
record a minimal, auditable closure for the PMNS mixing angles and provide a corresponding
matrix reconstruction in the PDG standard parameterization. Majorana phases do not affect
oscillation probabilities and are not constrained by this minimal closure, so we ignore them
here [2].
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parameter PDG ref. value predicted form predicted value Tmix  log(pred/ref)

|Vis| 0.2243 1//20 0.223606798  3.113 -0.003095
|Ves| 0.0422 ©~13/2 0.0438107147  6.500 0.037458
Vs | 0.00394 ©=2%/20.00395040968  11.500 0.002639

Table 83: CKM-magnitude closure in the golden resolution coordinate at (m,n) = (6,3),
using the bounded-complexity minimizer at B = 20 in Proposition

parameter PDG recon. value closed value mismatch
S12 0.224301741 0.223608543  -0.003095
S23 0.0422003276 0.0438110566  0.037458
$13 0.00394  0.00395040968  0.002639
0 [deg] 55.709284 53.010101  -2.699183
J 3 x107° 3.00994 x 10~®>  0.003309

Table 84: Extraction of CKM angles and CP phase in the PDG standard parameterization from
a magnitude triplet and a Jarlskog anchor. For s;; and J the mismatch is log(closed/ref); for ¢
the mismatch is AJd in degrees.

AF.6 PMNS angles as bounded-complexity amplitudes
We use the same golden resolution coordinate for dimensionless amplitudes as in :

log x
log ¢

Tmix () = (x > 0).

Candidate-family status (audit). [Audit]As in the CKM closure (Section[AF.4), all “rigidity”
and “uniqueness” statements below are conditional: they hold within the explicitly declared finite
candidate family and bound, with deterministic tie-break rules (Definition . The family is
chosen to encode protocol-native motifs (normalization/equipartition and golden depth) while
keeping the search space discrete, finite, and reproducible.

Forcing rationale (normalization and depth). As in the CKM closure of Section
we restrict to a bounded candidate family fixed by two protocol-native mechanisms: (i) nor-
malization/equipartition at the amplitude level. For Haar-uniform unitary mixing in an ef-
fective d-dimensional subspace, E|U;;|> = 1/d, so the minimal-description overlap scale is
Uij| ~ 1/3/d [124125]. (ii) discrete golden-branch depth costs yield exponentially small weights
with base ¢; taking square roots at the amplitude level yields half-depth factors o %/2. We
treat the resulting PMNS hierarchies as a bounded-complexity closure problem rather than as
free continuous inputs [2,/60]. For definiteness, the reference targets used by the accompany-
ing scripts are taken as representative normal-ordering global-fit central values under the PDG
convention |2,/60].

We define a simple candidate family for the three sines (si2, s23,s13) of the PMNS mixing
angles:

s12 = [22, so3 = |22, s13 = M13/2,
q12 q23

with a bounded-complexity box

1 < qi2,923 < B, 1<pi2<q2—1, 1 <pa3 <qo3—1,
ged(pij, gij) = 1, 1 < ki3 <2B,
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element PDG recon. |V| closed |V;;| log(closed/ref)
|Vudl 0.974512179 0.974671429 0.000163
[Vis | 0.2243 0.223606798 -0.003095
A 0.00394  0.00395040968 0.002639
|Vedl 0.224193254 0.223495378 -0.003118
[Ves| 0.9736306 0.973719897 0.000092
|Ves| 0.0422  0.0438107147 0.037458
[Vidl 0.00796231328  0.00808837153 0.015708
[Vis| 0.0416288982  0.0432384402 0.037935
[Vio| 0.999101414 0.999032039 -0.000069

Table 85: Full CKM magnitude table induced by the magnitude closure and the Jarlskog anchor,
compared to a PDG-consistent reference reconstruction (see text). Rows are reproduced by the
deterministic script scripts/exp_ckm_matrix_closure.py.

unitarity check PDG recon. value closed value

row 1 -1.110e-16 -1.110e-16
row 2 +0.000e+00 -2.220e-16
row 3 +0.000e+00 +0.000e+-00
col 1 -1.110e-16 -1.110e-16
col 2 +0.000e+00 -2.220e-16
col 3 +0.000e+00 +0.000e+-00

Table 86: Row/column unitarity diagnostics: >, [Vi;|* — 1 (rows) and Y, [Vi;/* — 1 (columns)
for the reconstructed and closed CKM matrices.

and we select the unique minimizer by lexicographic minimization of the maximum absolute log
mismatch and then the sum mismatch (as in Definition [H.1J).

Remark AF.29 (Why the PMNS candidate box uses reduced rationals and ki3 < 2B). The
square-root rational forms s = \/p/q encode the normalization motif directly at the amplitude
level while keeping the candidate family discrete and closed under bounded denominator. For the
depth exponent, writing s13 = @ "13/2 makes the half-depth structure explicit in the same rmix
coordinate as in the CKM closure. Bounding ki3 by 2B keeps the half-depth exponent budget
commensurate with the rational-denominator budget B without introducing higher-denominator
freedom.

Proposition AF.30 (Bounded-complexity rigidity for PMNS mixing sines). Fiz represen-
tative global-fit reference values for (si2, s23,513) under PDG conventions [2,|60]. For each
B e {2,...,20}, minimize the minimax log-mismatch objective over the candidate box described
above, using the same deterministic tie-break rules as in Definition [H 1l At B = 20 the unique
minimizer is

(p12/ @12, P23/ G23, k13) = (4/13,6/11,8),

and, within the tested range B = 2,...,20, the minimizer stabilizes at B = 13 and remains

constant for all B with 13 < B < 20 (Table[87).

