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Abstract

We define a purely mathematical notion of resolution folding: a computable map from
a finite microstate readout to a smaller stable type space selected by constraint channels.
At minimal local resolution, the microstate space is Ω6 := {0, 1}6 with |Ω6| = 64 and
linearization H6 := ℓ2(Ω6).

The stability mechanism is organized into three commuting channels, denoted φ–π–e.
The φ-channel is the golden-mean (Zeckendorf) grammar constraint forbidding adjacent
ones. The π-channel is a cyclic-closure refinement inside the admissible sector, induced
by wrap-around admissibility and periodic-orbit counting. The e-channel is an analytic
stability viewpoint expressed by Artin–Mazur zeta functions and spectral normalization; we
also record a weighted one-parameter extension in which e becomes genuinely distinct from
φ without changing the forbidden-word grammar.

While the Fibonacci count of admissible words is classical, the finite-resolution folding is
made explicit and quantitative. We define a computable surjection Fold6 : {0, . . . , 63}↠ X6
by Zeckendorf normalization and window truncation, and we give closed-form preimage sets
and an exact degeneracy histogram for Fold6. Beyond the base case, we provide a gen-
eral preimage characterization for Foldm and derive quantitative growth bounds for folding
degeneracy.

To connect folding to scale change, we couple Hilbert addressing (spatial refinement and
its dihedral layout group D4) with Zeckendorf window growth (syntactic refinement). Finally,
we state two non-premise application interfaces—a codon-to-type compression template and
a three-channel factorization template—formulated as falsifiable mapping problems rather
than assumptions.

Keywords: Zeckendorf representation; golden mean shift; shifts of finite type; Artin–Mazur
zeta function; Abel normalization; pole barrier; monodromy; Hilbert curve; dihedral group;
resolution folding.

Conventions. Unless otherwise stated, log denotes the natural logarithm. We use w =
w1 · · ·wm for a finite binary word with letters wi ∈ {0, 1}, and reserve n for Hilbert resolu-
tion order and m for Zeckendorf window length. The standard Abel path refers to the limit
process r ↑ 1 with r ∈ (0, 1), applied to Abel generating functions defined (and holomorphic)
for |r| < 1.
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1 Introduction

1.1 Problem statement: from 64 microstates to a stable 21-type sector

Fix a finite local readout space with 64 microstates,

Ω6 := {0, 1}6, |Ω6| = 26 = 64,

and its linearization H6 := ℓ2(Ω6) ∼= C64. Our goal is to formalize, in a purely mathematical
language, a notion of resolution folding: how a finite-resolution readout can admit a computable
projection from the full microstate set to a smaller, stable effective set, and how this mechanism
can iterate across scales.

Definition 1.1 (Resolution folding scheme (finite window)). Fix a window length m ≥ 1 and
let Ωm := {0, 1}m be the microstate alphabet. A resolution folding scheme at window length m
consists of:

• a stable type set Xm ⊆ Ωm selected by constraint channels (equivalently, Xm = {w ∈ Ωm :
D(w) = 0} for some nonnegative defect function D);

• a surjective folding map Foldm : Ωm ↠ Xm (or, after indexing Ωm
∼= {0, . . . , 2m − 1}, a

surjection from {0, . . . , 2m − 1} onto Xm);

• the induced orthogonal projection Pm : ℓ2(Ωm)→ ℓ2(Ωm) onto ℓ2(Xm).

A scale interface is a family of such schemes as m varies, together with natural maps relating
(Xm,Foldm) across different m (Section 7).

Remark 1.2 (Relation to companion manuscripts). Motivations for coupling address families,
canonical codings, and Abel-type regularizations appear in the broader HPA–Ω manuscript series;
see, e.g., [1–3]. The present paper is self-contained and uses only the abstract mathematical
structures needed for the 64→ 21 folding analysis.

Related work and positioning. The golden mean constraint defines a shift of finite type and
is among the standard model examples in symbolic dynamics; see [4]. The determinant/zeta
identities used here are classical for topological Markov shifts and sit within thermodynamic
formalism and transfer-operator methods; see [5–7] for general frameworks and refinements
(pressure, weighted zeta functions, and Ruelle operators). Zeckendorf and Fibonacci numeration,
and associated algorithms, are standard in the combinatorics on words and automatic sequences
literature; see [8, 9]. The Hilbert curve and its use as a locality-preserving ordering (e.g. in
indexing and embedding contexts) are classical; see [10–12].

1.2 Contributions (and what is classical)

At fixed word length 6, the golden-mean forbidden grammar (no adjacent ones) selects precisely
21 admissible binary words. This Fibonacci count and its asymptotic growth rate are classical.
The goal of this paper is not to re-prove standard symbolic-dynamics background, but to make
the folding mechanism explicit and quantitative at a fixed finite resolution, while keeping a clean
interface to higher-resolution generalizations.

Concretely, beyond standard background, the paper contributes:

• An explicit folding map with closed preimages. We define a computable surjec-
tion Fold6 : {0, . . . , 63} ↠ X6 via Zeckendorf normalization and window truncation, and
we give closed-form preimage sets and an exact degeneracy histogram (Theorem 6.15;
Appendix E).
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• Quantitative control beyond the base case. We provide a general preimage char-
acterization for Foldm and derive explicit degeneracy bounds and scaling laws for the
2m → Fm+2 compression (Section 6).

• A symmetry-invariant spatial interface. We formalize the dihedral layout family D4
for Hilbert addressing and prove exact invariance statements for adjacency-based statistics
under layout changes (Section 2).

• An analytic stability channel with a separable extension. We formulate the e-
channel via zeta/Abel normalization and record a weighted finite-state extension in which
analytic stability is not equivalent to a single forbidden word (Section 5).

With these pieces in place, we enrich the φ-stable sector with two additional, commuting
channels:

• (π) discrete monodromy / closure. Within the admissible set, a cyclic wrap-around
condition splits the 21 stable words into 18 cyclically admissible states and 3 boundary
states.

• (e) analytic stability / Abel–zeta pole barrier. The golden-mean shift has zeta
function ζ(z) = 1/(1− z − z2); after spectral normalization z = r/φ, the normalized zeta
is holomorphic on |r| < 1 with its principal pole on the boundary.

1.3 Main results (finite resolution)

Let X6 ⊂ Ω6 be the set of length-6 words with no occurrence of the substring 11. Our main
finite-resolution statements are:

• Stable dimension (64→ 21). The orthogonal projection Pφ : H6 → H6 onto ℓ2(X6) has
rank |X6| = 21.

• Canonical split (21 = 18⊕ 3). The cyclic admissibility condition (wrap-around allowed
transition) defines a partition

X6 = Xcyc
6 ⊔ Xbdry

6 , |Xcyc
6 | = 18, |Xbdry

6 | = 3,

with Xbdry
6 = {100001, 100101, 101001}.

• A computable folding map. We define a natural surjection

Fold6 : {0, . . . , 63}↠ X6

by taking the Zeckendorf representation of an integer and truncating to a length-6 window.

• Strong degeneracy law. The full preimage structure of Fold6 on {0, . . . , 63} is explicit:
every output has degeneracy 2, 3, or 4, with histogram (8, 4, 9) for (2, 3, 4), and closed-form
preimage sets (Theorem 6.15).

1.4 Quantitative summary at a glance

Table 1 records the core finite-resolution quantities and their general formulas (when available).
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Quantity General formula At window length 6

Microstate count |Ωm| = 2m |Ω6| = 64
Admissible (stable) types |Xm| = Fm+2 |X6| = 21
Cyclically admissible types |Xcyc

m | = Tr(Am) = Fm−1 + Fm+1 |Xcyc
6 | = 18

Boundary types |Xbdry
m | = Fm−2 (for m ≥ 2) |Xbdry

6 | = 3
Golden mean zeta ζ(z) = 1/det(I − zA) ζ(z) = 1/(1− z − z2)
Spectral normalization z = r/ρ(A), pole at r = 1 ρ(A) = φ, pole at r = 1
Mean folding degeneracy 2m

|Xm| = 2m

Fm+2
64
21

Fold_6 degeneracy histogram explicit finite classification (2 7→ 8, 3 7→ 4, 4 7→ 9)

Table 1: Quantitative summary of the 64→ 21 folding model and its generalizations.

1.5 Resolution as recursion: Hilbert addressing and Zeckendorf windowing

Two recursive structures provide the scale interface. On the spatial side, finite-resolution Hilbert
addressing maps a one-dimensional tick index to a two-dimensional 2n × 2n grid, with an 8-
element layout group D4 acting by global symmetries. On the syntactic side, increasing the
Zeckendorf window length m grows the admissible set size as |Xm| = Fm+2 (Fibonacci recur-
sion), with asymptotic rate |Xm| ≍ φm. We view resolution folding as a coupling of these two
recursions: spatial refinement changes the embedding/locality model, while syntactic refinement
changes the stable type space.

1.6 Roadmap

Section 2 defines the 64-state model and Hilbert address families. Section 3 develops the φ-
constraint and proves the 21 count. Section 4 introduces the π-channel and the 18 ⊕ 3 split.
Section 5 develops the Abel–zeta pole-barrier viewpoint and formalizes the e-channel at finite
window. Section 6 defines the folding map Fold6 and proves surjectivity. Section 7 discusses
recursion across Hilbert order and Zeckendorf window. Section 8 packages the construction as
commuting defect operators and states a conservative iterability axiom. Section 9 records two
application interfaces as falsifiable mapping problems.

2 Discrete state space and address families

2.1 The 64-state local readout space

We work at fixed local readout length 6. Define

Ω6 := {0, 1}6, H6 := ℓ2(Ω6) ∼= C64,

with the standard orthonormal basis {ew : w ∈ Ω6}. Elements w ∈ Ω6 will be referred to as
microstate labels.

