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Abstract
There is a long-standing tension between the continuous, reversible nature of quantum

unitarity and the discrete, finite-resolution character of observed outcomes. This paper pro-
poses an auditable and reproducible arithmetic–holographic–computational constitution: not
an engineering design, but a minimal dependency chain from arithmetic geometry (mod-
ular curves, modular forms, and Hecke operators) to the HPA–Ω scan–projection readout
architecture.

The organizing constraints are finite information and holographic encoding. We define
time as the iteration count of an intrinsic unitary scan; probability as an induced measure
produced by finite-resolution projection readout, rather than an externally postulated sam-
pling rule; and discreteness as integer Fourier data generated by q-expansions at cusps. The
core claim is that the modular flow on the modular curve X(1) provides a natural geo-
metric mother space for scan dynamics, the Hecke algebra supplies a symmetry-preserving
cross-scale renormalization skeleton generated by primes, and continued-fraction/Ostrowski
coding (specializing to Zeckendorf on the golden branch) provides a canonical interface be-
tween integer time and bit-level readout.

At the level of modular data, we also emphasize the classical Ramanujan differential
system as a canonical q-flow on the distinguished generators, making the “cusp interface”
not only a source of discrete coefficients but also a rigid differential calculus. Interpretation-
layer viewpoints are explicitly segregated and do not enter the Layer 0/1 closure.

Keywords: arithmetic geometry, modular forms, quasi-modular forms, Ramanujan differ-
ential equations, Hecke operators, modular curve, holography, unitary scan, Weyl pair, Os-
trowski/Zeckendorf coding, Sturmian/Fibonacci words, induced measure, HPA, Omega Theory.

Conventions. Unless otherwise stated, log denotes the natural logarithm. “mod 1” refers to
reduction in R/Z. “Tick time” t ∈ Z≥0 denotes the iteration count of a scan operator. When
convenient, we freely replace [0, 1) by [0, 1] in integrals and discrepancy definitions, since the
boundary has Lebesgue measure zero.
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1 Introduction: the continuous–discrete tension and the role of
a “constitution”
Chaos is merely a matter of perspective. Viewed from the cusp, the universe is a
single, straight vector of light.
The universe is a prism. Data is scattered light. Computation is the lens that refo-
cuses it back to the source.1

Modern foundational physics confronts a structurally persistent mismatch:
• Dynamics layer: quantum theory is organized around unitary evolution—continuous,

reversible, and information-preserving.

• Readout layer: observation presents discrete outcomes—counts, bits, integer labels, and
finite-precision statistics.

Standard treatments delegate continuity to an ontic object (Hilbert space, fields) and dis-
creteness to measurement postulates (projection, POVMs) plus external probabilistic interpre-
tation. Here we invert the emphasis: readout is treated as part of physical structure, and we
demand a closed, minimal dependency chain in which time/probability/discreteness are not ex-
ternal semantics but endogenous objects of a scan–projection protocol.

This manuscript is written as a mathematical constitution. The goal is not to assert an
experimentally complete physical law, but to provide an auditable chain of definitions and
standard theorems that connects:

modular action ⇒ cusp q-expansion ⇒ discrete coefficients
⇒ Hecke/prime skeleton ⇒ canonical coding.

(1)

Figure 1: A schematic view of the constitution chain: scan closure on the rotation algebra, an
arithmetic-geometric mother space, cusp discretization into coefficients, prime-generated Hecke
constraints, and canonical integer-time coding.

Relation to HPA and Ω. We follow the HPA–Ω framework in which the universe is specified
by a static global state together with intrinsic automorphisms and holographic/finite-information
constraints [1]. We also follow the HPA tool-chain in which unitary scanning, window projection
readout, and Ostrowski/Zeckendorf coding form the minimal continuous–discrete bridge [2]. The
present paper adds a constitution-level upgrade: it places that scan–projection structure on an
explicit arithmetic-geometric mother space (the modular curve) and uses Hecke operators to
supply a symmetry-preserving cross-scale skeleton generated by primes.

1Interpretation-layer epigraph. The technical content of this paper is stratified (Section 2); metaphors do not
enter the Layer 0/1 closure.
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Self-containedness (for audit and review). The Layer 0/1 logic of this manuscript is self-
contained: all definitions, protocol structures, and quantitative bounds used in the closure chain
are stated in this paper with citations to standard literature where appropriate. References to
companion manuscripts [1–3] provide broader programmatic context, but are not required to
follow or verify any of the arguments presented here.

What is new here. Beyond fixing the layering discipline (Section 2), the main new content
is a concrete embedding:

• modular geometry provides a canonical “cusp interface” where analytic data becomes
discrete q-series data;

• Hecke algebras provide a prime-generated family of commuting symmetry-preserving op-
erators, offering a clean cross-scale structure;

• continued fractions/Ostrowski numeration provide a canonical map from integer time to lo-
cally checkable digit strings, with the golden branch degenerating to Zeckendorf/Fibonacci
coding.

Main quantitative statements (audit-ready). The constitution produces finite-data con-
sequences with explicit constants once a concrete scan/readout mapping is fixed:

• Induced probabilities with deterministic finite-N error. For window readout st =
1W (xt) along an irrational-rotation scan, Koksma’s inequality yields∣∣∣∣∣ 1

N

N−1∑
t=0

1W (xt) − |W |
∣∣∣∣∣ ≤ 2D∗

N (PN ),

and for constant-type slopes (bounded continued-fraction digits) an explicit bound is given
in (63).

• Coefficient recovery from scan sampling with a certified budget. For T -periodic
holomorphic f(τ) = ∑

m≥0 amq
m, the scan-quadrature estimator (68) satisfies the deter-

ministic bound (69), and Corollary 9.2 provides an explicit constant-type design inequality.

• Prime-skeleton rigidity as exact internal constraints. For Hecke eigenforms, coef-
ficient data obeys multiplicativity and prime-power recursions (Section 9.4); finitely many
coefficients determine a form via Sturm bounds (Section 9.4).

• Protocol identification / fitting templates without simulation. Appendix C
records deterministic fitting and falsification templates (Sturmian/three-gap/Hecke con-
straints) that can be applied directly to finite readout records with explicit finite-N guar-
antees.

2 Layering and axioms: a closed argument must be stratified
To prevent “interpretation” from being silently used as “derivation”, we make the logic auditable
by explicitly separating three layers.

Layer 0 (ontological layer). Only the language of states and algebras is allowed. No external
time parameter and no external probability postulate is introduced.

Layer 1 (protocol layer). One may choose a scan and readout protocol under finite-resolution
constraints. Operational time and statistics are defined within the protocol.
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Layer 2 (interpretation layer). One maps Layer 1 structures to semantic narratives (space-
time, particles, gravity, entanglement). This layer must be marked interpretive and may not be
used as a premise of the Layer 0/1 argument.

This stratification is consistent with the HPA–Ω manuscripts [1,2] and is adopted here as a
strict audit rule.

Figure 2 summarizes the separation and highlights the one-way dependency: Layer 2 inter-
pretation may annotate, but may not be used as a premise.

Figure 2: Layer separation and the audit rule. Layer 0 uses only states and algebras; Layer 1
specifies scan and finite-resolution readout protocols and induced measures; Layer 2 provides
semantic interpretations and is explicitly excluded from the derivation chain.

2.1 Basic axioms (Omega O1–O4)

Axiom 2.1 (O1 (Omega: static global state)). The universe is specified by a quasi-local operator
algebra A together with a unique normalized global state ωΩ on A. There is no externally given
time-indexed family of states.

Axiom 2.2 (O2 (finite information)). For any causally closed region, the effective number of
degrees of freedom is bounded by a holographic constraint, typically of the form

dim Hregion ≤ exp
(
A

4ℓ2P

)
, (2)

where A is an appropriate boundary area and ℓP is the Planck length.

Remark 2.3. See, e.g., [4] for a standard review of holographic bounds and related formulations
of the holographic principle.

Axiom 2.4 (O3 (causally local discrete update)). There exists a discrete-step automorphism
U : A → A which, in a controlled representation, is implemented by a unitary U and has finite
propagation range (a causal locality condition).

Remark 2.5. One standard mathematical setting for such discrete-time, locality-preserving
updates is quantum cellular automata and related locality-preserving unitary evolutions; see,
e.g., [5, 6].
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Axiom 2.6 (O4 (holographic map)). There exists a bulk-to-boundary encoding map Φ which
is approximately isometric on an appropriate code subspace and supports observable transport
and reconstruction in the sense of algebraic quantum error correction / entanglement wedge
reconstruction.

Remark 2.7. For standard constructions and results connecting holography, bulk reconstruction,
and quantum error correction, see, e.g., [7–9].

2.2 Upgraded axioms: scan–projection readout and Weyl pairs (O5–O6)

Axiom 2.8 (O5 (scan–projection readout and induced measures)). Finite observers obtain
“time” and “probability” from a finite-resolution scan and projection readout of intrinsic phase
data. There exists a pointer phase x ∈ R/Z whose scan orbit is sampled at integer ticks t ∈ Z≥0
by

xt = x0 + tα (mod 1), α /∈ Q. (3)

Finite-resolution readout is described by a family of effects {E(ε)
k } (resolution parameter ε) in-

ducing probabilities
P

(ε)
k = ωeff

(
E

(ε)
k

)
,

∑
k

E
(ε)
k = 1, (4)

where ωeff denotes the effective state in the observer sector.

Remark 2.9 (standard measurement-theory interface). The family {E(ε)
k } is a POVM in the

usual sense (effects summing to the identity), and E 7→ ωeff(E) is a state on the corresponding
effect algebra; see [10, 11] for standard measurement-theory foundations. In finite-dimensional
Hilbert-space settings, Gleason-type theorems constrain such probability assignments and justify
the Born form under standard assumptions; see [12,13] for classical statements and extensions.

In algebraic formulations, one may take ωeff as the restriction of the global state ωΩ to an
observer-accessible subalgebra (or via a conditional expectation onto such a subalgebra), which
recovers the familiar reduced-state/partial-trace picture when a tensor-factorization is available;
see [14,15].

Remark 2.10 (continuum parameters versus finite information). Although O5 models x ∈ R/Z
and α /∈ Q as continuum-valued parameters, the framework does not assume that an observer
can access their infinite precision. Operationally, access is only through finite-resolution effects
{E(ε)

k }, and O2 imposes a finite effective information bound. Continuum phase variables should
therefore be read as ideal coordinates for a protocol limit, not as physically available infinite
storage.

Axiom 2.11 (O6 (unitary scan algebra: a Weyl pair)). On an effective observer Hilbert space
Heff , there exist a scan unitary Uscan and a conjugate phase unitary V satisfying the Weyl relation

UscanV = e2πiαV Uscan. (5)

A canonical covariant model is given on L2(R/Z) by

(Uscanψ)(x) = ψ(x+ α), (V ψ)(x) = e2πixψ(x). (6)

Assumption 2.12 (R1 (orbit regularization / finite part)). Regulated-to-continuum passages
along scan orbits are fixed by a canonical regularization convention: “Abel first, then limit”,
which selects a unique finite part for orbit traces and related divergent sums.

Remark 2.13. The Abel-regularization convention is a standard summability prescription: one
introduces an Abel damping parameter (e.g. rt with 0 < r < 1), performs the relevant summation
at fixed r, and then takes r ↑ 1 to select a canonical finite part when it exists. See [16] for classical
background on Abel summability and related regularization methods.
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Remark 2.14. Appendix B.16 records an explicit Abel-mean lemma for the irrational-rotation
orbit of O5, together with a concrete “finite part” formula on trigonometric polynomials.

Remark 2.15 (resolvent/Poisson-kernel viewpoint and a finite-coherence motivation). At the
operator level, Abel damping is the canonical resolvent regularization of a unitary scan: for
|r| < 1 one has the convergent geometric series∑

t≥0
rt U t

scan = (1 − r Uscan)−1, (7)

so the Abel-weighted mean (1 − r)∑t≥0 r
t(·) corresponds to the standard resolvent-based way of

extracting the “DC” (invariant) component while suppressing transient oscillatory modes. On
the circle, the same mechanism is the classical Abel/Poisson kernel that recovers boundary data
as r ↑ 1.

Protocol-wise, the exponential kernel rt may be read as a minimal causal finite-memory
response (a discrete first-order low-pass filter): finite observers effectively weight the recent scan
history more strongly than the remote past. The idealized protocol limit r ↑ 1 corresponds to
sending the coherence/memory time to infinity. Other regularizations are possible, but Abel
summation is singled out by analyticity and positivity features together with its compatibility
with translation symmetry.

The purpose of O5–O6 is to push “probability” and “measurement” down from Layer 2 to
Layer 1: probabilities are induced by finite-resolution effects rather than postulated as external
sampling semantics.

3 The arithmetic-geometric stage: the modular curve, hyper-
bolic fundamental domain, and cusps

This paper’s key structural move is to place the minimal scan model of Section 2.2 on an
arithmetic-geometric mother space: the modular curve X(1). This section fixes standard defini-
tions and the single geometric fact we will repeatedly exploit: cusps are identified in the modular
quotient, producing a canonical endpoint equivalence.

3.1 Why X(1): a minimal selection principle and alternatives

The constitution does not claim that X(1) is the only possible mother space. Rather, we
adopt the following minimal selection principle: among candidate quotients supporting a cusp
expansion interface and a large discrete symmetry group, prefer the choice that introduces the
least auxiliary structure while keeping the continuous–discrete bridge canonical and auditable.

Selection criteria. The choice X(1) = PSL2(Z)\(H∪{cusps}) is singled out by a conjunction
of standard minimality properties:

• Single cusp and canonical local parameter. X(1) has a single cusp class and cusp
width 1, so the local parameter is the canonical

q = e2πiτ , (8)

without additional scaling conventions. This matters constitutionally: the integer Fourier
index in a q-series is forced by T : τ 7→ τ + 1 and does not depend on a chosen width
normalization.

