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Abstract

We formulate a geometricization program for physical constants based on Holographic
Polar Arithmetic (HPA) and the Ω-framework. Observable constants are treated as geo-
metric or spectral invariants of a scan–readout protocol, while the fixation of dimensional
constants is treated as a metrological scale choice. We introduce a trichotomy of constants
(defining constants, derived constants, and dimensionless invariants) and a general construc-
tion mapping geometric objects G(r) to constants C(r) via C(r) = F (Ir(G)), where r denotes
a resolution/coarse-graining scale. Additive “impedance” variables are treated as logarith-
mic readout costs C = − logw of underlying multiplicative weights, so serial composition
of constraints is multiplicative at the ontological level and additive only after the readout
projection.

As an anchored worked example, we formulate a closed-theory geometric-impedance ax-
iom for the electromagnetic coupling and identify three readout strata with phase spaces
U(1) × SU(2), SO(3), and RP 1 arising from projective qubit kinematics (Hopf bundle and
the SU(2) → SO(3) double cover). Using canonical volume normalizations, we derive the
theorem-level value α−1

geo = 4π3 + π2 + π ≈ 137.0363037759. An exhaustive low-complexity
integer search in the ansatz aπ3 + bπ2 + cπ shows that (a, b, c) = (4, 1, 1) is the unique
minimizer over the coefficient-sum domain a, b, c ∈ Z≥0 and a+ b+ c ≤ 10.

We then extend the same volume quantization to a second worked example, the proton–
electron mass ratio, deriving µgeo = mp/me = 6π5, and to electroweak matching at the Z
scale, deriving sin2 θW = 3/13 and α−1(µZ) = 13π2. We also incorporate QCD running
and dimensional transmutation as part of the resolution-flow interface (recovering the MS
scale parameter in the PDG convention), and we record low-complexity rigidity signals for
the CKM Jarlskog invariant and for the logarithmic Newton coupling at the proton scale.
Finally, we derive the black-hole area law as the saturation of the covariant entropy bound
expressed in boundary channel-counting form, and we list falsifiable intermediate claims
together with an explicit error-budget interface.

Keywords: HPA; geometric impedance; fine-structure constant; readout geometry; spectral
gap; Weinberg angle; Jarlskog invariant; black-hole entropy; scale flow.

Conventions. Unless otherwise stated, log denotes the natural logarithm. We keep a strict
separation between (i) a metrology layer where defining constants are fixed by convention, (ii)
a derived layer where dimensional constants inherit uncertainty through interfaces, and (iii) a
dimensionless-invariant layer where geometricization targets live.
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1 Introduction: why “constants” admit geometricization
One of the central inputs of modern physics is a table of “constants”: coupling strengths,
mass spectra, mixing angles, and cosmological parameters. Empirically they are determined to
high precision, yet a reusable template for why these numbers take their values, whether they
obey structural relations, and whether such relations can be upgraded to geometric/algebraic
invariants remains missing.

This paper takes a stance that reverses the usual order of presentation. Instead of starting
from a Lagrangian and treating constants as coefficients, we start from coordinate schematics
and readout protocols. The HPA viewpoint is that multiplicative structure (scaling, phase,
periodicity) belongs to the ontological layer, whereas linear addition appears only at the readout
layer as a projection–encoding operation. Consequently, physical constants are not treated as
parameters in dynamical equations, but as irreducible costs of readout or irreducible obstructions
in spectral data associated with a scan–readout protocol.

In the HPA–Ω pipeline, a conserved “whole” is accessed by a genuine unitary scan that in-
troduces time as iteration count, and then mapped to discrete outcomes by an orthogonal-cut
readout projection. The residual mismatch induced by discretization—the “gap” between mul-
tiplicative ontology and additive readout—enters the observable layer as an effective impedance
and error budget.

Accordingly, whenever this paper uses an additive “impedance” or “cost” variable, it is a
logarithmic readout of an underlying multiplicative weight (Section 3, Proposition 3.3). This is
explicit for the inverse coupling α−1 and for the logarithmic Newton coupling IG = log(α−1

G ).
Our goal is to formulate a publishable, reviewable structure with explicit separation of layers

and with worked examples that fix the quantitative chain:

• which quantities are geometricization targets;

• how the geometric objects and invariants are defined;

• how metrological interfaces connect invariants to measured tables;

• which statements are imported external inputs, which are axioms, and which are derived
theorems;

• a list of falsifiable intermediate claims.

