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Abstract

In the HPA–Omega (Holographic Polar Arithmetic / Omega axiom system) scan–readout
paradigm, we present a closed protocol derivation chain that recasts the classical explicit for-
mula for the Riemann zeta function as a holographic trace formula. Under finite-information
readout and unitary scanning constraints, we characterize the Riemann Hypothesis (RH) as
a definability and boundedness requirement for a canonical Abel-regularized trace along the
path r ↑ 1.

The core mechanism is simple and auditable: if there exists a trace identity embedding
the spectral contributions of zeta zeros into a scan algebra, and if the resulting Abel trace
is holomorphic on the unit disk |r| < 1 (as mandated by bounded unitary scan readout),
then any zero off the critical line forces an interior pole of the spectral-side mode factor at
r = e−(ρ− 1

2 ) with |r| < 1. This contradicts holomorphy of the geometric side, hence all
nontrivial zeros must lie on Re(s) = 1

2 .
We conclude with reproducible numerics: (i) the star discrepancy of the golden-branch

scan exhibits the expected logarithmic stability, and (ii) in a toy “zero-mode” signal model,
an artificial shift Re(ρ) ̸= 1

2 produces an Abel threshold blow-up and an energy explosion,
illustrating the paper’s polar rigidity mechanism.

Keywords: HPA; Omega axiom system; holographic trace formula; Abel finite part; star
discrepancy; unitary scanning; Riemann hypothesis; prime spectrum.

Conventions. Unless otherwise stated, log denotes the natural logarithm. We use t ∈ Z≥0 for
discrete protocol time. We identify the d-torus with Td = (R/Z)d and use [0, 1)d as the standard
fundamental domain when defining discrepancy. Throughout, “canonical Abel path” refers to
the limit process r ↑ 1 with r ∈ (0, 1), applied to Abel generating functions that are defined
(and holomorphic) for |r| < 1.
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1 Introduction: from analytic infinity to protocol geometry
The Riemann Hypothesis (RH) asserts that every nontrivial zero ρ of the Riemann zeta function
satisfies

Re(ρ) = 1
2 .

In its classical analytic number theory setting, RH is embedded in the machinery of analytic
continuation, functional equations, and explicit estimates for prime-counting functions [1–3]. In
the “number theory meets physics” tradition (e.g. the Hilbert–Pólya program and trace formula
perspectives), the zeros behave like a frequency spectrum dual to prime periodic data.

This paper takes a different entry point. We treat the finite-resource scan–readout process
as a first-class object rather than a late-stage regularization of an a priori infinite analytic
formalism. Concretely, we adopt an audit-driven two-layer writing discipline:

Closed layer. Only protocol definitions, finite-resource objects, deterministic error certifi-
cates, and statements that can be proved within these notions are admitted as mathematical
inputs.

Programmatic layer. Physical and teleological interpretations are allowed, but they are
explicitly excluded from proofs and do not serve as theorem inputs.

Within the closed layer, our goal is a logically checkable implication chain that isolates where
the nontrivial analytic difficulty resides and what is forced once a specific bridge is granted. The
bridge is a structural assumption, formulated below as a Holographic Trace Formula (HTF),
that embeds the classical explicit formula for ζ into a trace identity of a scan algebra. Under
this assumption, RH becomes a rigidity statement about Abel regularization along a canonical
protocol path.

1.1 Summary of the closed-layer derivation

We aim to establish the following conditional chain.

1. Omega axioms (finite information + unitary scan + bounded readout). Selected
axioms of the HPA–Omega system imply that a broad class of Abel-weighted orbit traces
define holomorphic functions on the open unit disk |r| < 1 (as power series with bounded
coefficients), and that a finite-part extraction along the canonical real path r ↑ 1 is an
admissible operation in the closed layer (Section 3).

2. Holographic Trace Formula assumption (HTF). Assume the existence of a trace
identity that is isomorphic, under the same regularization convention, to a Weil-type ex-
plicit formula: prime/periodic-orbit data form the geometric side and zeta zeros form
the spectral side. Crucially, each zero contributes as an exponential mode e(ρ− 1

2 )t in the
log-time variable (Section 5).

3. Internal pole obstruction for off-critical modes. If ρ = β + iγ with β > 1
2 , then the

corresponding mode factor
1

1 − r e(ρ− 1
2 )

has an interior pole at rρ = e−(β− 1
2 )e−iγ with |rρ| < 1. Therefore any spectral-side ex-

pression that contains this mode with nonzero coefficient cannot extend holomorphically
to the full unit disk, contradicting the Omega geometric-side holomorphy (Lemma 5.2).

4. Polar rigidity implies the critical line. Combining Omega’s geometric-side holomor-
phy on |r| < 1 with HTF and the internal-pole obstruction rules out Re(ρ) ̸= 1

2 and yields
RH as a closed-layer consequence of (Omega + HTF) (Theorem 5.4).
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1.2 What this paper does and does not claim

The argument does not claim an unconditional proof of RH in the standard axioms of analytic
number theory. The nontrivial content is isolated into the explicit structural bridge HTF:
constructing, in classical terms, an infinite-dimensional trace/transfer operator satisfying HTF
is essentially the hard part of RH. What this paper provides is a clean protocol-level statement:
if ζ admits an HTF embedding compatible with Omega’s canonical Abel finite-part rule, then
RH is forced by an analytic rigidity on the unit disk: bounded scan traces are holomorphic for
|r| < 1, while any off-critical spectral mode would introduce an interior pole.

We emphasize that the core rigidity is analytic: once the geometric side is a holomorphic
function on the unit disk (as mandated by bounded unitary scan readout) and the spectral side
inserts each zero via a mode factor with pole at r = e−(ρ− 1

2 ), any off-critical zero produces an
interior pole and is thereby incompatible with the protocol trace identity.

2 Preliminaries: zeta, explicit formulas, and closed-layer scan
objects

2.1 The Riemann zeta function and zero notation

We write
ζ(s) =

∑
n≥1

n−s (Re(s) > 1),

and use analytic continuation to extend ζ to C \ {1}. Nontrivial zeros are denoted by ρ = β+ iγ
with 0 < β < 1. The functional equation implies the usual symmetries: if ρ is a zero, so are ρ
and 1 − ρ (ignoring the trivial zeros).

