
The Stairway to Infinity:
A Holographic Renormalization Flow from Noncommutative

Scanning to the Langlands Program

Haobo Ma (Auric)∗

AELF PTE LTD.
#14-02, Marina Bay Financial Centre Tower 1, 8 Marina Blvd, Singapore 018981

December 23, 2025

Abstract

We propose a holographic renormalization-flow framework for an auditable passage from
finite-resolution readout data to arithmetic rigidity and further to automorphic (Langlands)
semantics. Unlike a purely static “constitution” of objects and axioms, the present work
treats the climb itself as the core mathematical object: starting from a noncommutative
scan algebra (a Weyl pair and the irrational rotation C∗-algebra / noncommutative torus),
we pass through the modular geodesic flow on the modular surface and its Gauss-map sus-
pension (continued fractions as canonical cross-scale digits), reach the cusp interface where
analytic data freezes into integer coefficient spectra via the q-expansion, and close the dis-
crete layer by the prime-generated Hecke algebra and its multiplicative/recursive constraints.
We give a slice–coefficient reconstruction identity valid at any height y > 0, together with a
finite-N scan-sampling estimator whose error is explicitly controlled by star discrepancy and
Ostrowski digits. Incorporating finite-alphabet readout, we obtain a sampling+quantization
recovery bound and an exact integer-recovery-by-rounding criterion for arithmetic spectra.
Finally, we provide a precise symmetry template for scale exchange: the modular S-inversion
identifies endpoints on the modular curve (deep/shallow cusp) and corresponds, on the non-
commutative torus side, to Morita/Fourier-type equivalences that exchange scan and readout
roles.

Keywords: noncommutative geometry, irrational rotation algebra, noncommutative torus,
modular curve, modular surface, geodesic flow, Gauss map, continued fractions, Ostrowski/
Zeckendorf coding, q-expansion, Hecke operators, automorphic forms, Langlands program,
Morita equivalence, induced measure, discrepancy, S-duality.

Conventions. Unless otherwise stated, log denotes the natural logarithm. “mod 1” refers to
reduction in R/Z. “Tick time” t ∈ Z≥0 denotes the iteration count of a scan operator. We write
τ = x + iy ∈ H with y > 0 and use the cusp coordinate q = e2πiτ . When convenient, we freely
replace [0, 1) by [0, 1] in integrals and discrepancy definitions, since the boundary has Lebesgue
measure zero.
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1 Introduction: from a constitution to a climb
Modern foundational physics lives in a persistent tension. At the microscopic level, the canon-
ical language is unitary evolution: continuous, reversible, and information-preserving. At the
observational level, however, what is actually recorded is finite-resolution, discrete, and statis-
tical: bits, integer labels, and counting data. The standard narrative attributes continuity to
“ontology” (states, fields) and discreteness/probability to an externally imposed measurement
postulate.

This work takes the opposite organizational stance: readout is part of the structure. Time,
probability, and discreteness are required to arise within an explicit scan–projection protocol,
under finite-resolution constraints, in a way that is auditable down to a concrete dependency
chain. In earlier HPA–Ω manuscripts [1,2], this stance was articulated as a stratified audit rule:
Layer 0 (states and algebras only), Layer 1 (protocols: scanning, readout, induced statistics),
and Layer 2 (semantic interpretation: spacetime narratives), with the prohibition that Layer 2
may not be used as a premise of Layer 0/1 derivations.

There remains, however, a missing component. A constitution of objects and axioms iden-
tifies a stage and its allowed moves, but does not describe the climb: how scale is raised, how
noise is filtered, how continuous analytic data freezes into integer spectra at the cusp interface,
and how distinct scale descriptions can be short-circuited by symmetries and equivalences. The
goal of this paper is to make the vertical axis into a computable object, by organizing a closed
chain:

noncommutative scan (Weyl pair / Aα)
=⇒ modular renormalization flow (geodesic flow / Gauss map)
=⇒ cusp interface (q-expansion)
=⇒ Hecke dynamics (prime skeleton)
=⇒ automorphic spectrum (Langlands semantics).

(1)

The key novelty is that the cross-scale step in (1) is not left as metaphor. We select the mod-
ular surface as a canonical mother space and use its geodesic flow—equivalently, the Gauss-map
suspension flow on (0, 1)—as a renormalization flow whose discrete return digits are continued-
fraction coefficients. This makes canonical interfaces (continued fractions, Ostrowski coding,
Zeckendorf on the golden branch) unavoidable rather than ad hoc.

What this paper adds. Building on the existing scan–projection and cusp/Hecke interface,
we add four concrete ingredients.

• A renormalization-flow object. The modular geodesic flow provides an intrinsic cross-
scale dynamic, with a computable “scale time” given by the roof function of the Gauss
suspension.

• A slice–coefficient reconstruction identity. We show that q-expansion coefficients
can be recovered from any height slice y > 0 by a Fourier projection (Section 5).

• A finite-N coefficient estimator at finite resolution. Replacing the slice integral by
scan-orbit sampling yields a coefficient estimator whose error is controlled by star discrep-
ancy and, via Ostrowski digits, by a local syntactic sum. Incorporating finite-alphabet
readout, we obtain an explicit sampling+quantization bound and an exact recovery-by-
rounding criterion for integer spectra (Section 9).

• A scale-exchange symmetry template. The modular S-inversion identifies cusp end-
points on X(1) and exchanges deep/shallow regimes; on the noncommutative side, the
corresponding SL2(Z) action appears as Morita equivalence and Fourier exchange, ab-
stractly realizing a scan–readout swap.
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Layer discipline. We emphasize throughout that statements about “UV/IR”, “wormholes”,
or “scale shortcuts” are interpretation-layer narratives. The derivations in this paper are con-
ducted entirely in Layer 0/1 language: algebras, flows, digit laws, Fourier projections, and Hecke
constraints.

2 Layering and axioms: the audit rule
To prevent interpretive narratives from being silently used as derivations, we keep the logic
auditable by explicitly separating three layers.

Layer 0 (ontological layer). Only the language of states and algebras is allowed. No external
time parameter and no external probability postulate is introduced.

Layer 1 (protocol layer). One may choose a scan and readout protocol under finite resolu-
tion. Operational time and statistics are defined within the protocol.

Layer 2 (interpretation layer). One maps Layer 1 structures to semantic narratives (space-
time, particles, gravity, entanglement). This layer is marked interpretive and may not be used
as a premise in Layer 0/1 arguments.

This stratification is consistent with the broader HPA–Ω program [1,2] and is adopted here
as a strict audit rule.

Figure 1 summarizes the layer separation and highlights the one-way dependency: Layer 2
interpretation may annotate, but may not be used as a premise.

Figure 1: Layer separation and the audit rule. Layer 0 uses only states and algebras; Layer 1
specifies scanning, estimators, and finite-resolution readout; Layer 2 provides semantic interpre-
tations and is explicitly excluded from the derivation chain.

2.1 Basic axioms (Omega O1–O4)

Axiom 2.1 (O1 (Omega: static global state)). The universe is specified by a quasi-local operator
algebra A together with a unique normalized global state ωΩ on A. There is no externally given
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time-indexed family of states.

Remark 2.2 (status and usage). Axiom O1 is a constitutive postulate of the broader HPA–Ω
program. In algebraic settings, one may think of ωΩ as a distinguished reference state (e.g.
vacuum/KMS-type) selected by the model, rather than as an observer-defined ensemble; see,
e.g., [3, 4]. The present manuscript’s closed Layer 0/1 stairway chain does not use uniqueness
of ωΩ as an input: all quantitative recovery statements are derived at the protocol layer from
O5/O6 and standard modular/ergodic theory (Appendix A).

Axiom 2.3 (O2 (finite information)). For any causally closed region, the effective number of
degrees of freedom is bounded by a holographic constraint, typically of the form

dim Hregion ≤ exp
(
A

4ℓ2P

)
, (2)

where A is an appropriate boundary area and ℓP is the Planck length.

Remark 2.4. For standard reviews of holographic bounds and related formulations of the holo-
graphic principle, see, e.g., [5].

Axiom 2.5 (O3 (causally local discrete update)). There exists a discrete-step automorphism
U : A → A which, in a controlled representation, is implemented by a unitary U and has finite
propagation range (a causal locality condition).

Axiom 2.6 (O4 (holographic map)). There exists a bulk-to-boundary encoding map Φ which
is approximately isometric on an appropriate code subspace and supports reconstruction in the
sense of algebraic quantum error correction / entanglement wedge reconstruction.

Remark 2.7. For standard constructions connecting holography, bulk reconstruction, and quan-
tum error correction, see, e.g., [6–8].

Remark 2.8 (scope in this paper). The core stairway results of this manuscript concern finite-
resolution scan/readout protocols and the modular cusp/Hecke closure mechanism. Accordingly,
O2–O4 serve primarily to situate the protocol layer within a holography-compatible constitution;
they are not invoked in the proofs of the coefficient recovery bounds or Hecke closure checks.

2.2 Upgraded axioms: scan–projection readout and Weyl pairs (O5–O6)

Axiom 2.9 (O5 (scan–projection readout and induced measures)). Finite observers obtain
“time” and “probability” from a finite-resolution scan and projection readout of intrinsic phase
data. There exists a pointer phase x ∈ R/Z whose scan orbit is sampled at integer ticks t ∈ Z≥0
by

xt = x0 + tα (mod 1), α /∈ Q. (3)

Finite-resolution readout is described by a family of effects {E(ε)
k } (resolution parameter ε) in-

ducing probabilities
P

(ε)
k = ωeff

(
E

(ε)
k

)
,

∑
k

E
(ε)
k = 1, (4)

where ωeff denotes the effective state in the observer sector.

Remark 2.10 (measurement-theory interface). The family {E(ε)
k } is a POVM in the standard

sense, and E 7→ ωeff(E) is a state on the corresponding effect algebra; see [9, 10] for standard
foundations. In algebraic formulations, one may regard ωeff as a restriction of ωΩ to an observer-
accessible subalgebra (or via conditional expectations), recovering reduced-state pictures when
tensor factorizations are available; see [3,4].
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Axiom 2.11 (O6 (unitary scan algebra: a Weyl pair)). On an effective observer Hilbert space
Heff , there exist a scan unitary Uscan and a conjugate phase unitary V satisfying the Weyl relation

UscanV = e2πiαV Uscan. (5)

A canonical covariant model is given on L2(R/Z) by

(Uscanψ)(x) = ψ(x+ α), (V ψ)(x) = e2πixψ(x). (6)

Assumption 2.12 (R1 (orbit regularization / finite part)). Regulated-to-continuum passages
along scan orbits are fixed by a canonical regularization convention: “Abel first, then limit”,
which selects a unique finite part for orbit traces and related divergent sums when it exists.

Remark 2.13. Abel summability and “Abel first, then limit” regularization are classical summa-
bility prescriptions; see [11].

Remark 2.14 (scope of R1). The main finite-N recovery bounds in this paper are statements
about finite sample averages and discrepancy control, and therefore do not require Assump-
tion R1. R1 becomes relevant when one studies regulated infinite-time orbit traces, distributional
limits, or boundary limits in which a damping parameter is sent to 1− before taking a continuum
limit (Appendix D.8).

2.3 From constitution to climb: fixing a renormalization-flow object

To turn a static interface into a cross-scale climb, we must choose a geometric mother space
together with an intrinsic flow that produces a computable notion of “scale time”. We make the
following canonical choice.

Mother space. We work with the modular curve

X(1) = PSL2(Z)\
(
H ∪ {cusps}

)
(7)

and the modular surface
M = PSL2(Z)\H. (8)

The cusp structure of X(1) has a single cusp class; in particular, the modular inversion S : τ 7→
−1/τ exchanges 0 and ∞ and identifies them in the quotient.

Remark 2.15 (why X(1) (minimal protocol footprint)). The role of the mother space is to pro-
vide (i) a cusp with a canonical q-coordinate for a continuous–discrete interface, (ii) a canonical
climb with digit syntax via the Gauss/geodesic suspension, and (iii) a prime-indexed correspon-
dence algebra (Hecke) closing the discrete layer. Within congruence covers, the one-cusp require-
ment is already rigid: proper congruence subgroups have multiple cusps, so X(1) is the unique
level 1 one-cusp option (Proposition C.1). For non-arithmetic quotients, the commensurator
is discrete and Hecke correspondences do not produce a prime skeleton, blocking the intended
closure [12]. Further discussion and a worked protocol model are given in Appendix C.1 and
Appendix C.2.

Flow. The geodesic flow on T 1M admits a canonical symbolic coding by continued fractions,
via a Poincaré section whose first-return map is measurably conjugate to the Gauss map on
(0, 1) [13]. The roof function of the corresponding suspension provides a computable additive
“scale time” (recorded in Section 4).

This choice pins down the climb in Layer 1 terms: the same slope parameter α that controls
scan readout also determines a continued-fraction digit sequence under Gauss iteration, and
these digits become the local syntax of cross-scale coding.