Proof. Finite exhaustive enumeration with deterministic tie-break rules; reproduced by the ac-
companying script. O
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B minimizer max abs. log mismatch sum abs. log mismatch
2 (p12/q12,D023/q23, k13) = (1/2,1/2,4) 0.950499 1.237468
3 (p12/q12,D23/q23, k13) = (1/3,1/2,6) 0.469287 0.553524
4 (p12/q12,023/G23, k13) = (1/3,1/2,8) 0.043089 0.096161
5 (p12/q12,D23/q23, k13) = (1/3,1/2,8) 0.043089 0.096161
6 (p12/q12,D23/q23, k13) = (1/3,1/2,8) 0.043089 0.096161
7 (p12/q12, P23/ 923, k13) = (2/7,4/7,8) 0.035928 0.071529
8 (plg/q127p23/QQ3,k13) = (2/77 4/7, 8) 0.035928 0.071529
9  (p12/q12,D23/q23, k13) = (2/7,5/9,8) 0.035928 0.057444
10 (p12/q2,p23/qes, k13) = (3/10,5/9,8) 0.011925 0.033049
11 (p12/q12, P23/ q23, k13) = (3/10,6/11,8)  0.011925 0.023874
12 (p12/q12,p2s/qes, k13) = (3/10,6/11,8) 0.011925 0.023874
13 (p12/q12, p23/qes, k13) = (4/13,6/11,8)  0.011925 0.013468
14 (p12/q12, P23/ q23, k13) = (4/13,6/11,8)  0.011925 0.013468
15 (plz/q127p23/q237k13) = (4/13,6/11,8) 0.011925 0.013468
16 (p12/q12,p2s/qes, k13) = (4/13,6/11,8) 0.011925 0.013468
17 (p12/q12, p23/qes, k13) = (4/13,6/11,8)  0.011925 0.013468
18  (p12/q12,P23/q23, k13) = (4/13,6/11,8)  0.011925 0.013468
19  (p12/q12,p2s/qes, k13) = (4/13,6/11,8) 0.011925 0.013468
20  (p12/q12,D23/q23, k13) = (4/13,6/11,8) 0.011925 0.013468

Table 87: Bounded-complexity minimax search for PMNS mixing sines in the candi-
date family described in the text. Rows are reproduced by the deterministic script
scripts/exp_pmns_mixing_depth_rigidity.py. Reference targets use representative global-
fit central values under PDG conventions [2,60].

Remark AF.31 (Candidate-domain size). Let R(B) be the set of reduced fractions p/q with
1<q¢<B,1<p<gq-—1, and ged(p,q) = 1. Then |R(B)| = 2522 vr(q), where pg is Euler’s
totient function [27]. The PMNS candidate box has size

©(B)| = |R(B)]* - (2B),

corresponding to independent choices for (p12/qi2), (p23/qe3), and ki3 € {1,...,2B}. At B = 20,
one has |R(20)| = 127 and therefore |©(20)| = 1272 - 40 = 645160.

Normal vs. inverted ordering (NO/IO) diagnostic. The PMNS closure above uses rep-
resentative normal-ordering (NO) reference targets. To assess sensitivity to the ordering choice,
we repeat the same bounded-complexity closure against a representative inverted-ordering (10)
target triple and record the selected minimizers and mismatch metrics. This diagnostic is not
used as a premise; it is included only as an auditable robustness check.

Audit context. Candidate-domain size, best/second-best mismatch context, and distribution
quantiles for the PMNS-sine closure (and the bounded-denominator § closure below) are recorded
in Appendix (Tables 71)); uncertainty-robustness stress tests are recorded in Table

and counterfactual baseline comparisons in Table [74]

AF.7 Matrix reconstruction and a discrete CP-phase closure

To reconstruct a full 3 x 3 mixing matrix, we use the PDG standard parameterization (three
angles plus one Dirac CP phase) [2]. We compare a single reference reconstruction (from repre-
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parameter reference predicted form predicted value  rnix  log(pred/ref)

S12 0.554076 V4713 0.554700196  1.225 0.001126
So3 0.738241 V/6/11 0.738548946  0.630 0.000417
s13 0.147648 p8/2 0.145898034  4.000 -0.011925

Table 88: PMNS mixing-angle closure in the golden resolution coordinate at (m,n) = (6,3),
using the bounded-complexity minimizer at B = 20. Rows are reproduced by the deterministic
script scripts/exp_pmns_mixing depth_rigidity.py.

ordering  (sin? 019, sin? fa3,5in% 013)er  minimizer (p12/qia, p23/qes, k13)  max abs. log mismatch  § minimizer (Q = 12)  Eoo(|U])
NO (0.307, 0.545,0.0218) (4/13,6/11,8) 0.0119 §=137/12 [195.0°]  0.012
10 (0.307,0.551,0.0220) (4/13,11/20,8) 0.0165 0 = 137/12 [195.0°] 0.016

Table 89: NO/IO robustness diagnostic for the PMNS closures at (m,n) = (6,3): we rerun the
bounded-complexity minimizers at B = 20 (angles) and @) = 12 (phase) against representative
normal- and inverted-ordering reference targets (PDG conventions). Rows are reproduced by
the deterministic script scripts/exp_pmns_no_io_stability.py.

sentative global-fit central values) to a closed prediction obtained from the bounded-complexity
angle minimizer together with a discrete protocol-level closure for the Dirac phase § |60]. Be-
cause the PMNS magnitudes depend on cosd while the CP-odd invariant depends on sin d, we
use a bounded-denominator rational-angle candidate family
km
52?7 1<¢<@Q, 1<k<2¢-1,  ged(k,q) =1,

and we select a unique minimizer by a CP-odd anchor rule: first require sgn(.Jy) = sgn(x)
as the chirality-anchored CP-sign convention (Definition , then minimize the mismatch
|log(|Je|/|Jeret])|, and finally break the remaining § <+ 7 — 6 quadrant ambiguity (since
magnitudes depend on cosd) by minimizing the maximum absolute log mismatch of the in-
duced PMNS magnitudes |U;;| against the same reference reconstruction. Ties are broken by
bounded-complexity order (g, k). Table records the resulting bounded-denominator sweep
Q=1,...,12 and the stabilized minimizer.

Remark AF.32 (Status of the CP-sign anchor in the PMNS closure). The chirality-anchored
sign rule fixes a deterministic convention for selecting a quadrant of § within a finite rational
candidate family. It does not introduce additional continuous freedom, and it is not used to tune
the angle magnitudes: the angle minimizer is selected independently by Proposition[AF.30, while
the sign anchor only resolves the remaining 6 <» ™ — 0 ambiguity in a protocol-consistent way

(Remark [7.§).