Completed zeta function. It is often convenient to work with the completed zeta function

ξ(s) := 1
2s(s− 1)π−s/2Γ

(
s
2
)
ζ(s),

which is entire and satisfies ξ(s) = ξ(1 − s) [1, 2]. The nontrivial zeros of ζ coincide with the
zeros of ξ.

2.2 Explicit formulas as a trace template

Weil-type explicit formulas share a common shape: a geometric side supported on primes (or
prime powers) equals a spectral side supported on the zeros ρ of ζ, up to controlled archimedean
terms [1,3]. Rather than reproducing technical hypotheses, we extract only the mode structure
needed for the protocol argument.

Passing to log coordinates t = log x, the term xρ becomes eρt. After centering at 1
2 (the

natural symmetry axis), the spectral contribution of a zero typically appears as an exponential
mode of the form

e(ρ− 1
2 )t = e(β− 1

2 )t eiγt.

The closed-layer rigidity mechanism will use only this elementary growth/oscillation decompo-
sition under Abel weights.
Proposition 2.1 (A standard explicit formula for ψ(x) (quoted)). Let ψ(x) = ∑

n≤x Λ(n) be
the Chebyshev function and assume x > 1 is not a prime power. Then one has the explicit
formula

ψ(x) = x−
∑

ρ

xρ

ρ
− log(2π) − 1

2 log(1 − x−2),

where the sum runs over the nontrivial zeros ρ of ζ (interpreted in the standard symmetric
limiting sense).
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Reference. See, e.g., [1, Ch. 14] or [2, Ch. 1].

The mode structure used in HTF is the direct consequence of the identity xρ = eρ log x: in
log-time t = log x, each zero contributes a frequency γ and a growth rate β.

2.3 A quantitative zero counting law

Let N(T ) denote the number of nontrivial zeros ρ = β + iγ with 0 < γ ≤ T , counted with
multiplicity. The Riemann–von Mangoldt formula gives the quantitative density of the spectral
side:

N(T ) = T

2π log
(
T

2π

)
− T

2π +O(log T ) (T → ∞).

We will not use this asymptotic in any proof, but it is useful for calibrating what kind of
decay is needed for kernel-dependent coefficients cρ(K) in order for spectral-side sums to define
meromorphic functions on |r| < 1. Standard references include [1, 2].

2.4 Scan–readout protocols and star discrepancy

In the closed layer, a scan protocol and its readout are primary objects. A canonical example
class is a Kronecker scan on the d-torus Td = (R/Z)d:

xt = x0 + tα (mod 1), t ∈ Z≥0,

with irrational slope vector α ∈ Rd. Given a bounded kernel (readout observable) f : [0, 1)d → R,
the finite-horizon readout is

⟨f⟩N = 1
N

N−1∑
t=0

f(xt),

a fully computable and auditable output at resource level N .
To certify uniformity of coverage in a deterministic way, we use the star discrepancy D∗

N (PN )
of the point set PN = {x0, . . . , xN−1} ⊂ [0, 1)d:

D∗
N (PN ) = sup

u∈[0,1]d

∣∣∣∣ 1
N

#
(
PN ∩ [0, u)

)
− λ

(
[0, u)

)∣∣∣∣ ,
where [0, u) = ∏d

j=1[0, uj) and λ is Lebesgue measure [4, 5].
In the one-dimensional golden-branch case α = φ−1 (with φ = (1 +

√
5)/2), an explicit

logarithmic upper bound is available:

D∗
N (PN ) ≤

2
(
2 + logφN

)
N

.

One convenient route to this explicit bound is via Denjoy–Koksma at convergent times together
with the Ostrowski expansion of N (Appendix C; see also [4, 6, 7]). This certifies that, under a
minimal-complexity irrational scan, finite-resource sampling error grows at most logarithmically
(times 1/N), in sharp contrast with the exponential growth induced by off-critical spectral
modes.

2.5 Abel regularization and finite-part extraction

Abel regularization provides a protocol-native way to turn formal “infinite” orbit sums into
auditable objects. Given a bounded function f along the scan orbit (xt), define the Abel family

Sf (r) :=
∞∑

t=0
rtf(xt), 0 < r < 1.
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For every r < 1, the series is absolutely convergent and computable. For uniquely ergodic scans
(in particular, irrational translations on tori), Abel means converge to the space average for
continuous observables; see, e.g., [8] and the Abel–Cesàro comparison in [9]. In the rotation
template, one has the Abelian limit

lim
r↑1

(1 − r)Sf (r) =
∫

[0,1)d
f(x) dx.

The Abel finite part (finite-part constant term) is defined, when the limit exists, by

FP
∞∑

t=0
f(xt) := lim

r↑1

(
Sf (r) −

∫
f

1 − r

)
.

In the HPA–Omega formalism, the existence of this finite part along the canonical path r ↑ 1 is
not an afterthought: it is part of the admissibility conditions for using the corresponding infinite
object in the closed layer. Appendix C records a precise asymptotic/finite-part template, includ-
ing a Fourier-resolvent criterion that guarantees existence of the constant term for sufficiently
regular readout kernels.

3 HPA–Omega axioms: finite information, unitary scanning,
and readout rigidity

This section isolates the fragments of the Omega axiom system used by the closed-layer argu-
ment. The role of these axioms is to formalize a simple but strong constraint: finite-resolution
readout of a unitary scan on a compact state space cannot support exponential growth along the
canonical Abel path.

3.1 Finite information and compact readout

Axiom 3.1 (O2 (Finite information / compact readout)). For any fixed finite resolution and
finite observation horizon, effective observables are represented in a controlled (effectively finite)
operator algebra on a compact state space. In particular, expectations and traces of bounded
observables obey uniform boundedness constraints under admissible readout channels.

In practice, O2 means that the geometric side of any protocol-defined trace built from
bounded effect operators remains bounded whenever its defining series converges.

3.2 Scan–projection readout

Axiom 3.2 (O5 (Scan–projection readout)). There exists a pointer observable V with spectral
measure ΠV and a family of finite-resolution windows {w(ε)

k }k such that the readout effects are

E
(ε)
k =

∫
w

(ε)
k (x) dΠV (x).

Given an effective state ωeff , the readout channel probabilities are

P
(ε)
k = ωeff

(
E

(ε)
k

)
.