1.1 Logic audit: external inputs, axioms, derived results, and fits

To keep the chain reviewable, we explicitly separate four categories: (i) external inputs (estab-
lished metrology/QFT/GR results); (ii) axioms internal to the HPA–Ω constant-geometry pro-
gram; (iii) derived theorems proven from these axioms (using standard mathematics as needed);
(iv) data-facing fits/rigidity checks that test low-complexity ansätze against recommended val-
ues.

Complexity budgets for rigidity checks. Rigidity statements for integer/rational ansätze
are meaningful only at bounded complexity: enlarging integer coefficients makes approximation
progressively flexible. Accordingly, every rigidity proposition in this paper fixes an explicit finite
search domain for its integer parameters, and uniqueness claims are relative to that domain.
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2 A trichotomy of constants: metrology, derived quantities, and
dimensionless invariants

2.1 Defining constants: fixation as a metrological scale choice

In the revised SI (2019), the unit system is anchored by fixing the numerical values of seven
defining constants. In this setting, the question of “explaining the exact decimal values” of c,
h, e, kB, NA, and ∆νCs is not a well-posed physical prediction problem: their exact decimals
encode a scale convention and interface by definition [1].
Remark 2.1 (Writing discipline). Defining constants are excluded from geometric prediction
targets. They are treated as interfaces that map geometric invariants to SI readouts.

2.2 Derived constants: interfaces plus dimensionless inputs

In the revised SI, the vacuum permeability µ0 is no longer an exact defining quantity and becomes
measurable; its uncertainty budget is controlled by the measurement of the dimensionless fine-
structure constant α because c, h, e are fixed while α is not [2, 23].

2.3 Dimensionless invariants: where physics lives

Dimensionless quantities (e.g., α, mass ratios, mixing angles, Λℓ2P ) are invariant under unit
changes and therefore serve as primary targets of geometricization. CODATA provides recom-
mended values and uncertainties for α−1 [2], while the Particle Data Group (PDG) systematically
summarizes Standard Model parameters and conventions [24].

3 Minimal inputs of the HPA–Ω framework
This section records the structural modules that will be repeatedly invoked. When a module is
used later in the quantitative chain, we either prove it explicitly or cite a standard reference.

3.1 Multiplicative ontology and polar embedding

HPA takes the multiplicative monoid of positive integers M = (N>0, ·) as a primitive structure
and defines a polar embedding into C∗ of the form

Z(n) = ρ(n) eiθ×(n) ∈ C∗, (1)

where ρ(n) > 0 and θ× is additive under multiplication (mod 2π), so that Z is a multiplicative
homomorphism.

3.2 A no-go principle: addition and multiplication cannot both be preserved

HPA uses a rigidity fact: except for the trivial real embedding, there is no embedding of N>0 into
C∗ that preserves both multiplication and linear addition. We use the following formulation.
Lemma 3.1 (Rigidity of additive–multiplicative embeddings on N>0). Let f : N>0 → C∗ satisfy

f(m+ n) = f(m) + f(n), f(mn) = f(m)f(n), (2)

for all m,n ∈ N>0. Then f(n) = n for all n ∈ N>0.
Proof. By additivity, f(n) = nf(1) for all n. By multiplicativity, f(1) = f(1 · 1) = f(1)2. Since
f(1) ∈ C∗, this implies f(1) = 1, hence f(n) = n.

Therefore any nontrivial polar embedding with a genuine phase component cannot be ad-
ditive, and “addition” can only enter through a readout projection/encoding. The resulting
mismatch defines a structural gap that enters the observable layer.
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3.3 Logarithmic readout: additive costs from multiplicative weights

The structural gap between multiplicative ontology and additive bookkeeping is resolved at
the readout interface by a projection. In this paper, every additive “impedance” variable is a
log-cost: a logarithmic image of an underlying multiplicative weight.

Definition 3.2 (Readout weight and log-cost). Let w ∈ (0, 1] be a dimensionless readout weight
(e.g., a success weight or likelihood of satisfying a constraint). Define the associated readout cost
by

C := − logw. (3)

Proposition 3.3 (Multiplicative-to-additive conversion under log readout). If a layered readout
protocol imposes serial constraints with weights {wj}J

j=1, so that the total weight is the product

wtot =
J∏

j=1
wj , (4)

then the total cost in Definition 3.2 is the sum of channel costs:

Ctot = − logwtot =
J∑

j=1

(
− logwj

)
=

J∑
j=1

Cj . (5)

Proof. This follows from log(∏j wj) = ∑
j logwj .