Binary indexing convention. We will also use the canonical identification between Ω6 and
integer indices {0, 1, . . . , 63} given by binary expansion. Define

int6 : Ω6 → {0, 1, . . . , 63}, int6(w1 · · ·w6) :=
6∑

j=1
wj 26−j .

Its inverse bin6 : {0, . . . , 63} → Ω6 maps an integer to its 6-bit binary word. This convention
turns statements about 64 indices into equivalent statements about 6-bit words; alternative
identifications correspond to a change of readout basis.
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2.2 Hilbert addressing at finite spatial resolution

Let n ≥ 1 and consider the square lattice

Λn := {0, 1, . . . , 2n − 1}2, |Λn| = 22n.

A finite-resolution Hilbert address map is a bijection

Hn : {0, 1, . . . , 22n − 1} → Λn

with a one-step locality property: consecutive indices map to nearest neighbors on the grid, i.e.

∥Hn(t+ 1)−Hn(t)∥1 = 1 (0 ≤ t < 22n − 1),

where ∥·∥1 is the ℓ1 (Manhattan) norm on Z2. Such maps are standard discrete versions of the
Hilbert space-filling curve; see, e.g., [10, 11]. They are also widely used as locality-preserving
orderings in applications (e.g. clustering behavior for range queries); see [12].

For the purposes of this paper, the relevant point is the cardinality match: at order n = 3 one
has |Λ3| = 26 = 64, matching the microstate count. Thus a resolution-3 screen lattice provides
a canonical geometric carrier for a 64-state slice.

Remark 2.1 (Scan indices as words). At order n = 3, a scan index t ∈ {0, . . . , 63} can be
viewed as a word bin6(t) ∈ Ω6. Therefore any constraint or folding map defined on Ω6 can be
pulled back to scan indices (and thus to screen sites via H3).

2.3 Layout group and 8 address families

Let G := D4 be the dihedral group of the square (four rotations and four reflections), with
|G| = 8. Each element g ∈ G acts on Λn by an isometry, hence produces a new address map

H(g)
n := g ◦Hn.

We interpret {H(g)
n : g ∈ G} as an address family of size 8 at fixed resolution. Changing g

preserves bijectivity and locality but changes how local neighborhoods are compiled into a scan
order.

Proposition 2.2 (D4 invariance of adjacency-based scan-order statistics). Fix a resolution n

and a bijective address map Hn. Let g ∈ D4 and define H(g)
n = g ◦Hn. Let ∼ denote nearest-

neighbor adjacency on Λn. Then for any function f : {0, . . . , 22n − 1} → R and any edge
functional of the form

S(H, f) :=
∑
x∼y

x,y∈Λn

Φ
(
f(H−1(x)), f(H−1(y))

)
,

where Φ : R2 → R is any fixed function, one has

S(H(g)
n , f) = S(Hn, f).

Proof. Since g is a graph automorphism of (Λn,∼), the map (x, y) 7→ (g−1x, g−1y) is a bijection
of the edge set. Moreover, (H(g)

n )−1(x) = H−1
n (g−1x). Substituting and changing variables over

edges yields equality.

Remark 2.3 (Concrete invariants). Examples covered by Proposition 2.2 include:

• the histogram of scan-index separations |H−1(x)−H−1(y)| over neighboring pairs x ∼ y;

• label-correlation counts for label fields of the form x 7→ Foldm(H−1(x));
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• label-correlation counts for label fields of the form x 7→ Foldbin
m (binm(H−1(x)));

• average Hamming distance between labels across adjacent sites (with Φ chosen accordingly).

Thus the dihedral layout family changes the embedding only by a symmetry, and adjacency-based
statistics are exactly layout-invariant.

Corollary 2.4 (Geometric rigidity under the layout group). For fixed n, the set of layouts
{H(g)

n : g ∈ D4} is a D4-orbit under left composition, and any two layouts differ by a global
lattice isometry. Consequently, within this model class, any statement about a pulled-back label
field x 7→ ℓ(H−1

n (x)) that depends only on the adjacency relation x ∼ y is independent of the
chosen layout.

Proof. For g, h ∈ D4 one has h ◦ H(g)
n = (hg) ◦ Hn, so the family is a D4-orbit. If H(g1)

n and
H

(g2)
n are two layouts, then H

(g2)
n = (g2g

−1
1 ) ◦ H(g1)

n with g2g
−1
1 ∈ D4 a lattice isometry. The

final assertion follows from Proposition 2.2.

2.4 Two-sector layout space G×G and a 6-bit encoding

In many hierarchical constructions one considers two independent address families (two sectors)
on the same lattice. Abstractly this means choosing (g+, g−) ∈ G×G, hence defining a layout
state space

Ωlayout := G×G, |Ωlayout| = 8 · 8 = 64.

Therefore there exists a (non-canonical) bijection

ι : Ωlayout
∼−→ Ω6.

We do not fix ι in the main text; different choices correspond to different readout bases and
encodings. Appendix B records a concrete 6-bit encoding obtained from the normal form g =
rksϵ in D4.

Remark 2.5 (Why Hilbert addressing appears here). The φ–π–e constraints are formulated at
the level of words w ∈ Ω6. Hilbert addressing enters as the resolution mechanism: it specifies
how a one-dimensional scan index is compiled into a spatial neighborhood structure on a screen
lattice at a given resolution, and it provides a natural symmetry group (the D4 layout group).
This yields a clean separation: constraints define stable types; addressing defines how those types
are embedded and refined across spatial scales.

3 The phi-constraint: Zeckendorf legality and the golden mean
subshift

3.1 Golden mean grammar at finite window length

Let F := {11} be the forbidden word set. Define the admissible set of length-6 words

X6 := {w ∈ {0, 1}6 : w contains no occurrence of 11}.

Equivalently, w = w1 · · ·w6 ∈ X6 if and only if wiwi+1 = 0 for i = 1, . . . , 5. This is the
length-6 truncation of the classical golden mean shift (a shift of finite type). It also coincides
with the locality rule for Zeckendorf representations in the golden Ostrowski degeneration; see,
e.g., [8, 9, 13].
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3.2 Counting admissible words: |X6| = 21
Let an denote the number of binary words of length n with no adjacent ones.

Proposition 3.1 (Fibonacci recursion for no-adjacent-one words). For n ≥ 3 one has

an = an−1 + an−2, a1 = 2, a2 = 3,

hence an = Fn+2 where (Fk) is the Fibonacci sequence with F1 = 1, F2 = 1.

Proof. Classify admissible words by their first letter. If the first letter is 0, the remaining n− 1
letters form any admissible word, contributing an−1 possibilities. If the first letter is 1, the
second letter must be 0, and the remaining n− 2 letters form any admissible word, contributing
an−2. Thus an = an−1 + an−2. The initial values are a1 = 2 (words 0, 1) and a2 = 3 (words
00, 01, 10).

Corollary 3.2 (The 64→ 21 count). One has |X6| = a6 = F8 = 21.

3.3 The phi-stable subspace as an orthogonal projection

Define the orthogonal projector

Pφ : H6 → H6, Pφ(ew) =
{

ew, w ∈ X6,

0, w /∈ X6.

Proposition 3.3 (φ-stability is 21-dimensional). The operator Pφ is an orthogonal projection
and

rank(Pφ) = dim Im(Pφ) = |X6| = 21.

Proof. By construction Pφ is diagonal in the orthonormal basis {ew} with eigenvalues 0 or 1.
Hence P 2

φ = Pφ = P ∗
φ and its image is ℓ2(X6), of dimension |X6| = 21.

Remark 3.4 (Entropy rate and the appearance of φ). The appearance of φ is not only combi-
natorial but also dynamical. The golden mean shift is a shift of finite type with adjacency matrix
A =

( 1 1
1 0
)
, hence its topological entropy equals log ρ(A) = logφ; see [4]. At the finite-window

level, Proposition 3.1 gives |Xn| = Fn+2, so 1
n log |Xn| → logφ as n → ∞ by the standard Fi-

bonacci asymptotics. In this sense φ is the canonical growth/grammar constant for the stability
constraint “no adjacent ones”.

Proposition 3.5 (Entropy from admissible growth). Let Xn ⊂ {0, 1}n be the length-n golden
mean language (no adjacent ones). Then

lim
n→∞

1
n

log |Xn| = logφ.

Proof. Proposition 3.1 gives |Xn| = Fn+2. By Binet’s formula (or any standard Fibonacci
bound), Fn+2 = φn+2−(−φ)−n−2

√
5 , hence Fn+2 = Θ(φn). Taking logs and dividing by n yields the

limit logφ.

4 The pi-channel: discrete monodromy and cyclic closure
In continuous settings, “monodromy” and “single-valuedness” are expressed via loops and holon-
omy. Here we use the word monodromy only as a mnemonic for a discrete closure test: a finite
word determines a directed path on a constraint graph, and closure is detected by a wrap-around
admissibility condition. For clarity, the mathematical object of interest in this paper is cyclic
closure (periodic-orbit compatibility), not a continuous holonomy.
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4.1 The golden mean graph

The golden mean shift admits a two-state Markov presentation. Let the vertex set be V := {0, 1}
and define the allowed directed edges

E := {0→ 0, 0→ 1, 1→ 0},

excluding 1→ 1. The adjacency matrix is

A =
(

1 1
1 0

)
.

Every word w = w1 · · ·w6 ∈ X6 determines a directed path

w1 → w2 → · · · → w6

of length 5 on this graph.