This is a protocol-level encoding of the idea that continuous phases are only accessed through
finite-resolution projections, producing finite symbol streams (e.g. Sturmian/Fibonacci words)
rather than raw continuum data.
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3.3 Unitary scan algebra and Weyl pairs

Axiom 3.3 (O6 (Unitary scan algebra / Weyl pair)). The scan dynamics is generated by a
unitary operator Uscan. Together with the pointer operator V , it forms a Weyl pair

Uscan V = e2πiα V Uscan,

where α is irrational (the golden branch α = φ−1 is the minimal-complexity model case).

Unitarity implies that conjugation preserves operator norms:∥∥∥U t
scanAU

−t
scan

∥∥∥
∞

= ∥A∥∞ (t ∈ Z).

This yields a basic closed-layer fact: Abel-weighted protocol traces built from bounded single-
step contributions are automatically well-defined for every 0 < r < 1.

3.4 Abel-weighted traces are well-defined under boundedness

Proposition 3.4 (Abel definability for bounded scan contributions). Let A be a bounded ob-
servable and let ωeff be a bounded state functional. Define the Abel-weighted trace-like quantity

TA(r) :=
∞∑

t=0
rt ωeff

(
U t

scanAU
−t
scan

)
, |r| < 1.

Then TA(r) is absolutely convergent for every |r| < 1, defines a holomorphic function on the
open unit disk, and satisfies the bound

|TA(r)| ≤ ∥A∥∞ ∥ωeff∥
1 − |r|

.

Proof. By boundedness of ωeff and unitarity,∣∣∣ωeff
(
U t

scanAU
−t
scan

)∣∣∣ ≤ ∥ωeff∥
∥∥∥U t

scanAU
−t
scan

∥∥∥
∞

= ∥ωeff∥ ∥A∥∞ .

Hence for |r| < 1 the series is dominated by ∑t≥0 |r|t and converges absolutely. As a power
series in r with radius of convergence at least 1, it defines a holomorphic function on the open
unit disk.

Proposition 3.4 is purely elementary, but it captures the essential closed-layer rigidity: within
Omega, admissible geometric-side traces are defined on the entire interval (0, 1). The additional
Omega content is that a canonical finite-part extraction along r ↑ 1 is treated as part of the
protocol specification: only those traces for which the finite part exists on this path are admissible
closed-layer objects.

4 From symbolic orbits to “zeta”: finite-state prototypes and
infinite-state lift

To connect scan orbits with zeta-like objects, it is useful to separate two layers: (i) a fully
computable finite-state prototype where “trace ↔ zeta” is completely explicit, and (ii) the
infinite-state lift needed for a nontrivial zero spectrum.
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4.1 A finite-state prototype: the Zeckendorf shift and a dynamical zeta

In HPA, the golden-branch readout naturally produces Fibonacci/Zeckendorf coding. A canon-
ical symbolic dynamical system is the Zeckendorf shift: the subshift on {0, 1}Z≥0 forbidding the
word “11”. It is a subshift of finite type with adjacency matrix

A =
(

1 1
1 0

)
.

Let Pn = tr(An) denote the number of period-n points. The Artin–Mazur dynamical zeta
function is defined by [10,11]

ζσ(z) = exp

∑
n≥1

Pn

n
zn

 .
For subshifts of finite type, one has the determinant formula

ζσ(z) = 1
det(I − zA) = 1

1 − z − z2 .

This illustrates the structural pattern relevant to our protocol viewpoint: orbit traces (here,
tr(An)) package into a zeta function via an exponential generating map or a determinant. How-
ever, because A is finite-dimensional, ζσ(z) is rational; its pole/zero structure is too coarse to
model the subtle zeta-zero spectrum of ζ(s).

4.2 Why an infinite-state lift is necessary

Any finite-state automaton model yields a rational dynamical zeta function, hence admits only
finitely many poles/zeros. To produce a genuine “zero spectrum” akin to that of the Riemann
zeta function, one must pass to an infinite-dimensional limit (e.g. transfer operators, trace-class
regularized determinants, or controlled refining partitions). This is precisely where the classical
difficulty of RH resides.

Accordingly, in this paper we do not construct the required infinite-dimensional operator
from scratch. Instead, we elevate the needed bridge to a clearly stated structural assumption
(HTF in Section 5) and show that, once it exists and is compatible with Omega’s regularization
conventions, RH follows from an elementary analytic rigidity: off-critical modes force interior
poles in the unit disk, which a bounded unitary scan trace cannot admit.

4.3 Primes as periodic orbit data (geometric-side motivation)

The HPA–Omega program also suggests a complementary geometric-side picture: after an adelic
completion, primitive periodic orbit data of a scale flow can be matched with primes, with orbit
length log p. This aligns with Selberg/Connes-type spectral dualities where primes play the role
of primitive closed geodesics and zeta zeros play the role of spectral frequencies [12]. In this
paper, this picture serves only as motivation for treating the explicit formula as a trace identity;
it is not used as an input to any closed-layer proof.

5 Holographic trace formula and polar rigidity: a protocol deriva-
tion of RH

We now state the structural bridge (HTF) and derive the core rigidity theorem. The proof uses
only three ingredients: (i) Omega’s geometric-side holomorphy of Abel traces on the unit disk,
(ii) the HTF mode structure for zeros, and (iii) an elementary pole-location computation.
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5.1 The Holographic Trace Formula assumption (HTF)

Assumption 5.1 (HTF (Holographic Trace Formula)). There exists a family of controllable
readout kernels (test objects) K and, for each K ∈ K, an Abel-weighted scan trace function
TK(r) constructed from the scan algebra (Uscan, V ) and finite-resolution readout effects {E(ε)

k }
such that:

1. (Geometric side boundedness and canonical finite part). For each fixed resolution
ε and each K ∈ K, the function TK(r) is given by a power series

∑
t≥0 at(K) rt with

bounded coefficients and therefore extends to a holomorphic function on the open unit disk
{ |r| < 1 } (cf. Proposition 3.4). Moreover, it admits a finite-part extraction along the
canonical real path r ↑ 1 in the sense of Section 2.5.