• Maximal arithmetic symmetry at minimal level. Level 1 corresponds to the full
modular group PSL2(Z), i.e. the largest discrete symmetry group in the standard con-
gruence tower. This provides the simplest arena in which cusp q-expansions, modular
invariance, and prime-indexed Hecke structure coexist with minimal bookkeeping.
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• Canonical distinguished modular objects. At level 1 there are canonical generators
and invariants (e.g. E4, E6,∆, j) whose q-expansions carry rigid arithmetic structure. This
supports the paper’s core methodological stance: discreteness is introduced through a
standard cusp interface rather than through an ad hoc discretization rule.

• Canonical dynamics-to-coding bridge. The geodesic flow on the modular surface
admits a classical cross-section coding by continued fractions (Section 4.4). This provides
a non-arbitrary origin for the continued-fraction/Ostrowski module used later.

What is not claimed. We do not claim that the above criteria force X(1) uniquely. They
justify X(1) as a minimal and canonical stage on which the scan–projection protocol can be
embedded and audited with minimal extra parameters.

Alternatives and generalizations. Several natural alternatives may support a constitution
with similar architecture:

• Other congruence quotients. Replacing PSL2(Z) by a congruence subgroup yields
modular curves X0(N), X1(N), X(N) with multiple cusps and nontrivial cusp widths.
Such choices introduce additional level data and normalization conventions, but may be
appropriate if physical sectors are hypothesized to carry level/character structure.

• Higher-rank automorphic quotients. More general arithmetic locally symmetric
spaces (e.g. higher-rank groups and their Hecke algebras) could provide richer cross-scale
operator families. This would require a corresponding upgrade of the scan embedding and
the readout interface.

• Non-arithmetic chaotic stages. One may attempt to build an analogous constitution
on non-arithmetic Anosov systems or other chaotic flows. Such choices can reproduce
strong ergodic features but generally lose the prime-indexed rigidity that is central to the
present proposal.

In all cases, the audit rule remains: any additional semantic physicalization belongs to Layer 2
and must not be used as a premise of the Layer 0/1 closure.

3.2 The upper half-plane and negative curvature

Let
H = {τ ∈ C : ℑτ > 0} (9)

be the Poincaré upper half-plane equipped with the hyperbolic metric

ds2 = dτ dτ
(ℑτ)2 . (10)

One reason hyperbolic geometry is a natural stage under holographic constraints is the exponen-
tial growth of boundary “capacity” with hyperbolic radius. While O2 does not uniquely force
hyperbolic geometry, the combination “maximal boundary encoding efficiency + strong discrete
symmetry” makes H a canonical candidate arena. Concretely, in curvature −1 one has for the
hyperbolic disk BR of radius R the explicit formulas

Area(BR) = 4π sinh2
(
R

2

)
, Length(∂BR) = 2π sinhR, (11)

so both boundary length and enclosed area grow essentially like eR as R → ∞ [17]. For back-
ground on hyperbolic dynamics on negatively curved surfaces, see [18].
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3.3 The modular group, fundamental domain, and cusps

The modular group PSL2(Z) acts on H by fractional linear transformations:

τ 7→ γ · τ = aτ + b

cτ + d
, γ =

(
a b
c d

)
∈ PSL2(Z). (12)

It is generated by
T : τ 7→ τ + 1, S : τ 7→ −1

τ
. (13)

The standard fundamental domain F ⊂ H is bounded by |τ | = 1 and ℜτ = ±1
2 , with the

“infinite end” corresponding to the cusp τ = i∞.
Figure 3 sketches the standard fundamental domain (truncated at finite height) used through-

out.

Figure 3: A truncated sketch of the standard fundamental domain F ⊂ H for the action of
PSL2(Z), bounded by ℜτ = ±1

2 and |τ | = 1, with the cusp direction ℑτ → ∞.

Quantitatively, PSL2(Z)\H has finite hyperbolic area. One convenient computation uses
Gauss–Bonnet for the orbifold PSL2(Z)\H, which has genus g = 0, one cusp (c = 1), and elliptic
points of orders m1 = 2 and m2 = 3. Its orbifold Euler characteristic is

χorb = 2 − 2g − c−
∑

i

(
1 − 1

mi

)
= 2 − 0 − 1 −

(
1 − 1

2

)
−
(

1 − 1
3

)
= −1

6 , (14)

and for curvature −1 one has Area = −2π χorb, hence

Area
(
PSL2(Z)\H

)
= π

3 . (15)

See, e.g., [17, 19,20].
By adjoining the cusps and taking the quotient, one obtains the modular curve

X(1) = PSL2(Z)\ (H ∪ {cusps}) . (16)
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There is a single cusp on X(1): in the quotient, 0 and ∞ lie in the same PSL2(Z)-orbit (indeed,
S exchanges 0 and ∞), so they define the same cusp class.

Remark 3.1 (interpretation-layer hint: UV/IR endpoint identification). The identification 0 ∼
∞ is an arithmetic-topological statement about the modular quotient. Any physical reading—for
example, interpreting S as a scale inversion template—belongs to Layer 2 and is not used as a
premise.

Remark 3.2 (interpretation-layer template: the cusp as an “observer singularity”). On X(1)
there is a single cusp class, and it is precisely where the canonical local parameter q = e2πiτ is
defined and where q-expansions are anchored. In a holographic reading, one may regard the cusp
as a “light source” for projection: continuous scan data becomes accessible as discrete coefficient
data through the cusp q-expansion interface. This is a Layer 2 metaphor and is not used as a
premise.

Remark 3.3 (interpretation-layer metaphor: a prism vocabulary). In a prism vocabulary, the
single cusp class plays the role of a “source point” where an undifferentiated continuous object is
presented to the readout interface, while the cusp q-expansion disperses that object into a discrete
“spectrum” of coefficient labels. This is a Layer 2 semantic picture attached to the mathematical
fact that q is the canonical local parameter at the cusp; it is not used as a premise.

4 Scanning as modular flow: from rotation algebras to modular
dynamics

This section explains how the scan algebra (O6) can be viewed as a minimal cross-section of
modular dynamics. The main point is structural: the Weyl relation singles out the irrational
rotation algebra (a noncommutative torus), while the modular generators S, T provide canonical
geometric symmetries whose cusp action supplies a scale-inversion template.

4.1 The rotation algebra Aα as the minimal scan closure

The C∗-algebra generated by unitaries U, V satisfying

UV = e2πiαV U, α /∈ Q, (17)

is the (irrational) rotation algebra Aα [21, 22]. In the scan interpretation:

• U encodes the tick iteration (time as an integer counter),

• V encodes the phase/readout coordinate.

This is the smallest closed algebraic setting in which scanning and phase readout coexist while
remaining intrinsically noncommutative.

Related structures: noncommutative tori, Diophantine constraints, and elliptic/modular
bridges. The identification of the scan algebra with a noncommutative torus is not merely
terminological: the rotation algebra supports a rich “geometric” apparatus (modules, vector bun-
dles, Chern numbers) and exhibits Diophantine rigidity phenomena closely related to TKNN-
type constraints in quantum Hall settings [23]. Moreover, there are explicit bridges between
modules over noncommutative tori and elliptic-curve geometry [24], which provides additional
context for why it is natural to interface the scan algebra with modular/elliptic backgrounds in
the present constitution.

11



4.2 T -translation and phase periodicity

On H, the modular translation T : τ 7→ τ + 1 induces

q = e2πiτ 7→ e2πi(τ+1) = q, (18)

so the q-coordinate is T -periodic. At the same time, the real part shifts by an integer:

x := ℜτ (mod 1) ⇒ x 7→ x+ 1 ≡ x. (19)

This identifies a canonical boundary phase coordinate x ∈ R/Z compatible with modular peri-
odicity. The scan orbit of O5,

xt = x0 + tα (mod 1), (20)

is then an irrational translation on the same circle: it respects the same quotient structure
but selects an irrational slope (minimality and unique ergodicity are standard; see e.g. [18,25]).
By Weyl’s equidistribution theorem, the orbit is equidistributed on R/Z and thus induces the
Lebesgue measure at the readout level.

The roles of α and τ are coordinated but not identical. The parameter α is the scan
slope in the Weyl pair (O6): it controls the boundary rotation x 7→ x + α and therefore the
deterministic sampling law of the phase circle. The modular coordinate τ ∈ H plays a different
role: it is the geometric coordinate on the mother space and carries an additional scale parameter
y = ℑτ . The constitution couples them by a choice of embedding of the boundary scan into the
modular stage, e.g. along a horizontal line

τt := xt + iy, (21)

as used in Section 9.6 and in the coefficient recovery bounds of Section 9.3. There is no claim of
a canonical identification α ↔ τ beyond such protocol choices: α determines the scan sampling
on x, while τ (and in particular y) parametrizes the cusp interface and numerical stability of q-
expansions. The continued-fraction/Gauss-map coding arises instead from a different dynamical
object (modular geodesic flow; Section 4.4) and should not be conflated with the scan slope.

4.3 S-inversion, cusp equivalence, and a scale-exchange template

The modular inversion S : τ 7→ −1/τ exchanges deep and shallow regions of the cusp. Indeed,
if ℑτ is large (near i∞), then ℑ(−1/τ) is small (near 0). Since 0 ∼ ∞ as cusps on X(1)
(Section 3.3), S supplies a canonical endpoint identification on the arithmetic quotient.

Remark 4.1 (interpretation-layer template: “semantic wormhole”). Mathematically, S is an
involution that exchanges deep and shallow cusp regions and realizes an endpoint identification
in the modular quotient. In an HPA–Ω interpretation, this can be used as a template for a non-
local semantic wormhole: a symmetry channel that relates coarse (IR) and fine (UV) descriptions
without traversing all intermediate scan ticks in a naive linear parametrization. This language
is interpretive (Layer 2) and is not required for the Layer 0/1 closure.

4.4 Geodesic flow on the modular surface and continued fractions

A key bridge in this constitution is that continued fractions are not an arbitrary coding choice:
they arise canonically from the dynamics of the modular surface. Let

M := PSL2(Z)\H (22)
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be the modular surface (an orbifold of finite hyperbolic area). The geodesic flow on M admits
a classical symbolic coding in which the digit sequence of a continued fraction is the itinerary
of a geodesic with respect to a natural cross-section. Concretely, the Gauss map

G(ξ) =
{1
ξ

}
, ξ ∈ (0, 1), (23)

is the base map of a standard suspension model for the modular geodesic flow [18,26].

Figure 4: A schematic bridge (Series) between the modular geodesic flow and the Gauss-map
suspension: continued-fraction digits arise canonically as return symbols on a cross-section, with
a roof function controlling return times.

Theorem 4.2 (Series: modular geodesic flow as a suspension over the Gauss map). There exists
a Poincaré cross-section Σ ⊂ T 1M for the geodesic flow and a measurable identification of Σ
with (0, 1) such that the first-return map on Σ is (conjugate to) the Gauss map G. Moreover, the
geodesic flow on M is measurably isomorphic to the suspension flow over G with roof function

r(ξ) = −2 log ξ. (24)

In particular, the continued-fraction digits of ξ = [0; a1, a2, . . .] arise as the symbolic itinerary of
the corresponding modular geodesic under successive returns.

Theorem 4.3 (Gauss measure and digit law). The Gauss map G(ξ) = {1/ξ} preserves the
probability measure

dµ(ξ) = 1
log 2

dξ
1 + ξ

, ξ ∈ (0, 1), (25)

and is ergodic with respect to µ [27]. Writing ξ = [0; a1, a2, . . .], the first digit satisfies

µ(a1 = k) = log2

(
1 + 1

k(k + 2)

)
(k ≥ 1). (26)

In particular, for µ-almost every ξ the digit frequencies along the orbit are governed by this law
(Birkhoff theorem).

Theorem 4.4 (Gauss–Kuzmin exponential convergence (classical)). Let ν be a probability mea-
sure on (0, 1) that is absolutely continuous with respect to Lebesgue measure with a density of
bounded variation. Then there exist constants C > 0 and 0 < ρ < 1 such that for all n ≥ 0,

sup
x∈(0,1)

|ν(Gn(ξ) ≤ x) − µ((0, x])| ≤ C ρn, (27)
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where µ is the Gauss invariant measure from Theorem 4.3 (so µ((0, x]) = log2(1 + x)). Equiv-
alently, digit statistics relax exponentially fast to the Gauss digit law along typical continued-
fraction tails. The optimal ρ is known as the Gauss–Kuzmin–Wirsing constant, numerically
ρ ≈ 0.30366; see [27].

Remark 4.5 (quantitative relaxation-to-equilibrium). Theorem 4.4 upgrades the digit law from
an “almost-everywhere” statement to a finite-time relaxation guarantee for a broad class of initial
distributions.

Remark 4.6 (constitution-level consequence). This modular-geodesic origin provides a strict
mother-space justification for the continued-fraction/Ostrowski module used in Section 7: the
digits {an} are canonical dynamical invariants of modular geodesics, and Ostrowski numeration
is the corresponding canonical integer-time coordinate system.

4.5 Boundary irrationals as geodesic endpoints: a canonical meaning of the
continued fraction of α

The coordinate ξ ∈ (0, 1) in the Gauss-map suspension description (Theorem 4.2) is not an
auxiliary “coding parameter”: it is naturally a boundary coordinate. Indeed, the boundary
at infinity of H is ∂H = R ∪ {∞} ∼= P1(R), and every (unoriented) geodesic in H is uniquely
determined by its unordered pair of endpoints in ∂H. After quotienting by PSL2(Z), the geodesic
flow on M = PSL2(Z)\H inherits a canonical cross-section whose return dynamics is described
by the Gauss map on such boundary coordinates [18,26].