AG Mass-depth rigidity audits and matching-layer details (sup-
plement)

This appendix collects audit tables and matching-layer bookkeeping details that support the

mass-spectrum closure of Section The main text records the closed template and the spec-

trum table; the material below provides bounded-complexity evidence and quantized matching
summaries.
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Q minimizer 0 [deg] sgn(Jy) vs. sgn(x) E(|U)) Je (closed) [log(|Je|/] e ret])]
1 d0=1rn/1 180.0 FLIP 0.012 +4.01876e-18 35.298
2 6 =3m/2 270.0 OK 0.292 -0.0328156 1.341
3 d=4rn/3 240.0 OK 0.164 -0.0284192 1.197
4 d =5m/4 225.0 OK 0.099 -0.0232042 0.994
5 §=6m/5 216.0 OK 0.064 -0.0192886 0.809
6 d="Tr/6 210.0 OK 0.043 -0.0164078 0.648
7 0 =8m/7 205.7 OK 0.030 -0.0142382 0.506
8 0 =97/8 202.5 OK 0.021 -0.012558 0.380
9 0 =107/9 200.0 OK 0.015 -0.0112236 0.268
10 0 =117/10 198.0 OK 0.012 -0.0101406 0.166
11 6 =127/11 196.4 OK 0.012 -0.00924524 0.074
12 6 =137/12 195.0 OK 0.012 -0.00849331 0.011

Table 90: Bounded-denominator closure for the PMNS Dirac phase § using a chirality-anchored
CP-sign convention (Definition and a deterministic bounded-complexity tie-break. Here
Eo(|U]) := max; j | log(|Uij|closed/|Uijlret) || is the max abs. log mismatch of the induced PMNS
magnitudes against the reference reconstruction. Rows are reproduced by the deterministic
script scripts/exp_pmns_matrix_closure.py.

parameter reference value closed value mismatch
512 0.554075807  0.554700196  0.001126
593 0.738241153 0.738548946  0.000417
513 0.147648231 0.145898034 -0.011925
0 [deg] 195.000000  195.000000  0.000000
Jo -0.00858602  -0.00849331 -0.010856

Table 91:

Jy under the chosen conventions.

PMNS angle/phase extraction and the induced leptonic Jarlskog invariant
Rows are reproduced by the deterministic script

scripts/exp_pmns_matrix_closure.py.

Audit note (finite exhaustive searches). Whenever this appendix reports a rigidity “win-
ner” inside a bounded coefficient box, it is obtained by an exhaustive enumeration over that
finite integer domain with deterministic tie-break rules (as stated near each table). The scripts
referenced in captions reproduce these finite enumerations and write INTEX fragments.

AG.1 Rigidity of the depth formula at bounded coefficient complexity

To make the integer depth assignment auditable as a low-complexity closure, we test a bounded-
coefficient ansatz for the depth map. Write the stable-type differences relative to the electron
reference w, as

AV = V('LU) - V(we)7 Ag:= g(w) - g(we>v A‘w‘l = ‘w‘l - ‘we|1-
Consider the integer ansatz
T(w) =aAV +bAg + cAlwl|y, a,b,c € Z, (89)

and measure its mismatch on the scheme-stable charged-lepton anchor set {u, 7} by the depth
deviation in the resolution coordinate r(u). As a diagnostic, we also record the same metrics on
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element reference |U;;|  closed |U;;| log(closed/ref)
|Uei] 0.823342335 0.823147051 -0.000237
|Uea| 0.548003102  0.548764701 0.001389
|Ues] 0.147648231  0.145898034 -0.011925
U 0.287059885  0.28831328 0.004357
U2 0.620062595 0.618895453 -0.001884
[Ups| 0.730149985 0.730646201 0.000679
|Ur1] 0.489595774  0.489187475 -0.000834
|Urz| 0.561440093 0.561983738 0.000968
|Urs] 0.667143913  0.666985676 -0.000237

Table 92: PMNS magnitude table induced by the bounded-complexity angle closure
and the discrete phase choice. Rows are reproduced by the deterministic script
scripts/exp_pmns_matrix_closure.py.

unitarity check reference value closed value

row 1 +0.000e+00 +2.220e-16
row 2 -1.110e-16 +2.220e-16
row 3 +0.000e+-00 +2.220e-16
col 1 40.000e4-00 +2.220e-16
col 2 +0.000e+00 +2.220e-16
col 3 -1.110e-16 +0.000e+-00

Table 93: Row/column unitarity diagnostics: 3, |Uj;|* — 1 (rows) and 3, |Uy;|* — 1 (columns)
for the reconstructed and closed PMNS matrices.

an extended fermion set including quark reference masses (scheme-dependent by convention).
Table [94] records the selected minimizers in the coefficient box |al, ||, |c| < B for B =1,...,20
under a lexicographic minimization rule: first minimize the leptonic minimax deviation, then
the leptonic sum deviation, then the extended-set minimax and sum deviations, and finally
coefficient complexity.

Proposition AG.1 (Rigidity of the (2,5, 1) coefficients at bounded complexity). In the bounded
search domain |al, |b],|c| < 20, the unique minimizer of the leptonic objective (as defined above)
satisfies

(a,b,c) = (2,5,1).

Moreover, within the tested range B = 1,...,20, the minimizer stabilizes at B =5 and remains
constant for all B with 5 < B < 20.