Proposition 3.4 (Uniqueness of logarithmic costs under multiplicative composition). Let C :
(0, 1] → [0,∞) satisfy C(1) = 0 and the homomorphism rule

C(xy) = C(x) + C(y) (6)

for all x, y ∈ (0, 1]. If C is continuous at 1 (equivalently, locally bounded on (0, 1]), then there
exists k ≥ 0 such that

C(w) = −k logw. (7)
In particular, up to a choice of cost unit (the constant k), the logarithm is the unique additive
readout of multiplicative weights.

Proof. Define f : [0,∞) → [0,∞) by f(t) := C(e−t). Then f(t + s) = f(t) + f(s) and f is
continuous at 0 by continuity of C at 1. The continuous Cauchy equation implies f(t) = kt for
some constant k ≥ 0 [25]. Therefore C(e−t) = kt and C(w) = −k logw.

Remark 3.5 (Log base and cost units). Changing the logarithm base rescales C by a constant.
Throughout we use the natural logarithm so that weights are written as w = exp(−C).

3.4 Primitive projective phase spaces and closure of the candidate set

The worked examples in this paper use phase spaces that are fixed by projective quantum
kinematics at minimal complexity. For a two-level interface, the ray space is CP 1 ∼= S2 (Bloch
sphere) and the associated principal U(1) bundle of normalized state vectors is the Hopf fibration
with total space S3 ∼= SU(2) [26,27]. Projectivization by {±1} gives the standard double cover
SU(2) → SO(3) and U(1) → RP 1 [28].

Axiom 3.6 (Primitive projective phase-space closure). In the minimal volume-quantized models
of this paper, every internal phase space is built as a finite Cartesian product of primitives from
the set

P := {U(1), SU(2), SO(3),RP 1}, (8)
and finite disjoint unions thereof. All primitives are equipped with the standard unit-radius
bi-invariant (or quotient) metrics, so the associated canonical volumes are fixed.
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Proposition 3.7 (Minimal projective closure of the primitive set). Assume a primitive candidate
set contains U(1) and SU(2) and is closed under the Z2 projectivization M 7→ M/{±1}. Then
it contains

SO(3) ∼= SU(2)/{±1}, RP 1 ∼= U(1)/{±1}.

In particular, {U(1), SU(2), SO(3),RP 1} is the minimal such closure.

Proof. Closure under M 7→ M/{±1} forces inclusion of the displayed quotients once U(1) and
SU(2) are included, and minimality is immediate.

Appendix G records the resulting canonical volumes and the Z2 quotient relations. This
closure axiom is the source of the finite candidate sets used in the rigidity enumerations.

3.5 The scan operator Θ: time as iteration count

To decouple ontology (phase/multiplicative structure) from readout (additive projection), HPA
introduces a genuine unitary scan operator Θ and defines time as the iteration count of Θ.
The scan shift and the phase-multiplication operator form a Weyl pair [29, 30], producing a
noncommutative structure and uncertainty-type tradeoffs.

Concretely, in standard quantum kinematics one models a Weyl pair by unitary operators
U, V satisfying

UV = eiωV U, (9)
for some ω ∈ R. We encode the HPA scan–phase interface in the same form.

Axiom 3.8 (Scan–phase Weyl relation). There exist unitary operators Θ (scan shift) and Φ
(phase multiplication) acting on the readout Hilbert space such that

ΘΦ = eiωΦΘ (10)

for some ω ∈ R fixed by the scan slope/branch.

3.6 Golden branch and minimal binary readout

In the golden branch, the scan slope is selected such that the induced binary mechanical word
becomes the Fibonacci word; the Ostrowski numeration degenerates to the Zeckendorf represen-
tation [31–33].

The golden slope is selected by the extremal Diophantine property of φ: its continued fraction
has the minimal partial quotients, which makes rational approximations maximally difficult
[20]. For Kronecker sequences {nα}, discrepancy and gap statistics are controlled by continued-
fraction data [21]. In particular, the three-distance theorem implies that, for any irrational α,
the gaps between successive elements of {nα} take at most three values; the detailed “gap/step”
structure is classical [22]. These external results justify treating the golden branch as a canonical
low-complexity choice for binary readout localization.