Why this matters for scan slopes. The scan slope α in O5/O6 is a boundary irrational
parameter: α ∈ R/Z can be represented by a unique α ∈ (0, 1) \ Q after choosing a lift.
Thus, once a scan slope α is fixed, its continued-fraction digits are canonically meaningful from
the mother-space viewpoint: they coincide with the symbolic return itinerary of the modular
geodesic associated to the boundary coordinate ξ = α in the Series cross-section picture. This
does not identify the scan orbit xt = x0 + tα with geodesic flow; it clarifies that the Ostrowski
numeration system built from the continued fraction of α (Section 7.2) is a modular-dynamical
invariant attached to the same boundary irrational parameter that controls the scan.

Constitution-level consequence. The coding module (continued fractions/Ostrowski/Zeckendorf)
is therefore not an ad hoc digitization of α: once the modular stage is adopted, it is the canonical
arithmetic coding naturally associated with the boundary irrational that parametrizes the scan.

5 Readout as a q-expansion: from continuous data to discrete
integers

The bridge from continuous analytic data to discrete arithmetic data is canonically realized
at a cusp via Fourier/q-expansion. This section formalizes the slogan “discreteness lives at
cusps” as a protocol-level interface: cusp expansions provide a standard, symmetry-compatible
discretization map.

5.1 Modular forms and cusp expansions

Let f be a modular form of weight k for PSL2(Z) (or a congruence subgroup). At the cusp ∞,
one has a q-expansion

f(τ) =
∑
n≥0

anq
n, q = e2πiτ . (28)

14



For a cusp form, a0 = 0. Many arithmetic objects have integral (or algebraic-integer) coefficients
an. A central example is the discriminant modular form

∆(q) = q
∏
n≥1

(1 − qn)24 =
∑
n≥1

τ(n)qn, (29)

whose coefficients τ(n) are the Ramanujan tau function. Standard references for modular forms,
q-expansions, and the arithmetic nature of Fourier coefficients include [19,20,28].

Proposition 5.1 (discreteness from T -periodicity at the cusp). Let f be holomorphic on H and
T -periodic: f(τ + 1) = f(τ). Writing τ = x + iy, the function x 7→ f(x + iy) is 1-periodic for
every fixed y > 0 and therefore admits a Fourier expansion

f(x+ iy) =
∑
n∈Z

an(y) e2πinx, an(y) =
∫ 1

0
f(x+ iy) e−2πinx dx. (30)

If, in addition, f has at most polynomial growth as y → ∞ (the standard cusp-growth condition
satisfied by modular forms), then an(y) = 0 for all n < 0, and the nonnegative modes can be
written as a q-series

f(τ) =
∑
n≥0

an q
n, q = e2πiτ , (31)

with an independent of y.

Remark 5.2. This proposition makes the constitution-level point precise: the integer mode
index is forced by the T -quotient. The cusp parameter q is simply the holomorphic packaging of
the Fourier modes. See standard treatments in [19,20].

Protocol-level reading. If τ is treated as a scan coordinate, then the monomials qn serve as
canonical “cusp modes”, and the q-expansion maps a continuous analytic object to a discrete
coefficient sequence {an}. In finite-resolution readout, one naturally accesses only a truncated
or windowed subset of these modes; this aligns with O5, where probabilities are induced by
finite-resolution effects rather than externally postulated sampling rules.

Generative versus retrieval (interpretation-layer viewpoint). One may additionally
emphasize a generative perspective: the discrete sequence {an} is not treated as “downloaded”
from a static database, but as rendered by a scan–projection procedure applied to a generating
object f at a cusp. This is a Layer 2 viewpoint about the semantics of readout and does not
alter the Layer 0/1 mathematical content.

Remark 5.3 (interpretation-layer metaphor: dispersion into coefficients). In the same semantic
vocabulary, one may view the cusp interface as a “prism”: an undifferentiated generating object f
is dispersed into discrete coefficient labels {an} by the q-expansion, and finite-resolution readout
corresponds to accessing only a band-limited or truncated portion of that spectrum. This is a
Layer 2 metaphor and is not used as a premise.

Remark 5.4 (what is and is not claimed). We do not claim as a theorem that physical particle
spectra must equal {an}. The only constitution-level claim is that cusp expansions provide a
clean, auditable discretization interface: if a physical readout is dominated by cusp Fourier
modes, then the discrete output inherits arithmetic structure.
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5.2 Ramanujan’s differential system: a canonical q-flow on modular data

The cusp parameter q = e2πiτ provides not only an expansion interface but also a canonical
derivation

D := q
d
dq = 1

2πi
d
dτ , (32)

which differentiates along the cusp coordinate. For level 1, the differential closure of modular
forms is controlled by the weight-2 Eisenstein series

E2(τ) = 1 − 24
∑
n≥1

σ1(n) qn, (33)

which is quasi-modular rather than modular. The classical Ramanujan identities state that

DE2 = E2
2 − E4

12 , DE4 = E2E4 − E6
3 , DE6 = E2E6 − E2

4
2 , (34)

and, equivalently, the logarithmic derivative of the discriminant satisfies

D log ∆ = E2. (35)

These identities are standard and can be found in classical references such as [19,20].

Constitution-level role. Equations (34)–(35) make explicit that the cusp interface comes
with a rigid differential calculus: once q is adopted as the canonical local coordinate, modular
data is organized not only by discrete coefficients but also by a canonical q-flow (the Ramanu-
jan vector field). In the present constitution this provides an arithmetic-dynamical meaning
to the slogan “viewed from the cusp”: the same canonical coordinate that produces discrete
q-coefficients also supports a closed differential system relating the distinguished generators
E4, E6,∆.

5.3 Modular symbols and periods: critical L-values as period data

The q-expansion interface produces discrete coefficients. A complementary, equally standard
interface produces period data from modular forms: integrals of modular differentials along
rational paths on the modular curve (modular symbols). These integrals are periods in the sense
of Kontsevich–Zagier [29] and, from the motivic viewpoint, encode comparison data between
Betti and de Rham realizations.

Modular symbols (period integrals). Let f be a cusp form of weight k ≥ 2 for a congruence
subgroup (in particular for SL2(Z)). For integers m with 1 ≤ m ≤ k − 1 and for cusps/rational
endpoints r, s ∈ Q ∪ {∞}, one considers integrals of the form

{r, s}(m)
f :=

∫ s

r
f(z) zm−1 dz, (36)

where the path is taken in H and endpoints are interpreted as cusps. These modular symbol
values generate a finite-dimensional period lattice attached to f ; see standard accounts in [28,
30,31].

Mellin transform and L-values. The Dirichlet series

L(f, s) :=
∑
n≥1

an

ns
(37)
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admits the classical Mellin transform representation (for ℜ(s) large, with analytic continuation
thereafter):

(2π)−sΓ(s)L(f, s) =
∫ ∞

0
f(it) ts−1 dt. (38)

In particular, critical values L(f,m) for integers 1 ≤ m ≤ k− 1 can be expressed in terms of the
period data generated by (36); see [30–32].

Algebraicity after period normalization (standard theorem). For a normalized Hecke
eigen cusp form f with coefficient field Kf , there exist nonzero periods Ω±

f (depending on f but
not on m) such that for each critical integer m one has

L(f,m)
(2πi)m Ω±

f

∈ Kf , (39)

with the choice of sign determined by the parity dictated by complex conjugation (see [30,32]).
This is the precise sense in which critical L-values are periods up to algebraic factors.

Constitution-level role. Equation (39) provides a period interface parallel to the q-expansion
interface: it converts the same underlying modular object into numeric invariants that are stable
under changes of realization. In the broader HPA–Ω program, MAI ( [3]) supplies a protocol-
level period-realization interface for scan averages, and the remaining objective is to align that
interface with modular period data and with the Hecke/Frobenius invariants on the étale side.

5.4 Induced measures: probability from window kernels

O5 states that finite-resolution readout is encoded by effects {E(ε)
k }, yielding

P
(ε)
k = ωeff

(
E

(ε)
k

)
,

∑
k

E
(ε)
k = 1. (40)

This has a direct “cusp mode” interpretation: a window kernel can be understood as a finite
bandwidth or finite depth in n for which the coefficients an are operationally accessible. Prob-
ability is then an induced measure built from the spectral data and the window.

Figure 5: Protocol-level schematic of induced probability: scan dynamics on a phase circle is
paired with a finite-resolution instrument (effects/windows), producing induced outcome prob-
abilities by evaluation in an effective state.
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6 Hecke dynamics and the prime skeleton: symmetry-preserving
cross-scale scanning

The Hecke algebra provides a canonical arithmetic mechanism for “cross-scale” structure: it is
a commuting family of symmetry-preserving operators acting on modular forms, generated by
primes and governed by rigid multiplicative relations. This section records the standard facts
we need and clarifies the precise role of primes.

6.1 Hecke operators and symmetry preservation

Let Mk be a space of modular forms of weight k (for PSL2(Z) or a congruence subgroup). For
each integer n ≥ 1, the Hecke operator Tn is a linear endomorphism of Mk preserving modular
symmetry. In terms of q-expansions, if

f(τ) =
∑
m≥0

amq
m, (41)

then

(Tnf)(τ) =
∑
m≥0

 ∑
d|(m,n)

dk−1 amn/d2

 qm. (42)

Hecke operators commute on appropriate subspaces and can be simultaneously diagonalized
[20,28].

6.2 Why primes: generators rather than exclusive definitions

It is important to state the “prime skeleton” correctly:

• Tn is defined for all positive integers n.

• The Hecke algebra is generated by the operators Tp at primes p.

The key relations are
TmTn =

∑
d|(m,n)

dk−1 Tmn/d2 , (43)

and the prime-power recursion

Tpr+1 = TpTpr − pk−1Tpr−1 . (44)

Thus the full family {Tn} is built from prime data.
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Figure 6: The prime skeleton viewpoint (schematic): prime-indexed generators and Hecke rela-
tions constrain the full coefficient spectrum of eigenforms, and package into Euler products with
local factors indexed by primes.

6.3 Protocol-level origin: symmetry-preserving coarse-graining and Hecke
correspondences

The constitution’s use of Hecke operators is not meant as an isolated analogy. At Layer 1, “cross-
scale” refers to changing observational resolution while preserving the structural symmetries
that define the stage. Once the stage is modular and the discrete interface is anchored at the
cusp, there is a canonical family of symmetry-preserving coarse-graining operators: the Hecke
correspondences.

Coarse-graining must be symmetry-preserving. In the scan–projection protocol (O5/O6),
a change of scale may be realized by a controlled decimation of tick time (subsampling) together
with an instrument-induced averaging over micro-shifts that are operationally unresolved. On
the modular side, the same idea takes a canonical arithmetic form: one averages over finite-
index sublattices (equivalently, over isogeny classes) in a way that commutes with the modular
symmetry.

A boundary toy model: decimation with fiber averaging. At the simplest boundary
level (the phase circle x ∈ R/Z), one may model a symmetry-preserving “coarse” operator by
the translation-invariant fiber average over the n-fold covering:

(Cng)(x) := 1
n

n−1∑
b=0

g

(
x+ b

n

)
. (45)

This implements a decimation/averaging step without selecting a preferred micro-shift; it also
satisfies CmCn = Cmn by a direct reindexing of the double sum. The modular Hecke operators
can be read as the natural arithmetic lift of this “scale-change + shift-average” motif to the
modular stage.

Hecke as an averaging operator over index-n sublattices. For level 1, a standard rep-
resentative description is the explicit formula

(Tnf)(τ) = nk−1 ∑
ad=n
d>0

∑
b (mod d)

d−k f

(
aτ + b

d

)
, (46)
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which is equivalent to the q-expansion action (42) and can be viewed as averaging over a finite
correspondence indexed by determinant n (see Appendix B.15 for the classical formula and
references). The determinant constraint ad = n is precisely the discrete scale label: it is the index
of the sublattice in the elliptic-curve lattice model, hence a canonical “coarse” scale associated
with n.

Decimation and shift-averaging at the cusp. The maps τ 7→ (aτ + b)/d decompose into
a scaling component (controlled by a/d) and a discrete translation (indexed by b(mod d)). In
protocol terms, b-averaging implements a symmetry-preserving micro-shift average compatible
with T -periodicity, while the scaling component encodes a discrete resampling/coarse-graining
step. The resulting operator is therefore not an arbitrary choice: it is the standard symmetry-
compatible way to implement “change of scale” once modular symmetry and the cusp interface
have been adopted.

Why primes emerge. Since finite-index data factorizes multiplicatively and the Hecke alge-
bra is generated by the prime-indexed operators Tp, the full cross-scale family propagates from
prime steps. This is the technical content behind the “prime skeleton”: primes are the canonical
generator labels for scale-changing correspondences, not an extra physical postulate.

Related work: Hecke symmetries beyond scalar modular forms. Hecke relations and
Hecke-type operators also play a prominent role in physics-adjacent settings where the relevant
modular objects are vector-valued (e.g. RCFT characters and modular tensor categories), pro-
viding additional context and constraints on any “prime skeleton” interpretation. For example,
Hecke relations can induce nontrivial Galois symmetries in RCFT/MTC data [33], and there
are systematic constructions of Hecke operators acting on vector-valued modular forms [34].
These developments suggest a natural upgrade path for the constitution when readout sectors
are modeled by vector-valued modular objects rather than scalar forms.

6.4 Eigenforms and stable discrete spectra

If f is a (normalized) Hecke eigenform, then for all n,

Tnf = λnf, (47)

and typically λn = an in the q-expansion normalization. Consequently the coefficients {an}
satisfy rigid arithmetic constraints (multiplicativity on coprime indices and prime-power recur-
sions). In protocol terms: if “repeatable discrete readout” corresponds to stable eigen-structures
under symmetry-preserving cross-scale operations, then eigenforms supply a mathematically
controlled model of such stability, with primes functioning as the generating skeleton.