Proof. This is a finite exhaustive enumeration over integer triples in the stated box with deter-
ministic tie-break rules; the resulting minimizers are listed in Table [04] and reproduced by the
accompanying script. O

Leave-one-out stability of the coefficient choice. As an additional audit, we repeat the
B = 20 coefficient search while leaving out one anchor at a time from the finite anchor set
{u,d, s,c,b,t, u, 7} used by the rigidity script, and record whether the selected minimizer changes
under the same lexicographic objective. Table [95| reports the resulting leave-one-out sweep.
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—
NeJ

0.079526 0.134824  4.277571 14.795234
0.079526 0.134824  4.277571 14.795234

DO
e}

B (a,b,c) max, sum,, MaXext SUIMext
1 (1,-1,1) 5.079526 6.024227 10.246816 24.792808
2 (2,2,-2) 3.079526 6.134824  7.277571 31.990963
3 (2,3,—-1) 2.079526 4.134824 6.277571  25.990963
4 (2,4,0) 1.079526 2.134824  5.277571 19.990963
5 (2,5,1) 0.079526 0.134824  4.277571 14.795234
6 (2,5,1) 0.079526 0.134824 4.277571  14.795234
7 (2,5,1) 0.079526 0.134824 4.277571  14.795234
8 (2,5,1) 0.079526 0.134824  4.277571 14.795234
9 (2,5,1) 0.079526 0.134824  4.277571 14.795234

10 (2,5,1) 0.079526 0.134824 4.277571  14.795234

11 (2,5,1) 0.079526 0.134824 4.277571  14.795234

12 (2,5,1) 0.079526 0.134824 4.277571  14.795234

13 (2,5,1) 0.079526 0.134824 4.277571  14.795234

14 (2,5,1) 0.079526 0.134824 4.277571  14.795234

15 (2,5,1) 0.079526 0.134824  4.277571 14.795234

16 (2,5,1) 0.079526 0.134824 4.277571  14.795234

17 (2,5,1) 0.079526 0.134824 4.277571  14.795234

18 (2,5,1) 0.079526 0.134824  4.277571 14.795234

( )
( )

Table 94: Bounded-coefficient rigidity search for the depth ansatz over B=1,...,20. The
primary anchor set is {u, 7}; the extended set includes quark reference masses as a diagnostic.
Rows are generated by scripts/exp_mass_depth_rigidity.py.

Audit context. Candidate-domain size, best/second-best mismatch context, and distribution
quantiles for the mass-depth closure are recorded in Appendix (Tables 71]); uncertainty-
robustness stress tests are recorded in Table [72] and counterfactual baseline comparisons in
Table [74

AG.2 A minimal matching layer: quantized depth shifts

In effective field theory, scheme and threshold conventions enter as multiplicative matching
factors. In the resolution coordinate, a matching factor is an additive shift: if p.ef is a reference
mass and fipred is @ closed template value, then

Ar = 7ﬁ(:u'ref) —T= log%?( ret > ) Href <PAT-
Hpred Hpred

To make the matching layer auditable at bounded complexity, we record a minimal dyadic
quantization convention: matching shifts are summarized on the quarter-depth lattice Ar ~ k/4.
Table (97| reports Ar, the nearest k/4, the residual Ar—k/4, and the implied quantized matching
factor /4. Table |98 summarizes the residual sizes across the same rows. This does not change
the closed depth formula; it makes the scheme/matching correction explicit in the same discrete
language as the rest of the paper.

Remark AG.2 (Why a quarter-depth lattice is the minimal dyadic choice). Two structural fea-
tures of the present paper single out dyadic denominators as the protocol-native low-complexity
family for matching-layer summaries. First, phases are treated as dyadic registers Zop and the
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leave-out a,b,c) max, - sum,, - MaXext SUMeyt status

(
(2,5,1)  0.079526  0.134824  4.277571  14.795234 SAME
(2,5,1)  0.079526  0.134824  4.277571  11.790788 SAME
(2,5,1)  0.079526  0.134824  4.277571  14.393098 SAME
(2,5,1)  0.079526  0.134824  4.277571  13.609571 SAME
-c (1,1,6) 0.079526  0.134824  3.402135  8.177093 DIFF
(2,5,1)
(2,5,1)
(2,5,1)
(2,6,1)

none

-u

0.079526  0.134824  4.246816  10.517663 SAME
0.079526  0.134824  4.277571  13.251455 SAME
0.055298  0.055298  4.277571  14.715708 SAME
0.079526  0.079526  4.246816  11.281053  DIFF

Table 95: Leave-one-out robustness diagnostic for the depth-coefficient search at B = 20.
Each row removes one anchor from the finite anchor set and recomputes the selected min-
imizer under the same lexicographic objective as in Table Rows are generated by
scripts/exp_mass_depth_leave_one_out.py.

tested leave-outs SAME DIFF fraction SAME DIFF cases

8 6 2 -c, —tau

Table 96: Compact summary of the leave-one-out robustness sweep in Table The
baseline is (a,b,c) = (2,5,1) at B = 20 (Proposition [AG.1)). Rows are generated by

scripts/exp_mass_depth_leave_one_out.py.

holonomy diagnostics treat denominators of the form denom = 2P in CAP audit form (Re-
mark ; thus dyadic refinement is the protocol-native notion of “one more bit” of resolution.
Second, several candidate families used for mizing amplitudes are square-root structured (e.g.
(p_k/2 and 1/\/& in and the analogous PMNS family), so half-depth exponents appear already
at the amplitude level. When such half-depth normalizations are composed with a logarithmic
matching dictionary (as in ), quarter-depth steps arise as the smallest dyadic lattice that can
express the resulting corrections without introducing higher-denominator freedom. Accordingly,
k/4 is used here as the minimal dyadic reporting lattice; finer dyadic lattices k/2° (s > 2) can
be adopted at higher complexity if one wishes to audit smaller residual structure. We emphasize
that we do not optimize the lattice denominator in this paper: 1/4 is chosen as the minimal
dyadic reporting convention, and the residuals in Tables [97HIY make the remaining mismatch
explicit.

AH Scalar-sector interface audits (supplement)

This appendix records scalar-sector interface audits used as supporting certificates for the main-
text scalar-sector closure statements (Section [8.4)).