8



3 Bottom layer: noncommutative scanning and finite-resolution
readout

3.1 The irrational rotation algebra as the minimal scan closure

Under the Weyl relation of Axiom O6, the smallest C∗-algebraic closure generated by the
scan/readout unitaries is the irrational rotation algebra (the standard noncommutative 2-torus)

Aα := C∗⟨U, V | UV = e2πiαV U⟩, α ∈ (0, 1) \ Q, (9)
studied classically by Rieffel and Connes [14, 15]. In the protocol semantics, U is a tick shift
(scan iteration) and V is a pointer phase unitary, while the noncommutativity in (9) encodes
intrinsic incompatibility between “scan time” and “readout phase”.
Remark 3.1 (rigidity of the irrational rotation algebra). For irrational α, the rotation algebra
Aα is simple and admits a unique tracial state; it is a canonical, rigid noncommutative geometric
object associated with an irrational slope [14,15].
Proposition 3.2 (no simultaneous eigenvector). Let α /∈ Q and let U, V be unitaries satisfying
UV = e2πiαV U . Then there is no nonzero vector ψ such that Uψ = λψ and V ψ = µψ for some
λ, µ ∈ C.
Proof. If such ψ existed, then UV ψ = λµψ and V Uψ = µλψ. The Weyl relation yields λµ =
e2πiαµλ. Since |λ| = |µ| = 1 and e2πiα ̸= 1 for α /∈ Q, this is impossible.

3.2 A canonical covariant model on the circle

A standard realization of (9) is on H = L2(R/Z):
(Uψ)(x) = ψ(x+ α), (V ψ)(x) = e2πixψ(x). (10)

The induced classical orbit on the circle is the irrational rotation
xt = x0 + tα (mod 1), (11)

which is uniquely ergodic and equidistributed [16–19].

3.3 Finite-resolution readout: windows, effects, and induced statistics

Finite-resolution readout is not an external sampling axiom; it is part of the protocol. The
simplest example is a window W ⊂ R/Z and a binary readout

bt := 1W (xt) ∈ {0, 1}. (12)

More generally, let {w(ε)
k (x)}k∈K be a measurable partition of unity with w

(ε)
k (x) ∈ [0, 1] and∑

k w
(ε)
k (x) = 1. Using the spectral measure ΠV of the phase unitary V , define effects

E
(ε)
k :=

∫
R/Z

w
(ε)
k (x) dΠV (x),

∑
k

E
(ε)
k = 1, (13)

and probabilities P (ε)
k = ωeff(E(ε)

k ) as in O5.
Theorem 3.3 (Weyl equidistribution and induced frequencies). If α /∈ Q, the orbit xt = x0 + tα
(mod 1) is equidistributed in R/Z. In particular, for any interval window W ,

1
N

N−1∑
t=0

1W (xt) −→ |W |, N → ∞, (14)

where |W | is the Lebesgue length of W .
Remark 3.4. The statement extends to Riemann-integrable functions and, under bounded-
variation assumptions, admits explicit finite-N discrepancy bounds; see Section 5. Further de-
tails are in Appendix B.5.
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3.4 Symbolic readout and the golden branch

When W is an interval, the binary readout bt = 1W (xt) is a Sturmian word (a mechanical
word) of minimal complexity p(n) = n + 1 [20, 21]. The “golden branch” α = φ−1 (continued
fraction [0; 1, 1, 1, . . . ]) yields Fibonacci/Sturmian structure and, at the coding interface, the
Zeckendorf decomposition. This branch plays the role of a canonical toy sector for explicit
bounds (Section 9).

4 The climb: modular flow as renormalization

4.1 Mother space: the modular curve and its cusp interface

Let
H = {τ = x+ iy ∈ C : y > 0} (15)

be the upper half-plane. The modular group PSL2(Z) acts by fractional linear transformations

τ 7→ aτ + b

cτ + d
,

(
a b
c d

)
∈ SL2(Z). (16)

The level-1 modular curve is

X(1) = PSL2(Z)\
(
H ∪ {cusps}

)
. (17)

It has a single cusp class (see, e.g., [22]). In particular, the inversion S : τ 7→ −1/τ exchanges
0 and ∞ and identifies them in the quotient, providing a canonical “endpoint identification”
template (developed further in Section 8).

Figure 2: A truncated fundamental domain for PSL2(Z) in the upper half-plane, highlighting
the cusp direction (height y) and the cusp coordinate q = e2πiτ used for discretization at the
interface.

Figure 3 gives a protocol-level overview of the stairway: a scan orbit is used to sample a
cusp slice, Fourier projection reconstructs coefficients, discrepancy controls finite-N error, and
arithmetic constraints (Hecke/Euler) provide auditable closure.
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Figure 3: The stairway pipeline as a Layer 1 protocol: scan sampling on the circle provides
data, cusp slices provide a continuous-to-discrete interface via Fourier projection, discrepancy
provides explicit finite-N control, and arithmetic symmetries (Hecke/Euler) constrain the re-
covered coefficient spectrum.

4.2 Geodesic flow and the Gauss-map suspension

Define the modular surface
M := PSL2(Z)\H. (18)

The geodesic flow on the unit tangent bundle T 1M admits a canonical symbolic coding by
continued fractions. The key fact, due to Series [13] (see also [17,23]), is that a Poincaré section
returns by the Gauss map.

Theorem 4.1 (Series: modular geodesic flow as a Gauss suspension). There exists a Poincaré
section Σ ⊂ T 1M and a measurable isomorphism between (Σ, return map) and ((0, 1), G), where

G(ξ) =
{1
ξ

}
∈ (0, 1), ξ ∈ (0, 1), (19)

is the Gauss map (fractional part of 1/ξ). Moreover, the geodesic flow on T 1M is measurably
isomorphic to the suspension flow over G with roof function

r(ξ) = −2 log ξ. (20)

If ξ = [0; a1, a2, . . . ] is the continued fraction of ξ, then the digit sequence (an) is the symbolic
orbit of ξ under G.

Scale time. The roof function r(ξ) is additive under suspension concatenation, so the accu-
mulated scale time after n returns is

Tn(ξ) =
n−1∑
j=0

r(Gjξ) = −2
n−1∑
j=0

log(Gjξ). (21)

This makes “climbing in scale” into a computable quantity controlled by the continued-fraction
digits.

4.3 Gauss invariant measure and digit laws

The Gauss map preserves the probability measure

dµ(ξ) = 1
log 2

dξ
1 + ξ

, (22)
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and is ergodic with respect to µ [23]. Consequently, the leading digit a1 = ⌊1/ξ⌋ has the
closed-form law

µ(a1 = k) = log2

(
1 + 1

k(k + 2)

)
, k ≥ 1. (23)

A short derivation is given in Appendix B.16.

Metrical constants. Beyond the one-step digit law, metrical continued-fraction theory pro-
vides sharp almost-everywhere scaling constants. Examples include Khinchin’s constant for
geometric means of digits and Lévy’s constant for the exponential growth rate of convergent de-
nominators qn; see [23] for standard statements and proofs. These constants provide additional
quantitative rigidity for the “scale time” encoded by continued fractions.

In particular, the Gauss measure expectation of the logarithm has a closed form,∫ 1

0
(− log ξ) dµ(ξ) = π2

12 log 2 , (24)

see Proposition B.16 for a short proof. so the roof function r(ξ) = −2 log ξ has mean∫ 1

0
r(ξ) dµ(ξ) = π2

6 log 2 . (25)

By the ergodic theorem, for µ-almost every ξ,

1
n

n−1∑
j=0

r(Gjξ) → π2

6 log 2 , (26)

which gives a constant-controlled linear growth law for the accumulated scale time Tn(ξ).

Gauss–Kuzmin convergence (mixing to the Gauss measure). The Gauss map admits
an exponential relaxation theorem: for broad classes of absolutely continuous initial distribu-
tions, the law of Gn(ξ) converges exponentially fast to the Gauss invariant measure. We treat
this as a standard input from metrical continued-fraction theory and do not reprove it here;
see [23]. Appendix B.17 records a standard theorem statement.

4.4 From the scan slope to canonical digits: Gauss iteration and Ostrowski
coding

The scan protocol is controlled by the irrational slope α in xt = x0 + tα (mod 1). The climb
acts on the same parameter by Gauss iteration. Write

α = [0; a1, a2, . . . ], an ∈ N≥1, (27)

and define convergents pn/qn by the standard continued-fraction recursion. The integer denom-
inators qn provide canonical “scale blocks” for orbit sums.

The Ostrowski representation theorem states that every N ∈ N admits a unique expansion
(see, e.g., [23])

N =
m∑

n=0
bnqn, (28)

where the digits (bn) satisfy local admissibility constraints determined by the continued-fraction
digits (an). This representation is a local syntax: admissibility can be checked without global
carries.

12



Golden branch. On the golden branch α = φ−1 = [0; 1, 1, 1, . . . ], Ostrowski coding degener-
ates to the Zeckendorf decomposition: every integer is uniquely written as a sum of nonconsec-
utive Fibonacci numbers [24]. This yields a particularly simple binary syntax (no adjacent 1’s),
and plays the role of a canonical toy sector for explicit bounds and examples.

5 Top interface: cusps, q-expansions, and slice–sampling recon-
struction

5.1 Cusps, periodicity, and q-expansions as a canonical continuous–discrete
interface

Near the cusp i∞ of the modular curve, a canonical local parameter is

q = e2πiτ , τ = x+ iy. (29)

As y → ∞, |q| = e−2πy → 0. For level 1, modular objects are T -invariant (f(τ + 1) = f(τ)),
hence 1-periodic in x = ℜτ and admit Fourier expansions on each horizontal slice. In particular,
any modular form (or more generally, any function analytic at the cusp in the appropriate sense)
admits an absolutely convergent Fourier/q-expansion

f(τ) =
∑
n≥0

anq
n =

∑
n≥0

ane2πinxe−2πny. (30)

See, e.g., [22, 25, 26] for standard treatments of q-expansions and cusp Fourier theory. The
coefficients (an) constitute a discrete integer (or algebraic) spectrum in arithmetic settings;
Hecke symmetry then constrains these coefficients rigidly (Section 6).

5.2 A slice–coefficient identity at arbitrary height

The cusp limit y → ∞ is not required to recover coefficients. Coefficients can be reconstructed
from any height slice by Fourier projection.

Definition 5.1 (height slice). For any y > 0, define the slice function

Fy(x) := f(x+ iy), x ∈ [0, 1). (31)

Theorem 5.2 (slice–coefficient reconstruction). Assume that (30) converges absolutely and uni-
formly for fixed y > 0. Then for every n ≥ 0 and every y > 0,

an = e2πny
∫ 1

0
Fy(x) e−2πinx dx. (32)

Proof. By absolute uniform convergence at fixed y > 0, we may integrate (30) termwise:∫ 1

0
Fy(x) e−2πinx dx =

∑
m≥0

ame−2πmy
∫ 1

0
e2πi(m−n)x dx = ane−2πny, (33)

since
∫ 1

0 e2πi(m−n)x dx = δmn. Rearranging yields (32).

Remark 5.3 (when the assumptions hold). For the holomorphic modular-form objects used in
this manuscript, the Fourier coefficients have polynomial growth, hence the q-series converges
absolutely and uniformly on every half-strip {x ∈ [0, 1], y ≥ y0} for y0 > 0 (Proposition B.8).
This justifies termwise integration and differentiation on slices at fixed y > 0.

13



5.3 Scan-orbit sampling: a finite-N estimator and discrepancy control

We now replace the slice integral by scan-orbit sampling using xt = x0 + tα (mod 1) from
Axiom O5.
Definition 5.4 (scan-sampled coefficient estimator). For n ≥ 0, y > 0, and N ∈ N, define

ân,N (y) := e2πny · 1
N

N−1∑
t=0

Fy(xt) e−2πinxt . (34)

To control the approximation error, we use star discrepancy. Given a point set PN =
{x0, . . . , xN−1} ⊂ [0, 1), define

D∗
N (PN ) = sup

0≤u≤1

∣∣∣∣∣ 1
N

N−1∑
t=0

1[0,u)(xt) − u

∣∣∣∣∣ . (35)

The Koksma inequality bounds integration error by star discrepancy for bounded-variation func-
tions [19,27].
Theorem 5.5 (finite-N recovery bound). Assume gn,y(x) := Fy(x)e−2πinx has bounded variation
on [0, 1]. Then ∣∣ân,N (y) − an

∣∣ ≤ e2πny Var(gn,y)D∗
N (PN ). (36)

Proof. By Theorem 5.2, an = e2πny
∫ 1

0 gn,y(x) dx. By Koksma’s inequality,∣∣∣∣∣ 1
N

N−1∑
t=0

gn,y(xt) −
∫ 1

0
gn,y(x) dx

∣∣∣∣∣ ≤ Var(gn,y)D∗
N (PN ). (37)

Multiplying by e2πny yields (36).

Figure 4: Structure of slice–sampling coefficient recovery: Fourier reconstruction on a fixed
height slice, scan-orbit sampling, and an explicit finite-N error bound controlled by variation
and star discrepancy (with height dependence carried by e2πny).