Euler product: the prime skeleton in closed form. For a normalized eigenform f(τ) =∑
n≥1 anq

n (with a1 = 1), the associated Dirichlet series

L(f, s) =
∑
n≥1

an

ns
(48)

admits an Euler product whose local factors are determined by primes:

L(f, s) =
∏
p

(
1 − app

−s + pk−1−2s
)−1

(level 1), (49)

see, e.g., [19, 20,28]. For the discriminant form ∆ of weight 12, this reads∑
n≥1

τ(n)
ns

=
∏
p

(
1 − τ(p)p−s + p11−2s

)−1
, (50)
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which makes the “prime-generated skeleton” literal: primes control the local factors and the
Hecke relations propagate them to all n.

Remark 6.1 (interpretation-layer metaphor: a prime spectrum). In a prism vocabulary, the
Euler product expresses the idea that “colors” are prime-indexed: primes determine local spectral
factors, and the commuting Hecke algebra acts as a symmetry-preserving family of “spectral
filters” whose eigenforms are the stable directions (Section 6.4). This language is interpretive
(Layer 2) and is not used as a premise.

Diagonalization is canonical on cusp forms. On spaces of cusp forms equipped with
the Petersson inner product, Hecke operators are normal and, in standard settings, self-adjoint.
Combined with commutativity, this yields an orthogonal basis of simultaneous Hecke eigenforms
(a genuine diagonalization frame). See, e.g., [19, 28] and Appendix B.15.

Remark 6.2 (interpretation-layer metaphor: holographic resonance). In an interpretation-layer
reading, “eigenform stability” may be viewed as a resonance condition: when scan dynamics is
aligned with a Hecke-eigen structure, readout becomes exceptionally stable under coarse-graining
and finite-resolution noise. Any identification of such resonance with cognitive notions (e.g.
“intuition”) is semantic and is not used as a premise.

7 From modular scan geometry to HPA coding: continued frac-
tions, Ostrowski numeration, and Zeckendorf

This section connects the scan orbit of O5 to canonical integer-time coding. The bridge pro-
ceeds in three standard steps: irrational rotations yield Sturmian (mechanical) words under
window readout; continued fractions yield Ostrowski numeration as a canonical representation
of integers; and the golden branch degenerates to Zeckendorf/Fibonacci coding.

7.1 Irrational rotation + window readout yields Sturmian words

Given an irrational rotation orbit

xt = x0 + tα (mod 1), α /∈ Q, (51)

choose an interval window W ⊂ R/Z and define a binary readout

st = 1W (xt) ∈ {0, 1}. (52)

The resulting infinite word is a Sturmian (mechanical) word and has minimal subword complex-
ity: the number of distinct length-n subwords equals n + 1 [35, 36]. This aligns with the HPA
emphasis on “binary-minimal” readout grammars. In particular, on the golden branch α = φ−1

with the canonical window W = [0, 1 − α), the associated mechanical word is the Fibonacci
word (a classical fixed point of the substitution 0 7→ 01, 1 7→ 0).

7.2 Ostrowski numeration from continued fractions

Let α = [0; a1, a2, . . .] be the continued fraction of α, and let qn be the denominators of the
convergents. The Ostrowski numeration system represents every integer N uniquely as

N =
∑

n

bnqn, 0 ≤ bn ≤ an+1, (53)

subject to local admissibility constraints (a finite “no-carry” grammar) determined by the con-
tinued fraction. This provides a canonical encoding of integer tick time into a digit string with
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local checkability, which is essential under finite-resolution and locality constraints: the readout
protocol must be implementable in a quasi-local algebra. Background on Ostrowski numeration
and its role in automatic/low-complexity sequences can be found in [37].

Remark 7.1 (metrical scaling constants (standard)). The continued-fraction digits encode more
than a convenient grammar: the metrical theory yields sharp typical scaling constants. If pn/qn

are convergents of α and α = [0; a1, a2, . . .], then for Lebesgue-a.e. α one has the Lévy limit

lim
n→∞

1
n

log qn = π2

12 log 2 , (54)

and Khinchin’s constant for the geometric mean of digits,

lim
n→∞

 n∏
j=1

aj

1/n

= K0 ≈ 2.6854520010, (55)

see, e.g., [27]. These constants quantify the “exponential scaling” implicit in the canonical
coding.

Figure 7: Ostrowski numeration and local admissibility (schematic): integer time is encoded
in locally checkable digits in the convergent basis; on the golden branch this specializes to the
Zeckendorf rule forbidding adjacent 1’s.

7.3 The golden branch and Zeckendorf degeneration

For the golden branch α = φ−1 = [0; 1, 1, 1, . . .], all continued-fraction coefficients satisfy an = 1,
and Ostrowski numeration degenerates to Zeckendorf representation:

N =
∑

k

ϵkFk, ϵk ∈ {0, 1}, ϵkϵk+1 = 0, (56)

where {Fk} are Fibonacci numbers. The single local constraint “no adjacent 1” gives a particu-
larly economical binary code, while retaining strong aperiodicity and good uniform-distribution
and discrepancy properties in the associated scan readout [38,39].
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8 Interfaces with Ω theory and QCA micro-models (interpreta-
tion layer)

This section is interpretation-layer only (Layer 2): it records how the constitution-level chain
may be interfaced with micro-dynamical models and physical semantics. None of the statements
below are used as premises in the Layer 0/1 closure.

8.1 QCA, quasicrystal textures, and scan–texture unification

In the Ω framework, micro-dynamics may be modeled by causally local quantum cellular au-
tomata (QCA) subject to finite-information and holographic constraints. For background on
QCA as unitary, locality-preserving discrete-time dynamics, see [5, 6]; for the Ω-specific holo-
graphic constraints, see [1]. Sturmian/Fibonacci words arising from golden-branch scanning can
serve as quasi-periodic textures for 1D automata and can be embedded into cut-and-project
quasicrystal constructions [40], providing a controlled route toward continuum Dirac-like limits
in suitable scaling regimes [2, 41].

8.2 Gravity as readout mismatch: phase-pressure templates

In one interpretation-layer extension of HPA–Ω, gravity is modeled as a coarse-grained effect of
mismatch between intrinsic unitary scanning and low-dimensional projection readout (“phase
pressure”). Turning this into a predictive theory requires additional dynamical closure beyond
the constitution presented here.

8.3 Computational teleology and resource semantics

With time defined as scan iteration and space tied to readout resolution, one may interpret
complexity as a geometric impedance or routing overhead, leading to architectural correspon-
dences between delays and computational costs. Such correspondences belong to Layer 2 and
are treated as modeling templates rather than derivations.

8.4 Biological isomorphism: modular geometry and genetic coding

The constitution developed here is substrate-independent at Layer 1: it concerns scan dynamics,
finite-resolution projection, and canonical coding. From a Layer 2 perspective, it is therefore
natural to ask whether similar constraints could appear in biological information persistence.

Combinatorial capacity. The standard genetic code uses triplets over a four-letter alphabet,
yielding 43 = 64 codons, i.e. a 26-sized finite readout alphabet. This matches the minimal “small
register” intuition: a compact discrete interface can support a large space of effective states under
a fixed-length readout rule.

Degeneracy as coarse-graining. The many-to-one mapping from codons to amino acids
(plus stop signals) can be viewed as a finite-resolution coarse-graining of the codon alphabet. In
the language of O5, such a coarse-graining is naturally modeled by effects that identify multiple
micro-labels into a single operational outcome. The wobble mechanism in codon–anticodon
pairing provides a concrete biological instance of finite-resolution decoding [42].

Stability as mode selection (hypothesis). One may speculate that the observed struc-
ture of the genetic code reflects a selection of robust modes under noise (mutations, translation
errors), analogous in spirit to selecting stable eigen-structures under symmetry-preserving dy-
namics. Quantitative notions of error-minimization and code optimality have been studied in
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the biological literature; see, e.g., [43–46]. This analogy is offered as a hypothesis: we do not
derive biological optimality from modular/Hecke rigidity in this paper.

Boundary semantics. Under the generative viewpoint of readout, translation can be read
as an “execution” of a finite alphabet into a structured outcome space (proteins), rather than
a passive storage model. This is a Layer 2 semantic bridge and is not used as a premise in the
mathematical constitution.

8.5 Diagonalization perspective: eigen-frames and apparent chaos

The constitution emphasizes that “disorder” can be an artifact of projection. In an abstract
Hilbert-space language, a change of basis is a unitary rotation of coordinates: the same object
may look complicated in one basis and simple in another. This motivates an interpretation-layer
diagonalization perspective.

Hecke eigenforms as stable directions. The Hecke algebra is a commuting family on
appropriate modular-form spaces (Section 6.1). Hence there exists a basis of simultaneous
eigenvectors (eigenforms) in which all Hecke operators act diagonally, and the prime-indexed
generators Tp determine the full action. In this sense, “prime anchors” are not eigenvectors
themselves but the canonical generator labels that select and propagate eigen-data across scales.
The resulting picture is that arithmetic rigidity is clearest when one works in the eigenform
frame.

Projection creates complexity. Operational readout is, by design, a finite-resolution pro-
jection (O5). Projecting an intrinsically unitary scan onto a lower-dimensional discrete interface
can produce complex, seemingly irregular patterns even when the underlying evolution is struc-
turally simple. The hologram analogy provides an intuition: a clean image can be encoded in
a high-frequency interference pattern and recovered only under an appropriate reconstruction
protocol.

Geodesics and “the right angle” (template). On the modular surface, geodesic flow
provides a canonical notion of “straightness” in hyperbolic geometry, while coordinate charts and
tilings can make trajectories appear intricate. In the same spirit, choosing a cross-section/basis
aligned with the relevant commuting structure can be viewed as choosing the “right angle” for
diagonalization.

Limits from noncommutativity. The diagonalization viewpoint has intrinsic limits: the
scan Weyl pair is noncommutative (O6), and simultaneous eigenvectors for Uscan and V do not
exist when α /∈ Q (Appendix B.2). Thus, “perfect alignment” cannot eliminate complementarity
at Layer 1; it only clarifies which structures can be diagonalized (Hecke) and which cannot (Weyl
scan–phase).

8.6 Prism perspective: source, dispersion, spectrum, refocusing

The epigraph of this paper proposes a second semantic picture: the universe as a prism. This
subsection records the mapping as an interpretation-layer template only.

The source point. In the constitution, the distinguished “point” is the unique cusp class on
X(1) (Section 3.3): it is where the canonical local parameter q is defined and where q-expansions
are anchored. Any identification of this cusp with a physical singularity or horizon belongs to
Layer 2 and is not used as a premise.
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Dispersion as an expansion interface. The q-expansion (Section 5.1) maps a continuous
analytic object to a discrete coefficient sequence. In the prism vocabulary, this is the dispersion
step: what is “undifferentiated” prior to readout becomes a discrete spectrum of coefficient
labels once projected through the cusp interface. Finite-resolution readout corresponds to a
band-limited or truncated access to that spectrum (O5).

Continuum phase and the apparent information imbalance (template). The prism
picture invites a “compression paradox”: a single continuous phase parameter (a real angle, or
a cusp coordinate τ) ranges over a continuum, while any explicit readout record is necessarily
discrete (coefficients, labels, bitstrings). In set-theoretic terms, the continuum has cardinality
2ℵ0 while discrete labels live in countable families. The constitution resolves the tension oper-
ationally: O2 bounds effective degrees of freedom, and O5 restricts access to finite-resolution
effects, so only a finite prefix/bandwidth of the dispersed spectrum is ever accessible. Thus
“more information in a point” is a semantic statement about infinite-precision idealization and
phase sensitivity, not a claim that a finite observer can extract unbounded information from a
physical point.

A prime spectrum. The Hecke/prime skeleton makes the spectral analogy concrete: primes
generate the Hecke algebra and appear as the local factors in Euler products (Section 6.4). In this
picture, primes act as “primary colors” indexing irreducible building blocks, while eigenforms
are the stable directions in which the commuting symmetry acts diagonally.

Computation as refocusing (template). If readout produces scattered coefficient data,
then “computation” can be interpreted as the controlled inverse step: using a finite protocol
(coding, windowing, and symmetry constraints) to refocus discrete readout back toward a gen-
erating object. Mathematically, this borrows the general inverse-problem intuition that global
structure can be reconstructed from spectral data, but no specific physical inverse-scattering
claim is made here.

9 Quantitative closure: standard theorems and bounds
As a closed constitution, the present framework is only as strong as its quantitative consequences.
Here we record standard theorems (with explicit constants where possible) and the constant-
bearing bounds used throughout the paper.

9.1 From unitary scan to induced measures: equidistribution

Under O5/O6 the scan orbit is an irrational rotation. Weyl’s equidistribution theorem implies
that the orbit induces the Lebesgue measure on R/Z [25, 39]; in particular, for any interval
window W ,

1
N

N−1∑
t=0

1W (xt) → |W |. (57)

Thus the limiting “probabilities” of window readout are not postulated but induced by the scan
dynamics and the chosen finite-resolution window.

Digit statistics from the modular-geodesic coding. Section 4.4 identifies continued-
fraction digits as return-symbols of modular geodesics. The Gauss map admits a canonical
invariant measure and a closed-form digit law (Theorem 4.3), so digit frequencies are quantita-
tively constrained for typical orbits. Beyond almost-everywhere digit frequencies, the Gauss–
Kuzmin theorem provides a finite-time relaxation guarantee: for broad absolutely continuous

25



initial laws, the distribution of Gn converges exponentially fast to the Gauss invariant mea-
sure (Theorem 4.4). Metrical continued-fraction theory also provides sharp scaling constants
(Section 7.2).