4.2 Endpoint defect via a boundary operator

Let ZV be the free abelian group generated by V , and ZE the free abelian group generated by
E. Define the boundary operator ∂ : ZE → ZV by

∂(u→ v) := v − u.

For w ∈ X6, let c(w) ∈ ZE be the path chain obtained by summing the edges traversed by the
path w1 → · · · → w6. Then

∂c(w) = w6 − w1 ∈ ZV.

We call w endpoint-closed if ∂c(w) = 0, i.e. w1 = w6, and endpoint-open otherwise.

4.3 Cyclic admissibility and the 18⊕ 3 split

For symbolic dynamics and zeta-function purposes, the relevant notion of closure is cyclic:
a length-6 word corresponds to a periodic orbit segment only if the wrap-around transition
w6 → w1 is also allowed. For the golden mean constraint, this wrap-around admissibility is
equivalent to excluding w6w1 = 11.

Remark 4.1 (Why cyclic closure is the π-channel). The cyclic closure condition is the one
compatible with periodic-orbit counting and the Artin–Mazur zeta identities used in Section 5.
Endpoint closure (w1 = w6) is also natural from a chain-boundary viewpoint, but it does not
encode periodic admissibility for the golden mean constraint.

Definition 4.2 (Cyclic admissibility and boundary states). Define

Xcyc
6 := {w ∈ X6 : w6w1 ̸= 11}, Xbdry

6 := X6 \Xcyc
6 .

We call elements of Xcyc
6 cyclically admissible, and elements of Xbdry

6 boundary states.

Proposition 4.3 (The boundary set has size 3). One has

Xbdry
6 = {100001, 100101, 101001}, |Xbdry

6 | = 3, |Xcyc
6 | = 18.

Proof. The wrap-around transition is forbidden if and only if w1 = w6 = 1. If w1 = w6 = 1 and
w ∈ X6, then w2 = w5 = 0. The middle block (w3, w4) can be (0, 0), (0, 1), or (1, 0) (but not
(1, 1)). This yields exactly three boundary words:

100001, 100101, 101001.

Hence |Xbdry
6 | = 3 and |Xcyc

6 | = |X6| − 3 = 21− 3 = 18.
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4.4 General length-n counts and the Lucas trace

The cyclic/boundary split is not special to length 6; it admits closed formulas at every length.

Proposition 4.4 (Cyclic words, boundary words, and a Lucas-number identity). Let Xn ⊂
{0, 1}n be the set of length-n words with no adjacent ones, and define

Xcyc
n := {w ∈ Xn : wnw1 ̸= 11}, Xbdry

n := Xn \Xcyc
n .

Then for n ≥ 2,

|Xbdry
n | = Fn−2, |Xcyc

n | = |Xn| − |Xbdry
n | = Fn+2 − Fn−2.

Moreover, if A =
( 1 1

1 0
)
, then

|Xcyc
n | = Tr(An) = Fn−1 + Fn+1,

which equals the Lucas number Ln (defined by L0 = 2, L1 = 1, and Ln+2 = Ln+1 + Ln).

Proof. A word w ∈ Xn lies in Xbdry
n if and only if w1 = wn = 1. Then admissibility forces

w2 = wn−1 = 0, and the middle block (w3, . . . , wn−2) is an arbitrary admissible word of length
n − 4. Thus |Xbdry

n | = |Xn−4| = F(n−4)+2 = Fn−2. The identity |Xcyc
n | = |Xn| − |Xbdry

n | is
immediate.

For the trace formula, cyclic admissible words of length n are in bijection with closed walks
of length n on the Markov graph with adjacency matrix A, hence their number is Tr(An); see,
e.g., [4]. To compute Tr(An), extend Fibonacci by F0 := 0 and note the matrix identity

An =
(
Fn+1 Fn

Fn Fn−1

)
(n ≥ 1),

which follows by induction using An+1 = AnA and the Fibonacci recursion. Taking the trace
yields Tr(An) = Fn+1 + Fn−1.

Remark 4.5 (Two natural π-defects). The π-channel admits two closely related nonnegative
defects on X6:

• Endpoint defect: Dend
π (w) := 1{w1 ̸=w6}.

• Cyclic defect: Dcyc
π (w) := 1{w1=w6=1}.

The cyclic defect is the one compatible with periodic-orbit counting and zeta identities (Sec-
tion 5), and it is responsible for the canonical 18⊕ 3 split within X6.

5 The e-channel: Abel–zeta stability and a pole barrier
The e-channel formalizes an analytic stability viewpoint: stable grammars admit generating
functions with a controlled holomorphic domain. In the finite-state setting of shifts of finite
type, the relevant analytic content is completely captured by a rational zeta function and its
pole locations (equivalently, the spectral radius of the adjacency matrix). We use the variable
r in the unit disk as a normalized power-series parameter; no Abel finite-part subtleties are
required at this level.
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5.1 Artin–Mazur zeta for the golden mean shift

Let A =
( 1 1

1 0
)

be the golden mean adjacency matrix (Section 4). For n ≥ 1, let Pn be the
number of period-n points of the golden mean shift. Equivalently, Pn is the number of cyclic
admissible words of length n (wrap-around allowed).

Proposition 5.1 (Determinant identity for the zeta function). Define the Artin–Mazur zeta
function

ζ(z) := exp
(∑

n≥1

Pn

n
zn
)
.

Then
ζ(z) = 1

det(I − zA) = 1
1− z − z2 .

Proof. The zeta function ζ was introduced in [14]. For a topological Markov shift with adjacency
matrix A, one has Pn = Tr(An) and

ζ(z) = exp
(∑

n≥1

Tr(An)
n

zn
)

= 1
det(I − zA) ;

see, e.g., [4, 7]. For A =
( 1 1

1 0
)
, a direct computation gives det(I − zA) = 1− z − z2.

Remark 5.2 (Rationality for finite-state shifts). For shifts of finite type given by a finite ad-
jacency matrix, the determinant identity implies that ζ is a rational function whose poles are
reciprocals of eigenvalues of the matrix. In particular, analytic stability questions reduce to
spectral information (Perron–Frobenius theory) in the finite-state setting [4,7].

5.2 Pole locations and spectral radius

The eigenvalues of A are

λ± = 1±
√

5
2 = φ, −φ−1.

Hence ζ(z) has poles at z = φ−1 and z = −φ. The nearest singularity to the origin is at z = φ−1,
so the radius of convergence of the defining power series is φ−1.

Proposition 5.3 (Radius of convergence equals inverse spectral radius). Let A be the adjacency
matrix of a shift of finite type and let ζA(z) = 1/det(I − zA). Then the radius of convergence
of the power series defining log ζA(z) around z = 0 equals 1/ρ(A).

Proof. By the determinant formula, poles of ζA are reciprocals of eigenvalues of A. Thus the
singularity of ζA nearest to the origin lies at modulus 1/ρ(A). Since log ζA is analytic wherever
ζA is analytic and nonzero, the same radius controls the defining series for log ζA.

5.3 Spectral (Abel-type) normalization and a unit-disk holomorphy domain

Introduce a normalized complex variable r by setting

z = r

φ
.

Define
ζ̃(r) := ζ

( r
φ

)
= 1

1− r
φ −

r2

φ2

= 1(
1− r

)(
1 + φ−2r

) .
The factorization follows from φ2 = φ + 1, which implies 1 − φ−2 = φ−1. Here φ−2r denotes
the product φ−2 · r (not an exponential dependence on r). Then ζ̃ is holomorphic in the open
unit disk |r| < 1, and its principal pole is located at r = 1 on the boundary. The second pole
r = −φ2 lies strictly outside the unit disk.
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Remark 5.4 (A pole-barrier interpretation). The change of variables z = r/φ is a spectral
normalization that places the dominant singularity of the golden mean zeta at the boundary
point r = 1. In this coordinate the normalized zeta has no poles in |r| < 1. For comparison,
the full two-symbol shift (allowing 11) has adjacency matrix B =

( 1 1
1 1
)

with spectral radius
ρ(B) = 2 and zeta (1 − 2z)−1 [4]. Under the same normalization z = r/φ, its pole lies at
r = φ/ρ(B) = φ/2 < 1. Equivalently, the full shift has a larger exponential growth rate than the
golden mean shift, so its zeta becomes singular strictly inside the unit disk in the golden-mean
normalization.

Proposition 5.5 (Spectral normalization yields a unit-disk holomorphy domain). Let A be a
nonnegative d× d matrix with spectral radius ρ(A) > 0 and define

ζA(z) := 1
det(I − zA) .

Then the normalized function

ζ̃A(r) := ζA

( r

ρ(A)
)

= 1
det
(
I − r

ρ(A)A
)

is holomorphic on |r| < 1. Moreover, if A has an eigenvalue equal to ρ(A) (as in Perron–
Frobenius theory), then r = 1 is a pole on the boundary.

Proof. Poles of ζA are reciprocals of eigenvalues of A. Thus poles of ζ̃A occur at r = ρ(A)/λ,
where λ ranges over eigenvalues. Since |λ| ≤ ρ(A) for all eigenvalues, every pole satisfies |r| ≥ 1,
proving holomorphy on |r| < 1. If λ = ρ(A) is an eigenvalue, then r = 1 is a pole.

5.4 A genuinely distinct e-channel via weighted shifts

The minimal window-6 model identifies the e-defect with a local forbidden-event counter. To
obtain an analytic stability channel that is not equivalent to a single forbidden word, one may
keep the underlying grammar fixed but introduce a weight (a potential) and study the associated
weighted zeta / transfer-operator spectrum. This is standard in thermodynamic formalism;
see [5–7].
Proposition 5.6 (A one-parameter weighted golden mean zeta). For β ∈ R, define a weighted
adjacency matrix

Aβ :=
(

1 e−β

1 0

)
.