Theorem 3.9 (Hurwitz bound and the golden extremizer). For any irrational α, there exist
infinitely many rationals p/q such that ∣∣∣∣α− p

q

∣∣∣∣ < 1√
5 q2 . (11)

The constant 1/
√

5 is optimal in the sense that it cannot be replaced by a larger uniform constant
over all irrational α, and the extremal case is attained (in the limit of best approximants) by
α = φ and its SL(2,Z) transforms [20,21].

Therefore the golden branch is a minimax choice for suppressing rational near-resonances in
a finite-depth readout; this is the precise mathematical content of the phrase “most irrational”.
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4 General construction: constants as invariants of readout ge-
ometry

4.1 Geometric objects and invariants

We use a reusable geometricization template.

Definition 4.1 (A geometricization template for constants). Given a family of geometric objects
G(r) that can depend on a resolution/coarse-graining scale r, define an invariant or spectral
quantity

Ir(G) ∈ R. (12)

Define a physical constant (or a vector of constants) by

C(r) = F (Ir(G)) , (13)

where F is the mapping into the observational convention. The map F can contain metrolog-
ical interfaces (defining constants) but must not introduce unit-dependent ambiguity into the
dimensionless content.

Remark 4.2 (Data-facing matching inputs as multiplicative factors). When comparing a closed-
theory value to a reference value, we parameterize the interface by multiplicative matching inputs.
For a positive dimensionless invariant X, define

sX := Xref
Xgeo

.

For an additive log-cost C = − logw (Definition 3.2), define the corresponding multiplicative
matching input in the weight domain,

sC := wref
wgeo

= exp
(

− (Cref − Cgeo)
)
.

These factors are the data-facing interface quantities in the multiplicative ontology; they are
used explicitly for the electromagnetic weight (sα), the proton–electron mass ratio (sµ), and the
proton Newton coupling (sG).

In the HPA–Ω context, sources for G(r) include:

• topological channels induced by the readout cut (bulk/boundary/line);

• spectral data of defects in nonassociative sectors (e.g., octonionic or exceptional Jordan
structures) [34–36];

• symbolic dynamical systems generated by scan–projection and their orbit statistics;

• one-dimensional compilation/routing cost fields (the Ω part) and the induced lapse.

4.2 Impedance as a prototype invariant: from metric length to process cost

In the HPA–Ω constant-geometry program, inverse couplings are identified with a geometric
impedance: a minimal readout cost required to establish a stable interaction channel. At the
ontological level, layered constraints multiply their readout weights, while the readout projection
converts weights to additive costs by the log map (Proposition 3.3), which is unique up to a choice
of cost unit under mild regularity (Proposition 3.4). Thus the ℓ1-type accumulation of channel
costs is the forced additive image of multiplicative composition rather than an independent
postulate; this is instantiated for the electromagnetic worked example by Axiom 5.1.
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5 An anchored worked example: a three-channel impedance
model for αem

5.1 Closed-theory axioms: serial composition and geometric impedance

We isolate the axioms that turn the three-term expression into a theorem-level statement inside
the HPA–Ω constant-geometry program.

Axiom 5.1 (Serial composition: multiplicative constraints and logarithmic readout). If a read-
out protocol must satisfy channel constraints in a fixed hierarchy, assign each channel j a readout
weight wj ∈ (0, 1] and define its readout cost by Vj := − logwj. The total readout weight is the
product

wtot =
∏
j

wj , (14)

and the geometric impedance is the log-cost

α−1
geo := − logwtot. (15)

Equivalently, by Proposition 3.3, the impedance is the serial sum

α−1
geo =

∑
j

Vj . (16)

Remark 5.2 (Numerical isolation of serial composition among standard aggregation rules).
For the three-stratum costs Vbulk = 4π3, Vboundary = π2, and Vline = π, standard alternatives to
serial addition give values far from the CODATA reference value. For example, the Euclidean
aggregation

√
V 2

bulk + V 2
boundary + V 2

line gives 124.4568430929 (relative deviation −9.18 × 10−2),
the max aggregation max{Vbulk, Vboundary, Vline} gives 124.0251067212 (relative deviation −9.49×
10−2), and the parallel-impedance aggregation (V −1

bulk + V −1
boundary + V −1

line)−1 gives 2.3381204994
(relative deviation −9.83×10−1). By contrast, the serial sum gives 4π3+π2+π = 137.0363037759
(relative deviation +2.22 × 10−6).