Finite-N error control. For any finite set of scan samples PN = {x0, . . . , xN−1} and any
interval window W , the Koksma inequality gives an explicit finite-N bound∣∣∣∣∣ 1

N

N−1∑
t=0

1W (xt) − |W |
∣∣∣∣∣ ≤ 2D∗

N (PN ), (58)

see Appendix B.6. In particular, on convergent lengths the closed-form expressions in Propo-
sition B.2 turn induced probability into a constant-controlled estimate. More generally, the
Ostrowski/Zeckendorf coding of the tick count N controls discrepancy via digit sums (Ap-
pendix B.7), providing a direct quantitative bridge from canonical coding to finite-N readout
accuracy. More precisely, if pn/qn are convergents of α and

N =
m∑

n=0
bnqn (59)

is the Ostrowski expansion of N , then Proposition B.1 gives, for every interval window W ,∣∣∣∣∣ 1
N

N−1∑
t=0

1W (xt) − |W |
∣∣∣∣∣ ≤ 2

N

m∑
n=0

bn, (60)

hence
D∗

N (PN (α)) ≤ 2
N

m∑
n=0

bn. (61)

This bound holds for all N ≥ 1 (not only at convergent lengths) and makes the constant explicit.
For the golden branch α = φ−1 at Fibonacci lengths N = Fn, Appendix B.10 yields explicit
constants: for odd n, D∗

Fn
= 1/Fn so the window-frequency error is bounded by 2/Fn; for even

n,
D∗

Fn
= 1
Fn

+
(

1 − 1
Fn

) 1√
5Fn

, (62)

so the window-frequency error is bounded by 2
(
1 + 1√

5

)
1

Fn
up to the vanishing factor (1−1/Fn).

More generally, choosing α with bounded continued-fraction coefficients (constant type) yields
an explicit uniform guarantee: if an ≤ A for all n, then Appendix B.7 gives

D∗
N (PN (α)) ≤

2A(2 + logφN)
N

, (63)

recovering the classical O((logN)/N) rate with explicit constants. This provides a principled
scan-slope selection rule: bounded partial quotients give uniformly low discrepancy, and the
golden branch (A = 1) is the canonical extremal choice compatible with Zeckendorf coding.

9.2 Quantitative discrepancy control and a closed form on convergent lengths

The same irrational-rotation model admits quantitative, non-asymptotic control. The Denjoy–
Koksma inequality yields uniform bounds at convergent lengths qn [18, 47, 48]. More sharply,
Proposition B.2 gives a closed form for the one-dimensional star discrepancy at lengths q satis-
fying |α− p/q| < 1/q2.

For the golden branch α = φ−1, where the convergents are Fibonacci ratios, this implies an
explicit constant:

FnD
∗
Fn

→ 1 + 1√
5

(n even), (64)

while FnD
∗
Fn

= 1 for odd n.

26



9.3 Coefficient recovery by scan quadrature: variation bounds and parameter
choices

The constitution repeatedly uses the cusp interface as a continuous-to-discrete bridge. To make
this quantitative at finite N , it is useful to treat coefficient extraction as a deterministic quadra-
ture problem along a scan orbit, with a discrepancy-controlled error.

Coefficient recovery at height y. Let f be holomorphic on H and T -periodic, so it admits
a q-expansion

f(τ) =
∑
m≥0

amq
m, q = e2πiτ . (65)

For any y > 0, Fourier inversion at height y gives the exact coefficient formula

an = e2πny
∫ 1

0
f(x+ iy) e−2πinx dx (n ≥ 0). (66)

Define the integrand
gn,y(x) := f(x+ iy) e−2πinx (x ∈ R/Z), (67)

so that an = e2πny
∫
R/Z gn,y dx.

Scan quadrature estimator and a deterministic finite-N bound. Given a scan orbit
xt = x0 + tα (mod 1), define the scan-quadrature estimator

â(N)
n (y) := e2πny 1

N

N−1∑
t=0

gn,y(xt). (68)

If gn,y has bounded variation, then Koksma’s inequality (Appendix B.6) yields∣∣∣â(N)
n (y) − an

∣∣∣ ≤ e2πny Var(gn,y)D∗
N (PN (α)) . (69)

Thus, for coefficient recovery the quantitative problem reduces to (i) bounding Var(gn,y) as a
function of y and n, and (ii) choosing α,N to control D∗

N .

Proposition 9.1 (Uniform variation bound from the q-expansion). Let f(τ) = ∑
m≥0 amq

m

and gn,y be defined by (67). Then for any y > 0,

Var(gn,y) ≤ 2π
∑
m≥0

|m− n| |am| e−2πmy. (70)

In particular, using |m− n| ≤ m+ n,

Var(gn,y) ≤ 2π

n ∑
m≥0

|am| e−2πmy +
∑
m≥0

m |am| e−2πmy

 . (71)

Proof. Writing τ = x+ iy gives

gn,y(x) =
∑
m≥0

am e−2πmy e2πi(m−n)x. (72)

Termwise differentiation (justified by absolute convergence for fixed y > 0) yields

g′
n,y(x) = 2πi

∑
m≥0

(m− n) am e−2πmy e2πi(m−n)x. (73)

For absolutely continuous 1-periodic functions, Var(gn,y) ≤
∫ 1

0 |g′
n,y(x)| dx, and the triangle

inequality gives (70). The bound (71) follows from |m− n| ≤ m+ n.
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An explicit elementary bound for weighted power sums. For integer s ≥ 0 and q ∈
(0, 1), one has ∑

m≥1
msqm = q Ps(q)

(1 − q)s+1 , (74)

where Ps is the Eulerian polynomial of degree s with nonnegative coefficients and Ps(1) = s!.
Hence ∑

m≥1
msqm ≤ s! q

(1 − q)s+1 . (75)

See, e.g., [49] for standard generating-function identities and Eulerian-number properties. Below
we use (75) with q = e−2πy to turn (70) into explicit y- and n-dependent bounds.

Eisenstein series (level 1). For even k ≥ 4, the normalized Eisenstein series satisfies

Ek(τ) = 1 − 2k
Bk

∑
m≥1

σk−1(m) qm, (76)

so |am| ≤ Ck m
k−1 for m ≥ 1 with

Ck :=
∣∣∣∣ 2kBk

∣∣∣∣ ζ(k − 1), (77)

using σk−1(m) ≤ ζ(k − 1)mk−1. Applying Proposition 9.1 and (75) with q = e−2πy gives the
uniform bound

Var(g(Ek)
n,y ) ≤ 2πn+ 2πCk

(
n

(k − 1)! q
(1 − q)k

+ k! q
(1 − q)k+1

)
, q = e−2πy. (78)

Hecke eigen cusp forms (coarse uniform bound). Let f(τ) = ∑
m≥1 amq

m be a normal-
ized Hecke eigen cusp form of even weight k (level 1 for concreteness). Deligne’s bound implies
|am| ≤ d(m)m(k−1)/2. Using the trivial divisor bound d(m) ≤ m + 1 ≤ 2m for m ≥ 1 yields
|am| ≤ 2m(k+1)/2, hence Proposition 9.1 and (75) give

Var(g(f)
n,y) ≤ 4π

(
n

s1! q
(1 − q)s1+1 + s2! q

(1 − q)s2+1

)
, s1 :=

⌈
k + 1

2

⌉
, s2 :=

⌈
k + 3

2

⌉
, (79)

with q = e−2πy. For the discriminant form ∆ of weight 12, the same bound applies with s1 = 7,
s2 = 8.

Choosing α and N (discrepancy control). Given (69), a principled scan-slope choice is to
enforce uniformly small D∗

N . The explicit constant-type bound (63) shows that bounded partial
quotients (an ≤ A) guarantee D∗

N = O((logN)/N) with an explicit constant; the golden branch
(A = 1) yields the canonical smallest bound among constant-type choices and also admits exact
discrepancy constants on Fibonacci lengths (Appendix B.10). For generic α with unbounded
partial quotients there is no comparable uniform constant, and D∗

N can exhibit spikes at N tied
to unusually large continued-fraction digits.

Corollary 9.2 (Constant-type design inequality for coefficient recovery). Assume the scan slope
α has bounded continued-fraction coefficients aj ≤ A for all j (constant type), so that the
discrepancy bound (63) holds. Then for any T -periodic holomorphic f with q-expansion and for
any y > 0, the scan-quadrature estimator (68) satisfies∣∣∣â(N)

n (y) − an

∣∣∣ ≤ e2πny Var(gn,y)
2A(2 + logφN)

N
, (80)

where gn,y is defined in (67). In particular, for f = Ek one may upper-bound Var(gn,y) by (78),
and for a normalized Hecke eigen cusp form by (79).
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Joint choice of y and N for a target coefficient index n. The finite-N recovery bound (69)
combines (i) an amplification factor e2πny and (ii) a decay factor in Var(gn,y) driven by q = e−2πy.
For the polynomial-growth classes above, the small-y asymptotic q/(1 − q)s+1 ∼ (2πy)−(s+1)

suggests minimizing a proxy of the form e2πny y−p, whose optimizer is

Lemma 9.3 (exponential–power tradeoff optimizer). Let c > 0 and p > 0. The function
h : (0,∞) → (0,∞) given by h(y) = ecy y−p attains its unique minimum at y = p/c, and

min
y>0

ecy y−p = ep
(
c

p

)p

. (81)

Proof. Differentiate log h(y) = cy − p log y to obtain (log h)′(y) = c − p/y, which vanishes if
and only if y = p/c. Since (log h)′′(y) = p/y2 > 0, this critical point is the unique minimizer.
Evaluating at y = p/c gives the stated minimum.

y⋆ = p

2πn. (82)

For Eisenstein series Ek, the dominant term in (78) corresponds to p = k; for cusp eigenforms
of weight k with the coarse bound (79), the dominant term corresponds to p ≈ s1 + 1 ≈ k+3

2 .
Once y is fixed, one selects N so that D∗

N (PN (α)) ≤ ε/
(
e2πnyVar(gn,y)

)
for a target tolerance ε,

using (63) (or the exact convergent-length formulas) as an explicit design inequality.

Where R1 enters beyond |q| analogy. At the operator level, coefficient recovery and dis-
crepancy control both involve regulated orbit sums of the form ∑

t≥0 U
t

scan applied to mean-zero
observables (the cohomological equation for a rotation). The canonical way to make these sums
well-defined is precisely Abel/resolvent regularization:∑

t≥0
rt U t

scan = (1 − r Uscan)−1, 0 < r < 1, (83)

followed by the controlled limit r ↑ 1 selecting a finite part (R1; Appendix B.16). In proto-
col terms, this is the minimal finite-coherence response kernel used to turn formally divergent
infinite-time expressions into auditable finite quantities.

Noise terms (explicit). If samples of gn,y(xt) are corrupted by an additive deterministic
error ηt with |ηt| ≤ δ for all t, then∣∣∣â(N)

n (y) − an

∣∣∣ ≤ e2πny Var(gn,y)D∗
N (PN (α)) + e2πny δ, (84)

where the first term is the discrepancy-controlled quadrature error and the second is the amplified
measurement perturbation.

Wasserstein bounds versus star discrepancy (why we use discrepancy here). For
Lipschitz test functions h on R/Z, Kantorovich–Rubinstein duality implies | 1

N

∑
h(xt) −

∫
h| ≤

Lip(h)W1(µN , λ). In one dimension, W1(µN , λ) =
∫ 1

0 |FN (t)−t| dt ≤ D∗
N (PN ), so a Wasserstein-

1 bound cannot improve the order of the deterministic discrepancy control unless one has an
independent sharp bound on W1 for the specific orbit. Moreover, for discontinuous window read-
out 1W the Lipschitz constant is infinite while Var(1W ) = 2, so bounded-variation/discrepancy
estimates are the natural quantitative language for the scan–projection protocol.
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9.4 Hecke rigidity in coefficients: recursion, multiplicativity, and Deligne
bounds

For a normalized Hecke eigenform, Hecke commutativity and eigen-structure force strong arith-
metic constraints on q-coefficients (Section 6.4). For the discriminant cusp form ∆ of weight 12,
the coefficients τ(n) are Hecke eigenvalues and satisfy multiplicativity on coprime indices and
prime-power recursions (standard; see [19, 20, 28]). In addition, Deligne’s theorem implies the
sharp Ramanujan–Petersson bound

|τ(p)| ≤ 2p11/2 (p prime), (85)
see Appendix B.11. For completeness, Appendix B.12 derives a standard global growth bound
for all integers n from Deligne’s prime bound and the prime-power Hecke recursion:

|τ(n)| ≤ d(n)n11/2. (86)
Finally, the Euler-product identity for L(∆, s) and its absolute convergence for ℜ(s) > 13/2

are standard consequences of Hecke theory (see, e.g., [19, 20, 28]). Beyond pointwise bounds,
mature distribution results constrain normalized prime coefficients. In the non-CM case, Sato–
Tate predicts a semicircle law for the normalized values ap/(2p(k−1)/2); see [50–52] for background
and broad theorem statements.

Beyond coefficient statistics, there are also deep equidistribution theorems for Hecke eigen-
functions on the modular surface (quantum unique ergodicity, and effective variants). Such
results are directly relevant whenever one appeals to “stability under Hecke dynamics” or to in-
duced measures associated with Hecke eigenbases; see, e.g., [53] for an effective QUE statement
for Hecke–Maaß cusp forms on SL2(Z)\SL2(R).

How many coefficients determine an eigenform? Sturm bounds and prime reduc-
tion. A practical quantitative consequence of Hecke rigidity is that finitely many coefficients
determine a modular form. Sturm’s theorem gives an explicit cutoff: if f, g ∈ Mk(Γ0(N)) satisfy
an(f) = an(g) for all 1 ≤ n ≤ Bk,N , where

Bk,N :=
⌊
k

12 [SL2(Z) : Γ0(N)]
⌋
, (87)

then f = g [28,54]. In particular, for level 1 one has [SL2(Z) : Γ0(1)] = 1, so matching coefficients
up to ⌊k/12⌋ is enough to identify a form.