Then the associated (finite-state) zeta function is

ζβ(z) = 1
det(I − zAβ) = 1

1− z − e−βz2 ,

with spectral radius

ρ(Aβ) = 1 +
√

1 + 4e−β

2 .

Under the fixed normalization z = r/φ, the normalized zeta has a pole in |r| < 1 if and only if
ρ(Aβ) > φ (equivalently β < 0).

Proof. The determinant identity is a direct computation:

det(I − zAβ) = det
(

1− z −ze−β

−z 1

)
= (1− z)− e−βz2.

The eigenvalues of Aβ are the roots of λ2−λ− e−β = 0, hence the spectral radius is the positive
root. Under z = r/φ, the closest pole to the origin in the r-plane is located at r = φ/ρ(Aβ),
which lies inside |r| < 1 exactly when ρ(Aβ) > φ.
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Remark 5.7 (Channel separation). The φ-constraint may still be formulated as a pure grammar
restriction (e.g. forbidding 11), while the weighted e-channel above changes analytic stability
through ρ(Aβ) without changing the forbidden word set. At finite window length m, a natural
local observable for this weighted channel is the Hamming weight |w|1 (or edge-count observables
such as the number of 0→ 1 transitions), which is generally not equal to the φ-defect counting
forbidden adjacent pairs.

Remark 5.8 (Connection to pressure and transfer operators). For shifts of finite type and
locally constant potentials, thermodynamic formalism identifies the topological pressure with the
logarithm of the leading eigenvalue of a weighted transfer operator. In the finite-state setting
above, this leading eigenvalue is precisely the spectral radius ρ(Aβ), so log ρ(Aβ) is the pressure
of the corresponding potential (see [5, 6]). Accordingly, pole locations of ζβ encode pressure via
ρ(Aβ), and the normalization z = r/ρ(A) is a concrete finite-state manifestation of an Abel-type
parameter r ↑ 1 approaching the dominant spectral singularity.

5.5 A finite-window e-defect and its coincidence with the phi-constraint

Define the local defect

De(w) := #{ i ∈ {1, . . . , 5} : wi = wi+1 = 1 }, w ∈ Ω6.

This counts the number of forbidden adjacent excitations inside the length-6 window.

Proposition 5.9 (e-stability coincides with φ-legality at window length 6). For w ∈ Ω6 one
has De(w) = 0 if and only if w ∈ X6. Equivalently,

{w ∈ Ω6 : De(w) = 0} = X6.

Proof. By definition De(w) = 0 exactly when no adjacent pair (wi, wi+1) equals (1, 1), which is
precisely the definition of X6.

Remark 5.10 (Minimal-model degeneracy). At the level of a length-6 local model, the φ-channel
(forbidden word grammar) and the e-channel (analytic stability interpreted via forbidden events)
coincide as constraints on Ω6. Their distinction is semantic: φ refers to Fibonacci growth / Zeck-
endorf legality, while e refers to holomorphy domains and pole barriers of zeta/Abel transforms.
Nontrivial separation of the channels can emerge in higher-resolution models (longer windows,
weighted shifts, or infinite-state extensions), where analytic stability is no longer captured by a
single local forbidden law.

6 A computable folding map: Zeckendorf normalization and
window truncation

The φ-constraint selects the admissible set X6 ⊂ Ω6 of size 21. To obtain a genuine folding
from 64 microstates to these 21 stable types, we define an explicit surjection using Zeckendorf
representations and finite windows.

6.1 Zeckendorf base and uniqueness

Let (Fn)n≥1 denote the Fibonacci numbers with F1 = 1, F2 = 1, and Fn+2 = Fn+1 + Fn. In
Zeckendorf representation one uses the Fibonacci weights F2, F3, F4, . . . , i.e. the weight attached
to digit ck is Fk+1.
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Lemma 6.1 (Binet formula and standard Fibonacci bounds). Let φ = 1+
√

5
2 and ψ = 1−

√
5

2 =
−φ−1. Then for all n ≥ 1,

Fn = φn − ψn

√
5

.

In particular, for all n ≥ 2 one has the two-sided bounds

φn−2 ≤ Fn ≤ φn−1,

and hence Fn = Θ(φn).

Proof. This is classical; see, e.g., [15]. For completeness, Appendix F records a short proof of
the stated two-sided bounds.

Theorem 6.2 (Zeckendorf uniqueness). Every integer N ∈ N>0 admits a unique representation

N =
m∑

k=1
ckFk+1, ck ∈ {0, 1}, ckck+1 = 0.

Proof. See [13]; modern accounts are available in [8, 9].

For convenience, set Z(0) := (0, 0, 0, . . . ) and for N > 0 let Z(N) := (c1, c2, . . . ) denote the
Zeckendorf digit sequence of N (extended by zeros).

6.2 Window projection and the folding map Fold6

For m ≥ 1 define the window projection

πm(Z(N)) := (c1, . . . , cm) ∈ {0, 1}m.

By Theorem 6.2, πm(Z(N)) always has no adjacent ones, so πm(Z(N)) ∈ Xm.

Definition 6.3 (Resolution folding map at window length 6). Define

Fold6 : {0, 1, . . . , 63} → X6, Fold6(N) := π6(Z(N)).

Definition 6.4 (Folding of 6-bit microstates). Using the binary indexing map int6 : Ω6 →
{0, . . . , 63} from Section 2, define

Foldbin
6 : Ω6 → X6, Foldbin

6 (w) := Fold6(int6(w)).

Proposition 6.5 (Surjectivity onto the 21 admissible types). The image of Fold6 is exactly X6;
in particular Fold6 is surjective and |Im(Fold6)| = 21.

Proof. For every N , the Zeckendorf digits have no adjacent ones, hence Fold6(N) ∈ X6 and
Im(Fold6) ⊆ X6.

Conversely, let w = (w1, . . . , w6) ∈ X6. Define

Nw :=
6∑

k=1
wkFk+1.

Since w has no adjacent ones, the digit string (w1, . . . , w6, 0, 0, . . . ) is already Zeckendorf-
admissible, hence it equals Z(Nw) by uniqueness. Therefore Fold6(Nw) = w, so X6 ⊆ Im(Fold6).

15



6.3 A canonical bijection on the Zeckendorf range

Let

V (w) :=
6∑

k=1
wkFk+1 (w ∈ X6)

be the Zeckendorf value of a length-6 admissible word.

Lemma 6.6 (Maximal Zeckendorf value at window length m). For every m ≥ 1 one has

max
w∈Xm

m∑
k=1

wkFk+1 = Fm+2 − 1.

In particular, for m = 6 one has maxw∈X6 V (w) = F8 − 1 = 20.

Proof. Let Mn := maxw∈Xn

∑n
k=1wkFk+1 for n ≥ 1. If wn = 0, the best contribution is

Mn−1. If wn = 1, then wn−1 = 0 and the best contribution is Fn+1 + Mn−2. Hence Mn =
max{Mn−1, Fn+1 + Mn−2} with initial values M1 = F2 = 1 and M2 = F3 = 2. Using Fn+3 =
Fn+2 + Fn+1, one checks by induction that Mn = Fn+2 − 1. Setting n = m yields Mm =
Fm+2 − 1.

Proposition 6.7 (General window length: canonical bijection on the Zeckendorf range). For
m ≥ 1, define

Foldm : {0, 1, . . . , 2m − 1} → Xm, Foldm(N) := πm(Z(N)).

Then Foldm is surjective, and it restricts to a bijection

Foldm : {0, 1, . . . , Fm+2 − 1} ∼−→ Xm.

Proof. Surjectivity follows as in Proposition 6.5: for w ∈ Xm, the integer Nw := ∑m
k=1wkFk+1

satisfies Foldm(Nw) = w. Lemma 6.6 implies 0 ≤ Nw ≤ Fm+2 − 1.
For the bijection claim, Lemma 6.6 implies that every integer N ∈ {0, . . . , Fm+2 − 1} has

Zeckendorf digits supported within {1, . . . ,m}, so Foldm(N) equals the full digit string of N and
therefore determines N uniquely by Zeckendorf uniqueness.

Remark 6.8 (Average degeneracy for the 2m → Fm+2 compression). On the full index set
{0, . . . , 2m − 1}, the average preimage size of Foldm is

2m

|Xm|
= 2m

Fm+2
∼
√

5φ−2
( 2
φ

)m
,

Thus, while the stable type count grows as Fm+2 ≍ φm, the mean folding degeneracy grows expo-
nentially with base 2/φ > 1. Theorem 6.15 gives a complete closed-form degeneracy classification
in the base case m = 6.

Proposition 6.9 (Exact closed form and an error bound for the mean degeneracy). Define the
mean preimage size

dm := 1
|Xm|

∑
w∈Xm

|Fold−1
m (w)| = 2m

|Xm|
= 2m

Fm+2
.

Then for every m ≥ 1,

dm

(φ
2
)m

=
√

5
φ2 ·

1
1− (−φ−2)m+2 .

In particular, ∣∣∣∣∣dm

(φ
2
)m
−
√

5
φ2

∣∣∣∣∣ ≤
√

5
φ2 ·

φ−2m−4

1− φ−4 .

16



Proof. By Lemma 6.1 (Binet formula) and ψ = −φ−1 one has

Fm+2 = φm+2 − ψm+2
√

5
= φm+2
√

5

(
1−

(ψ
φ

)m+2)
= φm+2
√

5
(
1− (−φ−2)m+2).