In the multiplicative domain of Axiom 5.1, define the total weight w := exp(−α−1). Relative
to the CODATA weight wCODATA = exp(−α−1

CODATA), the serial sum gives wgeo/wCODATA =
exp(−(α−1

geo − α−1
CODATA)) ≈ 9.99695 × 10−1, whereas the Euclidean, max, and parallel rules give

ratios 2.90 × 105, 4.47 × 105, and 3.15 × 1058 respectively.

Axiom 5.3 (Geometric impedance as normalized phase volume). For each channel j, the process
cost Vj is identified with a normalized geometric invariant of the corresponding phase space Mj.
In the minimal model used here we take

Vj = Vol(Mj), (17)

where Vol is the canonical volume induced by the standard bi-invariant metric on compact Lie
groups and its quotient metrics.

5.2 Geometric identification of the three strata

The HPA readout is built from projective quantum kinematics: rays rather than vectors. For
a minimal (two-level) readout interface, the ray space is CP 1 ∼= S2 (Bloch sphere), and the
associated principal U(1) bundle of normalized state vectors is the Hopf fibration with total
space S3 ∼= SU(2) [26, 27]. The physical identification of ±1 for spinorial lifts produces the
standard double cover SU(2) → SO(3) = SU(2)/{±1} [28].

9



Axiom 5.4 (Electromagnetic three-stratum phase spaces). For the electromagnetic readout
channel we take the three topologically distinguishable strata to be

Mbulk ∼= U(1)×SU(2), Mboundary ∼= SO(3) ∼= RP 3, Mline ∼= U(1)/{±1} ∼= RP 1. (18)

The quotient by {±1} encodes the projective identification intrinsic to readout.

Proposition 5.5 (Primitive factorization rigidity for the electromagnetic strata). Fix the prim-
itive set P from Axiom 3.6 with canonical volumes (Appendix G). Impose the minimal factor
counts compatible with the π-powers of the stratum costs: realize Vbulk = 4π3 by a product of
two primitives, and realize Vboundary = π2 and Vline = π each by a single primitive. Then the
stratum phase spaces are forced (up to ordering) as

Mbulk ∼= U(1) × SU(2), Mboundary ∼= SO(3), Mline ∼= RP 1.

Proof. From Appendix G one has Vol(U(1)) = 2π, Vol(SU(2)) = 2π2, Vol(SO(3)) = π2, and
Vol(RP 1) = π. Any two-factor product has the form 2mπk with m ∈ {0, 1, 2} and k ∈ {2, 3, 4}.
The constraint k = 3 forces exponent pattern (1, 2), and the coefficient 4 forces m = 2, hence
the factors must be U(1) and SU(2).

For one-factor realizations, π2 occurs only for SO(3) and π occurs only for RP 1 in the
primitive set.

5.3 A theorem-level value from group volumes

Theorem 5.6 (Three-channel impedance). Under Axioms 5.1–5.4, the minimal-model geomet-
ric value of the inverse fine-structure constant is

α−1
geo = 4π3 + π2 + π ≈ 137.0363037759. (19)

Proof. By Axiom 5.1, α−1
geo = Vbulk + Vboundary + Vline. By Axiom 5.3, Vj = Vol(Mj), and by

Axiom 5.4 we reduce the calculation to canonical volumes. Appendix G records the standard
values

Vol(U(1)) = 2π, Vol(SU(2)) = 2π2, Vol(SO(3)) = π2, Vol(RP 1) = π, (20)

so that
Vbulk = Vol(U(1) × SU(2)) = 4π3, Vboundary = π2, Vline = π. (21)

Summing the three terms yields the stated expression.

5.4 Quantitative rigidity: low-complexity integer relation search

To exclude coefficient-level tuning, we document a reproducible rigidity check: minimize the
CODATA error within the three-term ansatz aπ3 + bπ2 + cπ over small nonnegative integers.

Let α−1
CODATA = 137.035999177 denote the CODATA 2022 recommended central value [2].