For normalized Hecke eigenforms, the Hecke relations further reduce the amount of indepen-
dent data needed: knowing the prime eigenvalues ap for primes p ≤ Bk,N determines apr by the
prime-power recursion and then determines all an with n ≤ Bk,N by multiplicativity. Thus one
can, in principle, reconstruct (or validate) an eigenform up to the Sturm bound using only as
many prime-indexed constraints as there are primes p ≤ Bk,N , providing a concrete quantitative
meaning of the “prime skeleton” as a compression mechanism.

9.5 Modular invariance of j and truncation error control

The j-invariant is PSL2(Z)-invariant by construction; in particular, j(τ) = j(−1/τ) [19, 20].
When E4, E6 are evaluated via truncated q-series (absolutely convergent for |q| < 1), truncation
errors admit explicit tail bounds that decay essentially geometrically in the truncation depth
N at fixed τ (Appendix B.13). Moreover, Appendix B.14 gives a certified truncation-only error
propagation bound for the induced j-invariant error. Since

j(τ) = 1728 E4(τ)3

E4(τ)3 − E6(τ)2 = E4(τ)3

∆(τ) , (88)

numerical sensitivity is amplified near the cusp where |∆(τ)| is small, so any finite truncation
or finite-precision evaluation should be interpreted through explicit tail bounds and stability
estimates.
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9.6 A worked end-to-end instance: scan, window readout, cusp evaluation,
Hecke checks, and coding

This subsection records one explicit “toy instance” that runs through the full constitution chain
with no interpretive steps: a concrete scan model, a concrete finite-resolution instrument, an
explicit cusp evaluation of standard modular objects with certified truncation control, prime-
skeleton checks on coefficient data, and a canonical tick-time coding.

Step 1: a covariant scan model and an effective observer state. Use the canonical
covariant model of O6 on L2(R/Z) (Section 2.2): (Uscanψ)(x) = ψ(x+ α), (V ψ)(x) = e2πixψ(x)
with α /∈ Q. For the commutative subalgebra generated by functions of the phase x, fix an
effective observer state given by Lebesgue integration,

ωeff(g) =
∫
R/Z

g(x) dx, (89)

which is the invariant state naturally induced by unique ergodicity of irrational rotation.

Step 2: an explicit finite-resolution instrument (POVM by interval windows). Fix
an integer K ≥ 1 (resolution ε := 1/K) and partition R/Z into K disjoint intervals

I
(ε)
k = [kε, (k + 1)ε) (k = 0, . . . ,K − 1), (90)

and define effects E(ε)
k = 1

I
(ε)
k

(multiplication operators in the x-representation). Then

P
(ε)
k = ωeff

(
E

(ε)
k

)
= ε, (91)

so the protocol-level limiting probabilities are fixed by the geometry of the window family, not
postulated. For a finite sample of N scan ticks, the empirical frequencies satisfy the constant-
controlled bound ∣∣∣∣∣ 1

N

N−1∑
t=0

1
I

(ε)
k

(xt) − ε

∣∣∣∣∣ ≤ 2D∗
N (PN ), (92)

by Koksma (Appendix B.6), with explicit closed forms at convergent lengths (Proposition B.2).

Step 3: a canonical tick length and coding choice. Specialize to the golden branch α =
φ−1 and take a Fibonacci length N = Fn. Then Appendix B.10 supplies explicit constants for
D∗

Fn
, turning the scan–projection statistics into an auditable finite-N estimate. The same choice

aligns with Zeckendorf coding (Section 7.3): N admits a unique Fibonacci-digit representation
with a locally checkable admissibility rule (no adjacent 1’s), and the corresponding digit sums
control discrepancy via Appendix B.7.

Step 4: cusp evaluation with certified truncation control. Fix an imaginary part y > 0
and define a modular coordinate along the scan by

τt := xt + iy, qt := e2πiτt = e−2πy e2πixt . (93)

Evaluate E4(τt), E6(τt) by truncated q-series (truncation depth M) and form the induced ap-
proximation j(M)(τt). Appendix B.13 and Appendix B.14 provide certified truncation-only error
bounds, so modular invariance checks such as

j(τt) = j(−1/τt) (94)

can be turned into finite-truncation numerical audits with explicit stability budgets (Section 9.5).
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Step 5: prime-skeleton checks on coefficient data. For the discriminant form ∆(q) =∑
n≥1 τ(n) qn, Hecke eigen-structure implies exact arithmetic constraints: multiplicativity on

coprime indices and the prime-power recursion

τ(pr+1) = τ(p) τ(pr) − p11τ(pr−1) (r ≥ 1), (95)

see Section 9.4. As concrete consistency checks (all exact integer identities),

τ(6) = τ(2)τ(3) = (−24)(252) = −6048, (96)

τ(4) = τ(2)2 − 211 = 576 − 2048 = −1472, (97)
and

τ(9) = τ(3)2 − 311 = 63504 − 177147 = −113643. (98)
In any model where discrete readout is hypothesized to expose coefficient data of a Hecke
eigenform (even after coarse-graining), such relations supply sharp, prime-indexed cross-scale
constraints that can be audited at finite depth.

9.7 Discrimination tasks, noise models, and explicit error budgets (condi-
tional falsifiability)

This paper is a constitution rather than a complete laboratory theory, so “falsifiable” must be
read in the conditional sense: once one posits a concrete lab-to-protocol mapping (what plays
the role of the pointer phase x, what instrument family realizes {E(ε)

k }, and how coarse-graining
is implemented), the protocol makes checkable quantitative claims that can fail on data.

A minimal set of discrimination tasks. The following tests are designed to discriminate
structured scan–projection readout from generic stochastic readout models:

1. Window statistics with constant-controlled finite-N error. For chosen windows
W (or a window partition), compare empirical frequencies to the induced limiting proba-
bilities, using discrepancy bounds (Section 9.1–9.2). The point is not merely convergence
but the availability of explicit constants at special lengths (e.g. Fibonacci lengths on the
golden branch).

2. Sturmian/low-complexity signatures for binary thresholds. For a binary readout
st = 1W (xt), the irrational-rotation protocol yields a Sturmian mechanical word (Sec-
tion 7.1) with rigid combinatorial constraints (balance, minimal complexity). Generic
i.i.d. noise does not reproduce these constraints except in degenerate limits.

3. Cross-resolution consistency under canonical coarse-graining. If an experimen-
tal knob changes resolution by an integer factor (e.g. aperture/threshold coarsening),
then protocol-level coarse-graining predicts compatibility relations between fine and coarse
statistics. On the boundary, a canonical model is the fiber-average operator Cn of (45); on
the modular stage, the corresponding symmetry-preserving cross-scale family is organized
by Hecke operators (Section 6.3).

4. Prime-skeleton constraints when coefficient data is claimed. In any model that
identifies readout with coefficient data of a Hecke eigenform (even approximately), multi-
plicativity and prime-power recursions supply stringent internal consistency checks (Sec-
tion 9.4). These constraints are sharply discriminative: they are not generic properties of
arbitrary integer sequences.

5. Protocol fitting and audit-ready parameter extraction. Once a concrete lab-to-
protocol mapping is specified (what is x, what family realizes the windows), one can
fit protocol parameters with deterministic finite-N guarantees and test Sturmian/three-
gap/Hecke signatures as falsifiers; see Appendix C.
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A quantitative noise/decoherence interface. At Layer 1, noise enters by deforming either
the effective state ωeff or the effects {E(ε)

k }. In the Heisenberg picture, one may represent an
instrument/noise channel by a completely positive unital map N on the observer algebra and
write

P
(ε)
k = ωeff

(
N
(
E

(ε)
k

))
. (99)

Two canonical toy deformations capture common laboratory imperfections:

• Finite aperture / window smoothing. Replace a sharp window 1W by a smoothed
kernel wW,σ = κσ ∗ 1W (convolution on R/Z). This models finite spatial/phase resolution.
In discrepancy bounds, the variation V (1W ) = 2 is replaced by V (wW,σ) ≤ 2, improving
finite-N constants when the aperture is smooth.

• Finite coherence / exponential memory. Replace uniform time-averages by Abel-
weighted averages (1 − r)∑t≥0 r

t(·), which is the canonical resolvent regularization of the
scan dynamics (R1 and Appendix B.16). This models a causal finite-memory response
with exponential forgetting. The limit r ↑ 1 is an idealized infinite-coherence limit.

Error-budget template. In a commutative phase-window model, an auditable total error
budget takes the additive form∣∣∣P̂W − PW

∣∣∣ ≤ V (wW,σ)D∗
N (PN ) + δinstr(σ) + δnum(M, τ), (100)

where the first term is the deterministic finite-N discrepancy contribution, δinstr collects instrument-
model mismatch (e.g. calibration error beyond the smoothing kernel), and δnum is a certified
truncation/precision term when modular objects are evaluated via finite q-series depth M (Ap-
pendix B.13 and Appendix B.14). The key point is methodological: each contribution can be
made explicit and independently audited.

10 Conclusion: geometry as source code (under strict layering)
Under the strict layering discipline of Section 2, the Ramanujan holographic scanning principle
may be summarized as three constitution clauses:

1. Time is the iteration count of an intrinsic unitary scan (O1, O3, O6).

2. Probability is an induced measure produced by finite-resolution projection readout (O5),
not an external sampling postulate.

3. Discreteness is a cusp interface: q-expansions produce arithmetic coefficient data, con-
strained by Hecke/prime structure and encoded canonically via Ostrowski/Zeckendorf
(Sections 5–7).

In this sense, HPA is not an auxiliary coding trick but the minimal arithmetic implementation
of modular geometry under finite-resolution readout, and the Ω framework supplies an ontologi-
cal container compatible with finite information and holographic encoding. The proposed chain
is mathematically coherent and computationally checkable.

At Layer 2, one may read the constitution more broadly: readout is a form of generative
calculation (rendering by scan–projection), and similar finite-resolution coding principles might
constrain information persistence across substrates, including biological implementations. Such
interpretations are deliberately segregated and do not enter the Layer 0/1 closure.
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Remark 10.1 (Final interpretation-layer remark: the modular kaleidoscope). As an interpretation-
layer metaphor (Layer 2), one may summarize the worldview behind HPA–Ω in a single picture.
The “ontic” substrate is taken to be continuous unitary modular flow (“light” in a poetic sense),
while discreteness arises only at the readout interface: finite-resolution projection breaks conti-
nuity into operational labels, and in the modular setting this interface is canonically anchored
at cusps via q-expansions (Sections 3 and 5). In the prism vocabulary of the epigraph, the cusp
interface disperses “white” unitary flow into a discrete coefficient spectrum, and computation
is the protocol-level refocusing step that organizes those labels back toward a generating object
(Section 8.6). The modular group then acts as a hyperbolic kaleidoscope: a single fundamental
region is replicated and folded across the domain by arithmetic symmetry (Section 3.3). Cross-
scale rigidity is organized by the Hecke algebra, whose prime-generated structure propagates to
all composite scales (Section 6). In this view, what we call “physics” is, at its core, a disci-
plined calculus of transformations and induced measures on arithmetic geometry. This remark
is interpretive and does not enter the Layer 0/1 closure.

A Logical closure and dependency chain (audit table)
To make the argument auditable, we list the dependency chain explicitly. Items marked “inter-
pretation layer” are not used as premises.

A.1 Layering axioms (A0; accepted as constitutive)

• O1–O4: ontological container (static global state, finite information, causally local discrete
update, holographic map).

• O5–O6 and R1: scan–projection readout, induced measures, Weyl pair, and a fixed finite-
part convention.

• Stage choice: adopt the level-1 modular quotient X(1) as a minimal arithmetic-geometric
stage under the selection criteria of Section 3.1 (with alternatives left open).

A.2 From axioms to the minimal scan model (A1; standard)

• Weyl pair ⇒ rotation algebra closure (Section 4.1).

• Covariant model ⇒ circle rotation scan xt = x0 + tα (mod 1) (O5/O6).

A.3 From scan to discrete coding (A2; standard)

• Irrational rotation + interval window ⇒ Sturmian mechanical word (Section 7.1).

• Continued fraction ⇒ Ostrowski numeration; golden branch ⇒ Zeckendorf degeneration
(Section 7.2–7.3).

• Denjoy–Koksma + Ostrowski block decomposition ⇒ finite-N discrepancy bounds con-
trolled by digit sums (Appendix B.7).

• Protocol identification templates for finite readout records (Sturmian/three-gap/Hecke
audits) are recorded in Appendix C.

A.4 Arithmetic-geometric mother space (A3; standard definitions and a min-
imal choice)

• Minimal selection criteria for X(1) and explicit alternatives (Section 3.1).
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• PSL2(Z) action on H, fundamental domain, cusp identification (Section 3.3).

• Modular-form q-expansion at cusps and Hecke algebra structure (Sections 5.1–6.2).

A.5 Interpretation-layer mappings (A4; not premises)

• “discrete matter = q-coefficients” is a readout-interface hypothesis;

• “S-inversion as wormhole/entanglement template” is a semantic analogy;

• Hecke correspondences as symmetry-preserving coarse-graining are a canonical operator
family once the modular stage and cusp interface are adopted (Section 6.3); interpreting
Hecke dynamics as physical renormalization requires additional dynamical closure beyond
the constitution.

The constitution-level dependency chain may be summarized as

scan–projection (O5/O6) ∧ cusp interface (q-expansion) ∧ Hecke/prime skeleton
⇒ canonical discrete readout with arithmetic rigidity.

(101)

B Mathematical notes (proof sketches)

B.1 Hecke prime-power recursion and prime generation

Starting from the multiplication relation (43), take m = pr and n = p for a prime p. Using the
divisors d | (pr, p), i.e. d ∈ {1, p}, one obtains

TprTp = Tpr+1 + pk−1Tpr−1 , (102)

which rearranges to the prime-power recursion (44):

Tpr+1 = TpTpr − pk−1Tpr−1 . (103)

This shows all Tpr are generated by Tp, and together with (43) it implies that the full Hecke
algebra is generated by {Tp}p prime.