Substituting into dm = 2m/Fm+2 yields the stated closed form. For the bound, set x :=
(−φ−2)m+2, so |x| = φ−2m−4 and∣∣∣∣ 1

1− x − 1
∣∣∣∣ = |x|
|1− x| ≤

|x|
1− |x| ≤

φ−2m−4

1− φ−4 ,

since |x| ≤ φ−4 for m ≥ 0.

Remark 6.10 (Origin of the constant
√

5/φ2). At the level of first-order asymptotics, Bi-
net’s formula gives Fm+2 ∼ φm+2/

√
5, hence dm = 2m/Fm+2 ∼

√
5φ−2(2/φ)m and therefore

dm(φ/2)m →
√

5/φ2.

Proposition 6.11 (General preimages for Foldm). Fix m ≥ 1 and w = (w1, . . . , wm) ∈ Xm.
Define its Zeckendorf value

Vm(w) :=
m∑

k=1
wkFk+1.

Let K(m) be the unique integer such that

FK(m)+1 ≤ 2m − 1 < FK(m)+2.

Then the full preimage set of w under Foldm is

Fold−1
m (w) =

Vm(w) +
K(m)∑

k=m+1
ckFk+1 :

(cm+1, . . . , cK(m)) ∈ {0, 1}K(m)−m,

ckck+1 = 0 for m+ 1 ≤ k < K(m),
wmcm+1 = 0,
Vm(w) +∑K(m)

k=m+1 ckFk+1 ≤ 2m − 1

 .

In particular, the degeneracy |Fold−1
m (w)| depends on w only through Vm(w) and the boundary

bit wm.

Proof. Let N ∈ {0, . . . , 2m−1} and write its Zeckendorf digits Z(N) = (c1, c2, . . . ). By definition
Foldm(N) = w if and only if (c1, . . . , cm) = (w1, . . . , wm). For N ≤ 2m − 1, no Fibonacci weight
above FK(m)+1 can appear in Z(N), hence ck = 0 for all k > K(m). Therefore

N = Vm(w) +
K(m)∑

k=m+1
ckFk+1

with the adjacency constraints ckck+1 = 0 and the boundary constraint wmcm+1 = 0. Finally,
N ∈ {0, . . . , 2m − 1} is equivalent to the stated inequality bound on the tail sum.

Corollary 6.12 (Uniform upper bound and extremizer). With K(m) as in Proposition 6.11,
one has for every w ∈ Xm:

|Fold−1
m (w)| ≤ |XK(m)−m| = FK(m)−m+2.

Moreover, |Fold−1
m (w)| is nonincreasing in Vm(w), and it is maximized at w = 0m.

17



Proof. Dropping the inequality constraint in Proposition 6.11 yields an injection

Fold−1
m (w) ↪→ {(cm+1, . . . , cK(m)) ∈ {0, 1}K(m)−m : ckck+1 = 0},

whose cardinality is |XK(m)−m| = FK(m)−m+2. Monotonicity in Vm(w) holds because increasing
Vm(w) decreases the available tail budget 2m − 1 − Vm(w), hence can only remove admissible
tails. The additional boundary restriction wmcm+1 = 0 is weakest when wm = 0. Thus the
maximal degeneracy is attained for the smallest value Vm(w) with wm = 0, namely w = 0m.

Proposition 6.13 (Location of the Zeckendorf cutoff K(m)). Let K(m) be the unique integer
such that FK(m)+1 ≤ 2m − 1 < FK(m)+2. Then for every m ≥ 2,

(m− 1) logφ 2− 1 ≤ K(m) < m logφ 2 + 1.

In particular, K(m) = m logφ 2 +O(1) and

K(m)−m =
(
logφ 2− 1

)
m+O(1) = logφ

( 2
φ

)
m+O(1).

Proof. Since m ≥ 2 one has 2m−1 ≤ 2m − 1 < 2m. From 2m − 1 < FK(m)+2 and Lemma 6.1
(upper bound) we get

2m−1 ≤ 2m − 1 < FK(m)+2 ≤ φK(m)+1,

so (m−1) logφ 2 ≤ K(m)+1 and hence K(m) ≥ (m−1) logφ 2−1. From FK(m)+1 ≤ 2m−1 < 2m

and Lemma 6.1 (lower bound) we get

φK(m)−1 ≤ FK(m)+1 ≤ 2m,

so K(m)−1 ≤ m logφ 2 and hence K(m) < m logφ 2+1. The asymptotic statements follow.

Corollary 6.14 (Maximal degeneracy is of the same exponential order as the mean). Let

dm := 1
|Xm|

∑
w∈Xm

|Fold−1
m (w)| = 2m

|Xm|
= 2m

Fm+2

be the mean preimage size, and let dmax
m := maxw∈Xm |Fold−1

m (w)|. Then for all m ≥ 2,

φ−1
( 2
φ

)m
≤ dm ≤ dmax

m ≤ φ2
( 2
φ

)m
.

In particular, dmax
m = Θ

(
(2/φ)m

)
and dmax

m ≤ φ3 dm.

Proof. The lower bound dm ≤ dmax
m is trivial. By Lemma 6.1 (upper bound) one has Fm+2 ≤

φm+1, hence
dm = 2m

Fm+2
≥ 2m

φm+1 = φ−1
( 2
φ

)m
.

For the upper bound on dmax
m , Corollary 6.12 gives

dmax
m ≤ FK(m)−m+2 ≤ φK(m)−m+1 = φK(m)+1

φm
.

Lemma 6.1 (lower bound) implies φK(m)−1 ≤ FK(m)+1 ≤ 2m, hence φK(m)+1 ≤ φ22m. Sub-
stituting yields dmax

m ≤ φ2(2/φ)m. Finally, Lemma 6.1 (lower bound) implies Fm+2 ≥ φm, so
(2/φ)m ≤ φdm and therefore dmax

m ≤ φ3 dm.
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m 2m Fm+2 dm = 2m

Fm+2
dm

(
φ
2

)m

2 4 3 1.333333 0.872678
3 8 5 1.600000 0.847214
4 16 8 2.000000 0.856763
5 32 13 2.461538 0.853090
6 64 21 3.047619 0.854489
7 128 34 3.764706 0.853954
8 256 55 4.654545 0.854158
9 512 89 5.752809 0.854080

10 1024 144 7.111111 0.854110
11 2048 233 8.789700 0.854099
12 4096 377 10.864721 0.854103

Table 2: Quantitative scaling of mean folding degeneracy. Proposition 6.9 gives a closed form and
an explicit error bound for the normalized quantity dm(φ/2)m, whose limit equals

√
5/φ2. Ta-

ble rows are generated by scripts/exp_foldm_scaling_table.py into sections/generated/
foldm_scaling_rows.tex.

6.4 Strong quantitative preimage structure on the index set {0, . . . , 63}
The folding Fold6 : {0, . . . , 63} → X6 is many-to-one because 26 = 64 exceeds |X6| = F8 = 21.
Nevertheless, its preimage structure is completely explicit at window length 6.

Theorem 6.15 (Preimage classification and degeneracy histogram for Fold6). For w ∈ X6, let
V (w) = ∑6

k=1wkFk+1. Then the preimage set Fold−1
6 (w) ⊂ {0, . . . , 63} is:

Fold−1
6 (w) =


{V (w), V (w) + F9}, w6 = 1,

{V (w), V (w) + F8, V (w) + F9, V (w) + F10}, w6 = 0 and V (w) ≤ 8,

{V (w), V (w) + F8, V (w) + F9}, w6 = 0 and V (w) > 8.

In particular, |Fold−1
6 (w)| ∈ {2, 3, 4} for all w ∈ X6, and the degeneracy histogram is

#{w ∈ X6 : |Fold−1
6 (w)| = 2} = 8,

#{w ∈ X6 : |Fold−1
6 (w)| = 3} = 4,

#{w ∈ X6 : |Fold−1
6 (w)| = 4} = 9.

Remark 6.16 (Sanity check: total mass and mean degeneracy). The histogram in Theorem 6.15
implies

2 · 8 + 3 · 4 + 4 · 9 = 64,

which matches |{0, . . . , 63}|. Dividing by |X6| = 21 yields the mean degeneracy d6 = 64/21,
consistent with Proposition 6.9.

Proof. For N ≤ 63, the Fibonacci weight F11 = 89 is too large, so the Zeckendorf digits satisfy
ck = 0 for all k ≥ 10. Thus only the digits c7, c8, c9 (with weights F8 = 21, F9 = 34, F10 = 55)
can appear above the window.

Fix w ∈ X6 and suppose Fold6(N) = w. Then the first six Zeckendorf digits of N equal w,
hence

N = V (w) + c7F8 + c8F9 + c9F10, c7, c8, c9 ∈ {0, 1},

with the adjacency constraints w6c7 = 0, c7c8 = 0, and c8c9 = 0.
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Case 1: w6 = 1. Then c7 = 0. The admissible choices for (c8, c9) are (0, 0) and (1, 0) and (0, 1).
However, V (w) ≥ F7 = 13 in this case, hence V (w) + F10 > 63 and the option (c8, c9) = (0, 1)
is impossible under the bound N ≤ 63. Therefore Fold−1

6 (w) = {V (w), V (w) + F9}.

Case 2: w6 = 0. Now c7 may be 0 or 1, but (c7, c8) = (1, 1) is forbidden. Moreover, if c9 = 1
then c8 = 0, and necessarily c7 = 0 as well since F10 + F8 = 55 + 21 > 63. Thus the only
admissible offsets are 0, F8, F9, and possibly F10. The offset F10 is admissible if and only if
V (w) ≤ 63− F10 = 8. This yields the stated preimage formulas.