Remark 5.6 (complex-valued functions). The 1D Koksma inequality extends to complex-valued
functions with the same constant once Var is taken as Var(ℜf) + Var(ℑf) (Definition B.3). In
the modular-form settings considered here, gn,y is absolutely continuous in x at fixed y > 0 under
standard coefficient-growth assumptions (Appendix B.9), so bounded variation is satisfied.
Remark 5.7 (explicit variation bounds and end-to-end certification). For concrete modular
objects, Var(gn,y) can be bounded with explicit y-dependence; see Appendix B.11–B.12 for closed-
form bounds for E4 and E6, and Appendix B.8 for a general derivative-based estimate. Theo-
rem 5.5 controls sampling error; a fully certified numerical pipeline additionally requires certified
evaluation/truncation and floating-point stability control as a function of (n, y,N) (Appendix D).
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5.4 A period-interface plug: scan averages as integrals, integrals as coefficient
data

The slice–sampling estimator makes a structural point explicit: the cusp interface reduces dis-
crete coefficient recovery to the evaluation of an integral on a torus slice, and scan-orbit sampling
reduces that integral to a Birkhoff average. This is precisely the bridge isolated and functorial-
ized (in an algebraic subcategory) in the companion period-realization manuscript [28].

A commutative diagram at fixed (n, y). Fix n ≥ 0 and y > 0, and define gn,y(x) =
Fy(x)e−2πinx. Then the coefficient identity (32) and the estimator (34) can be summarized as
the following commutative limit diagram:

1
N

∑N−1
t=0 gn,y(xt) N→∞−−−−→

∫ 1
0 gn,y(x) dxy× e2πny
y× e2πny

ân,N (y) N→∞−−−−→ an

The quantitative content is that finite-N deviation is controlled by a discrepancy/variation
bound (Theorem 5.5 and Corollary 5.8).

Relation to periods. The integral on the top-right is an instance of a “readout as an integral”
interface. In MAI [28], this interface is made closed and auditable on a controlled protocol
subcategory with algebraic (rational) kernels, yielding Kontsevich–Zagier periods as the resulting
invariants [29]. In the modular setting, an independent and standard period interface is provided
by modular symbols and critical L-values, which are period data up to algebraic factors [30,
31]. The present paper uses the integral only as a coefficient-recovery mechanism; the motivic
organization of these period interfaces is recorded as a programmatic target in [28].

5.5 Ostrowski digits and an auditable bound on discrepancy

For irrational rotations, discrepancy admits a digit-auditable upper bound in terms of the Os-
trowski expansion (28). In its simplest form, this bound is obtained by combining the Denjoy–
Koksma inequality at convergent denominators with an Ostrowski block decomposition; see
Appendix B.5.

Corollary 5.8 (Ostrowski digit bound). Let N = ∑m
j=0 bjqj be the Ostrowski expansion associ-

ated with α = [0; a1, a2, . . . ]. Then

D∗
N (PN ) ≤ 2

N

m∑
j=0

bj . (38)

Consequently, ∣∣ân,N (y) − an

∣∣ ≤ e2πny Var(gn,y) · 2
N

m∑
j=0

bj . (39)

Remark 5.9 (golden branch / Zeckendorf weight). On the golden branch α = φ−1, the Os-
trowski expansion degenerates to the Zeckendorf decomposition and

∑
j bj becomes the Zeckendorf

(Fibonacci) Hamming weight wZ(N), yielding

D∗
N (PN ) ≤ 2wZ(N)

N
. (40)
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5.6 Scale trade-offs: smoothing versus amplification

The factor e2πny in (32) and (36) makes a basic numerical truth explicit: increasing y suppresses
high-frequency contributions in the slice Fy(x) by e−2πny, but recovering the nth coefficient
requires multiplication by e2πny, which amplifies finite-N sampling error and finite-precision
noise. Thus “climbing” is not monotone in “easiness”; rather, the modular scale direction
organizes which discrete information is stably accessible at which heights.

This trade-off is already visible in the structure of the reconstruction formula and the finite-N
bound.

5.7 Abel radial parameters and the |q| modulus

The cusp modulus satisfies |q| = e−2πy ∈ (0, 1). This is formally analogous to Abel damping
parameters used in orbit regularization (Assumption R1): a radial parameter controls how much
of a tail is included before taking a limit. In this sense, the q-modulus provides a canonical
“radial” coordinate for the cusp interface, compatible with the notion that renormalization
consists of separating universal divergences from finite parts when approaching a boundary.

Remark 5.10 (terminology: relation to holographic renormalization). In the AdS/CFT litera-
ture, “holographic renormalization” refers to renormalization via a radial bulk coordinate inter-
preted as an energy scale, with counterterms and flow equations defined at finite cutoff before
taking a boundary limit; see, e.g., [32]. The present paper does not use AdS bulk field equations
as an input. We use the term holographic renormalization-flow in a protocol sense: the cusp
height y (equivalently |q| = e−2πy) is an intrinsic radial parameter organizing which discrete
coefficient data are stably accessible at finite resources, and the “renormalization” step is the
auditable passage from finite-resolution readout to discrete arithmetic spectra via slice projection
and certified error bounds.

6 Hecke dynamics: the prime skeleton of the discrete layer

6.1 Hecke operators and their algebraic closure

On spaces of modular forms of level 1 and weight k, Hecke operators Tn form a commutative
algebra encoding arithmetic symmetry; standard references include [22,25]. The defining struc-
ture is that Hecke operators are indexed by all n ≥ 1, but the algebra is generated by the
operators at primes.

The fundamental multiplication law is

TmTn =
∑

d|(m,n)
dk−1 Tmn/d2 . (41)

In particular, if (m,n) = 1 then Tmn = TmTn, and for prime powers one obtains the recursion

Tpr+1 = TpTpr − pk−1Tpr−1 , r ≥ 1. (42)

6.2 Geometric meaning: Hecke correspondences rescale height

Beyond the abstract algebra, Hecke operators have a concrete geometric action on functions on
H via finite sums of explicit fractional-linear maps (double-coset correspondences). For level 1
holomorphic modular forms of weight k, a standard explicit formula is (see, e.g., [22, 25])

(Tnf)(τ) = nk−1 ∑
ad=n

0≤b<d

d−k f

(
aτ + b

d

)
=

∑
ad=n

0≤b<d

ak−1

d
f

(
aτ + b

d

)
, (43)
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In particular, for a prime p,

(Tpf)(τ) = pk−1f(pτ) + 1
p

p−1∑
b=0

f

(
τ + b

p

)
. (44)

These maps rescale the slice height y = ℑτ by rational factors:

ℑ(pτ) = p y, ℑ
(
τ + b

p

)
= y

p
. (45)

Thus primes act as a discrete cross-scale skeleton: one term pushes deeper into the cusp (y 7→ py)
while the other pulls back toward the boundary (y 7→ y/p).

Figure 5: Hecke correspondence for a prime p (schematic): the explicit formula is a finite sum
over fractional-linear maps, with branches that rescale the slice height by y 7→ py and y 7→ y/p.
In the full sum, the action closes on integer-indexed q-expansion coefficients.

Remark 6.1 (action on the cusp coordinate). Under τ 7→ pτ one has q 7→ qp. Under τ 7→
(τ + b)/p, one has q 7→ e2πib/p q1/p. In the full Hecke sum (44) the fractional powers cancel, and
Tp preserves the usual q-expansion space, which is another way to see why the prime skeleton
closes on integer-indexed coefficients.

6.3 From double cosets to q-coefficients (explicit closure)

The statement that “fractional powers cancel” can be made completely explicit at the coefficient
level.

Proposition 6.2 (Hecke action on Fourier coefficients). Let f be a holomorphic modular form
of weight k with q-expansion

f(τ) =
∑
m≥0

amq
m, q = e2πiτ . (46)

Then Tnf has the q-expansion

(Tnf)(τ) =
∑
ℓ≥0

 ∑
d|(n,ℓ)

dk−1 anℓ/d2

 qℓ. (47)

In particular, for a prime p,

(Tpf)(τ) =
∑
ℓ≥0

(
apℓ + pk−1aℓ/p

)
qℓ, (48)

where aℓ/p = 0 if p ∤ ℓ.
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Proof. Insert the q-expansion of f into the explicit formula (43) and use the root-of-unity sum

d−1∑
b=0

e2πimb/d =
{
d, d | m,
0, d ∤ m.

(49)

Writing m = dm′ and collecting coefficients of qℓ yields the stated divisor sum; see [22, 25] for
standard derivations.

6.4 Protocol-level meaning of Tp: a testable prime-skeleton check

The formal action of Tp on modular observables is completely explicit (Equation (44)) and
induces a closed coefficient-level map (Proposition 6.2). For the present paper’s protocol chain,
it is useful to separate two notions of “Hecke acting on the protocol”.

(i) Coefficient-layer closure (used here). Once a coefficient sequence (an) is recovered
(with a certified error budget) from slice sampling, the prime skeleton supplies a locally checkable
constraint family. For a prime p, define the induced operator on coefficient sequences by(

Tpa
)

ℓ
:= apℓ + pk−1aℓ/p, aℓ/p := 0 if p ∤ ℓ. (50)

Then Tpf has coefficients Tpa. If f is a normalized Hecke eigenform, the eigen-relation Tpf = apf
becomes the coefficient identity

Tpa = ap a, (51)

which is an explicit prime-indexed consistency test on the recovered discrete spectrum.

Remark 6.3 (normalization convention). Throughout, “normalized Hecke eigenform” means
the standard normalization a1 = 1 in the q-expansion. For an eigenform scaled by a nonzero
constant, one can always renormalize by dividing the coefficient sequence by a1 before applying
the prime-skeleton identities.

(ii) Implementable channel on instruments (additional structure). Interpreting Tp

as a physical symmetry acting within a fixed effective observer sector Heff requires an explicit
interface that maps a modular observable f to an operator-valued readout observable and that
can realize the branch mixing τ 7→ pτ and τ 7→ (τ + b)/p operationally. This is naturally
cross-scale (it mixes heights y 7→ py and y 7→ y/p), and therefore goes beyond the coefficient-
level closure used in this paper. A fully worked finite-resolution model and a discussion of this
distinction are recorded in Appendix C.3.

6.5 Quantitative Hecke consistency under certified coefficient errors

The prime-skeleton constraints are most useful when they can be evaluated with a certified
tolerance implied by the coefficient-recovery error budgets. We record a simple deterministic
residual bound showing how coefficient-level uncertainty propagates into Hecke-eigen consistency
checks.

Definition 6.4 (Hecke residual at a prime). Fix a weight k and a prime p. For a candidate
coefficient sequence b = (bn)n≥1, define the residual

Rp,ℓ(b) :=
(
bpℓ + pk−1bℓ/p

)
− bpbℓ, bℓ/p := 0 if p ∤ ℓ. (52)

Remark 6.5. The residual (52) tests the normalized Hecke-eigen identity. If one starts from
an unnormalized coefficient sequence a with a1 ̸= 0, apply it to bn := an/a1.
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Proposition 6.6 (residual bound from coefficient error bars). Assume f is a normalized Hecke
eigenform so that its true coefficients satisfy

apℓ + pk−1aℓ/p = apaℓ (ℓ ≥ 1),

where aℓ/p := 0 if p ∤ ℓ, and let â be an approximate coefficient sequence. Suppose for a given
pair (p, ℓ) we have certified bounds

|âm − am| ≤ δm for m ∈ {pℓ, p, ℓ} and also for m = ℓ/p when p | ℓ,

with the convention δℓ/p := 0 if p ∤ ℓ. Then the Hecke residual satisfies

|Rp,ℓ(â)| ≤ δpℓ + pk−1δℓ/p + |ap|δℓ + |aℓ|δp + δpδℓ. (53)

Proof. Insert the true identity apℓ + pk−1aℓ/p = apaℓ into Definition 6.4:

Rp,ℓ(â) = (âpℓ − apℓ) + pk−1(âℓ/p − aℓ/p) − (âpâℓ − apaℓ).

For the product term,
âpâℓ − apaℓ = (âp − ap)âℓ + ap(âℓ − aℓ),

so |âpâℓ − apaℓ| ≤ δp(|aℓ| + δℓ) + |ap|δℓ. Combining these inequalities yields (53).

Remark 6.7 (turning residual bounds into falsifiable fits). In arithmetic settings, |ap| admits
explicit majorants (e.g. Deligne/Ramanujan–Petersson for cuspidal eigenforms; see, e.g., [22,
26,33]), so (53) becomes a fully explicit, deterministic tolerance for a Hecke-eigen “fit” test. In
the special case where an ∈ Z and coefficients are recovered exactly by rounding (Corollary 9.5),
the residual vanishes identically: Rp,ℓ(â) = 0 for all tested primes and indices.

6.6 Eigenforms: stable directions and coefficient rigidity

If f is a normalized Hecke eigenform with q-expansion

f(τ) =
∑
n≥1

anq
n, (54)

then
Tnf = anf, (55)

so the q-coefficients coincide with Hecke eigenvalues (up to normalization conventions). The
Hecke relations immediately imply two rigid constraints on the coefficient spectrum:

1. Coprime multiplicativity. If (m,n) = 1, then

amn = aman. (56)

2. Prime-power recursion. For any prime p and r ≥ 1,

apr+1 = apapr − pk−1apr−1 . (57)

Thus the discrete spectrum is not an arbitrary integer sequence: it is generated and constrained
by the prime skeleton.