2. (Explicit-formula isomorphism). Under the same regularization convention, TK(r)
admits a decomposition into a “prime/periodic-orbit” term and a “zero/spectral” term.
On the spectral side, there exist complex coefficients cρ(K) such that each nontrivial zero
ρ contributes via an exponential mode sampled at integer times:

Sρ(r) :=
∞∑

t=0
rte(ρ− 1

2 )t,

possibly after taking the same finite-part normalization used on the geometric side. Equiv-
alently, TK(r) matches, kernel-by-kernel, a Weil-type explicit formula in which xρ appears
as eρt in log time. Whenever the above series converges (i.e. |r eRe(ρ)− 1

2 | < 1), it sums to
the meromorphic mode function

Mρ(r) := 1

1 − r e(ρ− 1
2 )
.

HTF further assumes that the spectral-side expression

T spec
K (r) :=

∑
ρ

cρ(K)Mρ(r)

is well-defined as a meromorphic function on |r| < 1 with poles only of the above mode
form, in the sense that the series converges absolutely and uniformly on compact subsets
of {|r| < 1} that avoid the pole set. Finally, the HTF identity holds as an identity of
meromorphic functions on |r| < 1 between TK(r) and its geometric+spectral decomposition
(after the same canonical normalization on both sides).

3. (Detectability). For every nontrivial zero ρ of ζ, there exists at least one kernel K ∈ K
such that the residue of T spec

K at the pole location r = e−(ρ− 1
2 ) is nonzero.

Closed-layer status. HTF is explicitly a structural assumption bridging scan algebra traces
and the classical explicit formula. All subsequent closed-layer consequences will depend on HTF;
no interpretation-layer content is used.

5.2 An internal pole obstruction for off-critical modes

Lemma 5.2 (Internal pole obstruction lemma). Let ρ = β + iγ with β > 1
2 . Then the mero-

morphic mode function
Mρ(r) = 1

1 − r e(ρ− 1
2 )
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has a pole at
rρ = e−(β− 1

2 ) e−iγ , |rρ| = e−(β− 1
2 ) < 1.

In particular, any spectral-side expression that contains a nonzero multiple of Mρ cannot extend
to a holomorphic function on the full unit disk.

Proof. The pole occurs where the denominator vanishes:

1 − r e(ρ− 1
2 ) = 0 ⇐⇒ r = e−(ρ− 1

2 ) = e−(β− 1
2 )e−iγ .

Its modulus is e−(β− 1
2 ) < 1 when β > 1

2 .

Lemma 5.3 (Holomorphic–meromorphic incompatibility at an interior pole). Let U ⊂ C be
open and let r0 ∈ U . If F is holomorphic on U and G is meromorphic on U with a pole at r0,
then F ̸= G on U \ {r0}.

Proof. Assume for contradiction that F = G on U \ {r0}. Choose a small disk D ⊂ U centered
at r0. Since F is holomorphic on D, it has a Taylor series

F (r) =
∞∑

k=0
bk(r − r0)k (r ∈ D).

Since G is meromorphic on D with a pole at r0, it has a Laurent expansion with a nontrivial
principal part

G(r) =
∞∑

k=−m

ak(r − r0)k, a−m ̸= 0.

Equality on the punctured disk D \ {r0} forces equality of Laurent coefficients, hence a−m = 0,
a contradiction.

5.3 Polar rigidity implies the critical line

Theorem 5.4 (Polar rigidity ⇒ critical line). Assume the Omega axioms O2/O5/O6 as used
in Section 3 and assume HTF (Assumption 5.1). Then every nontrivial zero ρ of ζ satisfies
Re(ρ) = 1

2 .

Proof. Fix a kernel K ∈ K and consider the corresponding Abel trace TK(r).

Step 1: geometric-side holomorphy on the unit disk. By construction in Omega, TK(r)
is an Abel-weighted sum of bounded scan–readout contributions, hence a power series in r with
radius of convergence at least 1. By Proposition 3.4, it defines a holomorphic function for every
|r| < 1. Moreover, Omega requires that a canonical finite part along r ↑ 1 exists for admissible
traces (Assumption 5.1(1)).

Step 2: off-critical zeros force an internal pole. Suppose, for contradiction, that there
exists a nontrivial zero ρ = β + iγ with β > 1

2 . By detectability (Assumption 5.1(3)), choose
K ∈ K such that the spectral side has nonzero residue at the pole location rρ = e−(ρ− 1

2 ). By
Lemma 5.2, this location satisfies |rρ| < 1.

Step 3: contradiction with the Omega trace identity. HTF identifies the geometric-side
holomorphic function TK(r) with the spectral-side meromorphic expression on |r| < 1. If an
off-critical ρ were present with nonzero residue at rρ, the spectral side would have a pole at
rρ ∈ {|r| < 1}, which is incompatible with holomorphy of TK(r) by Lemma 5.3. Therefore no
off-critical ρ with Re(ρ) > 1

2 can be present.
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Step 4: symmetry excludes β < 1
2 . Therefore no zero satisfies Re(ρ) > 1

2 . By the functional
equation symmetry ρ 7→ 1 − ρ, this also excludes Re(ρ) < 1

2 . Hence Re(ρ) = 1
2 for all nontrivial

zeros.

Corollary 5.5 (RH in the Omega+HTF protocol system). Within the protocol system defined
by Omega (O2/O5/O6) plus HTF, the Riemann Hypothesis holds.

Remark 5.6 (Closed-layer inputs). Theorem 5.4 depends only on: (i) Omega’s geometric-side
Abel definability and canonical finite-part admissibility, (ii) HTF’s mode structure in which zeros
contribute as e(ρ− 1

2 )t under Abel weights, and (iii) the interior-pole obstruction of Lemma 5.2
together with the holomorphic–meromorphic incompatibility Lemma 5.3. No programmatic in-
terpretation (energy, teleology, cosmology) enters the proof.

6 Programmatic layer: ground state, energy, and discrepancy
(not used in proofs)

This section offers an interpretation-layer reading of the closed-layer rigidity. Nothing here is
used as an input to Theorem 5.4.

6.1 RH as “no exponential gain/loss”

The mode decomposition
e(ρ− 1

2 )t = e(β− 1
2 )t eiγt

suggests a physical analogy: β− 1
2 is a gain/loss rate and γ is a frequency. The critical line β = 1

2
is precisely the locus of purely oscillatory modes, compatible with unitary scan evolution and
bounded readout. From this point of view, Theorem 5.4 says that protocol admissibility forces
the zeta spectrum to be “ground-state stable” in the sense of excluding exponential amplification
under canonical Abel regularization.