Degeneracy counts. There are exactly 8 admissible words in X6 with w6 = 1 (equivalently,
length-4 admissible prefixes followed by 01), hence 8 outputs of degeneracy 2. Among the
w6 = 0 outputs, V (w) > 8 holds precisely when w5 = 1 and (w1, w2, w3) ̸= (0, 0, 0) (since w4 = 0
is forced by admissibility), yielding 4 such words and hence 4 outputs of degeneracy 3. The
remaining 21− 8− 4 = 9 outputs have degeneracy 4.

6.5 Algorithmic computation

A standard greedy algorithm computes Z(N) by iteratively subtracting the largest Fibonacci
weight ≤ N while skipping adjacent indices (to enforce ckck+1 = 0); see, e.g., [8]. We record
pseudocode and a reference pure-Python implementation in Appendix C.

6.6 Local normalization by a rewriting rule (optional viewpoint)

There exist normalization procedures that convert a non-canonical Fibonacci digit string into
the Zeckendorf canonical form using local rewrites induced by the Fibonacci recursion. One
concrete instance is the rewrite

011 ⇒ 100,

interpreted for digits written in descending weight order (most significant digit on the left),
since Fn = Fn−1 + Fn−2. Iterating such rewrites (together with a finite carry protocol) yields a
canonical Zeckendorf form; see, e.g., [8].

7 Resolution change as recursion: Hilbert refinement and Zeck-
endorf depth

The phrase “resolution” in this paper refers to two independent parameters:

• a spatial resolution parameter (Hilbert order n), controlling the screen lattice size 2n× 2n

and the address map Hn;

• a syntactic resolution parameter (Zeckendorf window length m), controlling the number
of admissible types |Xm| = Fm+2.

Resolution folding couples these recursions: spatial refinement changes locality/embedding,
while syntactic refinement changes the stable type space.

7.1 Hilbert recursion: n 7→ n + 1
The Hilbert address map admits a self-similar recursion: the order-n + 1 curve consists of
four order-n sub-curves, one in each quadrant, with quadrant-dependent rotations/reflections.
Concretely, there exist quadrant offsets ∆q ∈ Λn+1 and transforms Tq ∈ D4 such that

Hn+1(t) = ∆q + Tq
(
Hn(t′)

)
,
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where t ∈ {0, . . . , 22(n+1) − 1} is decomposed as

t = q · 22n + t′, q ∈ {0, 1, 2, 3}, t′ ∈ {0, . . . , 22n − 1}.

This is the discrete manifestation of the Hilbert curve’s classical self-similarity; see [11].

Remark 7.1 (Locality under recursion). The defining purpose of Hilbert addressing is that the
one-step scan adjacency t ∼ t + 1 compiles to nearest-neighbor adjacency on the screen lattice.
As n increases, this locality property is preserved by construction, while the induced neighborhood
model can vary across the D4 layout family.

7.2 Zeckendorf recursion: m 7→ m + 1
Let Xm ⊂ {0, 1}m be the set of length-m words with no adjacent ones. Proposition 3.1 implies
the Fibonacci recursion

|Xm+1| = |Xm|+ |Xm−1|.

Thus |Xm| ≍ φm, while the full word space size is 2m. In particular, as m grows the absolute
number of admissible types increases, but the admissible density |Xm|/2m decreases.

Proposition 7.2 (Recursive uplift decomposition of the admissible language). For every m ≥ 1,
define two injections

U0 : Xm → Xm+1, U0(w) := w0, U1 : Xm−1 → Xm+1, U1(v) := v01,

where concatenation is written by juxtaposition. Then

Xm+1 = U0(Xm) ⊔ U1(Xm−1),

a disjoint union partitioned by the last bit (words ending in 0 versus words ending in 1).

Proof. Every word in U0(Xm) ends in 0 and is admissible because appending 0 cannot create
an adjacent pair of ones. Every word in U1(Xm−1) ends in 01 and is admissible because the
inserted 0 separates any preceding digit from the terminal 1.

Conversely, let w ∈ Xm+1. If w ends in 0, write w = u0 with u ∈ {0, 1}m; then u ∈ Xm

and w = U0(u). If w ends in 1, admissibility forces the last two bits to be 01, so w = v01 for
some v ∈ {0, 1}m−1; then v ∈ Xm−1 and w = U1(v). The union is disjoint because the last bit
differs.

Proposition 7.3 (Uplift as orthogonal isometries on ℓ2). Let {ew : w ∈ Xm} denote the standard
orthonormal basis of ℓ2(Xm). Define linear maps

Û0 : ℓ2(Xm)→ ℓ2(Xm+1), Û0(ew) := ew0,

and
Û1 : ℓ2(Xm−1)→ ℓ2(Xm+1), Û1(ev) := ev01.

Then Û0 and Û1 are isometries with orthogonal ranges, and one has the orthogonal direct sum
decomposition

ℓ2(Xm+1) = Û0ℓ
2(Xm) ⊕ Û1ℓ

2(Xm−1).

Proof. Since Û0 and Û1 map orthonormal bases to orthonormal sets, they extend to isometries.
Their ranges are orthogonal because words in U0(Xm) end in 0 while words in U1(Xm−1) end in
1. Finally, Proposition 7.2 gives a disjoint union partition of Xm+1 into the two image sets, hence
ℓ2(Xm+1) decomposes as the orthogonal sum of the corresponding coordinate subspaces.
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7.3 The 64→ 21 projection as a scale-local statement

At local window length m = 6, the φ-stable type space is X6 and has size 21. Independently, at
spatial order n = 3 the screen lattice has 22n = 26 = 64 sites. This is the minimal resolution at
which the spatial carrier (64 sites) and the local word space (64 words) match exactly.

From this viewpoint, the statement “64 → 21” is scale-local: it asserts that a six-bit local
readout admits a canonical 21-type stability sector, regardless of how the readout is embedded
into a spatial neighborhood by an address family.

Definition 7.4 (Balanced coupling of spatial and syntactic resolution). We call the choice

m = 2n

the balanced coupling between spatial Hilbert order n and Zeckendorf window length m. Equiv-
alently, balanced coupling is the condition |Ωm| = |Λn|.

Remark 7.5 (Why balanced coupling is natural). Under Definition 7.4, the scan index set
{0, . . . , 22n−1} has the same cardinality as the local word space Ω2n. Thus the binary expansion
provides a canonical identification of scan indices with microstate labels, and a folding map
on Ω2n may be viewed as a deterministic type-labeling of the entire 2n × 2n lattice via Hilbert
addressing. This is the minimal setting in which the spatial carrier and the local readout have
matching finite complexity.

Proposition 7.6 (Hilbert index length and Fibonacci type count). At spatial order n (2D), the
Hilbert scan index set has size 22n and admits a canonical identification with binary words of
length 2n. Under the no-adjacent-one constraint, the admissible subset has cardinality

|X2n| = F2n+2.

In particular, for n = 3 one has 22n = 64 and |X2n| = F8 = 21.

Proof. The cardinality |Λn| = 22n implies the index set is {0, . . . , 22n − 1}. Binary expansion
identifies it with {0, 1}2n. The admissible count is Proposition 3.1 with m = 2n.

7.4 Iterability: folding across scales

There are two complementary ways to iterate the construction:

• Fixed local window, increasing spatial resolution. Keep m = 6 and increase n. The
same 64 → 21 local folding applies to each local window extracted along the scan chain,
while Hilbert recursion changes how local interactions are embedded on the screen.

• Fixed spatial carrier class, increasing syntactic resolution. Increase the window
length m (hence the admissible type space size Fm+2) while viewing 64→ 21 as the base
case m = 6 of a general family 2m → Fm+2.

In both cases, the folding mechanism remains explicit and auditable: it is implemented either
by the projector onto Xm or by the many-to-one map Foldm defined via Zeckendorf window
truncation.

8 A three-operator packaging and an iterability interface
We now package the φ–π–e channels as commuting nonnegative defect operators on H6. At the
minimal window length 6, this packaging is intentionally conservative: it records what is strictly
proven and isolates what becomes nontrivial only beyond the finite-window grammar.
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8.1 Defect functions and diagonal operators

Define the φ-defect (local grammar violation count)

Dφ(w) := #{ i ∈ {1, . . . , 5} : wi = wi+1 = 1 }, w ∈ Ω6.

Define the cyclic π-defect (wrap-around closure defect on the admissible sector)

Dπ(w) := 1{w1=w6=1}, w ∈ Ω6,

and define the finite-window e-defect by

De(w) := Dφ(w).

Remark 8.1 (Finite-window representative versus analytic e-channel). At window length 6,
the local forbidden-event counter Dφ already captures φ-legality, hence it can be used as a con-
servative finite-window representative of the e-channel. The analytically meaningful e-channel
discussed in Section 5 is encoded by zeta/transfer-operator spectra (and, in weighted extensions,
by the dependence of ρ(Aβ) on a potential), and it is not naturally a diagonal defect on Ω6.

Each defect defines a diagonal self-adjoint operator on H6 by

(D̂⋆ψ)(w) := D⋆(w)ψ(w), ⋆ ∈ {φ, π, e}.

They commute because they are diagonal in the same basis. They also induce quadratic forms
(constraint seminorms)

∥ψ∥2⋆ := ⟨ψ, D̂⋆ψ⟩ =
∑

w∈Ω6

D⋆(w) |ψ(w)|2.

8.2 Stable sector and the 21-dimensional theorem

Let X6 ⊂ Ω6 be the admissible set (Section 3).

Theorem 8.2 (Stable sector dimension at window length 6). One has

ker(D̂φ) = ker(D̂e) = ℓ2(X6), dim ℓ2(X6) = 21.

Proof. By Proposition 5.9, Dφ(w) = 0 if and only if w ∈ X6, and De = Dφ at this window
length. Hence the kernels equal ℓ2(X6). The dimension statement is Corollary 3.2.