6.7 Example: Ramanujan’s discriminant and τ(n)
The classical example is the weight-12 cusp form

∆(τ) = q
∏
n≥1

(1 − qn)24 =
∑
n≥1

τ(n)qn, (58)

whose coefficients τ(n) satisfy the Hecke constraints above (with k = 12). These relations
provide a canonical instance of the prime-generated skeleton at the coefficient level.
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6.8 Euler products and local-to-global closure

For normalized eigenforms, the Dirichlet series

L(s, f) =
∑
n≥1

an

ns
(59)

admits an Euler product factorization

L(s, f) =
∏
p

(
1 − app

−s + pk−1p−2s
)−1

. (60)

This expresses local-to-global closure explicitly: prime-indexed data determine the full spectrum.

7 Langlands semantics: from Hecke spectra to Galois “source
code”

Up to this point, the chain
scan algebra Aα

=⇒ modular renormalization flow
=⇒ q-expansion coefficients
=⇒ Hecke prime skeleton

(61)

is closed within Layer 0/1 mathematics. This section provides an organizational semantics for
the same integer spectra and is not used as a premise in any Layer 0/1 derivation. The Langlands
program reinterprets Hecke eigenvalues as automorphic parameters and, in suitable settings, as
traces of Frobenius under Galois representations.

Figure 6: A schematic Langlands pipeline: the same prime-indexed Hecke spectrum can be
packaged as automorphic local parameters and, when available, as traces of Frobenius under an
attached Galois representation.

7.1 From modular forms to automorphic representations

For GL2/Q, a normalized Hecke eigen cusp form f corresponds to an automorphic representation
πf of GL2(AQ), with local parameters (Satake parameters) determined by the Hecke eigenvalues
ap at almost all primes. The associated L-function

L(s, f) =
∑
n≥1

an

ns
=
∏
p

(
1 − app

−s + pk−1p−2s
)−1

(62)

is therefore an automorphic object encoding the full Hecke spectrum; see, e.g., [34] for standard
background on automorphic representations and Hecke parameters.
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7.2 Galois representations: making primes into operators

For suitable eigenforms (e.g. newforms), one can attach an ℓ-adic Galois representation

ρf : Gal(Q/Q) → GL2(Qℓ), (63)

such that for almost all primes p,

tr ρf (Frobp) = ap, det ρf (Frobp) = pk−1. (64)

In this sense, the visible Hecke spectrum is a projection of a deeper symmetry action carried by
Gal(Q/Q) (see, e.g., [26, 35,36] for standard accounts).

7.3 A programmatic extension: a holographic Langlands functor

The “stairway” viewpoint suggests a natural organizational target: promote the closed GL2
chain to a functorial construction across a broader class of symmetry groups. We record this as
a programmatic definition goal.

Definition 7.1 (Holographic Langlands functor (working definition)). Let Scan be a category
of scan–readout protocols. An object is a triple

(Aα, ωeff , I(ε) ), (65)

where Aα is the rotation algebra, ωeff is an effective state, and I(ε) is a finite-resolution in-
strument (a family of effects and post-measurement updates) at resolution ε. Morphisms are
equivalences preserving the Weyl structure and readout statistics (e.g. implemented by Morita
equivalence together with state pullback, under appropriate interface conditions).

Let AutRep(G) denote an appropriate category of automorphic representations for a reductive
group G. We seek a functor

HL : Scan → AutRep(G) (66)
such that:

• a renormalization flow (Gauss/geodesic flow) on Scan is sent to a natural Hecke/parameter
flow on AutRep(G);

• cusp discretization and its coefficient spectrum correspond to Hecke eigenvalues in the
image;

• prime-generated closure on the coefficient side corresponds to Euler-product factorization
on the automorphic side.

Remark 7.2. Definition 7.1 is not used as a premise in any derivation in this paper. It is a
clean mathematical task statement: to turn the closed GL2 toy chain into a functorial framework
that can, in principle, be lifted to general G.

8 S-inversion as scale exchange and algebraic equivalence

8.1 Modular inversion and cusp endpoint identification

The modular group is generated by

T : τ 7→ τ + 1, S : τ 7→ −1
τ
. (67)

On the modular curve X(1), the cusp orbit is unique, so 0 ∼ ∞ in the quotient. The inver-
sion S exchanges these endpoints and therefore provides a strict mathematical template for
“deep/shallow” identification.
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Explicitly, for τ = x+ iy,

S(τ) = −1
τ

= − x− iy
x2 + y2 , ℑS(τ) = y

x2 + y2 . (68)

Thus, when x is not large, y is exchanged with 1/y at the level of scale magnitude: large height
and small height are directly related by S.

Figure 7: Schematic view of scale exchange: modular S-inversion relates deep and shallow
cusp regions; on noncommutative tori, the corresponding SL2(Z) action implements Morita
equivalence of slope parameters; Fourier exchange swaps scan and readout roles in the covariant
Weyl pair.

8.2 Morita equivalence of noncommutative tori and the SL2(Z) action

Noncommutative tori admit a canonical SL2(Z) action on the slope parameter:

α′ = aα+ b

cα+ d
, γ =

(
a b
c d

)
∈ SL2(Z). (69)

A foundational result is that Aα and Aα′ are Morita equivalent (and therefore represent the
same “noncommutative geometry” up to equivalence of module categories) [14,15,37].

Theorem 8.1 (Morita equivalence classification (standard)). For irrational parameters α, β ∈
R \Q, the noncommutative tori Aα and Aβ are (strongly) Morita equivalent if and only if there

exists γ =
(
a b
c d

)
∈ SL2(Z) such that

β = aα+ b

cα+ d
. (70)

Remark 8.2. See [15, 37] for proofs and further structure (projective modules and K-theory
invariants).

In particular, the modular inversion

S =
(

0 −1
1 0

)
(71)

acts by α 7→ −1/α, which is structurally aligned with the Gauss-map inversion step underlying
continued fractions.
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8.3 Fourier exchange: swapping scan and readout roles

In the covariant representation (10), the Fourier transform exchanges translation and multipli-
cation. Abstractly, this realizes a “scan–readout swap”: in one representation, U acts as a tick
shift and V acts as a phase; in the Fourier-dual representation, these roles are interchanged.

Proposition 8.3 (Fourier exchange for the covariant Weyl pair). Let U, V act on H = L2(R/Z)
by (Uψ)(x) = ψ(x+ α) and (V ψ)(x) = e2πixψ(x) as in (10). Let F : H → ℓ2(Z) be the Fourier
transform

(Fψ)(k) =
∫ 1

0
ψ(x) e−2πikx dx. (72)

Then on ℓ2(Z) one has

FUF−1 : ψ̂(k) 7→ e2πikαψ̂(k), FV F−1 : ψ̂(k) 7→ ψ̂(k − 1). (73)

In particular, translation (scan shift) becomes phase multiplication in Fourier space, while phase
multiplication becomes an index shift, realizing a concrete scan–readout exchange.

Proof. For the first identity, compute

(FUψ)(k) =
∫ 1

0
ψ(x+ α)e−2πikx dx = e2πikα

∫ 1

0
ψ(u)e−2πiku du = e2πikα(Fψ)(k), (74)

using the substitution u = x+α and periodicity on R/Z. The second identity follows similarly:

(FV ψ)(k) =
∫ 1

0
e2πixψ(x)e−2πikx dx =

∫ 1

0
ψ(x)e−2πi(k−1)x dx = (Fψ)(k − 1). (75)

Remark 8.4 (interpretation-layer language). It is tempting to interpret S and Morita/Fourier
equivalence as a “scale-exchange wormhole” that short-circuits intermediate scales. Such lan-
guage is Layer 2 semantics. The Layer 0/1 content used here is strictly the symmetry/equivalence
structure: cusp endpoint identification on X(1) and Morita/Fourier exchange on Aα.

9 Quantitative closure: explicit bounds at finite resolution
As a closed argument, the stairway chain relies on theorem-level quantitative statements that
remain valid at finite resolution and finite tick length. This section collects the bounds used in
later arguments.

9.1 Finite-N readout error and discrepancy

On an irrational rotation orbit, Weyl equidistribution implies induced Lebesgue measure (The-
orem 3.3). For an interval-window readout, finite-N deviation is controlled by star discrepancy
via the Koksma inequality (Appendix B.3). Ostrowski digit bounds then control discrepancy in
terms of a locally checkable digit sum (Appendix B.5).

9.2 Slice–coefficient reconstruction and a finite-N coefficient bound

At the cusp interface, Fourier projection gives a height-slice coefficient reconstruction iden-
tity (Theorem 5.2). Under scan-orbit sampling, the finite-N estimator admits an explicit
discrepancy-controlled bound (Theorem 5.5). The dependence on height y is governed by the
factor e2πny, making the smoothing/amplification trade-off explicit.
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9.3 Finite-alphabet readout: sampling + quantization and exact integer re-
covery

The bounds above control only the sampling deviation of an orbit average from a slice integral.
To close the protocol at finite resolution, one must also account for the fact that a finite-
alphabet instrument does not return the exact phase xt ∈ R/Z, but only a representative x̃t

with a controlled quantization error.

Definition 9.1 (quantized scan-sampled coefficient estimator). Fix n ≥ 0 and y > 0, and let
gn,y(x) = f(x + iy) e−2πinx as in Section 5. Let xt = x0 + tα (mod 1) be the underlying scan
orbit and suppose the readout returns x̃t ∈ [0, 1) satisfying

|xt − x̃t| ≤ ε

2 (t = 0, . . . , N − 1). (76)

Define the quantized estimator

â
(ε)
n,N (y) := e2πny · 1

N

N−1∑
t=0

gn,y(x̃t). (77)

Theorem 9.2 (finite-alphabet recovery bound (sampling + quantization)). Assume gn,y is
absolutely continuous on [0, 1] and has essentially bounded derivative ∥g′

n,y∥∞ < ∞. Let PN =
{x0, . . . , xN−1} be the underlying (unquantized) orbit point set. Then

∣∣â(ε)
n,N (y) − an

∣∣ ≤ e2πny
(

Var(gn,y)D∗
N (PN ) + ε

2 ∥g′
n,y∥∞

)
. (78)

Proof. Write

1
N

N−1∑
t=0

gn,y(x̃t) −
∫ 1

0
gn,y =

(
1
N

N−1∑
t=0

gn,y(xt) −
∫ 1

0
gn,y

)
+ 1

N

N−1∑
t=0

(
gn,y(x̃t) − gn,y(xt)

)
.

The first term is bounded by Var(gn,y)D∗
N (PN ) by Koksma’s inequality (Theorem B.4). For

the second term, the assumption ∥g′
n,y∥∞ < ∞ implies the uniform Lipschitz bound |gn,y(x̃) −

gn,y(x)| ≤ ∥g′
n,y∥∞|x̃− x|, and (76) gives |x̃t − xt| ≤ ε/2. Multiplying by e2πny yields (78).

Remark 9.3 (regularity of the sliced integrand). For the modular-form observables used in
this manuscript, Proposition B.8 implies that Fy(x) = f(x + iy) is C1 in x for every fixed
y > 0 (by termwise differentiation under uniform absolute convergence on half-strips). Hence
gn,y(x) = Fy(x)e−2πinx has bounded derivative on [0, 1], so the assumption ∥g′

n,y∥∞ < ∞ in
Theorem 9.2 is satisfied in the intended arithmetic examples.

Remark 9.4 (adding certified evaluation/truncation error). If Fy(x̃t) = f(x̃t + iy) is computed
numerically (e.g. by truncating a q-expansion), then an additional explicit evaluation error term
can be added to (78). For Eisenstein series, Appendix B.13 provides closed-form tail bounds at
fixed |q| = e−2πy.

Corollary 9.5 (exact integer recovery by rounding). Let f(τ) = ∑
n≥0 anq

n have integer co-
efficients an ∈ Z. If the right-hand side of (78) is < 1

2 , then rounding â(ε)
n,N (y) to the nearest

integer recovers an exactly.

Proof. If |â− an| < 1/2 and an ∈ Z, the nearest-integer map is unique and equals an.
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9.4 Parameter choices: convergent lengths and constant-type slopes

The bounds above become fully explicit once D∗
N (PN ) is controlled in terms of the continued-

fraction digits of α. Two robust, auditable choices are:

• Convergent-length sampling. If p/q satisfies 0 < |α − p/q| < 1/q2 and N = q,
then Proposition B.7 gives an explicit closed form for D∗

q(Pq(α)), implying in particular
D∗

N (PN ) ≤ 2/N .

• Constant-type slopes. If α = [0; a1, a2, . . .] has bounded partial quotients aj ≤ A, then
Appendix B.5 gives

D∗
N (PN ) ≤

2A(2 + logφN)
N

,

providing an explicit O((logN)/N) rate with auditable constants.

9.5 Truncation control for modular objects

When modular forms are evaluated via truncated q-series, explicit tail bounds provide certi-
fied truncation budgets (Appendix B.13). These bounds can be propagated through algebraic
identities, such as j = 1728E3

4/(E3
4 − E2

6), to obtain certified error budgets at fixed τ .