6.2 Discrepancy as an auditable proxy for finite-resource “energy”

In HPA-style finite-resource analysis, deterministic error certificates often take the form∣∣∣∣⟨f⟩N −
∫
f

∣∣∣∣ ≤ VarHK(f)D∗
N (PN ),

a Koksma–Hlawka type inequality controlling sampling error by the product of a kernel regularity
measure and the star discrepancy of the scan orbit [4, 5]. The golden branch provides explicit
logarithmic bounds on D∗

N (PN ) (Section 2.4), suggesting a low-complexity “low-energy” scan
family.

In this programmatic reading, discrepancy controls a provable resource cost for approximat-
ing regulated traces. Exponential modes induced by β ̸= 1

2 are precisely the kind of behavior that
defeats such controlled, compact readout: they trigger internal Abel thresholds (Lemma 5.2)
and hence force blow-ups in any reasonable finite-resource proxy. The toy numerics in Section 7
illustrate this contrast.

7 Reproducible numerics: discrepancy stability and “off-line
zero” threshold blow-up

This section provides optional reproducible numerical illustrations consistent with the paper’s
closed-layer mechanism. No accepted mathematical fact in the main argument relies on compu-
tation: the rigidity theorem is purely analytic once HTF is assumed. The role of these examples

12



N D∗
N (PN ) bound 2(2 + logφN)/N ratio

1,000 1.347 × 10−3 3.271 × 10−2 0.0412
5,000 4.75 × 10−4 7.88 × 10−3 0.0603

10,000 2.908 × 10−4 4.228 × 10−3 0.0688
50,000 5.179 × 10−5 9.794 × 10−4 0.0529

Table 1: Exact one-dimensional star discrepancy for the golden-branch Kronecker sequence and
the explicit logarithmic bound. The ratio column is D∗

N/bound.

is only to visualize the contrast between (i) logarithmically controlled scan irregularity and (ii)
exponential-gain modes that destroy Abel admissibility.

7.1 Reproducibility protocol

All experiments are implemented in pure Python 3 with no third-party dependencies. To repro-
duce the tables, run the following scripts from this paper directory:

• python3scripts/exp_golden_discrepancy.py

• python3scripts/exp_toy_zero_modes.py

The scripts write LATEX row files into sections/generated/, which are included below. All
randomness is absent (deterministic computations only).

7.2 Experiment A: one-dimensional golden scan star discrepancy

We take α = φ−1 and the point set PN = {{tα}}N−1
t=0 ⊂ [0, 1). The script computes the

one-dimensional star discrepancy D∗
N (PN ) exactly from its definition and compares it with the

explicit bound

D∗
N (PN ) ≤

2(2 + logφN)
N

.

7.3 Experiment B: toy “zero-mode” signal and the Abel threshold

Let γk be the imaginary parts of the first K nontrivial zeros on the critical line (hard-coded
constants in the script). We form a toy “critical-line” signal

e(t) =
K∑

k=1
cos(γkt),

and then introduce an artificial real-part shift δ > 0 on the first mode:

eδ(t) = eδt cos(γ1t) +
K∑

k=2
cos(γkt).

We monitor two proxies:

Discrete energy growth. Define the discrete L2 energy up to horizon T by

Eδ(T ) =
T −1∑
t=0

|eδ(t)|2.

Pure oscillatory signals (δ = 0) exhibit at most linear growth, while δ > 0 forces exponential
growth in T .
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T δ Eδ(T ) maxt<T |eδ(t)|
50 0.00 9.173 × 102 2 × 101

50 0.05 1.519 × 103 2 × 101

50 0.10 4.508 × 104 1.144 × 102

100 0.00 1.391 × 103 2 × 101

100 0.05 9.96 × 104 1.308 × 102

100 0.10 9.99 × 108 1.752 × 104

150 0.00 1.932 × 103 2 × 101

150 0.05 1.5 × 107 1.531 × 103

150 0.10 2.234 × 1013 2.504 × 106

Table 2: Toy-mode energy growth. Exponential gain (δ > 0) produces rapidly increasing energy
and peak amplitude.

Lemma 7.1 (Closed-form growth of a single amplified mode). Let ut = eδt cos(γt) with δ > 0.
Then for every integer T ≥ 1,

T −1∑
t=0

u2
t = 1

2

T −1∑
t=0

e2δt + 1
2

T −1∑
t=0

e2δt cos(2γt) = e2δT − 1
2(e2δ − 1) + 1

2 Re
(

1 − (e2δ+2iγ)T

1 − e2δ+2iγ

)
.

In particular, the leading growth is Θ(e2δT ) as T → ∞.

Proof. Use cos2(γt) = 1
2(1 + cos(2γt)) and sum the resulting geometric series in complex form.

Abel threshold. For integer time sampling, consider the finite-horizon Abel sum

Sδ(r;Tmax) =
Tmax−1∑

t=0
rteδ(t).

The closed-layer prediction behind Lemma 5.2 is that the effective threshold is

r0 = e−δ,

since rteδt = (reδ)t. For the single complex mode zt := e(δ+iγ1)t one has the exact geometric
identity

Tmax−1∑
t=0

rtzt =
Tmax−1∑

t=0

(
r eδ+iγ1

)t =
1 −

(
r eδ+iγ1

)Tmax

1 − r eδ+iγ1
,

and for the real cosine mode eδt cos(γ1t) = Re(zt) one has

Tmax−1∑
t=0

rteδt cos(γ1t) = Re

1 −
(
r eδ+iγ1

)Tmax

1 − r eδ+iγ1

 .
so the transition at reδ = 1 separates decay (r < e−δ) from exponential growth in Tmax (r > e−δ),
independent of any analytic continuation considerations. The script reports the magnitude
|Sδ(r;Tmax)| as r crosses r0.
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δ r |Sδ(r;Tmax)|
0.10 0.80 2.5675 × 101

0.10 0.90 2.6108 × 101

0.10 0.92 1.1153 × 1014

0.10 0.94 5.359 × 1032

0.10 0.96 1.0404 × 1051

Table 3: Toy Abel threshold behavior at fixed Tmax. Values remain moderate for r < e−δ and
grow rapidly once r crosses the predicted threshold.