Audit note (bounded families and deterministic tie-breaks). All scalar-sector “rigid-
ity” statements in this appendix are formulated as deterministic selections from explicit bounded
rational /integer candidate families, with a fully specified tie-break rule. The accompanying
scripts reproduce the same finite sweeps and write A TEX fragments; they are not additional
premises beyond the stated bounded families and tie-breaks.
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field r(p) 7 Ar  nearest residual k4
e 0.000 0 +0.000 0/4  +0.000 1
W 11.080 11 +0.080 0/4  +0.080 1
T 16.945 17  -0.055 0/4 -0.055 1
u 2996 6 -3.004 —12/4  -0.004 0.236068
d 4598 5 -0.402 -2/4  40.098 0.786151
s 10.814 12 -1.186 —5/4  4+0.064 0.547981
c 16.247 12 4+4.247 17/4 -0.003 7.73032
b 18.722 23 4278 —-17/4 -0.028 0.129361
t 26.456 28  -1.544 —6/4  -0.044 0.485868
w 24.866 25 -0.134 —-1/4 +0.116 0.886652
A 25.128 25 +0.128 1/4 -0.122 1.12784
H 25.788 26  -0.212 —1/4  +0.038 0.886652

Table 97: Minimal matching-layer summary in the resolution coordinate. The “nearest”
column reports the closest quarter-step k/4 to the observed Ar. Rows are generated by
scripts/exp_mass_matching_layer.py.

statistic value
entries 12
median |Ar — k/4] 0.050
p90 |Ar — /4] 0.116
max |Ar — k/4] 0.122
Nij<o.01 3
Nyj<o0.05 6

Table 98: Residual-size summary for the quarter-step matching lattice in Table 97 Rows are
generated by scripts/exp_mass_matching layer.py.

AH.1 Higgs—Z depth-offset rigidity at bounded denominator

Proposition AH.1 (Higgs—Z depth-offset rigidity at bounded denominator). Let myz and mpy
denote the PDG reference masses used elsewhere in this paper (Table @) Define the resolution-

depth offset
ATHZ = lOng (TnH> .

mz

Within the bounded candidate family of reduced rationals Ar = p/q with 1 < ¢ < 20 and
0 < p <gq, selecting the unique minimizer of the absolute log mismatch

P/q
o227

by deterministic tie-break rules yields the stabilized minimizer Ar = 2/3 (Table @) Concretely,
we minimize e and then break ties by choosing the smallest denominator q and then the smallest
numerator p (equivalently: lexicographic minimization of (e, q,p)), matching the generator script
scripts/exp_higgs_z_offset_rigidity.py. Equivalently, the Higgs scale is captured at low
complexity by the closed relation

e(p/q) :==

~ 2/3
mHNngD/.
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@  minimizer Ar  mg AT [GeV]  log(pred/myr) [
1 Ar=1/1 1.000000 147.545 +0.163819 0.163819
2 Ar=1/2 0.500000 115.992 -0.076787 0.076787
3 Ar=2/3 0.666667 125.678 +0.003415 0.003415
4 Ar=2/3 0.666667 125.678 40.003415 0.003415
5 Ar=2/3 0.666667 125.678 +0.003415 0.003415
6 Ar=2/3 0.666667 125.678 +0.003415 0.003415
7T Ar=2/3 0.666667 125.678 +0.003415 0.003415
8 Ar=2/3 0.666667 125.678 +0.003415 0.003415
9 Ar=2/3 0.666667 125.678 +0.003415 0.003415
10 Ar=2/3 0.666667 125.678 +0.003415 0.003415
11 Ar=2/3 0.666667 125.678 +0.003415 0.003415
12 Ar=2/3 0.666667 125.678 +0.003415 0.003415
13 Ar=2/3 0.666667 125.678 +0.003415 0.003415
14 Ar=2/3 0.666667 125.678 +0.003415 0.003415
15 Ar=2/3 0.666667 125.678 +0.003415 0.003415
16 Ar=2/3 0.666667 125.678 +0.003415 0.003415
17 Ar=2/3 0.666667 125.678 +0.003415 0.003415
18 Ar=2/3 0.666667 125.678 +0.003415 0.003415
19 Ar=2/3 0.666667 125.678 +0.003415 0.003415
20 Ar=2/3 0.666667 125.678 +0.003415 0.003415

Table 99: Bounded-denominator rigidity sweep for the Higgs—Z depth offset in the -
resolution coordinate: for each @ we minimize e(p/q) = |log((mzy?/?)/my)| over reduced
rationals p/q with 1 < ¢ < @ and deterministic tie-break rules. Rows are generated by
scripts/exp_higgs_z_offset_rigidity.py.

AH.2 A minimal parity contrast by coarse graining at the anchor
AI Gauge-factor complexity-label sensitivity (supplement)

Proposition closes the non-abelian gauge factors by CAP within an explicit compact-factor
candidate family. One audit concern is whether the output depends on a particular choice of
“intrinsic complexity label” (e.g. using dim(g) rather than rank or representation size). This
appendix (i) records a bounded sensitivity sweep across several natural discrete complexity labels
and (ii) notes a short theorem-level reason why the same minimizer persists for these labels.

Al.1 Candidate family and selection rule

We enumerate compact, connected, non-abelian simple Lie groups through their Lie algebras

within a bounded audit window, using the classical families together with low-dimensional ex-

ceptional cases. Within this finite list, we select a pair (G2, G3) of non-isomorphic simple factors

by the same CAP form used in Proposition choose the lexicographically minimal pair under

a given factor complexity label, with a deterministic tie-break that refines by (dim, rank, name).
We compare the following factor labels:

o dim(g) (dimension-as-complexity, used in the main text);

rank(g);

dim(g) + rank(g);
o dmin, the minimal dimension of a faithful complex representation (up to finite quotients).

Rows are generated by scripts/exp_gauge_complexity_sensitivity.py. This script per-
forms the stated bounded enumeration inside the declared audit window and writes the resulting
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observable canonical reflected

X (chirality index) -2 2

Tl &? 4= 1.671875, Var = 0.177490 = 1.671875, Var = 0.177490
Vi) ? 41 = 8.343750, Var = 21.967773 1 = 8.343750, Var = 21.967773
D (w)>? 1= 0.093750, Var = 0.030273 = 0.093750, Var — 0.030273

Table 100: A minimal parity contrast at (m,n) = (6,3) on the n = 3 Hilbert grid: the chirality
index y flips sign under reflection (parity-odd), while coarse-grained scalar summaries built
from intrinsic stable-type functionals are invariant under reflection up to pullback (parity-even).
Rows are generated by scripts/exp_scalar_coarse_grain.py.