10 Conclusion and open problems
We proposed a holographic renormalization-flow view of the continuous–discrete bridge: not
only a static list of objects (scan algebra, modular curve, cusp coefficients, Hecke operators),
but an explicit climb that is computable and auditable. The closed Layer 0/1 chain can be
summarized as:

Weyl pair ⇒ Aα

⇒ (modular) geodesic/Gauss flow
⇒ continued-fraction digits and Ostrowski syntax
⇒ q-expansion coefficients at the cusp
⇒ Hecke prime skeleton.

(79)

Within this chain, the slice–sampling identity and the coefficient estimators make “how integers
are extracted from analytic data” into a quantitative pipeline with explicit error controls. At
finite alphabet resolution, Theorem 9.2 provides a deterministic sampling+quantization error
budget, and Corollary 9.5 gives an exact integer-recovery-by-rounding criterion when an ∈ Z.
Once coefficients are recovered (exactly, or with certified error bars), the prime skeleton supplies
a falsifiable consistency layer: Hecke-eigen consistency can be tested by the residual bound in
Proposition 6.6. Appendix C.2.4 records a fully explicit numerical instance of certified exact
recovery for E4. More generally, the level-1 valence formula implies finite determination of
a weight-k modular form by finitely many initial q-coefficients (Appendix B.2), turning finite
coefficient recovery into a finite-dimensional identification/fit problem.

We also recorded a strict symmetry template for scale exchange: the modular S-inversion
identifies cusp endpoints on X(1) and exchanges deep/shallow regimes; on the noncommutative
side, the corresponding SL2(Z) action appears via Morita equivalence and Fourier exchange.
Interpretation-layer narratives (“wormholes” or “UV/IR shortcuts”) are not used as premises.

Open problems. The present paper deliberately isolates tasks that are mathematically well-
posed and audit-friendly.

• Functorial upgrade. Make Definition 7.1 precise on a controlled subcategory of protocols
and prove functoriality (at least for a GL2 toy class).
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• Protocol equivalence criteria. Give sharp, checkable conditions under which two scan–
readout protocols yield the same observable statistics (e.g. via Morita equivalence and
state/instrument compatibility).

• Certified error budgets. Extend the discrepancy-based bounds to certified numerical
error budgets for coefficient recovery at finite height and finite resolution (truncation,
floating-point, instrument noise), and identify scale windows optimizing condition numbers
for specific coefficients.

• Data-to-spectrum interfaces. Formalize how the discrete coefficient spectrum con-
strained by Hecke dynamics is linked to any externally specified observable spectrum,
while maintaining the layer discipline.

• Factoring through period data. A controlled “motive-at-infinity” interface [28] sug-
gests splitting the functorial upgrade into an auditable first arrow from protocols to pe-
riod data (scan averages as integrals), followed by a programmatic period-to-motive-to-
ětale/automorphic factorization:

Scanalg → PerDatum → (Motives) → (GalRep/AutRep).

The first arrow can be closed on a controlled protocol class; the remaining arrows are the
locus of genuinely motivic/Langlands input.

A Audit table: stratification and dependency chain

A.1 Stratification discipline

• Layer 0: states and algebras only (Axioms O1–O4).

• Layer 1: scan–projection protocols, finite-resolution instruments, induced statistics, and
the modular renormalization flow object (Axioms O5–O6 and the mother-space choice in
Section 2.3).

• Layer 2: semantic interpretation (UV/IR, wormholes, physical spectra) as optional com-
mentary. Layer 2 is never used as a premise.

A.2 Dependency chain (closed part)

The closed, auditable dependency chain of the paper is:

1. O5/O6 ⇒ irrational rotation scan xt = x0 + tα (mod 1) and induced measure (Theo-
rem 3.3).

2. Modular surface geodesic flow ⇒ Gauss-map suspension ⇒ continued-fraction digit law
(Theorem 4.1 and (23)).

3. Continued fractions ⇒ Ostrowski coding of tick length N as a locally auditable digit string
(Section 4.4).

4. Cusp interface q = e2πiτ ⇒ discrete coefficient spectrum via q-expansion (Section 5.1).

5. Slice–coefficient identity and scan sampling ⇒ finite-N coefficient estimator with discrep-
ancy/Ostrowski error control (Theorem 5.5 and Corollary 5.8).

6. Hecke relations ⇒ prime-generated skeleton constraining coefficient spectra (Section 6).
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A.3 Status classification

• Axioms/definitions: O1–O6, R1; protocol/slice definitions.

• Standard theorems: Weyl equidistribution, Series coding, Gauss invariant measure,
Koksma and Denjoy–Koksma inequalities, Hecke relations.

• Programmatic targets: holographic Langlands functor (Definition 7.1) and protocol
equivalence criteria.

B Mathematical notes and auxiliary lemmas

B.1 Hecke prime-power recursion and prime generation

Starting from the Hecke multiplication relation (41), take m = pr and n = p for a prime p. The
divisors of (pr, p) are d ∈ {1, p}, so

TprTp =
∑

d|(pr,p)
dk−1 Tpr+1/d2 = Tpr+1 + pk−1Tpr−1 . (80)

Rearranging gives the prime-power recursion (42):

Tpr+1 = TpTpr − pk−1Tpr−1 . (81)

This shows that all Tpr are generated by Tp. Together with (41) and coprime multiplicativity,
it implies that the full Hecke algebra is generated by {Tp}p prime.

B.2 Valence formula and finite determination by cusp coefficients

The modular curve X(1) = PSL2(Z)\(H∪{cusps}) has a single cusp at ∞, so the q-expansion at
i∞ encodes the order of vanishing at the cusp. A standard rigidity input is the valence formula
for level 1 modular forms; see, e.g., [22, 25,26].

Theorem B.1 (valence formula on SL2(Z) (standard)). Let f be a nonzero holomorphic modular
form of weight k on SL2(Z), and let ρ = e2πi/3. Then

ord∞(f) + 1
2ordi(f) + 1

3ordρ(f) +
∑

z∈F◦
ordz(f) = k

12 , (82)

where F◦ is the interior of a fundamental domain for PSL2(Z) and ordz(f) ≥ 0 is the vanishing
order at z.

Corollary B.2 (finite determination from initial q-coefficients). Let f, g be holomorphic modular
forms of weight k on SL2(Z) with q-expansions

f(τ) =
∑
n≥0

anq
n, g(τ) =

∑
n≥0

bnq
n, q = e2πiτ .

If an = bn for all 0 ≤ n ≤ M with M > k
12 , then f = g. Equivalently, a weight-k form is

uniquely determined by its first ⌊k/12⌋ + 1 coefficients.

Proof. The difference h = f − g is a holomorphic modular form of weight k. If an = bn for
0 ≤ n ≤ M , then h(τ) = O(qM+1) at ∞, i.e. ord∞(h) ≥ M + 1. If h ̸= 0, Theorem B.1 implies
ord∞(h) ≤ k/12, a contradiction when M > k/12. Hence h = 0 and f = g.
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B.3 Star discrepancy and the Koksma inequality

For a point set PN = {x0, . . . , xN−1} ⊂ [0, 1), the one-dimensional star discrepancy is

D∗
N (PN ) = sup

0≤u≤1

∣∣∣∣∣ 1
N

N−1∑
t=0

1[0,u)(xt) − u

∣∣∣∣∣ . (83)

Definition B.3 (variation for complex-valued functions). For a complex-valued function f :
[0, 1] → C, define its (Jordan) variation by

Var(f) := Var(ℜf) + Var(ℑf), (84)

where Var(ℜf) and Var(ℑf) are the usual real-valued Jordan variations.

Theorem B.4 (Koksma inequality, 1D). If f : [0, 1] → C has bounded variation (Jordan
variation) Var(f) < ∞, then∣∣∣∣∣ 1

N

N−1∑
t=0

f(xt) −
∫ 1

0
f(x) dx

∣∣∣∣∣ ≤ Var(f)D∗
N (PN ). (85)

Remark B.5. See [19,27] for classical statements and proofs. With Definition B.3, the complex-
valued inequality follows immediately by applying the real-valued Koksma inequality to ℜf and
ℑf and using the triangle inequality:

|∆(f)| ≤ |∆(ℜf)| + |∆(ℑf)| ≤
(
Var(ℜf) + Var(ℑf)

)
D∗

N (PN ) = Var(f)D∗
N (PN ), (86)

where ∆(g) = 1
N

∑
g(xt) −

∫ 1
0 g.

B.4 Denjoy–Koksma at convergent lengths

Let α = [0; a1, a2, . . . ] be irrational with convergents pn/qn. For the irrational rotation Rα(x) =
x + α (mod 1), the Denjoy–Koksma inequality controls Birkhoff sums at convergent lengths
[16,17,27].

Theorem B.6 (Denjoy–Koksma inequality (rotation)). If f : [0, 1] → R has bounded variation
and

∫ 1
0 f(x) dx = 0, then for every n and all x,∣∣∣∣∣∣

qn−1∑
t=0

f(x+ tα)

∣∣∣∣∣∣ ≤ Var(f). (87)

B.5 Ostrowski block decomposition and the digit bound

Write N in its Ostrowski expansion N = ∑m
j=0 bjqj associated with α. Then the orbit segment

{x + tα}N−1
t=0 can be partitioned into blocks of consecutive lengths qj repeated bj times, up to

shifts of the starting point. Applying Theorem B.6 to each block yields a standard digit bound
for Birkhoff sums: ∣∣∣∣∣

N−1∑
t=0

f(x+ tα) −N

∫ 1

0
f

∣∣∣∣∣ ≤ Var(f)
m∑

j=0
bj . (88)

Applying this to interval indicator functions and combining with Theorem B.4 yields the
discrepancy bound used in Corollary 5.8. Concretely, for fu(x) = 1[0,u)(x)−u we have

∫ 1
0 fu = 0

and Var(fu) ≤ 2, hence ∣∣∣∣∣ 1
N

N−1∑
t=0

1[0,u)(x+ tα) − u

∣∣∣∣∣ ≤ 2
N

m∑
j=0

bj , (89)

and taking the supremum over u ∈ [0, 1] gives (38).
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A constant-type corollary (explicit (logN)/N rate). If α = [0; a1, a2, . . . ] has bounded
partial quotients an ≤ A, then Ostrowski digits satisfy bj ≤ aj+1 ≤ A, hence∑m

j=0 bj ≤ A(m+1).
Moreover, the convergent denominators satisfy qn+1 = an+1qn + qn−1 ≥ qn + qn−1, so qn ≥ Fn

for Fibonacci numbers Fn. If qm ≤ N < qm+1, then Fm ≤ N , hence m ≤ 2+logφN . Combining
these estimates with (38) yields

D∗
N (PN ) ≤

2A(2 + logφN)
N

, (90)

recovering the standard O((logN)/N) discrepancy rate for constant-type rotations (cf. [19]).

B.6 Exact star discrepancy at convergent lengths (closed form)

Proposition B.7 (Convergent-length star discrepancy for a Kronecker orbit). Let α ∈ (0, 1)\Q
and let p/q be a reduced rational satisfying

0 <
∣∣∣∣α− p

q

∣∣∣∣ < 1
q2 . (91)

Consider the Kronecker point set

Pq(α) :=
{
{tα} : t = 0, 1, . . . , q − 1

}
⊂ [0, 1). (92)

Then the one-dimensional star discrepancy satisfies

D∗
q(Pq(α)) =


1
q
,

p

q
< α,

1
q

+ (q − 1)
(
p

q
− α

)
,

p

q
> α.

(93)

Proof. Write δ := α − p
q and note that for 0 ≤ t ≤ q − 1 one has |tδ| < (q − 1)/q2 < 1/q. Let

rt ∈ {0, 1, . . . , q − 1} be the residue rt ≡ tp (mod q); since gcd(p, q) = 1, the map t 7→ rt is a
permutation.

Case 1: δ > 0 (i.e. p/q < α). For each t,

{tα} =
{
tp

q
+ tδ

}
= rt

q
+ tδ ∈

[
rt

q
,
rt + 1
q

)
, (94)

where the last inclusion uses 0 ≤ tδ < 1/q and rt = q − 1 is interpreted modulo 1. Hence each
interval [j/q, (j + 1)/q) contains exactly one point of Pq(α), which implies D∗

q(Pq(α)) ≤ 1/q.
Since 0 ∈ Pq(α), one also has D∗

q(Pq(α)) ≥ 1/q (take u ↓ 0), so equality holds.

Case 2: δ < 0 (i.e. p/q > α). Let δ′ := −δ = p
q − α > 0. For t ≥ 1, rt ̸= 0 so rt/q ≥ 1/q, and

{tα} =
{
tp

q
− tδ′

}
= rt

q
− tδ′ ∈

(
rt − 1
q

,
rt

q

)
, (95)

since 0 < tδ′ < 1/q. Thus every interval [j/q, (j+1)/q) with j = 0, . . . , q−2 contains exactly one
point coming from the unique t ∈ {1, . . . , q − 1} with rt = j + 1, while the point 0 ∈ Pq(α) lies
in [0, 1/q). The maximal discrepancy occurs at the right endpoints and equals 1

q + (q− 1)δ′.
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B.7 Golden branch: Fibonacci convergents and the 1 + 1/
√

5 constant

Let φ = (1 +
√

5)/2 and α = φ−1. The convergents of α are Fibonacci ratios pn

qn
= Fn−1

Fn
.