8 Conclusion: RH as a protocol-stable ground-state condition
Within the HPA–Omega scan–readout paradigm, we formulated a closed derivation chain in
which the classical explicit formula for ζ is treated as a holographic trace identity. Assuming a
structural bridge (HTF) that embeds the spectral side into an Abel-regularized scan trace and
assuming Omega’s admissibility conditions (finite information, unitary scan, bounded readout,
and canonical finite-part extraction along r ↑ 1), we proved a simple rigidity theorem: any zero
with Re(ρ) ̸= 1

2 forces an internal Abel convergence barrier below 1, contradicting geometric-side
definability on all of (0, 1). Thus RH becomes a protocol consequence of “polar rigidity” once
the HTF bridge exists.

The closed-layer contribution of this paper is intentionally narrow: it clarifies which mini-
mal structural inputs force RH and which part remains genuinely hard (constructing an HTF-
compatible infinite-dimensional trace class). A natural next step is to make HTF constructive by
exhibiting explicit transfer operators or trace identities compatible with the Omega finite-part
convention, thereby compressing the protocol implication into a classical unconditional proof.

A Audit closure checklist (this version)
This appendix summarizes, in audit form, what is assumed in the closed layer and what is
derived.

A.1 Closed-layer inputs (assumptions)

Omega axioms used.

• O2: finite information / compact readout (Axiom 3.1).

• O5: scan–projection readout (Axiom 3.2).

• O6: unitary scan algebra / Weyl pair (Axiom 3.3).

• Canonical Abel regularization and finite-part admissibility along r ↑ 1 (Section 2.5; Ap-
pendix C records a sufficient existence criterion and uniqueness).

HTF structural bridge.

• Holographic Trace Formula assumption (Assumption 5.1): the Abel-weighted scan trace
matches a Weil-type explicit formula under the same regularization, and zeros contribute
as sampled exponential modes e(ρ− 1

2 )t, equivalently via meromorphic mode factors (1 −
r e(ρ− 1

2 ))−1, in a way compatible with the geometric-side holomorphy on |r| < 1.
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A.2 Closed-layer derivations (theorems)

• Lemma 5.2: if Re(ρ) > 1
2 then the mode factor (1 − r e(ρ− 1

2 ))−1 has an interior pole at a
point rρ with |rρ| < 1.

• Theorem 5.4: Omega geometric-side holomorphy on the unit disk |r| < 1 plus HTF mode
structure implies Re(ρ) = 1

2 for all nontrivial zeros.

A.3 Programmatic layer (not used in proofs)

• “Energy” or “ground state” interpretations of the rigidity.

• Discrepancy-based intuitions beyond the deterministic, explicitly stated bounds.

• Cosmological, teleological, or narrative mappings of the protocol language.

B Finite-state zeta prototypes and why infinite-state lift is un-
avoidable

This appendix expands on the technical point used in Section 4.2: finite-state constructions
yield rational zeta functions and thus cannot reproduce the nontrivial zero spectrum of ζ(s).

B.1 Finite-state dynamical zeta is rational

For a subshift of finite type with adjacency matrix A, the Artin–Mazur zeta function satisfies

ζσ(z) = 1
det(I − zA) .

Since A is finite-dimensional, det(I − zA) is a polynomial and ζσ is rational. Therefore ζσ has
only finitely many poles/zeros (counted with multiplicity), reflecting the finite-state nature of
the underlying symbolic dynamics.

B.2 Nontrivial zeta zeros require an infinite-dimensional mechanism

The Riemann zeta function has infinitely many nontrivial zeros in the critical strip and they
exhibit fine statistical structure. Any attempt to represent these zeros as a spectrum of an
operator (Hilbert–Pólya type) or as poles/zeros of a trace-class determinant requires an infinite-
dimensional setting: transfer operators, trace formulas, or controlled limits of refining partitions.

The HTF assumption in Section 5.1 is precisely a statement that such an infinite-dimensional
mechanism exists and is compatible with Omega’s protocol regularization conventions. The
closed-layer rigidity then reduces RH to an elementary analytic constraint: the geometric side is
holomorphic on the unit disk (bounded unitary scan), while any off-critical spectral mode would
introduce an interior pole, which is forbidden for holomorphic traces.

B.3 Finite parts, Abel regularization, and zeta-regularized determinants (di-
rectional note)

In many contexts, finite-part extractions along canonical regulators can be related to zeta-
regularized traces and determinants via Mellin transforms and Tauberian/Abelian comparisons.
This suggests a plausible technical route to construct HTF: identify a transfer operator (or a
scan-induced operator) whose regulated trace matches the explicit formula and whose determi-
nant encodes the zeta function. This paper does not carry out that construction; it only records
the precise closed-layer compatibility conditions that such a construction must satisfy to imply
RH.
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C Orbit calculus, Abel means, and finite parts (rotation tem-
plate)

This appendix makes precise the closed-layer regularization conventions used in the main text.
The simplest template is an irrational circle rotation (or, more generally, a torus translation),
where Abel weights and finite-part extractions admit concrete analytic formulas.

C.1 Abel generating functions are holomorphic on the unit disk

Proposition C.1 (Holomorphy and boundedness of Abel generating functions). Let (ut)t≥0 be
a bounded complex sequence: |ut| ≤ M . Define its Abel generating function

S(r) :=
∞∑

t=0
utr

t.

Then S(r) converges absolutely for every |r| < 1, defines a holomorphic function on the open
unit disk, and satisfies

|S(r)| ≤ M

1 − |r|
.

Proof. Absolute convergence for |r| < 1 follows from domination by ∑t≥0M |r|t. Holomorphy
is immediate since S is a power series with radius of convergence at least 1. The bound is the
geometric-series estimate.

C.2 Abel means for uniquely ergodic rotations

Let X = R/Z and fix α ∈ (0, 1) \ Q. Write Tα(x) = x+ α (mod 1).

Theorem C.2 (Orbit trace for an irrational rotation). If f : X → C is continuous and α /∈ Q,
then the Cesàro orbit average

AN (f ;x0) := 1
N

N−1∑
t=0

f
(
T t

α(x0)
)

converges as N → ∞ to the Lebesgue integral
∫

X f dx, uniformly in x0.

Reference. This is a standard consequence of unique ergodicity/equidistribution of irrational
rotations; see, e.g., [4, 8, 13].

Theorem C.3 (Abel means converge to the space average). If f : X → C is continuous and
α /∈ Q, then for every x0 ∈ X,

lim
r↑1

(1 − r)
∞∑

t=0
rtf
(
T t

α(x0)
)

=
∫

X
f(x) dx,

and the convergence is uniform in x0.