B.2 Weyl pairs and intrinsic incompatibility

Suppose UV = e2πiαV U with α /∈ Q. If ψ were a common eigenvector, Uψ = λψ and V ψ = µψ,
then

UV ψ = λµψ, V Uψ = µλψ, (104)

but the Weyl relation forces λµ = e2πiαµλ, hence (1 − e2πiα)λµ = 0. Since α /∈ Q, e2πiα ̸= 1,
so λµ = 0, impossible for unitary eigenvalues. Thus no nonzero vector can be a simultaneous
eigenvector of U and V .

B.3 Why local admissibility constraints matter

Ostrowski/Zeckendorf representations impose local admissibility rules (e.g. Zeckendorf’s “no
adjacent 1”). These rules turn a global integer representation into a locally checkable grammar.
In finite-resolution and quasi-local settings, this locality is essential: a readout protocol that
cannot be implemented by local checks is not physically actionable for a finite observer sector.
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B.4 Weyl equidistribution and induced frequencies

Let α /∈ Q and consider the irrational rotation on R/Z,

xt = x0 + tα (mod 1). (105)

Weyl’s equidistribution theorem states that the orbit is uniformly distributed modulo 1 [25,39].
In particular, for any interval I ⊂ R/Z,

1
N

#{0 ≤ t ≤ N − 1 : xt ∈ I} → |I| (N → ∞), (106)

where |I| denotes Lebesgue measure. This gives a protocol-level justification of induced frequen-
cies: window readout asymptotically induces the Lebesgue measure.

B.5 Denjoy–Koksma inequality (quantitative control at convergents)

Let α /∈ Q and let pn/qn be the convergents of its continued fraction. For a function f of
bounded variation on R/Z, the Denjoy–Koksma inequality states that for all x ∈ R/Z,∣∣∣∣∣∣

qn−1∑
t=0

f(x+ tα) − qn

∫
R/Z

f dx

∣∣∣∣∣∣ ≤ Var(f), (107)

see [18,47,48]. For an interval indicator f = 1I , one has Var(f) = 2, hence the deviation of visit
counts at length qn is uniformly bounded by 2.

B.6 Koksma inequality: discrepancy controls readout error

Let P = {x0, . . . , xN−1} ⊂ [0, 1) be a finite point set and let f : [0, 1] → R be of bounded
variation Var(f). The one-dimensional Koksma inequality states that∣∣∣∣∣ 1

N

N−1∑
i=0

f(xi) −
∫ 1

0
f(x) dx

∣∣∣∣∣ ≤ Var(f)D∗
N (P ), (108)

where D∗
N (P ) is the star discrepancy of P [39]. For window readout f = 1I (an interval

indicator), Var(f) = 2, hence ∣∣∣∣∣ 1
N

N−1∑
i=0

1I(xi) − |I|
∣∣∣∣∣ ≤ 2D∗

N (P ). (109)

This provides a direct quantitative bound that upgrades “induced probability” to a finite-N
error-controlled statement.

B.7 Ostrowski block decomposition: discrepancy controlled by coding digits

Let α /∈ Q and let pn/qn be the convergents of its continued fraction. Every integer N ≥ 1
admits an Ostrowski expansion

N =
m∑

n=0
bnqn, (110)

with digits bn satisfying standard admissibility constraints (Section 7.2). This expansion yields
a natural block decomposition of the first N scan ticks into ∑n bn blocks of convergent lengths.

Proposition B.1 (Bounded-variation error bound via Ostrowski digits). Let f have bounded
variation Var(f) on R/Z. Then for any x ∈ R/Z,∣∣∣∣∣

N−1∑
t=0

f(x+ tα) −N

∫
R/Z

f dx
∣∣∣∣∣ ≤ Var(f)

m∑
n=0

bn. (111)
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Proof. Write N = ∑m
n=0 bnqn and partition the interval of ticks {0, 1, . . . , N−1} into consecutive

blocks of lengths qn, repeated bn times in any order consistent with the sum. Since the Denjoy–
Koksma inequality (Appendix B.5) is uniform in the starting point, each block of length qn

contributes an error of at most Var(f) relative to its expected value qn
∫
f . Summing over all

blocks gives the stated bound.

Consequence for star discrepancy. Taking f = 1I (interval indicator) gives Var(f) = 2,
hence for every interval I, ∣∣∣∣∣ 1

N

N−1∑
t=0

1I(x+ tα) − |I|
∣∣∣∣∣ ≤ 2

N

m∑
n=0

bn, (112)

so
D∗

N (PN (α)) ≤ 2
N

m∑
n=0

bn. (113)

Thus, at finite N , discrepancy is quantitatively controlled by the digit sum of the canonical
Ostrowski encoding of tick time.

Golden specialization. For α = φ−1, the Ostrowski system degenerates to Zeckendorf: qn =
Fn and bn ∈ {0, 1} with no adjacent 1’s. Then ∑ bn is exactly the Zeckendorf Hamming weight
wZ(N), yielding

D∗
N ≤ 2wZ(N)

N
. (114)

Since the largest Fibonacci index used in the Zeckendorf decomposition satisfies Fk ≤ N < Fk+1
and the no-adjacency constraint gives wZ(N) ≤ (k + 1)/2, a crude explicit bound is

D∗
N ≤

3 + logφN

N
, (115)

using Fk ≥ φk−2 for k ≥ 2.

Bounded partial quotients (constant type). More generally, if α has bounded continued-
fraction coefficients an ≤ A, then Ostrowski digits satisfy bn ≤ an+1 ≤ A, hence ∑m

n=0 bn ≤
A(m+1). Since qn+1 = an+1qn+qn−1 ≥ qn+qn−1, one has qn ≥ Fn and therefore m ≤ 1+logφN
whenever qm ≤ N < qm+1. Combining these gives an explicit bound

D∗
N ≤

2A(2 + logφN)
N

, (116)

which recovers the standard O((logN)/N) discrepancy estimate for constant-type rotations
(cf. [39]).

B.8 The three-distance (three-gap) theorem

For α /∈ Q and N ≥ 1, the sorted set of points {tα} (t = 0, . . . , N − 1) partitions the circle
into N gaps whose lengths take at most three distinct values (the three-distance theorem). A
classical reference is [55].

B.9 Exact star discrepancy at convergent lengths (closed form)

For a point set P = {x0, . . . , xN−1} ⊂ [0, 1), the one-dimensional star discrepancy is

D∗
N (P ) = sup

t∈[0,1]

∣∣∣∣ 1
N

#{xi < t} − t

∣∣∣∣ . (117)
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Proposition B.2 (Convergent-length star discrepancy for a Kronecker orbit). Let α ∈ (0, 1)\Q
and let p/q be a reduced rational with

0 <
∣∣∣∣α− p

q

∣∣∣∣ < 1
q2 . (118)

Consider the Kronecker point set

Pq(α) :=
{
{tα} : t = 0, 1, . . . , q − 1

}
⊂ [0, 1). (119)

Then

D∗
q(Pq(α)) =


1
q
,

p

q
< α,

1
q

+ (q − 1)
(
p

q
− α

)
,

p

q
> α.

(120)

Proof. Write δ := α − p
q and note that for 0 ≤ t ≤ q − 1 one has |tδ| < (q − 1)/q2 < 1/q. Let

rt ∈ {0, 1, . . . , q − 1} be the residue rt ≡ tp (mod q); since gcd(p, q) = 1, the map t 7→ rt is a
permutation.

Case 1: δ > 0 (i.e. p/q < α). For each t,

{tα} =
{
tp

q
+ tδ

}
= rt

q
+ tδ ∈

[
rt

q
,
rt + 1
q

)
, (121)

where the last inclusion uses 0 ≤ tδ < 1/q and rt = q − 1 is interpreted modulo 1. Hence each
interval [j/q, (j + 1)/q) contains exactly one point of Pq(α). This implies D∗

q(Pq(α)) ≤ 1/q. On
the other hand, since 0 ∈ Pq(α), one has D∗

q(Pq(α)) ≥ 1/q (take t ↓ 0), so equality holds.

Case 2: δ < 0 (i.e. p/q > α). Let δ′ := −δ = p
q − α > 0. For t ≥ 1, rt ̸= 0 so rt/q ≥ 1/q, and

{tα} =
{
tp

q
− tδ′

}
= rt

q
− tδ′ ∈

(
rt − 1
q

,
rt

q

)
, (122)

since 0 < tδ′ < 1/q. Thus every interval [j/q, (j + 1)/q) with j = 0, . . . , q − 2 contains exactly
one point coming from the unique t ∈ {1, . . . , q − 1} with rt = j + 1, while the point 0 ∈ Pq(α)
lies in [0, 1/q).

Ordering points by increasing bin index j, we can write the sorted list as

x0 = 0, xj+1 = j + 1
q

− t(j)δ′, j = 0, 1, . . . , q − 2, (123)

where t(j) ∈ {1, . . . , q − 1} is the unique integer satisfying t(j)p ≡ j + 1 (mod q). Then

j + 2
q

− xj+1 = 1
q

+ t(j)δ′. (124)

Taking the maximum over j and using maxj t(j) = q − 1, we obtain

D∗
q(Pq(α)) = max

j

(
j + 2
q

− xj+1

)
= 1
q

+ (q − 1)δ′ (125)

as claimed.
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B.10 Golden branch specialization and the 1 + 1/
√

5 constant

Let φ = (1 +
√

5)/2 and α = φ−1. The convergents of α are ratios of Fibonacci numbers:

pn

qn
= Fn−1

Fn
. (126)

Using Binet’s formula Fn = (φn −ψn)/
√

5 with ψ = (1 −
√

5)/2 = −φ−1, one obtains the exact
approximation error

α− Fn−1
Fn

= (−1)n

√
5F 2

n

. (127)

Combining this with Proposition B.2 yields an exact closed form for D∗
Fn

and, in particular, for
even n,

FnD
∗
Fn

= 1 +
(

1 − 1
Fn

) 1√
5

−→ 1 + 1√
5
. (128)

B.11 Deligne’s bound for Ramanujan τ(p)
For a normalized holomorphic Hecke eigenform of weight k, Deligne proved the Ramanujan–
Petersson bound

|ap| ≤ 2p(k−1)/2 (p prime), (129)
as a consequence of the Weil conjectures [56]. For the discriminant form ∆ of weight 12, this
specializes to

|τ(p)| ≤ 2p11/2. (130)

B.12 Prime powers and all integers: a global growth bound for τ(n)
For ∆ (weight 12), the Hecke recursion at prime powers reads

τ(pr+1) = τ(p)τ(pr) − p11τ(pr−1). (131)

Define the normalized sequence

br := τ(pr)
p11r/2 , r ≥ 0. (132)

Then b0 = 1, b1 = τ(p)/p11/2, and the recursion becomes

br+1 = b1br − br−1. (133)

Under Deligne’s bound |b1| ≤ 2 (Appendix B.11), we can make the growth control completely
explicit via Chebyshev polynomials of the second kind. Let Ur be defined by

U0(t) = 1, U1(t) = 2t, Ur+1(t) = 2t Ur(t) − Ur−1(t). (134)

Setting t = b1/2 gives the same recurrence and initial data as {br}, hence

br = Ur

(
b1
2

)
. (135)

If |b1| ≤ 2, write b1 = 2 cos θ for some θ ∈ [0, π]. Then the standard identity

Ur(cos θ) = sin((r + 1)θ)
sin θ (136)

implies |Ur(cos θ)| ≤ r + 1 (use | sin((r + 1)θ)| ≤ (r + 1)| sin θ| and continuity at θ = 0, π).
Therefore

|br| ≤ r + 1, (137)
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and hence
|τ(pr)| ≤ (r + 1) p11r/2. (138)

Using multiplicativity of τ(n) on coprime indices and writing n = ∏
i p

ri
i , we obtain the global

bound
|τ(n)| ≤

∏
i

(ri + 1) p11ri/2
i = d(n)n11/2, (139)

where d(n) = ∏
i(ri + 1) is the divisor function. In particular, this yields the standard growth

form |τ(n)| = O(n11/2+ε) for any ε > 0.

B.13 Tail bounds for Eisenstein q-series (for numerical error control)

Let q = e2πiτ with |q| = r < 1. The Eisenstein series have absolutely convergent q-expansions

E4(τ) = 1 + 240
∑
n≥1

σ3(n)qn, E6(τ) = 1 − 504
∑
n≥1

σ5(n)qn. (140)

Using the bound σk(n) ≤ ζ(k)nk for k > 1 (indeed σk(n) = ∑
d|n d

k ≤ nk ∑
m≥1m

−k = ζ(k)nk),
one obtains explicit truncation bounds. For example, for the N -term truncation E

(N)
4 (τ) :=

1 + 240∑N
n=1 σ3(n)qn,

|E4(τ) − E
(N)
4 (τ)| ≤ 240 ζ(3)

∑
n>N

n3rn. (141)

The tail sum can be written as∑
n>N

n3rn = rN+1 ∑
m≥0

(m+N + 1)3rm, (142)

and expanded using the standard identities for ∑m≥0m
ℓrm (ℓ = 0, 1, 2, 3). Analogous bounds

hold for E6 with ζ(5)∑n>N n5rn.
These tail bounds justify the qualitative statement used in Section 9.5: truncated q-series

evaluations of E4, E6 exhibit essentially geometric decay in N at fixed τ , with constants depend-
ing on r and polynomial factors in N .