KBTREX fragment; it does not introduce additional modeling freedom beyond the finite list and
tie-break rule described above.

factor complexity label ~CAP-minimizer (G2,G3) key (k2,k3) tie-break / notes

dim(g) SU(2), SU(3) (3,8) lex by (dim, rank, name)
rank(g) SU(2), SU(3) (1,2) lex by (rank, dim, name)
dim(g) + rank(g) SU(2), SU(3) (4,10) lex by (dim+rank, dim, name)
dmin SU(2), SU(3) (2,3) lex by (d_min, dim, name)

Table 101: Sensitivity of the CAP-minimal two-factor non-abelian closure across several discrete
complexity labels, within the bounded audit window described above. In all rows, k; denotes
the label value of the selected factor G;. The main text uses dim(g) as the factor label; this
appendix records that the same minimizer persists under alternative labels in the tested window.

Al.2 A short robustness proof for common labels

Proposition AI.1 (Robustness of the SU(2) x SU(3) minimizer across common labels). Con-
sider the CAP selection rule in Proposition but replace the primary factor label dim(g) by
any one of the following labels on compact simple Lie algebras:

k € {dim(g), rank(g), dim(g) + rank(g), dumin},

where dyin denotes the minimal dimension of a nontrivial complex representation of g (equiv-
alently: a faithful complex representation, since g is simple). Assume the same deterministic
tie-break refinement used in the sweep (refining by (dim,rank, name)). Then the unique lex-
icographic minimizer of (k(g2),k(g3)) over pairs of non-isomorphic compact simple factors is
(su(2),s5u(3)).

Proof. (1) First factor is always su(2). Among non-abelian compact simple Lie algebras, the
minimal possible values of

dim(g), rank(g), dmin(g)

are attained uniquely at su(2):
o dim(g) > 3 with equality iff g = su(2) (Lemma [9.4);
o rank(g) > 1 with equality iff g = su(2) (classification: rank-1 simple is Aj; see, e.g., |18]);
o dmin(g) > 2 with equality iff g = su(2) (the fundamental 2-dimensional representation of

Aq; see, e.g., [55]).
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Therefore, regardless of whether k is dim, rank, dim +rank, or d;,, the lexicographically mini-
mal first factor is su(2).

(2) Second factor is always su(3). The second factor must be non-isomorphic to su(2). We
check each label:

If £ = dim, then the minimal non-abelian simple dimension strictly larger than 3 is 8,
attained uniquely at su(3) (Lemma [9.4)).

If k = rank, then the minimal rank strictly larger than 1 is 2. The compact simple rank-2
Lie algebras are As, By = (9, and Go. Their dimensions are 8, 10, and 14, respectively,
so the tie-break by dim selects Az = su(3).

If £ = dim +rank, then for any g 2 su(2) one has dim(g) > 8 and rank(g) > 2, hence
kE(g) > 10. Equality & = 10 is attained by su(3) (dimension 8, rank 2). For the other
rank-2 cases, By has kK = 12 and G5 has k£ = 16, and higher ranks only increase k. Thus
su(3) is the unique minimizer.

If k = dmin, then dpin(su(3)) = 3 (the defining representation), while every other compact
simple Lie algebra not isomorphic to su(2) has dp;, > 4: for By = Cy one has dp,;, = 4 (the
defining representation of Cy), and for G5 one has dyi, = 7; higher ranks only increase the
minimal nontrivial representation dimension in the classical families. Hence dpin selects

su(3).

This proves that for each listed label, the unique minimizer is (su(2), s1(3)). O

Relation to the sweep. Table remains an audit artifact: it verifies by explicit enu-
meration (within a bounded window) that no implementation detail of the sweep changes the
minimizer under the tested labels. Proposition explains why this stability is expected
already from low-rank classification facts.

AJ

Reproducibility

This paper includes auditable scripts that reproduce the finite combinatorics, folding statistics,
and the Hilbert chirality-index checks. All scripts are written in Python and live under:

docs/papers/2025_z128_standard_model_stable_sector_hpa_omega/scripts/.

Some extended audit and plotting utilities use a small scientific stack recorded in requirements.

txt.

AJ.1 What is reproduced

The scripts reproduce:

enumeration of X and verification |X¢| = 21 (Lemma [4.5));
Hamming-weight distribution of X and the 18®3 cyclic/boundary split (Proposition [4.9));

computation of Foldg(N) for N = 0,...,63, including surjectivity and the degeneracy
histogram (Theorem |4.18));

generation of a complete Foldg table (Appendix [AE.2));

a bounded counterfactual fold-family sensitivity sweep at m = 6 (Appendix .
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e computation of the Hilbert chirality index x at order n = 3 and its sign flips under
reflection and traversal reversal (Proposition [5.4)).

o an addressing-basis audit (Hilbert vs. a row-major counterfactual) that makes the tick-first
locality choice explicit at the minimal anchor (Table .

e a bounded sensitivity sweep for gauge-factor selection under alternative complexity labels

(Appendix .

e a coarse-grained scalar parity check on the n = 3 Hilbert grid that contrasts the parity-odd
chirality index with parity-even block-averaged intrinsic observables (Table [L00)).

o reproduction of the closed 21 —SM labeling table (Table [15)), whose underlying label-
ing map is uniquely fixed by Theorem [0.17] once the declared ordering keys are chosen

(Remark ;

o generation of the mass-spectrum closure table (Table .
o bounded-coefficient rigidity search for the depth ansatz (Table .
o generation of a PMNS mixing-angle closure and its induced matrix tables (Section .

 generation of a resolution-threshold staircase table for Fibonacci-structured uplifts (Sec-

tion [[4.2.1).

o generation of a discrete cosmology energy-budget fit fragment and its visualization (Ap-

pendix |AD.12)).

 generation of finite-resolution connection/holonomy audit tables on the n = 3 Hilbert grid

(Section [6]).
 generation of uncertainty-robustness audit tables (Appendix |[AE.7).
 generation of counterfactual baseline audit tables (Appendix [AE.9)).

« generation of systematic aggregation/multiplicity baselines for the a_! and J normaliza-
tion dictionaries (Section and Section |AF.3)).

o generation of the quantitative rigidity-target summary table used in the main text (Ta-

ble [16)).