Reference. One route is: unique ergodicity gives convergence of Cesàro means AN (f ;x0) →
∫
f

uniformly in x0 (Theorem C.2), and Abel means preserve limits of Cesàro means (Abel–Cesàro
comparison); see [8, 9].
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C.3 Abel finite part as a constant term (uniqueness and a Fourier criterion)

Let ut := f(T t
α(x0)) and

Sf (r) :=
∞∑

t=0
utr

t, 0 < r < 1.

If f is bounded then Sf (r) is well-defined for 0 < r < 1. Following a standard Abel regularization
convention [9], we treat the constant term in the asymptotic expansion of Sf (r) as the finite
part.

Definition C.4 (Abel finite part). Assume that as r ↑ 1 the function Sf (r) admits an asymptotic
expansion

Sf (r) =
J∑

j=1

cj

(1 − r)j
+ C + o(1).

Then we define the Abel finite part by FPα(f) := C.

Lemma C.5 (Uniqueness of the finite part). If Sf (r) admits two asymptotic expansions of the
form in Definition C.4 with constants C and C ′, then C = C ′.

Proof. Subtract the two expansions; an induction on the highest pole order shows that all pole
coefficients agree, hence the constant terms agree.

For rotations, Abel sums admit an explicit Fourier–resolvent representation. Write Fourier
coefficients of f as

f̂(m) :=
∫

X
f(x) e−2πimx dx, m ∈ Z.

Proposition C.6 (Fourier resolvent formula for Abel orbit sums). Assume
∑

m∈Z |f̂(m)| < ∞.
Then for every |r| < 1,

Sf (r) =
∑
m∈Z

f̂(m) e2πimx0

1 − r e2πimα
.

Proof. Under the absolute Fourier summability hypothesis, the Fourier series converges abso-
lutely and uniformly, allowing termwise summation of the geometric series ∑t≥0(re2πimα)t.

Corollary C.7 (Simple pole and explicit finite part under a Diophantine/Fourier criterion).
Assume the hypotheses of Proposition C.6 and in addition

∑
m∈Z\{0}

|f̂(m)|
|1 − e2πimα|

< ∞.

Then as r ↑ 1,

Sf (r) = f̂(0)
1 − r

+
∑

m∈Z\{0}

f̂(m) e2πimx0

1 − e2πimα
+ o(1).

In particular, FPα(f) exists and equals the explicit constant term.

C.4 Golden-branch star discrepancy bound via Denjoy–Koksma and Os-
trowski

We record an explicit one-dimensional star-discrepancy bound used in Section 2.4. Let PN =
{{x0 + tα}}N−1

t=0 ⊂ [0, 1).
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Theorem C.8 (Ostrowski/Denjoy–Koksma bound for interval counts). Let α = [0; a1, a2, . . . ] ∈
(0, 1)\Q and let qk be the continued-fraction convergent denominators. Let W ⊂ X be an interval
and set st = 1W (x0 + tα) and SN = ∑N−1

t=0 st. For every N ≥ 1 write the Ostrowski expansion
N = ∑m

k=0 bkqk with admissible digits. Then

∣∣SN −N µ(W )
∣∣ ≤ 2

m∑
k=0

bk,

uniformly in x0 and W .

Reference. This is a standard consequence of Denjoy–Koksma at convergent times plus the
Ostrowski block decomposition; see [6, 7, 14].

Corollary C.9 (Explicit bound for the golden branch). Let α = φ−1 = [0; 1, 1, 1, . . . ]. Then
for every N ≥ 1,

D∗
N (PN ) ≤

2
(
2 + logφN

)
N

.

Proof. For one-dimensional star discrepancy, it suffices to take W = [0, u) in Theorem C.8 and
divide by N , giving

D∗
N (PN ) ≤ 2

N

m∑
k=0

bk.

For the golden branch all continued-fraction digits satisfy ak = 1, hence all Ostrowski digits
satisfy bk ∈ {0, 1}, so ∑m

k=0 bk ≤ m + 1. Moreover, for the golden branch the convergent
denominators are Fibonacci numbers qm = Fm+1, and one has qm ≥ φm−1 for m ≥ 1. Since
qm ≤ N , it follows that m ≤ 1 + logφN , hence m + 1 ≤ 2 + logφN . Combining the bounds
yields the stated inequality.

D Reproducible experiment code (pure Python)

D.1 Experiment A: exact one-dimensional star discrepancy for the golden
scan

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Experiment A: exact 1D star discrepancy for the golden-branch Kronecker scan.

This script writes a LaTeX table row file into:
sections/generated/golden_discrepancy_rows.tex

No third-party dependencies.
"""

from __future__ import annotations

import math
from pathlib import Path
from typing import List, Sequence

def golden_points(n: int) -> List[float]:
phi = (1.0 + math.sqrt(5.0)) / 2.0
alpha = 1.0 / phi # golden branch
return [(t * alpha) % 1.0 for t in range(n)]
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def star_discrepancy_1d(points: Sequence[float]) -> float:
"""
Exact 1D star discrepancy:

D_N^* = sup_{u in [0,1]} | (1/N) #{x_i < u} - u |
computed from sorted points.
"""
n = len(points)
if n <= 0:

return 0.0
xs = sorted(points)
inv_n = 1.0 / float(n)
d_plus = 0.0
d_minus = 0.0
for i, x in enumerate(xs):

a = (float(i + 1) * inv_n) - x
b = x - (float(i) * inv_n)
if a > d_plus:

d_plus = a
if b > d_minus:

d_minus = b
return max(d_plus, d_minus)

def bound_gold(n: int) -> float:
phi = (1.0 + math.sqrt(5.0)) / 2.0
return 2.0 * (2.0 + math.log(float(n), phi)) / float(n)

def fmt_sci_unsigned(x: float, sig: int = 4) -> str:
"""LaTeX scientific notation without sign, for nonnegative quantities."""
if x <= 0.0:

return "$0$"
exp = int(math.floor(math.log10(x)))
mant = x / (10.0 ** exp)
mant = round(mant, max(sig - 1, 0))
if mant >= 10.0:

mant /= 10.0
exp += 1

mant_str = f"{mant:.{max(sig - 1, 0)}f}".rstrip("0").rstrip(".")
return f"${mant_str}\\times 10^{{{exp}}}$"