Proposition B.7 implies that for odd n (when pn/qn < α) one has D∗
Fn

= 1/Fn, while for even
n (when pn/qn > α) one has

D∗
Fn

= 1
Fn

+ (Fn − 1)
(
Fn−1
Fn

− α

)
. (96)

Using Binet’s formula and the asymptotic Fn ∼ φn/
√

5, one obtains

F 2
n

(
Fn−1
Fn

− α

)
→ 1√

5
(n → ∞, n even), (97)

and therefore
FnD

∗
Fn

→ 1 + 1√
5

(n → ∞, n even), (98)

which is the constant observed in discrepancy scaling on the golden branch.

B.8 A crude variation bound for the sliced integrand

In Theorem 5.5, the bounded-variation assumption is imposed on

gn,y(x) = Fy(x) e−2πinx = f(x+ iy) e−2πinx. (99)

In concrete modular-form settings, Fy is smooth in x for every fixed y > 0 and admits termwise
differentiation under absolute convergence of (30). A crude bound is obtained from total varia-
tion via an L1 derivative estimate when gn,y is absolutely continuous:

Var(gn,y) ≤
∫ 1

0
|g′

n,y(x)| dx ≤
∫ 1

0
|F ′

y(x)| dx+ 2πn
∫ 1

0
|Fy(x)| dx. (100)

For specific choices of f (e.g. E4, E6,∆, j), the L1 norms above can be bounded using coefficient
growth and geometric tail bounds in |q| = e−2πy.

B.9 Uniform convergence on slices and sufficient conditions for coefficient
recovery

The slice–projection identity of Theorem 5.2 is stated under an absolute-uniform convergence
assumption at fixed y > 0. For the modular objects used in this manuscript, that assumption
follows from standard coefficient-growth bounds.

Proposition B.8 (polynomial growth implies uniform slice convergence). Let (an)n≥0 satisfy a
polynomial growth bound |an| ≤ C(1 + n)A for some constants C,A > 0, and define

f(τ) =
∑
n≥0

ane2πinτ , τ = x+ iy. (101)

Then for every y0 > 0 the series for f converges absolutely and uniformly on {(x, y) : x ∈
[0, 1], y ≥ y0}. In particular, for each fixed y > 0, the slice Fy(x) = f(x+ iy) admits termwise
integration on [0, 1] and Theorem 5.2 applies.

Proof. For y ≥ y0 one has |e2πinτ | = e−2πny ≤ e−2πny0 . Thus

|ane2πinτ | ≤ C(1 + n)Ae−2πny0 . (102)

Since ∑n≥0(1 +n)Ae−2πny0 < ∞, the Weierstrass M -test gives absolute uniform convergence on
the stated domain. Termwise integration on [0, 1] follows from uniform absolute convergence at
fixed y > 0.
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Remark B.9 (bounded variation via Fourier coefficient sums). Under the same polynomial
bound, the derivative series with respect to x also converges absolutely and uniformly for y ≥ y0
because an extra factor n preserves summability against e−2πny0. Hence Fy is C1 in x, and
gn,y(x) = Fy(x)e−2πinx is absolutely continuous. Moreover, if gn,y(x) = ∑

m∈Z cme2πimx is its
Fourier series, then

Var(gn,y) =
∫ 1

0
|g′

n,y(x)| dx ≤ 2π
∑
m∈Z

|m| |cm|. (103)

For q-expansions with nonnegative indices, one has ck−n = ake−2πky, so Var(gn,y) can be bounded
explicitly in terms of coefficient-growth majorants, as in Appendix B.11.

Remark B.10 (modular-form coefficient growth (standard input)). For holomorphic modular
forms of level 1, Fourier coefficients have polynomial growth. For Eisenstein series, one has
an = O(nk−1) (e.g. [22,25]). For cusp forms, Deligne’s theorem (Ramanujan–Petersson) implies
an = Oε(n(k−1)/2+ε) (e.g. [26, 33]). Thus Proposition B.8 applies to the modular-form objects
used in the slice–sampling examples.

B.10 Deligne/Hecke bounds for Ramanujan’s τ(n) (explicit majorants)

Let ∆(τ) = ∑
n≥1 τ(n)qn denote the normalized weight-12 Hecke eigen cusp form on SL2(Z).

Proposition B.11 (Ramanujan–Petersson/Deligne bound (standard)). For every prime p one
has

|τ(p)| ≤ 2p11/2. (104)

Remark B.12. This is a special case of Deligne’s proof of the Weil conjectures. See [33,35] for
the Ramanujan–Petersson bounds for Hecke eigenvalues of modular forms.

Proposition B.13 (global coefficient bound via Hecke multiplicativity). For every n ≥ 1,

|τ(n)| ≤ d(n)n11/2, (105)

where d(n) is the divisor-counting function. In particular, using the trivial estimate d(n) ≤ 2
√
n

one obtains the explicit crude majorant

|τ(n)| ≤ 2n6, n ≥ 1. (106)

Proof. For prime powers one has the Hecke recursion

τ(pr+1) = τ(p)τ(pr) − p11τ(pr−1), r ≥ 1, (107)

so the local Euler factor is 1 − τ(p)p−s + p11p−2s and the standard bound |τ(pr)| ≤ (r+ 1)p11r/2

follows from Proposition B.11 (see, e.g., [22, 26]). Multiplicativity on coprime integers then
yields |τ(n)| ≤ d(n)n11/2 for general n. Finally, d(n) ≤ 2

√
n is immediate from pairing divisors

d ↔ n/d.

B.11 An explicit Var(gn,y) bound for E4

For the weight-4 Eisenstein series

E4(τ) = 1 + 240
∑
k≥1

σ3(k) qk, q = e2πiτ , (108)

define, as in Section 5,
gn,y(x) = E4(x+ iy) e−2πinx. (109)
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Fix y > 0 and write r = e−2πy = |q| ∈ (0, 1). Then gn,y has an absolutely convergent Fourier
expansion

gn,y(x) =
∑
m∈Z

cm e2πimx, ck−n =
{
r0, k = 0,
240σ3(k) rk, k ≥ 1,

(110)

and is absolutely continuous. Hence Var(gn,y) =
∫ 1

0 |g′
n,y(x)| dx. Moreover,

g′
n,y(x) = 2πi

∑
m∈Z

mcm e2πimx, |g′
n,y(x)| ≤ 2π

∑
m∈Z

|m| |cm|, (111)

so

Var(gn,y) ≤ 2π
∑
m∈Z

|m| |cm| = 2π

n+ 240
∑
k≥1

|k − n|σ3(k) rk

 . (112)

Using the classical bound σ3(k) ≤ ζ(3) k3 (e.g. [25]), we obtain the explicit estimate

Var(gn,y) ≤ 2π

n+ 240 ζ(3)
∑
k≥1

(k + n) k3 rk

 = 2π
(
n+ 240 ζ(3)

(
S4(r) + nS3(r)

))
, (113)

where

S3(r) =
∑
k≥1

k3rk = r(1 + 4r + r2)
(1 − r)4 , S4(r) =

∑
k≥1

k4rk = r(1 + 11r + 11r2 + r3)
(1 − r)5 . (114)

Combining (113) with Theorem 5.5 yields a fully explicit coefficient-recovery bound for E4.

B.12 An explicit Var(gn,y) bound for E6

For the weight-6 Eisenstein series

E6(τ) = 1 − 504
∑
k≥1

σ5(k) qk, q = e2πiτ , (115)

define
gn,y(x) = E6(x+ iy) e−2πinx. (116)

Fix y > 0 and write r = e−2πy = |q| ∈ (0, 1). As in the E4 case, gn,y is absolutely continuous
and

Var(gn,y) ≤ 2π

n+ 504
∑
k≥1

|k − n|σ5(k) rk

 . (117)

Using σ5(k) ≤ ζ(5) k5 (e.g. [25]) and |k − n| ≤ k + n, we obtain

Var(gn,y) ≤ 2π

n+ 504 ζ(5)
∑
k≥1

(k + n) k5 rk

 = 2π
(
n+ 504 ζ(5)

(
S6(r) + nS5(r)

))
, (118)

where

S5(r) =
∑
k≥1

k5rk = r(1 + 26r + 66r2 + 26r3 + r4)
(1 − r)6 , (119)

S6(r) =
∑
k≥1

k6rk = r(1 + 57r + 302r2 + 302r3 + 57r4 + r5)
(1 − r)7 . (120)

Combining (118) with Theorem 5.5 yields a fully explicit coefficient-recovery bound for E6.
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B.13 Tail bounds for Eisenstein q-series (explicit constants)

For level 1, the Eisenstein series admit the classical q-expansions (e.g. [22, 25])

E4(τ) = 1 + 240
∑
n≥1

σ3(n) qn, E6(τ) = 1 − 504
∑
n≥1

σ5(n) qn, q = e2πiτ . (121)

Fix |q| = r ∈ (0, 1) and define the truncations E(N)
4 = 1 + 240∑N

n=1 σ3(n)qn and E
(N)
6 =

1 − 504∑N
n=1 σ5(n)qn. Using the divisor-sum bound σk(n) ≤ ζ(k)nk (e.g. [25]), we obtain

explicit tail bounds.

Proposition B.14 (explicit tails for E4 and E6). Let r ∈ (0, 1) and N ≥ 1. Then

|E4(τ) − E
(N)
4 (τ)| ≤ 240 ζ(3)

∞∑
n=N+1

n3rn (122)

≤ 240 ζ(3) rN+1
(

(N + 1)3

1 − r
+ 3(N + 1)2r

(1 − r)2 (123)

+ 3(N + 1)r(1 + r)
(1 − r)3 + r(1 + 4r + r2)

(1 − r)4

)
,

and

|E6(τ) − E
(N)
6 (τ)| ≤ 504 ζ(5)

∞∑
n=N+1

n5rn ≤ 504 ζ(5) rN+1
(

(N + 1)5

1 − r

+ 5(N + 1)4r

(1 − r)2

+ 10(N + 1)3r(1 + r)
(1 − r)3

+ 10(N + 1)2r(1 + 4r + r2)
(1 − r)4

+ 5(N + 1)r(1 + 11r + 11r2 + r3)
(1 − r)5

+ r(1 + 26r + 66r2 + 26r3 + r4)
(1 − r)6

)
, (124)

Remark B.15. The bounds (122) and (124) are obtained by expanding (N + 1 +m)p and using
the standard generating functions for

∑
m≥0m

jrm. In particular,

∑
m≥0

m4rm = r(1 + 11r + 11r2 + r3)
(1 − r)5 , (125)

∑
m≥0

m5rm = r(1 + 26r + 66r2 + 26r3 + r4)
(1 − r)6 , (126)

which appear explicitly in the E6 tail bound.

B.14 Abel-first regularization and alternative summability prescriptions (stan-
dard facts)

Assumption R1 stipulates a canonical convention for extracting a finite part from regulated orbit
traces and related divergent sums: “Abel first, then limit”. This subsection records standard
summability facts that justify Abel as a conservative choice and clarify the relation to other
classical prescriptions.
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Abel summability for sequences. Given a sequence (st)t≥0, define its Abel mean by the
regulated averages

A(r) := (1 − r)
∞∑

t=0
st r

t, 0 < r < 1. (127)

If limr→1− A(r) exists, we say (st) is Abel summable and call the limit its Abel sum. This damp-
ing has a direct operational interpretation as an exponential “forgetting” or finite-coherence-time
filter.

Cesàro and Abel. Classical Tauberian theory relates Abel and Cesàro summability. In par-
ticular, Cesàro summability implies Abel summability with the same sum (and under additional
mild hypotheses one has converses); see [11] for standard statements and proofs. Thus adopting
Abel regularization is a canonical way to select a finite part that is consistent with (at least)
Cesàro when the latter applies.

Borel-type regularizations. Borel summability is another classical prescription that can
assign finite values to divergent series by analytic continuation of an exponential transform;
see [11]. The present manuscript does not require Borel summation as an input: the main
quantitative recovery statements are finite-N bounds and therefore do not depend on any infinite-
time regularization. When divergent orbit traces arise in extensions of the framework, Abel-
first provides a minimal and physically interpretable convention compatible with the intrinsic
damping already present in the cusp modulus |q| = e−2πy (Section 5.7) and with the general
layer discipline (Appendix D.8).

B.15 Gauss measure mean of the roof function

Let µ denote the Gauss invariant measure for the Gauss map,

dµ(ξ) = 1
log 2

dξ
1 + ξ

, ξ ∈ (0, 1). (128)

The roof function in Theorem 4.1 is r(ξ) = −2 log ξ.

Proposition B.16 (closed-form mean). One has∫ 1

0
(− log ξ) dµ(ξ) = π2

12 log 2 ,
∫ 1

0
r(ξ) dµ(ξ) = π2

6 log 2 . (129)

Proof. Expand (1 + ξ)−1 = ∑∞
n=0(−1)nξn for ξ ∈ (0, 1) and integrate termwise:∫ 1

0

− log ξ
1 + ξ

dξ =
∞∑

n=0
(−1)n

∫ 1

0
ξn(− log ξ) dξ =

∞∑
n=0

(−1)n 1
(n+ 1)2 (130)

=
∞∑

m=1

(−1)m−1

m2 = (1 − 21−2)ζ(2) = 1
2 · π

2

6 = π2

12 . (131)

Dividing by log 2 gives the first identity, and the second follows by multiplying by 2.