We exhaustively search all triples (a, b, c) ∈ Z3
≥0 with a+ b+ c ≤ 10 and minimize the absolute

error |aπ3 +bπ2 +cπ−α−1
CODATA|. The coefficient-sum budget a+b+c ≤ 10 is a fixed complexity

constraint; it strictly contains the geometric triple (4, 1, 1) (with sum 6) and tests robustness
against nontrivial nearby coefficients at bounded total multiplicity.

Proposition 5.7 (Uniqueness at low coefficient complexity). Within the coefficient-sum com-
plexity domain a, b, c ∈ Z≥0 and a+b+c ≤ 10, the unique minimizer of |aπ3+bπ2+cπ−α−1

CODATA|
is (a, b, c) = (4, 1, 1), with relative error 2.22 × 10−6. The next-best triple in the same domain
has relative error at least 3.24 × 10−3.
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Proof. This is a finite check by exhaustive enumeration over all triples (a, b, c) ∈ Z3
≥0 with

a+ b+ c ≤ 10 and minimization of the absolute error.

Corollary 5.8 (Gap-robustness under target perturbations). Let V = {aπ3 +bπ2 +cπ : a, b, c ∈
Z≥0, a + b + c ≤ 10} and let T = α−1

CODATA. Let v⋆ ∈ V be the unique minimizer and let
v2 ∈ V \ {v⋆} be the best competitor. Define the margin

m := |v2 − T | − |v⋆ − T | > 0.

Then for every perturbed target T ′ with |T ′ −T | < m/2, the minimizer over V remains uniquely
v⋆. In particular, the large gap documented in Table 2 implies a wide robustness interval relative
to metrological uncertainties.

Remark 5.9 (Interface to the period-realization viewpoint). The bounded-complexity search
above is an instance of a general “selection under finite resources” signal: a large best-vs-second-
best gap produces rigidity under perturbations. In the companion period-realization manuscript
[37], this logic is abstracted as a gap-stability lemma for finite candidate classes and used as a
quantitative ingredient in a selection principle.

5.5 From αgeo to CODATA α: an error budget

The CODATA 2022 central value differs from the minimal geometric value by

∆α−1 := α−1
CODATA − α−1

geo ≈ −3.05 × 10−4. (22)

In the multiplicative readout variable w = exp(−α−1), this is the weight ratio

wgeo
wCODATA

= exp(∆α−1) ≈ 9.99695 × 10−1. (23)

Equivalently, define the multiplicative matching input

sα := wCODATA
wgeo

= exp(−∆α−1) ≈ 1 + 3.05 × 10−4. (24)

In the closed-theory reading, this gap is a controlled correction decomposed into (i) a renormal-
ization map F between geometric impedance and operational coupling, and (ii) finite-resolution
effects tied to the readout scale r.

In quantum field theory, effective electromagnetic couplings are scheme- and scale-dependent,
with running controlled by a beta function. For example, one-loop QED running in a mass-
independent scheme yields a logarithmic shift of α−1 with scale [3,4]. In our program, such scale
dependence is absorbed into r 7→ µ(r) and into the map F in Definition 4.1.

To quantify the size of the residual, treat |∆α−1| as a scale-shift equivalent under one-loop
QED running (31). At energies below the muon threshold, heavy charged fields decouple from
the low-energy flow [39], so the electron contribution provides the relevant coefficient. For one
Dirac fermion with Nc = 1 and Q = 1, the one-loop coefficient is b = (2/3)NcQ

2 = 2/3 [4]. The
scale ratio required to account for the offset satisfies

log
(
µeff
µ0

)
≈ 2π

b

(
α−1

geo − α−1
CODATA

)
= 3π

(
α−1

geo − α−1
CODATA

)
≈ 2.87 × 10−3, (25)

so µeff/µ0 ≈ 1.0029. Under the Fibonacci map (32), this corresponds to a sub-step correction
δr ≈ 5.96×10−3 of one unit of Zeckendorf depth. In this precise sense, the residual gap between
αgeo and αCODATA corresponds to a finite-resolution interface correction rather than a change
of the coarse-graining scale by a full unit.
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5.6 Metrological interfaces for electromagnetic constants (revised SI)

In the revised SI, c, h, e are defining constants while α remains experimentally determined; hence
the uncertainty structure of µ0 and ϵ0 is controlled by that of α [1, 2, 23]. We record standard
relations

α = e2

4πϵ0ℏc
= µ0e

2c

2h , ϵ0 = 1
µ0c2 , Z0 =

√
µ0
ϵ0

= µ0c. (26)

A short derivation is provided in Appendix B.