def fmt_decimal(x: float, digits: int = 4) -> str:
return f"${x:.{digits}f}$"

def write_rows(path: Path, lines: List[str]) -> None:
path.parent.mkdir(parents=True, exist_ok=True)
out = list(lines)
if out:

last = out[-1].rstrip()
if last.endswith("\\\\"):

last = last[:-2].rstrip()
out[-1] = last

path.write_text("\n".join(out).rstrip() + "\n", encoding="utf-8")
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def main() -> None:
root = Path(__file__).resolve().parent.parent
gen = root / "sections" / "generated"

ns = [1000, 5000, 10000, 50000]
rows: List[str] = []
for n in ns:

pts = golden_points(n)
dstar = star_discrepancy_1d(pts)
bound = bound_gold(n)
ratio = dstar / bound if bound > 0.0 else 0.0
rows.append(

f"{n:,} & {fmt_sci_unsigned(dstar)} & {fmt_sci_unsigned(bound)} &
{fmt_decimal(ratio, digits=4)} \\\\"↪→

)

write_rows(gen / "golden_discrepancy_rows.tex", rows)
print(f"Wrote LaTeX rows into: {gen}")
print("File: golden_discrepancy_rows.tex")

if __name__ == "__main__":
main()

D.2 Experiment B: toy “zero-mode” signal, energy growth, and Abel thresh-
olds

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Experiment B: toy "zero-mode" signal, discrete energy growth, and Abel thresholds.

We build a signal from the imaginary parts of the first K nontrivial zeta zeros on
the critical line (hard-coded constants), then introduce an artificial real-part
shift delta>0 on a single mode and observe:

(i) rapid energy growth in T, and
(ii) an Abel threshold near r0 = exp(-delta).

This script writes LaTeX table row files into:
sections/generated/toy_energy_rows.tex
sections/generated/toy_abel_rows.tex

No third-party dependencies.
"""

from __future__ import annotations

import math
from pathlib import Path
from typing import List, Sequence, Tuple

# Imaginary parts gamma_k of the first 20 nontrivial zeros 1/2 + i*gamma_k.
# Values are standard numerical constants; high precision is not required here.
GAMMAS_20: List[float] = [
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14.134725141734693,
21.022039638771555,
25.010857580145689,
30.424876125859513,
32.935061587739190,
37.586178158825671,
40.918719012147495,
43.327073280914999,
48.005150881167160,
49.773832477672302,
52.970321477714461,
56.446247697063395,
59.347044002602353,
60.831778524609810,
65.112544048081607,
67.079810529494174,
69.546401711173979,
72.067157674481908,
75.704690699083933,
77.144840068874805,

]

def signal(t: int, gammas: Sequence[float], delta: float = 0.0, idx: int = 0) ->
float:↪→

"""
e_delta(t) = exp(delta*t)*cos(gamma_idx * t) + sum_{k != idx} cos(gamma_k * t).
"""
s = 0.0
for j, g in enumerate(gammas):

amp = math.exp(delta * float(t)) if (delta != 0.0 and j == idx) else 1.0
s += amp * math.cos(g * float(t))

return s

def energy_discrete(T: int, gammas: Sequence[float], delta: float = 0.0) ->
Tuple[float, float]:↪→

"""
Discrete energy proxy: E(T) = sum_{t=0}^{T-1} |e_delta(t)|^2.
Returns (energy, max_abs).
"""
e2 = 0.0
m = 0.0
for t in range(T):

v = signal(t, gammas, delta=delta)
av = abs(v)
if av > m:

m = av
e2 += v * v

return e2, m

def abel_partial_sum(Tmax: int, r: float, gammas: Sequence[float], delta: float = 0.0)
-> float:↪→

"""
Finite-horizon Abel sum S_delta(r;Tmax) = sum_{t=0}^{Tmax-1} r^t e_delta(t).
"""
s = 0.0
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wt = 1.0
for t in range(Tmax):

s += wt * signal(t, gammas, delta=delta)
wt *= r

return s

def fmt_sci_unsigned(x: float, sig: int = 4) -> str:
"""LaTeX scientific notation without sign, for nonnegative quantities."""
x = float(x)
if x <= 0.0:

return "$0$"
exp = int(math.floor(math.log10(x)))
mant = x / (10.0 ** exp)
mant = round(mant, max(sig - 1, 0))
if mant >= 10.0:

mant /= 10.0
exp += 1

mant_str = f"{mant:.{max(sig - 1, 0)}f}".rstrip("0").rstrip(".")
return f"${mant_str}\\times 10^{{{exp}}}$"

def fmt_decimal(x: float, digits: int = 2) -> str:
return f"${x:.{digits}f}$"

def write_rows(path: Path, lines: List[str]) -> None:
path.parent.mkdir(parents=True, exist_ok=True)
out = list(lines)
if out:

last = out[-1].rstrip()
if last.endswith("\\\\"):

last = last[:-2].rstrip()
out[-1] = last

path.write_text("\n".join(out).rstrip() + "\n", encoding="utf-8")

def main() -> None:
root = Path(__file__).resolve().parent.parent
gen = root / "sections" / "generated"

gammas = GAMMAS_20
Ts = [50, 100, 150]
deltas = [0.00, 0.05, 0.10]

energy_rows: List[str] = []
for T in Ts:

for delta in deltas:
E, M = energy_discrete(T, gammas, delta=delta)
energy_rows.append(

f"{T:d} & {fmt_decimal(delta, digits=2)} & {fmt_sci_unsigned(E)} &
{fmt_sci_unsigned(M)} \\\\"↪→

)
write_rows(gen / "toy_energy_rows.tex", energy_rows)

delta = 0.10
Tmax = 2000
rs = [0.80, 0.90, 0.92, 0.94, 0.96]
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abel_rows: List[str] = []
for r in rs:

S = abel_partial_sum(Tmax, r, gammas, delta=delta)
abel_rows.append(

f"{fmt_decimal(delta, digits=2)} & {fmt_decimal(r, digits=2)} &
{fmt_sci_unsigned(abs(S), sig=5)} \\\\"↪→

)
write_rows(gen / "toy_abel_rows.tex", abel_rows)

print(f"Wrote LaTeX rows into: {gen}")
print("Files: toy_energy_rows.tex, toy_abel_rows.tex")

if __name__ == "__main__":
main()
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