B.16 Derivation of the Gauss digit law

Write the continued fraction of ξ ∈ (0, 1) as ξ = [0; a1, a2, . . . ] so that a1 = ⌊1/ξ⌋.

Proposition B.17 (Gauss digit probabilities). For the Gauss invariant measure dµ(ξ) =
1

log 2
dξ

1+ξ one has, for every k ≥ 1,

µ(a1 = k) = log2

(
1 + 1

k(k + 2)

)
. (132)
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Proof. The event {a1 = k} is equivalent to 1
k+1 < ξ ≤ 1

k . Therefore

µ(a1 = k) = 1
log 2

∫ 1/k

1/(k+1)

dξ
1 + ξ

= 1
log 2 [log(1 + ξ)]1/k

1/(k+1) (133)

= 1
log 2 log

( 1 + 1/k
1 + 1/(k + 1)

)
= 1

log 2 log
(

(k + 1)2

k(k + 2)

)
= log2

(
1 + 1

k(k + 2)

)
. (134)

B.17 Gauss–Kuzmin convergence (standard exponential relaxation)

Theorem B.18 (Gauss–Kuzmin). Let G : (0, 1) → (0, 1) be the Gauss map and let µ be its
invariant probability measure. For a broad class of absolutely continuous initial distributions ν
on (0, 1) (e.g. densities of bounded variation), there exist constants C > 0 and 0 < λ < 1 such
that for all n ≥ 1,

sup
x∈(0,1]

∣∣ν(G−n((0, x]
))

− µ
(
(0, x]

)∣∣ ≤ C λn. (135)

Remark B.19. This is the classical Gauss–Kuzmin theorem (and its refinements via transfer-
operator spectral gaps). We treat it as a standard input from metrical continued-fraction theory;
see [23].

C Sharpened protocol statements: why X(1), worked recovery,
and falsifiable closure

C.1 Why the modular curve X(1) as mother space? Minimality under pro-
tocol requirements

Section 2.3 fixes a mother space and a canonical climb (geodesic/Gauss suspension) to make the
“scale axis” computable and audit-friendly. The choice X(1) = PSL2(Z)\(H ∪ {cusps}) is not
meant as a claim that other arithmetic surfaces are impossible; rather, it is the minimal choice
once one imposes a small set of protocol-driven requirements.

Protocol requirements. The closed chain in this paper relies on three structural inputs:

• A cusp with a canonical continuous–discrete coordinate. To extract an integer
spectrum by Fourier projection with an explicit damping modulus, we require a non-
compact end admitting a canonical local parameter q = e2πiτ (Section 5.1). Compact
arithmetic quotients (e.g. Shimura curves) may carry Hecke correspondences but have no
cusp, hence no q-expansion interface.

• A canonical cross-scale flow with digit syntax. We require an intrinsic flow whose
Poincaré return coding produces continued-fraction digits and an additive “scale time”
(Theorem 4.1 and Section 4.2), so that the same parameter α controlling scan readout
also controls a computable digit law under the climb.

• A prime-indexed commuting correspondence algebra. To close the discrete layer
by an auditable prime skeleton, we require a large commensurator giving rise to Hecke
operators/correspondences and their prime-generated algebraic closure (Section 6).
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A minimality statement within congruence covers. Among modular curves arising from
congruence subgroups of PSL2(Z), the above requirements single out level 1 as the unique one-
cusp option.

Proposition C.1 (one-cusp congruence minimality (standard)). Let Γ ≤ PSL2(Z) be a con-
gruence subgroup of finite index. If the modular curve X(Γ) has a single cusp class, then
Γ = PSL2(Z) and hence X(Γ) = X(1).

Remark C.2. For standard cusp-count formulas for congruence subgroups (e.g. Γ0(N), Γ1(N),
Γ(N)) and the fact that proper congruence subgroups have at least two cusps, see [22,25].

A no-go for non-arithmetic quotients (conceptual). Non-arithmetic finite-area hyper-
bolic quotients do not carry a nontrivial commuting Hecke algebra: the commensurator is dis-
crete and does not generate prime-indexed correspondences. In the present framework, this
blocks the “prime skeleton” closure step and forces the discrete spectrum to be controlled by
different (non-Hecke) structures. This is consistent with the commensurator-based arithmeticity
dichotomy in the theory of lattices [12].

In this sense, X(1) is singled out as the simplest hyperbolic orbifold simultaneously exhibiting
a cusp q-interface, a canonical digit-coded climb, and a prime-generated correspondence alge-
bra. Congruence covers and higher-level modular curves remain compatible variants, but they
introduce additional discrete data (more cusps/levels) beyond the minimal protocol footprint.

A minimal covolume uniqueness theorem (one cusp). If one further asks for the simplest
possible hyperbolic mother space under the single-cusp constraint, then X(1) is also uniquely
minimal in hyperbolic area.

Proposition C.3 (minimal area among one-cusp hyperbolic orbifolds (standard)). Let Y be an
orientable finite-area hyperbolic 2-orbifold with exactly one cusp. Then

Area(Y ) ≥ π

3 . (136)

Moreover, equality holds if and only if Y has orbifold signature (g;m1,m2; s) = (0; 2, 3; 1), in
which case Y is (isometric to) the modular orbifold X(1) = PSL2(Z)\H.

Proof. Let Y have signature (g;m1, . . . ,mr; s) with genus g ≥ 0, elliptic orders mj ≥ 2, and
s = 1 cusp. Orbifold Gauss–Bonnet gives

Area(Y ) = 2π

2g − 2 + s+
r∑

j=1

(
1 − 1

mj

) = 2π

2g − 1 +
r∑

j=1

(
1 − 1

mj

) , (137)

see, e.g., [38].
If g ≥ 1, then 2g − 1 ≥ 1 and the sum is nonnegative, so Area(Y ) ≥ 2π > π/3. Thus the

minimum occurs at g = 0, where positivity of area forces

−1 +
r∑

j=1

(
1 − 1

mj

)
> 0 ⇐⇒

r∑
j=1

1
mj

< r − 1.

If r ≥ 3, then ∑r
j=1

1
mj

≤ r/2, hence

Area(Y ) = 2π

r − 1 −
r∑

j=1

1
mj

 ≥ 2π
(
r − 1 − r

2

)
= π(r − 2) ≥ π > π/3.
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So the minimum occurs at r = 2, in which case

Area(Y ) = 2π
(

1 − 1
m1

− 1
m2

)
,

1
m1

+ 1
m2

< 1.

To minimize area, we maximize 1
m1

+ 1
m2

subject to m1,m2 ≥ 2 and the strict inequality < 1.
The maximal such sum is 1

2 + 1
3 = 5

6 , achieved by (m1,m2) = (2, 3), yielding Area(Y ) =
2π(1 − 5/6) = π/3. This is exactly the signature of the modular orbifold X(1), and the equality
characterization follows.

C.2 A fully worked model at finite resolution (explicit error budgets)

We now give a concrete model realizing the scan algebra and a finite-alphabet instrument,
together with a fully explicit coefficient-recovery guarantee for a standard modular observable.

C.2.1 Effective Hilbert space, scan/readout unitaries, and a finite-alphabet instru-
ment

Let Heff = L2(R/Z) and define the Weyl pair as in Axiom O6:

(Uscanψ)(x) = ψ(x+ α), (V ψ)(x) = e2πixψ(x), α ∈ (0, 1) \ Q.

Fix a resolution parameter ε ∈ (0, 1) and let K = ⌈1/ε⌉. Define a partition of unity by interval
windows w(ε)

k = 1Ik
with

Ik = [k/K, (k + 1)/K), k = 0, 1, . . . ,K − 1,

and define effects by spectral calculus of V :

E
(ε)
k =

∫
R/Z

w
(ε)
k (x) dΠV (x),

K−1∑
k=0

E
(ε)
k = 1.

At tick t, the scan orbit induces a phase point xt = x0 + tα (mod 1) (Section 3.2); the finite-
alphabet readout returns the bin index kt such that xt ∈ Ikt . Let x̃t denote the bin midpoint:

x̃t = kt + 1/2
K

.

Then |xt − x̃t| ≤ ε/2.

C.2.2 A certified coefficient estimator with quantization and sampling terms

Fix y > 0 and a modular-form observable f with a convergent q-expansion at height y (Sec-
tion 5.1). Define the slice Fy(x) = f(x+ iy) and the integrand

gn,y(x) = Fy(x) e−2πinx.

The ideal (continuum) coefficient identity is

an = e2πny
∫ 1

0
gn,y(x) dx

(Theorem 5.2). At finite resolution and finite N , we use the quantized scan-sampled coefficient
estimator of Definition 9.1 (Equation 77). Theorem 9.2 provides an explicit end-to-end bound
including both discrepancy (sampling) and ε-quantization terms, while Remark 9.4 records how
to add certified evaluation/truncation terms when f is computed via truncated q-series.
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C.2.3 A worked modular observable: E4 with explicit constants and exact-integer
recovery

Take f(τ) = E4(τ) = 1 + 240∑m≥1 σ3(m)qm (Appendix B.11). Then a0 = 1 and an =
240σ3(n) ∈ Z for n ≥ 1. Appendix B.11 gives an explicit coefficient-sum bound

∥g′
n,y∥∞ ≤ 2π

(
n+ 240 ζ(3)

(
S4(r) + nS3(r)

))
, r = e−2πy,

and the same expression upper-bounds Var(gn,y). Combining with Theorem 9.2 yields a com-
pletely explicit bound in terms of (n, y,N, ε) and D∗

N (PN ) (or its Ostrowski digit bounds, Ap-
pendix B.5). In arithmetic settings with an ∈ Z, exact integer recovery follows from the rounding
criterion in Corollary 9.5.

Corollary C.4 (parameter selection for E4: explicit sufficient inequalities). Let f = E4 and fix
(n, y,N, ε) with r = e−2πy. Define the explicit constant

B(4)
n,y := 2π

(
n+ 240 ζ(3)

(
S4(r) + nS3(r)

))
, (138)

so that Var(gn,y) ≤ B
(4)
n,y and ∥g′

n,y∥∞ ≤ B
(4)
n,y. Then

∣∣â(ε)
n,N (y) − an

∣∣ ≤ e2πny B(4)
n,y

(
D∗

N (PN ) + ε

2

)
. (139)

In particular:

• Convergent-length choice. If p/q is a reduced rational with 0 < |α − p/q| < 1/q2 and
N = q, then Proposition B.7 implies D∗

N (PN ) ≤ 2/N , hence

∣∣â(ε)
n,N (y) − an

∣∣ ≤ e2πny B(4)
n,y

( 2
N

+ ε

2

)
.

• Constant-type choice. If α = [0; a1, a2, . . .] has bounded partial quotients aj ≤ A, then
Appendix B.5 gives D∗

N (PN ) ≤ 2A(2+logφ N)
N , hence

∣∣â(ε)
n,N (y) − an

∣∣ ≤ e2πny B(4)
n,y

(
2A(2 + logφN)

N
+ ε

2

)
.

In either case, the rounding criterion in Corollary 9.5 applies whenever the corresponding right-
hand side is < 1

2 .

C.2.4 A certified numerical instance for E4: exact recovery of a1 = 240

To make the end-to-end bound concrete without any simulations, we record a single explicit
parameter choice for which the rounding criterion is certified. Take the golden-branch scan slope
α = φ−1 = [0; 1, 1, 1, . . .] and choose a convergent-length sample size N = 46368 (a Fibonacci
denominator of a convergent of α), so that Proposition B.7 implies D∗

N (PN ) ≤ 2/N . Fix n = 1,
y = 0.7, and a finite-alphabet resolution ε = 10−4.

For y = 0.7 one has

r = e−2πy ≈ 0.012299 < 0.0123, S3(r) ≈ 0.013561 < 0.0136, S4(r) ≈ 0.014876 < 0.0149,

and using the numerical bound ζ(3) < 1.202057 in (138) (e.g. truncate ζ(3) = ∑
m≥1m

−3 and
bound the tail by ∑m>K m−3 <

∫∞
K x−3dx = 1

2K2 with K = 20000) one obtains

B
(4)
1,0.7 < 57.83, e2π·0.7 ≈ 81.3068 < 81.31.
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Using the convergent-length bound in Corollary C.4, we obtain the explicit numerical estimate

∣∣â(ε)
1,N (0.7) − a1

∣∣ ≤ e2π·0.7B
(4)
1,0.7

(
2

46368 + 10−4

2

)
< 81.31 · 57.83

(
2

46368 + 10−4

2

)
< 0.44 < 1

2 .

Since a1 = 240σ3(1) = 240 ∈ Z, Corollary 9.5 implies that rounding â
(ε)
1,N (0.7) to the nearest

integer recovers a1 = 240 exactly.

C.3 Hecke operators at the protocol level: structural closure versus imple-
mentable channels

Section 6.2 already records the standard analytic action of Tp on modular forms as a finite
average over explicit maps (double-coset correspondences) and its induced action on q-coefficients
(Proposition 6.2). Two distinct protocol-level roles should be distinguished.