6 Generalization I: running couplings as “resolution flow”

6.1 From energy scale µ to resolution r

In field-theoretic language, couplings run with the energy scale µ [3, 4]. In the HPA language,
running originates from changes in the readout window, coding depth, and coarse-graining scale.
We therefore introduce a map

µ = µ(r), (27)

where r is instantiated as scan iteration depth, projection-window scale, Zeckendorf/Ostrowski
bit depth, or effective compilation depth in the Ω framework, depending on context.

6.2 A concrete choice: Zeckendorf depth and a Fibonacci resolution map

To make the r 7→ µ(r) interface quantitative, we fix the canonical golden-branch choice. Let r
denote Zeckendorf depth: the maximal Fibonacci index used in the canonical decomposition.
The Fibonacci numbers satisfy Binet’s formula and grow exponentially, Fr ∼ φr/

√
5 [40].

Lemma 6.1 (Zeckendorf depth and exponential growth). Let n ∈ N>0 have Zeckendorf repre-
sentation with maximal Fibonacci index r, i.e. Fr appears and Fr+1 does not. Then

Fr ≤ n ≤ Fr+1 − 1. (28)

Consequently, logn = r logφ+O(1) as r → ∞.

Proof. The lower bound holds because the representation contains Fr. The upper bound is
attained by the alternating sum

Fr + Fr−2 + Fr−4 + · · · = Fr+1 − 1, (29)

which follows by induction using Fk+1 = Fk + Fk−1. The asymptotic logn = r logφ + O(1)
follows from Fr ∼ φr/

√
5 [40].

Axiom 6.2 (Fibonacci resolution–energy map). In the golden branch we identify the effective
scale with the exponential growth of canonical depth and set

µ(r) = µ0 φ
r, (30)

where φ = (1 +
√

5)/2 and µ0 is a conventional reference scale.
Equivalently, up to O(1) factors, µ(r) ∝ Fr by Binet asymptotics.

Appendix H records a data-facing calibration of this map by fixing µ0 = me and listing
the resulting r(µ) values at standard PDG reference scales, together with an inverse check that
infers µ0 from near-integer depth assignments.
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6.3 A quantitative check against one-loop QED running

At one loop, the QED beta function gives a logarithmic running for α−1 with coefficient deter-
mined by charged matter content (in a mass-independent scheme and away from thresholds) [3,4]:

α−1(µ) ≈ α−1(µ0) − b

2π log
(
µ

µ0

)
, b = 2

3
∑

f

N (f)
c Q2

f . (31)

Combining (31) with Axiom 6.2 yields an r-linear flow:

α−1(r) ≈ α−1(0) − b logφ
2π r. (32)

Using the CODATA 2022 low-energy value α−1(0) = 137.035999177 and the PDG effective
value near the Z pole α−1(mZ) = 127.955 [2,24], one finds ∆α−1 = 9.080999 over log(mZ/me) =
12.0921, which corresponds to an effective one-loop coefficient

beff := 2π∆α−1

log(mZ/me) ≈ 4.7186. (33)

For comparison, heavy charged fields decouple from the low-energy flow [4, 39]. At µ = mZ

this excludes the top quark, so the active charged fermions are e, µ, τ and u, d, s, c, b. Their
charge-weighted sum is

∑
f

NcQ
2
f = 3︸︷︷︸

e,µ,τ

2 · 3
(2

3

)2

︸ ︷︷ ︸
u,c

3 · 3
(1

3

)2

︸ ︷︷ ︸
d,s,b

= 20
3 , (34)

hence the one-loop coefficient is

bSM(mZ) = 2
3
∑

f

NcQ
2
f = 40

9 ≈ 4.4444. (35)

Numerically, beff/bSM(mZ) ≈ 1.062. Threshold structure and hadronic-vacuum-polarization
effects enter through matching [4, 24].

Within the HPA–Ω program, this paper isolates an explicit, falsifiable link between readout
depth and scale flow at the leading-log level; threshold structure enters through finite matching
corrections as in effective field theory [4, 24,39].