B.14 Certified truncation bounds for the j-invariant

Fix τ ∈ H and write q = e2πiτ , r = |q| < 1. Let E(N)
4 (τ), E(N)

6 (τ) denote truncations at depth
N and let the corresponding tail bounds be

|E4(τ) − E
(N)
4 (τ)| ≤ ε4(τ ;N), |E6(τ) − E

(N)
6 (τ)| ≤ ε6(τ ;N), (143)

where ε4, ε6 are obtained from the inequalities in Appendix B.13.
Define

D(τ) := E4(τ)3 − E6(τ)2, D(N)(τ) := E
(N)
4 (τ)3 − E

(N)
6 (τ)2. (144)

Let M4 := |E(N)
4 (τ)| + ε4(τ ;N) and M6 := |E(N)

6 (τ)| + ε6(τ ;N). Then

|D(τ) −D(N)(τ)| ≤ 3M2
4 ε4(τ ;N) + 2M6 ε6(τ ;N) =: δD(τ ;N). (145)

Consequently, if |D(N)(τ)| > δD(τ ;N), then D(τ) ̸= 0 and

|D(τ)| ≥ |D(N)(τ)| − δD(τ ;N) =: Dmin(τ ;N) > 0. (146)

Since j(τ) = 1728E4(τ)3/D(τ), one obtains the certified truncation bound

|j(τ) − j(N)(τ)| ≤ 1728
(

3M2
4 ε4(τ ;N)

Dmin(τ ;N) + |E(N)
4 (τ)|3 δD(τ ;N)

Dmin(τ ;N) |D(N)(τ)|

)
, (147)

where j(N) is computed from the truncated Eisenstein series.
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Remark on floating-point saturation. The bound above controls truncation error. In
finite-precision arithmetic, observed differences can plateau at a numerical floor once truncation
becomes negligible.

B.15 Petersson inner product and self-adjointness of Hecke operators

Let Sk(PSL2(Z)) be the space of weight-k cusp forms for PSL2(Z). The Petersson inner product
is

⟨f, g⟩ :=
∫

PSL2(Z)\H
f(τ) g(τ) (ℑτ)k dx dy

y2 , τ = x+ iy, (148)

which converges for cusp forms. For level 1, the Hecke operator Tn admits the classical explicit
formula

(Tnf)(τ) = nk−1 ∑
ad=n
d>0

∑
b (mod d)

d−k f

(
aτ + b

d

)
, (149)

see standard references such as [20,28].

Self-adjointness (standard). With respect to the Petersson product, the Hecke operators
are self-adjoint on cusp forms:

⟨Tnf, g⟩ = ⟨f, Tng⟩, (150)

and the family {Tn} commutes. A standard proof is by inserting the explicit formula for Tn into
the integral and applying a change of variables using the PSL2(Z)-invariance of the hyperbolic
measure dx dy/y2 together with the automorphy factors (see [28]).

Diagonalization consequence. As commuting self-adjoint operators on the finite-dimensional
space Sk(PSL2(Z)), the Hecke operators admit an orthogonal basis of simultaneous eigenforms.
This justifies the “diagonalization frame” language used in Section 6.4 and in the interpretation-
layer discussion (Section 8.5).

B.16 Abel regularization for rotation-orbit sums (R1)

R1 fixes a canonical regulated-to-continuum convention: Abel first, then limit. In the rotation
setting of O5, this can be stated in a clean, auditable form.

Abel means. Let α /∈ Q and let f : R/Z → C be continuous. For 0 < r < 1, define the
Abel-weighted orbit average

Ar(f ;x) := (1 − r)
∑
t≥0

rt f(x+ tα), x ∈ R/Z. (151)

Resolvent form (operator-theoretic viewpoint). Let Uα denote the Koopman operator
of the rotation x 7→ x + α on C(R/Z), i.e. (Uαg)(x) = g(x + α). For 0 < r < 1 the geometric
series converges in operator norm and yields the resolvent identity

(1 − r)
∑
t≥0

rt U t
α = (1 − r) (1 − r Uα)−1. (152)

Thus Abel means are the canonical resolvent regularization of orbit sums for a unitary/measure-
preserving evolution: the factor (1−r) extracts the invariant component in the limit r ↑ 1, while
oscillatory components are suppressed (as seen explicitly on Fourier modes below).
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From a protocol standpoint, the weights rt may be interpreted as a minimal causal finite-
memory response kernel (exponential forgetting). Sending r ↑ 1 corresponds to an idealized
infinite-coherence/infinite-memory limit. Then

lim
r↑1

Ar(f ;x) =
∫
R/Z

f(u) du (153)

uniformly in x. A standard proof is by Fourier modes: for fm(x) = e2πimx one has

Ar(fm;x) = (1 − r)e2πimx
∑
t≥0

(
r e2πimα

)t
= (1 − r)e2πimx 1

1 − r e2πimα
, (154)

which tends to 0 for m ̸= 0 and equals 1 for m = 0. Trigonometric polynomials follow by
linearity and density in C(R/Z). This is a classical Abel summability mechanism; see [16].

Finite parts for orbit traces. If µ :=
∫
f is the mean, the unnormalized Abel sum has the

canonical decomposition∑
t≥0

rtf(x+ tα) = µ

1 − r
+
∑
t≥0

rt(f(x+ tα) − µ
)
, (155)

where the first term carries the universal divergence as r ↑ 1. R1 selects the finite part (when it
exists) as

FP(f ;x) := lim
r↑1

∑
t≥0

rt(f(x+ tα) − µ
)
. (156)

For a trigonometric polynomial f(x) = ∑
m f̂me2πimx, one obtains the explicit finite part

FP(f ;x) =
∑
m̸=0

f̂m
e2πimx

1 − e2πimα
, (157)

which shows how Abel regularization canonically resolves the constant-mode divergence while
preserving the nontrivial phase dependence.

B.17 Formal power-series integrality: why j(q) has integer coefficients

Lemma B.3 (unit-constant denominator implies integrality). Let A(q), B(q) ∈ Z[[q]] be formal
power series with B(0) = 1. Then there exists a unique C(q) ∈ Z[[q]] such that

A(q) = B(q)C(q), (158)

equivalently C(q) = A(q)/B(q) in the ring Z[[q]].

Proof. Write A(q) = ∑
n≥0 anq

n, B(q) = ∑
n≥0 bnq

n with b0 = 1, and seek C(q) = ∑
n≥0 cnq

n.
The identity A = BC is equivalent to the coefficient recursion

an =
n∑

k=0
bkcn−k. (159)

For n = 0 this gives c0 = a0. For n ≥ 1, solve uniquely as

cn = an −
n∑

k=1
bkcn−k, (160)

which is an integer since all an, bk, cn−k ∈ Z. Uniqueness follows from the recursion.
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Application to modular objects. For level 1, the Eisenstein series E4, E6 have q-expansions
with integer coefficients and constant term 1, and ∆ = (E3

4 −E2
6)/1728 satisfies ∆(q) = q+O(q2)

with integer coefficients [19,20]. Write ∆(q) = q∆1(q) with ∆1(0) = 1 and ∆1 ∈ Z[[q]]. Then

j(q) = 1728 E4(q)3

E4(q)3 − E6(q)2 = E4(q)3

∆(q) = q−1 E4(q)3

∆1(q) , (161)

and Lemma B.3 implies E3
4/∆1 ∈ Z[[q]], hence j(q) ∈ q−1Z[[q]].

C Protocol identification and fitting templates (audit-ready)
The constitution is designed to be auditable: once a laboratory-to-protocol mapping is fixed, one
should be able to fit the protocol parameters and to falsify the model by finite-data consistency
checks with explicit error budgets. This appendix records deterministic fitting templates that
require no stochastic modeling and no simulation assumptions.

C.1 Binary readout from rotation: Sturmian signatures and a slope estima-
tor

Consider the Layer 1 rotation scan of O5,

xt = x0 + tα (mod 1), α /∈ Q,

and a binary window readout
st = 1W (xt) ∈ {0, 1},

for an interval window W ⊂ R/Z. It is classical that such codings of irrational rotations by
intervals yield Sturmian (mechanical) words [35,36].

Finite-data Sturmian diagnostics. Given a finite binary record s0, . . . , sN−1, two standard
diagnostics can be used as deterministic consistency checks:

• Factor complexity. Let p(n) be the number of distinct length-n subwords among the
factors of the observed record. For a Sturmian word, p(n) = n+ 1 for all n ≥ 1 [35,36].

• Balance. A Sturmian word is balanced: for any two factors u, v of the same length,
the number of 1’s differs by at most 1 [36]. Balance yields sharp finite-N constraints on
fluctuations of prefix frequencies.

Failure of these diagnostics at small scales is a direct falsifier of the pure rotation+interval-
window model, independent of any asymptotic limit.

A canonical slope estimator (when the coding is fixed). To turn binary readout into
a concrete “fit”, one must fix a coding convention that associates a unique slope to a word. A
standard convention is the (lower) mechanical word with parameters (α, ρ),

wt(α, ρ) :=
⌊
(t+ 1)α+ ρ

⌋
−
⌊
tα+ ρ

⌋
∈ {0, 1}, (162)

which is Sturmian for α /∈ Q [36]. In this convention, the limiting frequency of 1’s equals α and
admits an explicit finite-N deviation bound:

Lemma C.1 (prefix frequency estimates the slope in the mechanical convention). Let wt(α, ρ)
be defined by (162) with α ∈ (0, 1) and ρ ∈ R. Let SN := ∑N−1

t=0 wt(α, ρ). Then for every N ≥ 1,∣∣∣∣SN

N
− α

∣∣∣∣ ≤ 1
N
. (163)
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Proof. Summing (162) telescopes: SN = ⌊Nα+ ρ⌋ − ⌊ρ⌋. Hence |SN − (Nα+ ρ− ρ)| ≤ 1, which
gives (163).

Thus, under a fixed mechanical-coding convention, one can fit α from a finite record by α̂ =
SN/N with a deterministic 1/N error guarantee.

General interval windows: fitting window length with discrepancy control. If the
coding uses an arbitrary interval W of length |W |, then the induced limiting frequency is |W |
and finite-N deviation is controlled by discrepancy:∣∣∣∣∣ 1

N

N−1∑
t=0

1W (xt) − |W |
∣∣∣∣∣ ≤ 2D∗

N (PN (α)) , (164)

by Koksma (Appendix B.6). If α is of constant type (aj ≤ A), then (63) yields an explicit
parameter-free bound on D∗

N and therefore on the fit error of |W |.

C.2 Phase-level signatures: the three-gap theorem

When the protocol exposes phase samples {xt} (or when multiple thresholds allow partial re-
construction of ordered phase points), the point set PN (α) = {{tα} : 0 ≤ t ≤ N − 1} admits
a sharp deterministic signature: its complementary gaps take at most three lengths (the three-
gap theorem) [55]. This provides an additional finite-data falsifier for the pure Kronecker scan
model, independent of any probabilistic assumptions.

C.3 Coefficient-level audits: Hecke recursions as prime-indexed constraints

If a readout sector is hypothesized to expose (exactly or approximately) a coefficient sequence
{an} of a Hecke eigenform, then the prime-skeleton relations supply stringent finite-depth inter-
nal consistency tests:

• Coprime multiplicativity. amn = aman for (m,n) = 1.

• Prime-power recursion. apr+1 = apapr − pk−1apr−1 for r ≥ 1 (weight k).

• Finite determination (Sturm bound). Matching coefficients up to the Sturm cutoff
determines the modular form [28,54] (Section 9.4).

These constraints are purely arithmetic identities; they can therefore be used as audit-grade
“fit/fail” conditions whenever coefficient claims are made.

D Limitations and open problems
1. Stage non-uniqueness. The selection of X(1) is motivated by a minimality princi-

ple (Section 3.1), not derived as a unique necessity from O1–O6. Alternative arithmetic
stages (higher level modular curves, other arithmetic surfaces, higher-rank automorphic
quotients) and even non-arithmetic chaotic stages are not ruled out a priori; identifying
additional physical constraints that would select (or exclude) such alternatives remains
open.

2. From protocol-level Hecke to micro-dynamics. Section 6.3 motivates Hecke opera-
tors as canonical symmetry-preserving coarse-graining operators once modular symmetry
and the cusp interface are adopted. Turning this into a physical law still requires dynamical
closure: one must embed the coarse-graining/Hecke structure into a concrete micro-model
(e.g. a QCA update rule or an effective Hamiltonian) and derive observable consequences
with an explicit error budget.
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3. Regularization is motivated but not forced. R1 is given a canonical summabil-
ity/resolvent motivation (Section 2.2 and Appendix B.16), and can be read as a finite-
coherence (exponentially forgetting) instrument limit. Nevertheless, the regularization
choice is not uniquely compelled; establishing robustness of protocol-level conclusions un-
der alternative admissible kernels (and linking the choice to concrete locality/causality
constraints) remains an open methodological problem.

4. Laboratory mapping of the scan–projection chain. The scan Weyl pair and the
window-POVM model provide a clean Layer 1 abstraction, but an end-to-end quantitative
model of a laboratory measurement chain (finite aperture, decoherence, noise, calibration
drift, finite sampling) is not developed here. Section 9.7 provides an audit-style template,
but concrete platform-specific instantiations are needed for experimental confrontation.

5. Observer sector and holographic map instances. The axioms use ωeff (observer-
sector effective state) and the holographic map Φ at a general level (O4–O5). While
Section 9.6 gives a fully explicit toy instance for the scan/window/cusp/Hecke/coding
chain, a detailed micro-dynamical realization of an observer-accessible subalgebra together
with an explicit AQEC-style reconstruction map remains to be exhibited and analyzed
end-to-end.

6. Coefficient data as physical readout remains an interface hypothesis. Treating
“discrete matter = q-coefficients” is not a theorem but an interface hypothesis (Section 5).
To become predictive, one must specify which families of modular objects (weight, level,
character; possibly vector-valued objects) correspond to which physical sectors and provide
systematic matching criteria and uncertainty budgets.

7. Hecke-driven stability and QUE constraints. When claims involve induced measures
or stability properties tied to Hecke eigenstructures on the modular surface, the relevant
body of QUE/effective QUE results provides strong constraints (Section 9.4). Integrating
those constraints into a concrete readout model, and clarifying which measures are being
compared in a given physicalization, remains open.
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