AJ.2 Main entry points

e scripts/run_all.py: runs the full deterministic pipeline in a fixed order and checks that
the expected generated fragments exist.

e scripts/exp_x6_enumeration.py: enumerates X and writes sections/generated/x6_
*.tex.

e scripts/exp_xm_enumeration.py: enumerates X, for an m-sweep and writes:
— sections/generated/xm_sweep_rows.tex

e scripts/exp_fold6_stats.py: computes Foldg statistics and writes sections/
generated/fold6_x*.tex.

e scripts/exp_fold_family_sensitivity.py: generates a bounded counterfactual fold-
family sensitivity fragment:
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— sections/generated/fold_family_sensitivity_rows.tex
scripts/exp_foldm_stats.py: computes Fold,, statistics for an m-sweep and writes:
— sections/generated/foldm_sweep_rows.tex

scripts/exp_hilbert_chirality_index.py: computes x on the n = 3 Hilbert path and
writes sections/generated/hilbert_chi_summary.tex.

scripts/exp_addressing_selection.py: compares Hilbert addressing to a row-major
counterfactual by protocol-internal locality and computability metrics and writes:

— sections/generated/addressing_selection_rows.tex

scripts/exp_gauge_complexity_sensitivity.py: generates a bounded sensitivity
sweep for gauge-factor complexity-label choices and writes:

— sections/generated/gauge_complexity_sensitivity_rows.tex

scripts/exp_hilbert_chi_sweep.py: sweeps Y across multiple Hilbert orders and
writes:

— sections/generated/hilbert_chi_sweep_rows.tex

scripts/exp_scalar_coarse_grain.py: generates a coarse-grained scalar parity table
fragment and writes:

— sections/generated/scalar_coarse_grain_rows.tex

scripts/exp_resolution_thresholds.py: generates a resolution-threshold staircase ta-
ble fragment and (optionally) a plot:

— sections/generated/resolution_thresholds_rows.tex

— figures/resolution_thresholds_staircase.png (optional)

scripts/exp_cosmology_energy_budget_fit.py: generates the discrete energy-budget
fit fragment and the mandatory figure used in Appendix

— sections/generated/cosmology_energy_budget_fit_equation.tex

— figures/cosmology_energy_budget_fit.png

scripts/exp_edge_mismatch_decomposition.py: generates edge-connection audit frag-
ments:

— sections/generated/edge_mismatch_deg_pair_rows.tex

— sections/generated/edge_mismatch_cost_quantiles_rows.tex

scripts/exp_holonomy_loops.py: generates a plaquette-holonomy distribution frag-
ment:

— sections/generated/holonomy_cycle_type_rows.tex

scripts/exp_sm_labeling_solver.py: implements the deterministic rank-matching
construction of Theorem and writes sections/generated/sm_labeling_rows.tex

(Remark [9.20)).

scripts/exp_labeling lift_consistency.py: audits a functorial label lift under the
prefix projection m,,_¢ and writes:
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— sections/generated/label_lift_rows.tex
scripts/exp_mass_spectrum.py: generates the mass-spectrum table fragments:

- sections/generated/mass_spectrum_anchor_rows.tex

— sections/generated/mass_spectrum_quark_rows.tex

- sections/generated/mass_spe ctrum_neutrino_rows.tex
— sections/generated/mass_spectrum_rows.tex (combined)

scripts/exp_higgs_z_offset_rigidity.py: generates a bounded-denominator rigidity
sweep for the Higgs—Z depth offset and writes:

— sections/generated/higgs_z_ offset_sweep_rows.tex

scripts/exp_mass_matching_layer.py: computes a minimal quantized matching-layer
summary for the mass-spectrum closure and writes:

— sections/generated/mass_matching layer_rows.tex

— sections/generated/mass_matching layer_summary_rows.tex

scripts/exp_mass_depth_rigidity.py: runs a bounded-coefficient search (20 iterations)
and writes sections/generated/mass_depth_rigidity_rows.tex.

scripts/exp_mass_depth_leave_one_out.py: runs a leave-one-out robustness sweep for
the mass-depth coefficient search and writes:

— sections/generated/mass_depth_leave_one_out_rows.tex

— sections/generated/mass_depth_leave_one_out_summary_rows.tex
scripts/exp_ckm_mixing_depth_rigidity.py: runs a bounded-complexity minimax

search for CKM magnitudes (20 iterations) and writes sections/generated/ckm_mixing_
* . tex.

scripts/exp_ckm_matrix_closure.py: reconstructs a full CKM matrix from three mag-
nitudes and a Jarlskog anchor (both a PDG-consistent reference reconstruction and the
closed prediction) and writes:

— sections/generated/ckm_angles_rows.tex

— sections/generated/ckm_matrix_rows.tex

— sections/generated/ckm_unitarity_rows.tex
scripts/exp_pmns_mixing_depth_rigidity.py: runs a bounded-complexity minimax
search for PMNS mixing sines and writes:

— sections/generated/pmns_mixing rigidity_rows.tex

— sections/generated/pmns_mixing rows.tex
scripts/exp_pmns_matrix_closure.py: reconstructs a PMNS matrix from the bounded-
complexity angles and a discrete CP-phase closure and writes:

— sections/generated/pmns_delta_sweep_rows.tex

— sections/generated/pmns_angles_rows.tex

— sections/generated/pmns_matrix_rows.tex

— sections/generated/pmns_unitarity_rows.tex
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scripts/exp_pmns_no_io_stability.py: runs a NO/IO robustness diagnostic for the
PMNS closures and writes:

— sections/generated/pmns_no_io_stability_rows.tex

scripts/exp_neutrino_mass_interface.py: generates a minimal neutrino mass-scale
interface table fragment:

— sections/generated/neutrino_mass_interface_rows.tex
scripts/exp_inverse_hypercharge_fit.py: generates the inverse diagnostic fragment:
— sections/generated/inverse_hypercharge fit_rows.tex

scripts/exp_inverse_hypercharge_sign_fit.py: generates the inverse diagnostic frag-
ment:

— sections/generated/inverse_hypercharge_sign_fit_rows.tex

scripts/exp_inverse_hypercharge_full_fit.py: generates the inverse diagnostic frag-
ment:

— sections/generated/inverse_hypercharge_full fit_rows.tex
scripts/exp_inverse_rep_dim_fit.py: generates the inverse diagnostic fragment:

— sections/generated/inverse_rep_dim_fit_rows.tex
scripts/exp_inverse_generation_fit.py: generates the inverse diagnostic fragment:

— sections/generated/inverse_generation_fit_rows.tex

scripts/exp_inverse_diag_summary.py: aggregates a compact main-text summary
across inverse diagnostics and writes:

— sections/generated/inverse_diag_summary_rows.tex

scripts/exp_labeling_order_sensitivity.py: measures SM-side ordering-key sensi-
tivity of the induced cyclic labeling and writes:

— sections/generated/labeling_order_sensitivity_rows.tex

scripts/exp_audit_closure_metrics.py: generates bounded-complexity audit metrics
(domain sizes, uniqueness gaps, quantiles) and writes:

— sections/generated/audit_closure_metrics_rows.tex

— sections/generated/audit_closure_quantiles_rows.tex

scripts/exp_audit_uncertainty_robustness.py: generates minimizer stability rates
under sampled target perturbations and writes:

— sections/generated/audit_uncertainty_robustness_rows.tex

scripts/exp_audit_counterfactual_baselines.py: generates counterfactual baseline
comparisons and writes:

— sections/generated/audit_counterfactual_rows.tex

scripts/exp_audit_pi_polynomial_null.py: generates a broader m-polynomial null
baseline sweep for ! and writes:
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— sections/generated/audit_pi_poly_null_rows.tex

o scripts/exp_alpha_coeff_rigidity.py: runs the bounded simplex search for the a~!
coefficient rigidity statement and writes:

— sections/generated/alpha_coeff _rigidity_rows.tex

e scripts/exp_aggregation_baselines.py: generates systematic aggregation and multi-
plicity baseline fragments and writes:

— sections/generated/alpha_aggregation_baselines_rows.tex

— sections/generated/j_multiplicity_baselines_rows.tex

e scripts/exp_ew_rigidity.py: runs finite searches for the electroweak Z-scale rigidity
statements and writes:

— sections/generated/ew_alpha_pi2_rigidity_rows.tex

— sections/generated/ew_sin2_rational_rigidity_rows.tex

o scripts/exp_jarlskog_pi_rigidity.py: runs the bounded (a,n) search for the J =
1/(am™) rigidity statement and writes:

— sections/generated/jarlskog pi_rigidity_rows.tex

e scripts/exp_quant_summary.py: generates the quantitative summary fragment used in
Table [16] and writes:

— sections/generated/quant_summary_rows.tex

e scripts/exp_sigma_summary.py: generates a sigma-normalized mismatch summary frag-
ment (using the explicit audit sigma scales in scripts/common_constants.py) and writes:

— sections/generated/sigma_summary_rows.tex
e scripts/exp_audit_summary.py: generates the audit summary fragment:

— sections/generated/audit_summary_rows.tex

AJ.3 How to run (examples)
e cd docs/papers/2025_z128_standard_model_stable_sector_hpa_omega
e python3 -m pip install -r requirements.txt
e python3 scripts/run_all.py
e python3 scripts/exp_x6_enumeration.py
e python3 scripts/exp_fold6_stats.py
e python3 scripts/exp_hilbert_chirality_index.py
e python3 scripts/exp_sm_labeling_solver.py
e python3 scripts/exp_mass_spectrum.py
e python3 scripts/exp_mass_depth_rigidity.py
e python3 scripts/exp_ckm_mixing depth_rigidity.py
e python3 scripts/exp_audit_summary.py

e latexmk -pdf -interaction=nonstopmode -halt-on-error main.tex
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AJ.4 Generated LaTeX fragments

The scripts write small LaTeX fragments into:

docs/papers/2025_z128_standard_model_stable_sector_hpa_omega/sections/
generated/

These fragments are generated outputs and should not be edited by hand; re-run the scripts
to regenerate them deterministically from the stated constructions and bounded sweeps. This
repository includes the generated fragments so the paper can compile out of the box, but they
can be regenerated at any time.

AK Closed computable work packages (interface deliverables)

This appendix summarizes the interface work packages that are realized within this paper as
explicit computable deliverables. They are not premises for any theorem-level folding statement;
they are protocol-layer closures and audit objects with deterministic scripts and generated tables.

AK.1 Functorial refinement of the field-level labeling map

The labeling map Lgn at (m,n) = (6,3) is closed in Section [9] Its canonical uplift/refinement
under window growth is made explicit by prefix projection and deterministic refinement indices
in Appendix [V] together with generated lift-multiplicity and refinement-audit tables.

AK.2 Mixing matrices as holonomy of protocol connections

Finite protocol connections and holonomy diagnostics are constructed explicitly in Section [6]
The resulting bounded-complexity closures for CKM/PMNS magnitudes and their induced ma-
trix reconstructions are recorded in Sections [11] and with unitarity and CP-odd invariants
reported in generated tables.

AK.3 Resolution flow and running couplings

The discrete uplift/coarse-graining flow is fixed as the protocol flow law in Definition Its
scale dictionary is provided by the Fibonacci resolution coordinate and the RG conversion rule
in Proposition while the thresholded staircase meg () is fixed by Corollary

AK.4 Mass/inertia as protocol cost and latency (interface)

The closed mass-spectrum template in Section is complemented by a matching-layer delay
and lapse dictionary in Section [Y] including Wigner—Smith delay as an operational proxy and
standard GR/SR reference relations used only at the interface layer.

AK.5 Protocol-to-continuum error control (interface)

The x(x) reconstruction protocol in Appendix and the overhead-to-gravity weak-field
dictionary in Appendix [AD.7|together define a concrete pipeline from discrete protocol statistics
to continuum representative fields such as ® and peg. To make this pipeline auditable as a
quantitative interface deliverable, Appendix records explicit error-control bounds and
propagation formulas: concentration bounds for bounded folding-derived statistics, log-ratio
perturbation bounds for ¥, and truncation/noise-amplification bounds for the finite-difference
operators (needed for x’ and Ax), together with the resulting uncertainty propagation to 5 and

ﬁeﬁ .
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