8.3 The canonical 18+3 split inside the stable sector

Let Xcyc
6 , Xbdry

6 be as in Proposition 4.3. Then

ℓ2(X6) = ℓ2(Xcyc
6 ) ⊕ ℓ2(Xbdry

6 ), dim ℓ2(Xcyc
6 ) = 18, dim ℓ2(Xbdry

6 ) = 3,

and D̂π vanishes on ℓ2(Xcyc
6 ) while acting as the identity on ℓ2(Xbdry

6 ).

8.4 An iterability interface: the 1+21+21+21 organization

The arithmetic identity 64 = 1 + 21 + 21 + 21 suggests a convenient organizational template for
iterating the folding architecture across scales. On H6 itself, any statement of the form “there
exists an orthogonal 1 ⊕ 21 ⊕ 21 ⊕ 21 decomposition” is purely linear-algebraic and carries no
channel content. What matters is whether such a decomposition can be realized naturally by
higher-resolution constraints in which the three channels become genuinely distinct.
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Definition 8.3 (A natural 1⊕21⊕21⊕21 interface). Consider a hierarchy of microstate spaces
Ωm and associated Hilbert spaces Hm = ℓ2(Ωm). We say that a 1⊕ 21⊕ 21⊕ 21 organization is
natural if there exist, for a distinguished scale (or in an inductive limit), orthogonal projections

P0, Pφ, Pπ, Pe : H → H

such that:

• rank(P0) = 1 and P0 is canonical (e.g. the projection onto the normalized uniform vector);

• rank(Pφ) = rank(Pπ) = rank(Pe) = 21;

• each projector is defined by, or functorially determined from, its channel data (defect
operators, cyclic closure, or zeta/transfer-operator spectra), rather than by an arbitrary
basis partition;

• the construction is covariant under the dihedral layout symmetries (Section 2) and com-
patible with the uplift/recursion maps relating resolutions (Section 7).

Remark 8.4 (Status at window length 6). At the minimal window length, the strictly proven
content is Theorem 8.2 and the 18 ⊕ 3 split. Moreover, at m = 6 the finite-window e-defect
coincides with the φ-defect (Section 5). Thus Definition 8.3 should be viewed as an iterability
interface for higher-resolution regimes (longer windows, weighted transfer operators, or infinite-
state extensions) where the three channels can become independent.

9 Application interfaces (non-premise): genetics and a three-
factor analogy

This section records two interfaces: mappings from external structures into the present 64→ 21
folding framework. They are not used as inputs to proofs. The purpose is to turn informal
analogies into falsifiable mathematical questions (existence of low-complexity encodings, distri-
butional invariants, and robustness under symmetry actions).

9.1 Genetic code as a 64-to-(20+Stop) compression template

Let Codon be the set of 64 nucleotide triplets over a four-letter alphabet, and let

Gen : Codon ↠ AA ∪ {Stop}

be the standard genetic code map (a many-to-one map onto 20 amino acids plus a stop signal);
see, e.g., [16].

Fix any injective two-bit encoding enc : {A,C,G,U/T} → {0, 1}2 and extend it to a map

code : Codon→ Ω6

by concatenating the three two-bit blocks. Composing with the folding map yields a canonical
64→ 21 compression

Foldbin
6 ◦ code : Codon ↠ X6.

Remark 9.1 (Encoding search space is finite). If enc is required to be a bijection between
the four nucleotides and {0, 1}2, then there are exactly 4! = 24 possible encodings. Hence any
optimization over encodings can be performed exhaustively (no sampling is needed).
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Testable comparison invariants. One can compare Gen and Foldbin
6 ◦ code by encoding-

independent statistics:

• the preimage-size histogram (degeneracy distribution);

• conditional entropy and mutual information for the induced random variables under a
chosen codon prior;

• degeneracy conditioned on Hamming weight of the folded type in X6;

• distances between degeneracy histograms (e.g. KL divergence after smoothing, or Earth
Mover’s Distance).

Remark 9.2 (What depends on enc). Because code is a bijection, the multiset of preim-
age sizes of Foldbin

6 ◦ code equals that of Fold6 (equivalently Foldbin
6 ) and is therefore indepen-

dent of enc. Encoding dependence enters through the joint distribution of the pair of outputs
(Gen(C), (Foldbin

6 ◦ code)(C)) for a random codon C. A concrete, encoding-dependent objective
is the mutual information

I
(
Gen(C); (Foldbin

6 ◦ code)(C)
)
,

under a specified codon prior (e.g. uniform).

The “three boundary states” coincidence. The decomposition X6 = Xcyc
6 ⊔Xbdry

6 yields
exactly three boundary states. Whether stop codons preferentially map into the boundary sector
Xbdry

6 is a concrete, encoding-dependent matching problem; no such alignment is assumed here.

Proposition 9.3 (What “stop ⊂ boundary” means at window length 6). Let Sstop ⊂ Codon be
the set of stop codons, with |Sstop| = 3, and fix a bijective two-bit encoding enc and the induced
map code : Codon→ Ω6. Define the boundary-sector preimage set

Sbdry(enc) :=
(
Foldbin

6 ◦ code
)−1(

Xbdry
6

)
⊂ Codon.

Then |Sbdry(enc)| = 6 for every enc, hence Sbdry(enc) can never equal Sstop. Moreover, the
inclusion Sstop ⊆ Sbdry(enc) holds if and only if

int6
(
code(c)

)
∈ {14, 17, 19, 48, 51, 53} for every c ∈ Sstop.

Proof. Proposition 4.3 gives Xbdry
6 = {100001, 100101, 101001}. By Theorem 6.15 each of these

boundary words has exactly two preimages under Fold6, namely

Fold−1
6 (100001) = {14, 48}, Fold−1

6 (101001) = {17, 51}, Fold−1
6 (100101) = {19, 53},

so
∣∣Fold−1

6 (Xbdry
6 )

∣∣ = 6. Since code is a bijection, |Sbdry(enc)| = 6 as well. The membership
condition is exactly the statement that stop codons land in the boundary-sector preimage under
the index identification int6.

9.2 A three-factor template: a categorical interface problem

The standard model gauge group exhibits a three-factor product structure SU(3)×SU(2)×U(1);
see, e.g., [17]. Independently, the present framework isolates three stability channels φ–π–e. We
stress that this mention is only motivational: no physical identification is assumed or used.
What follows is a purely mathematical interface problem for future work.
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Problem 9.4 (A hierarchical limit object with three natural projections (interface)). There
exists a hierarchy of finite-resolution objects generated by Hilbert refinement (spatial recursion)
and Zeckendorf window growth (syntactic recursion), whose inductive limit defines a moduli
object M∞ together with three natural projection functors (or factor maps)

M∞ →Mφ, M∞ →Mπ, M∞ →Me,

such that the associated linearized readout admits a three-sector decomposition compatible with
these projections.

Remark 9.5 (What would make the interface nontrivial). In the minimal window-6 model,
the φ- and e-constraints coincide (Remark after Proposition 5.9). A nontrivial realization of
Problem 9.4 therefore requires a higher-resolution regime in which analytic stability (zeta/Abel
holomorphy domains) and syntactic legality are no longer equivalent. Potential mathematical
routes include weighted transfer operators, countable-state grammars, and zeta functions beyond
the rational finite-state class.

10 Conclusion
We presented a self-contained finite-resolution model of resolution folding on a 64-state local
readout space. The central mathematical outputs are:

• the φ-stable sector of H6 = ℓ2({0, 1}6) has dimension 21 (the golden mean admissible
words);

• the π-channel provides a canonical internal split 21 = 18 ⊕ 3 into cyclically admissible
states and boundary states;

• the e-channel is expressed by the Artin–Mazur determinant identity ζ(z) = 1/ det(I −
zA) = 1/(1 − z − z2) and a spectral (Abel-type) normalization that places the dominant
pole at the unit-circle boundary in the normalized variable;

• a computable surjection Fold6 : {0, . . . , 63} ↠ X6 realizes a concrete 64 → 21 folding
via Zeckendorf normalization and window truncation, with explicit preimage sets and
degeneracy histogram (Theorem 6.15; Appendix E);

• beyond the base case, Foldm admits a general preimage characterization and quantitative
degeneracy control, including explicit bounds and observable scaling of the mean degener-
acy (Section 6).

The model intentionally separates what is proven at the minimal window length from what
becomes structurally nontrivial only at higher resolution: at window length 6, φ-legality and
e-stability coincide as local constraints, while the π-channel refines the stable sector. Higher-
resolution generalizations (longer windows, weighted transfer operators, and infinite-state exten-
sions) provide a natural arena where the three channels may become genuinely independent. On
the geometric side, the dihedral layout family acts by exact symmetries on Hilbert addressing,
so adjacency-based statistics are rigid under layout changes (Section 2); on the syntactic side,
the Zeckendorf recursion admits an explicit “uplift” decomposition at the level of languages and
ℓ2 spaces (Section 7).

Selected open directions. The remaining nontrivial questions are structural rather than
computational:

• realize a genuinely natural multi-channel decomposition compatible with recursion and
layout symmetries (Definition 8.3);
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• formulate and analyze higher-resolution regimes where analytic stability is not equivalent
to a single forbidden word, beyond finite-state rational zeta functions;

• treat external mapping templates (Section 9) as optimization/identifiability problems over
finite encoding classes.