(i) Structural/audit role (used in this paper). In the closed Layer 0/1 chain, Hecke
operators enter as constraints on the recovered coefficient spectrum. Once a candidate coefficient
sequence (an) is obtained from the cusp slice by the estimator, the Hecke relations provide
locally checkable closure constraints: coprime multiplicativity and the prime-power recursion
(Section 6.6). These constraints are naturally interpreted as a prime-indexed “consistency check”
on the discrete layer, and are directly falsifiable.

(ii) Implementable channel role (additional structure). If one insists on realizing Tp as a
transformation on observables or instruments in Heff , additional interface structure is required.
At the level of modular observables, Tp mixes values at different heights (Equation (44)), so
it is intrinsically cross-scale rather than a symmetry acting within a fixed slice. Operationally,
implementing Of 7→ OTpf would require an instrument family capable of accessing (or emulating)
the branches τ 7→ pτ and τ 7→ (τ + b)/p across the relevant scale window, together with certified
error control for the induced mixing. This is a natural extension problem but is not needed for
the prime-skeleton closure used here.

C.4 Falsifiable predictions: prime-indexed regularities and distribution laws

When the recovered spectrum is hypothesized to arise from a normalized Hecke eigenform,
the following prime-indexed statements become quantitative, falsifiable predictions about the
discrete readout layer:

• Exact algebraic closure. For (m,n) = 1, one must have amn = aman, and for prime
powers apr+1 = apapr − pk−1apr−1 (Section 6.6).

• Ramanujan–Petersson bounds. For holomorphic cuspidal Hecke eigenforms, Deligne’s
theorem gives |ap| ≤ 2p(k−1)/2 (Appendix B.10 for ∆ as a canonical example).

• Sato–Tate statistics (when applicable). For non-CM eigenforms, the normalized
prime eigenvalues ap/(2p(k−1)/2) are expected to equidistribute with the Sato–Tate mea-
sure; see, e.g., [36, 39,40].

In a protocol interpretation, failure of these prime-indexed regularities falsifies the claim that
the observed discrete spectrum is governed by a Hecke eigenstructure.
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C.5 QUE-type inputs and fluctuation bounds (optional strengthening)

The induced-measure picture in Section 3.3 is based on equidistribution of rotation orbits and dis-
crepancy control. Independent from this, arithmetic quantum unique ergodicity (QUE) results
provide equidistribution statements for Hecke eigenstates/eigenforms on arithmetic surfaces. For
Maass Hecke eigenfunctions on PSL2(Z)\H, Lindenstrauss proved QUE for a full-density subse-
quence, with refinements by subsequent work [41]. For holomorphic Hecke eigenforms of large
weight, mass equidistribution (a holomorphic QUE analogue) was established by Holowinsky
and Soundararajan [42].

These results suggest an additional route to bounding readout fluctuations when the un-
derlying observable sector is Hecke invariant: beyond generic discrepancy bounds, one can in
principle use QUE-type estimates to control the variance of suitable test observables along
arithmetic eigenbases. We do not use QUE as an input in the present paper; we record it as an
optional strengthening direction aligned with the prime-skeleton semantics.

C.6 Vector-valued readouts and vector-valued Hecke operators (extension)

The scan–projection formalism extends to multiplets by replacing a scalar pointer with a finite
family of commuting pointer phases (or, equivalently, a vector-valued instrument) and by allow-
ing vector-valued modular/automorphic objects at the cusp interface. On the arithmetic side,
this naturally leads to vector-valued modular forms and Hecke operators acting by matrices on
the coefficient vectors. We record this as a straightforward extension path rather than a new
premise.

C.7 QCA micro-models realizing O3/O6 (sketch)

At the constitution level, Axiom O3 posits a causally local discrete-time automorphism and
Axiom O6 posits an effective Weyl pair. Locality-preserving unitary dynamics (quantum cellular
automata / quantum walks) provide standard concrete realizations of O3 [43, 44]. In simple
1D models, shift/clock constructions generate Weyl-type relations on an effective boundary or
observer sector, yielding a natural route to O6. Deriving the modular cusp interface and the
appearance of a q-expansion-dominated readout from a specific QCA update rule remains an
explicit model-building task; it is compatible with the present layer discipline but not required
for the closed Layer 0/1 derivations in this paper.

D Limitations and open questions
The present paper isolates a closed Layer 0/1 chain and keeps Layer 2 narratives optional. Much
of the mathematical content invoked along the chain—Gauss-map suspension coding of the mod-
ular geodesic flow, cusp q-expansions, Hecke relations, and discrepancy/variation bounds—is
classical. The contribution is primarily a synthesis and protocol-level framing that exposes a
concrete dependency chain and makes the finite-resolution extraction of discrete spectra au-
ditable. The following limitations and open questions are explicit.

D.1 Scope and novelty

Most theorem-level inputs are standard results with well-established proofs (Appendix A). The
contribution is a protocol-level synthesis that makes the cross-scale climb and the continuous–
discrete interface quantitatively auditable at finite resources. Novelty claims are therefore best
interpreted at the level of interfaces (scan orbit ↔ slice sampling, slice ↔ q-coefficients, coef-
ficients ↔ Hecke closure) and closure mechanisms (explicit end-to-end error budgets including
finite-alphabet quantization, and exact integer recovery by rounding when an ∈ Z; Theorem 9.2
and Corollary 9.5), rather than as new identities in classical modular theory.

40



D.2 Making protocol morphisms precise

Definition 7.1 treats “protocol equivalence” informally as preservation of Weyl structure and
readout statistics, potentially implemented by Morita equivalence and state/instrument trans-
port. A mathematically complete formulation requires:

• a precise choice of objects: allowed instruments and required continuity/regularity;

• a precise equivalence relation or morphism notion (what is preserved exactly, and with
which error budgets);

• compatibility conditions with boundary/cusp interfaces.

D.3 Certified coefficient recovery under finite resources

The slice–sampling pipeline provides explicit discrepancy-based bounds (Theorem 5.5 and Corol-
lary 5.8). Incorporating finite-alphabet readout yields an explicit sampling+quantization bound
(Theorem 9.2) and, in arithmetic cases, an exact integer recovery criterion (Corollary 9.5). A
fully certified numerical pipeline may additionally require:

• Certified evaluation of f(τ) on slices. When f is computed via truncated q-series,
explicit tail bounds are required at fixed τ ; for Eisenstein series these are given with
constants in Appendix B.13, while for general cusp forms one needs explicit majorants
compatible with the chosen computational representation (Remark 9.4).

• Floating-point and instrument error propagation. The bounds isolate sampling and
quantization contributions, but a complete numerical budget must include floating-point
rounding, conditioning, and any additional instrument noise as a function of (n, y,N, ε),
especially in regimes where amplification by e2πny dominates.

• Uniform regularity control. The Koksma step is sharp only when Var(gn,y) and
∥g′

n,y∥∞ are under control uniformly over the parameter ranges used in the protocol; see
the next subsection.

D.4 Variation bounds, uniform constants, and stability windows

The coefficient-recovery bound

|ân,N (y) − an| ≤ e2πny Var(gn,y)D∗
N (PN )

is sensitive to the joint dependence of Var(gn,y) and the amplification factor e2πny. Even when
D∗

N (PN ) is small, large variation or poor conditioning can destroy a meaningful guarantee.
For the most common modular objects, explicit bounds are available: Appendix B.8 records

a general absolute-continuity estimate, and Appendix B.11–B.12 give closed-form y-dependent
upper bounds for Var(gn,y) for E4 and E6 (in terms of r = e−2πy). Combined with the finite-
alphabet bound (Theorem 9.2) and explicit tail bounds, these estimates already yield auditable
end-to-end guarantees for standard Eisenstein observables (Appendix C.2 and Corollary C.4).
For broader families, one still requires:

• explicit parameter ranges (n, y,N) for which the bound is numerically stable (a “scale
window”);

• explicit constants that remain uniform across the intended family of f (e.g. across a space
of cusp forms or across a class of observables mapped to modular data);

• a principled way to trade off y (smoothing of slice data) against e2πny (amplification in
coefficient recovery), beyond qualitative discussion.
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D.5 Functorial uplift beyond GL2

The paper only uses classical GL2 modular objects in a minimal toy role. A genuine Langlands
uplift requires:

• a target group G and a canonical replacement of the modular curve by a higher-dimensional
arithmetic variety (e.g. Shimura data);

• a generalization of cusp discretization and prime-skeleton closure to G-Hecke data;

• functoriality constraints that identify which protocol equivalences correspond to which
automorphic transfers.

D.6 Interfaces to externally specified observables

While Hecke spectra provide a rigid integer data layer, connecting it to any externally specified
observable spectrum must be done with an explicit interface map and an error budget, without
violating layer discipline. This remains a separate construction task.

D.7 Choosing the scan slope α and adapting N

Discrepancy control depends strongly on the Diophantine type of the rotation slope α. The
Ostrowski digit bound (Corollary 5.8) makes this dependence auditable via the digit sum ∑

j bj ,
but it also highlights a limitation: for α with large partial quotients (including Liouville-type
parameters) the bound can deteriorate dramatically.

For constant-type rotations (bounded partial quotients), Appendix B.5 gives an explicit
O((logN)/N) rate with constants depending on the bound on partial quotients. Moreover, at
convergent lengths N = qm one has more refined and even closed-form discrepancy information
(Appendix B.6). Pragmatically, this suggests two robust tactics for certified sampling:

• preferentially choose α of constant type (the golden branch is a canonical toy case);

• preferentially choose N near convergent denominators, while using the Ostrowski digit
sum as an online diagnostic of “how expensive” a given N is in discrepancy terms.

D.8 R1 regularization: Abel-first conventions and their scope

Assumption R1 fixes a canonical prescription (“Abel first, then limit”) for regulated-to-continuum
passages along scan orbits when divergent sums or traces arise. In the present paper’s main finite-
N recovery pipeline, the core quantitative steps are finite-sample bounds (Koksma/Denjoy–
Koksma and discrepancy) and do not require R1. The role of R1 is instead to specify a normal-
ization convention in settings where one studies infinite-time orbit traces, distributional limits,
or boundary limits in which a regulated parameter is sent to 1− before taking a continuum limit
(cf. the analogy between the cusp modulus |q| = e−2πy and Abel damping in Section 5.7).

A sharper integration of R1 into a certified pipeline would require stating explicit conditions
under which Abel regularization agrees with the analytic continuation or spectral regularization
used on the modular side, and identifying whether it provides genuinely new control beyond the
intrinsic damping already present in the cusp parameter y.

D.9 Empirical validation and practical tightness

The manuscript emphasizes certified bounds and explicit constants over empirical tightness.
Numerical case studies could nonetheless complement the theory by testing:

• the practical tightness of discrepancy/digit bounds for realistic (α,N) choices;
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• the dependence of Var(gn,y) on (n, y) for representative modular objects beyond E4/E6;

• the empirical stability window in (n, y,N) balancing smoothing against amplification.

Such experiments would clarify how conservative the explicit bounds are in typical regimes, but
they are not required for the logical closure statements proved in this manuscript.

D.10 Related work: quasi-Monte Carlo, lattice rules, and transport-based
metrics

Comparison with classical quadrature on the torus. The sampling scheme xt = x0 + tα
(mod 1) is a Kronecker sequence, which is a canonical object in uniform distribution and quasi-
Monte Carlo (QMC) theory [19,45,46]. From the numerical-integration perspective, it is closely
related to lattice rules (rank-1 lattices) and other discrepancy-optimized constructions [47, 48].
For certain function classes (e.g. periodic functions with additional smoothness structure),
Fourier-analytic error bounds and specialized QMC designs can yield improved constants or
rates compared with a generic bounded-variation/Koksma analysis. The present paper does not
benchmark its slice-reconstruction estimator against these classical quadrature baselines.

Transport-based error metrics. Star discrepancy is tailored to interval (or anchored-box)
test sets and is therefore coordinate dependent. In contrast, Wasserstein distances provide a
geometric notion of equidistribution via optimal transport costs [49, 50]. In one dimension, if
µN is the empirical measure of the sample points and λ is Lebesgue measure on [0, 1], then

W1(µN , λ) =
∫ 1

0
|FN (x) − x| dx ≤ sup

x∈[0,1]
|FN (x) − x| = D∗

N (PN ),

so star discrepancy control implies a Wasserstein-1 control. Exploring transport-based bounds
(and their robustness properties under coordinate changes) could provide a complementary
analysis of the estimator beyond the Koksma framework used here.

D.11 Presentation and notation

The protocol chain benefits from a strict separation between proved statements and interpre-
tive analogies. While the manuscript maintains layer discipline at the logical level, additional
editorial standardization would further reduce ambiguity:

• fix notation for arithmetic groups consistently (e.g. SL2(Z) and PSL2(Z)) and standardize
matrix conventions;

• standardize constants and admissible ranges for roof/discrepancy parameters whenever
they enter quantitative claims;

• make explicit, near each protocol-level bound, which auxiliary constants are available in
closed form (as for E4/E6) and which remain qualitative.
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