A Length-6 admissible words: the 21 elements of X6 and the
18+3 split

A.1 The full admissible set X6

The admissible set
X6 = {w ∈ {0, 1}6 : w contains no occurrence of 11}

has |X6| = 21 elements (Corollary 3.2). Listed in lexicographic order:

000000 000001 000010 000100
000101 001000 001001 001010
010000 010001 010010 010100
010101 100000 100001 100010
100100 100101 101000 101001
101010

A.2 Hamming-weight distribution

Let |w|1 := ∑6
i=1wi be the Hamming weight. The weight distribution of X6 is

#{w ∈ X6 : |w|1 = k} =



1, k = 0,
6, k = 1,
10, k = 2,
4, k = 3,
0, k ≥ 4.

Indeed, choosing k ones with no adjacency is equivalent to choosing a k-subset of {1, . . . , 6} with
no consecutive integers, whose count is

(6−k+1
k

)
.

A.3 Boundary states and cyclic states

The cyclic admissibility condition is the wrap-around constraint w6w1 ̸= 11. Thus the boundary
set Xbdry

6 consists of admissible words with w1 = w6 = 1:

Xbdry
6 = {100001, 100101, 101001}, |Xbdry

6 | = 3,
and the cyclic admissible set has size |Xcyc

6 | = 18 (Proposition 4.3).

B The layout group D4 and a concrete 6-bit encoding of D4×D4

B.1 Group presentation and normal form

Let D4 be the dihedral group of the square, presented as
D4 = ⟨r, s | r4 = e, s2 = e, srs = r−1⟩,

where r is a 90◦ rotation and s is a reflection across a fixed axis. Every element admits a unique
normal form

g = rksϵ, k ∈ {0, 1, 2, 3}, ϵ ∈ {0, 1}.
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B.2 A three-bit encoding of D4

Encode k in two bits and ϵ in one bit. Concretely, define

encD4(rksϵ) := (b1, b2, b3) ∈ {0, 1}3,

where (b1, b2) is the binary encoding of k ∈ {0, 1, 2, 3} and b3 = ϵ. This is a bijection D4 →
{0, 1}3.

B.3 A 6-bit encoding of D4 ×D4

For a two-sector layout state (g+, g−) ∈ D4 ×D4, encode

enc(g+, g−) := encD4(g+) ∥ encD4(g−) ∈ {0, 1}6,

where ∥ denotes concatenation. Thus enc is a bijection D4 × D4 → {0, 1}6, giving an explicit
choice of the identification ι in Section 2.4.

Remark B.1 (Non-canonicity and readout basis dependence). The encoding above is one of
many valid identifications D4 × D4 ∼= {0, 1}6. Changing the encoding corresponds to a change
of readout basis. In application interfaces (e.g. Section 9) this changes the preimage statistics
of folding maps and should be treated as part of the model selection problem.

C Zeckendorf computation and folding algorithms

C.1 Greedy Zeckendorf algorithm

Input: an integer N ≥ 0. Output: Zeckendorf digits (ck)k≥1 ∈ {0, 1}N such that N =∑
k≥1 ckFk+1 and ckck+1 = 0.

1. If N = 0, return ck = 0 for all k.

2. Generate Fibonacci weights (Fk+1)k≥1 (with F1 = F2 = 1 and Fn+2 = Fn+1 + Fn) until
FK+1 ≤ N < FK+2.

3. Initialize all digits ck := 0.

4. For k = K,K − 1, . . . , 1:

• If Fk+1 ≤ N , set ck := 1 and update N ← N − Fk+1.
• If ck was set to 1, skip the next index k − 1 (to enforce ck−1 = 0).

5. Return (ck).

Correctness and uniqueness are guaranteed by Theorem 6.2.

C.2 Computing Fold6

Given an input integer N ∈ {0, . . . , 63}:

1. Compute Z(N) = (c1, c2, . . . ) by the greedy algorithm above.

2. Output Fold6(N) = (c1, . . . , c6) ∈ X6.
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C.3 Local normalization viewpoint

Let a finite digit string (d1, . . . , dM ) ∈ {0, 1}M represent an integer by Fibonacci weights, with
digit dk attached to weight Fk+1. Normalization to Zeckendorf form can be implemented via
local rewrites induced by Fn = Fn−1 +Fn−2 when digits are written in descending weight order;
see, e.g., [8].

C.4 Reference implementation

Pure-Python (standard-library) reference implementations are included under the paper direc-
tory:

docs/papers/2025_resolution_folding_phi_pi_e_hpa_omega/scripts/.

D Zeta identities and normalization details

D.1 Factorization of 1− z − z2

Let φ = (1 +
√

5)/2. Then

1− z − z2 = (1− φz)
(
1 + φ−1z

)
.

Indeed,
(1− φz)(1 + φ−1z) = 1 + (φ−1 − φ)z − z2 = 1− z − z2,

since φ−φ−1 = 1. Thus the zeta function in Proposition 5.1 has poles at z = φ−1 and z = −φ.

D.2 Unit-disk normalization

With the normalization z = r/φ one has

ζ̃(r) = ζ
( r
φ

)
= 1

(1− r)(1 + φ−2r) .

Hence ζ̃ is holomorphic on |r| < 1 and its principal pole sits at r = 1.

D.3 Comparison with the full shift

The full two-symbol shift has adjacency matrix

B =
(

1 1
1 1

)
, ρ(B) = 2, det(I − zB) = 1− 2z.

Thus its zeta function is (1−2z)−1 with principal pole at z = 1/2. Under the same normalization
z = r/φ, this pole becomes r = φ/2 < 1, i.e. it moves inside the unit disk. This cleanly illustrates
the pole-barrier language: relative to the φ scaling, allowing the forbidden transition produces
an interior pole.

E The complete Fold_6 table: outputs, Zeckendorf values, and
preimages

This appendix records the full mapping data for Fold6 : {0, . . . , 63} → X6. For each w ∈ X6 we
list:

• the word w in lexicographic order;
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• its Zeckendorf value V (w) = ∑6
k=1wkFk+1;

• the preimage Fold−1
6 (w) ⊂ {0, . . . , 63} (Theorem 6.15).

w ∈ X6 V (w) Fold−1
6 (w)

000000 0 {0, 21, 34, 55}
000001 13 {13, 47}
000010 8 {8, 29, 42, 63}
000100 5 {5, 26, 39, 60}
000101 18 {18, 52}
001000 3 {3, 24, 37, 58}
001001 16 {16, 50}
001010 11 {11, 32, 45}
010000 2 {2, 23, 36, 57}
010001 15 {15, 49}
010010 10 {10, 31, 44}
010100 7 {7, 28, 41, 62}
010101 20 {20, 54}
100000 1 {1, 22, 35, 56}
100001 14 {14, 48}
100010 9 {9, 30, 43}
100100 6 {6, 27, 40, 61}
100101 19 {19, 53}
101000 4 {4, 25, 38, 59}
101001 17 {17, 51}
101010 12 {12, 33, 46}

F Fibonacci bounds and logarithmic cutoff estimates
This appendix records standard Fibonacci estimates used throughout the quantitative scaling
arguments.

F.1 Binet formula and elementary bounds

Let φ = 1+
√

5
2 and ψ = 1−

√
5

2 = −φ−1. Then the Fibonacci numbers (Fn) with F1 = F2 = 1
satisfy the Binet formula

Fn = φn − ψn

√
5

(n ≥ 1),

and in particular Fn = Θ(φn). Standard references include [15].
Remark F.1 (Relation to the main text). Lemma F.2 provides the two-sided bound used in
Section 6. The main text records the same estimate as Lemma 6.1 together with Binet’s formula.
Lemma F.2 (Two-sided bounds). For all n ≥ 2 one has

φn−2 ≤ Fn ≤ φn−1.

Proof. For n = 2, 3 this is immediate. Assume n ≥ 4 and that the bounds hold for n − 1 and
n− 2. Using Fn = Fn−1 + Fn−2 and φ2 = φ+ 1 gives

Fn ≤ φn−2 + φn−3 = φn−3(φ+ 1) = φn−1,

and similarly
Fn ≥ φn−3 + φn−4 = φn−4(φ+ 1) = φn−2.
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F.2 Admissible density and the cutoff index

The admissible language size is |Xm| = Fm+2, hence the admissible density satisfies

|Xm|
2m

= Fm+2
2m

= Θ
((φ

2
)m)

,

and the mean folding degeneracy is dm = 2m/Fm+2 = Θ((2/φ)m).
The cutoff index K(m) defined by FK(m)+1 ≤ 2m−1 < FK(m)+2 satisfies K(m) = m logφ 2+

O(1), as shown in Proposition 6.13.

G Reproducibility notes
This paper includes minimal, auditable scripts that reproduce the finite combinatorics and the
folding-map statistics. All scripts are standard-library Python and live under:

docs/papers/2025_resolution_folding_phi_pi_e_hpa_omega/scripts/.

G.1 What is reproduced

The scripts reproduce:

• enumeration of X6 and verification |X6| = 21;

• Hamming-weight distribution of X6;

• the 18⊕ 3 cyclic/boundary split;

• computation of Fold6(N) for N = 0, . . . , 63 and preimage-size statistics;

• generation of a complete Fold_6 table (Appendix E) listing w ∈ X6, V (w), and Fold−1
6 (w).

• generation of the Fold_m mean-degeneracy scaling rows used in Table 2.

G.2 Generated LaTeX fragments (optional)

If desired, scripts can write small LaTeX fragments (table rows) into

docs/papers/2025_resolution_folding_phi_pi_e_hpa_omega/sections/generated/

following the same pattern used elsewhere in the repository.

Scripts and fragments. In particular:

• exp_fold6_stats.py writes fold6_degeneracy_rows.tex. It also writes fold6_full_
table_rows.tex.

• exp_foldm_scaling_table.py writes foldm_scaling_rows.tex.
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