6.4 Asymptotic freedom and dimensional transmutation in QCD

For QCD, the beta function has the opposite sign: the coupling decreases at high scales (asymp-
totic freedom) [4, 41,42]. At one loop,

dαs

d logµ = − b0
2π α

2
s +O(α3

s), b0 = 11 − 2
3nf , (36)

so that (away from thresholds)
αs(µ) = 2π

b0 log(µ/Λ) , (37)

where Λ is the dimensional-transmutation scale (scheme-dependent). In the r-coordinate, a
scheme change that rescales Λ by a constant factor corresponds to an additive shift of r (Propo-
sition H.4).

At two loops, including b1 = 102 − 38
3 nf , the MS scale parameter is expressed as [4, 24]

ΛMS = µ exp
(

− 2π
b0 αs(µ)

)(
b0 αs(µ)

4π

)− b1
2b2

0 . (38)
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Using the PDG world average αs(mZ) = 0.1180±0.0009 [24] with nf = 5 gives Λ(5)
MS ≈ 0.21 GeV.

With nf = 5 one has b0 = 23/3 and b1 = 116/3. Taking µ = mZ = 91.1876 GeV and
αs(mZ) = 0.1180 in (38) yields Λ(5)

MS ≈ 0.209 GeV. The PDG uncertainty ±0.0009 yields the
range Λ(5)

MS ≈ (0.198–0.219) GeV [24].
Combining (37) with Axiom 6.2 yields an r-linear flow for α−1

s analogous to (32), with slope
b0 logφ/(2π).

6.5 Electroweak matching: volume quantization and the Weinberg angle

We now record a closed-theory electroweak matching model at the Z-scale. The Standard Model
relation between gauge couplings and the electromagnetic coupling is [4, 8–10]

1
e2 = 1

g2 + 1
g′2 , e = g sin θW = g′ cos θW , (39)

which implies (with α = e2/(4π), α2 = g2/(4π), αY = g′2/(4π))

α−1 = α−1
2 + α−1

Y , sin2 θW = α

α2
= α−1

2
α−1 . (40)

We adopt the following volume-quantization axiom at the electroweak matching scale.

Axiom 6.3 (Electroweak inverse couplings as weighted volumes). At a matching scale µ =
µZ (identified with the Z pole), the inverse electroweak couplings are identified with weighted
canonical phase volumes:

α−1
2 (µZ) = dim(su(2)) Vol(SO(3)) = 3π2, (41)

and

α−1
Y (µZ) =

 ∑
f∈SM

Y 2
f

Vol(SO(3)) = 10π2, (42)

where the sum is over the Standard Model chiral fermions in three generations, with hypercharges
normalized by Q = T3 + Y [4, 24]. In the standard SU(5) normalization α1 = (5/3)αY , so
α−1

1 = (3/5)α−1
Y = 6π2.

Explicitly, for one generation,

∑
Y 2 = 6

(1
6

)2
+ 3

(2
3

)2
+ 3

(1
3

)2
+ 2

(1
2

)2
+ 1 · 12 = 10

3 , (43)

so for three generations ∑f∈SM Y 2
f = 10.

Theorem 6.4 (Weinberg angle and α(µZ) from volume quantization). Under Axiom 6.3 and
the Standard Model relations (40), one obtains

α−1(µZ) = 13π2 ≈ 128.3048572142, sin2 θW (µZ) = 3
13 ≈ 0.2307692308. (44)

Proof. By Axiom 6.3, α−1
2 (µZ) = 3π2 and α−1

Y (µZ) = 10π2. Using (40) gives α−1(µZ) = 13π2

and sin2 θW (µZ) = α−1
2 /α−1 = 3/13.
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Numerical comparison. PDG quotes the effective electromagnetic coupling at the Z pole,
α−1

PDG(µZ) ≈ 127.955 [24]. It also quotes the MS weak mixing angle, sin2 θW,PDG(µZ) ≈ 0.23122
[24]. Theorem 6.4 then gives the explicit deviations

13π2 − 127.955 ≈ 3.50 × 10−1 (2.73 × 10−3 relative), (45)

and
3
13 − 0.23122 ≈ −4.51 × 10−4 (−1.95 × 10−3 relative). (46)

Equivalently, in multiplicative log-ratio form,

log
(

13π2

α−1
PDG(µZ)

)
≈ 2.73 × 10−3, log

(
(3/13)

sin2 θW,PDG(µZ)

)
≈ −1.95 × 10−3. (47)

Proposition 6.5 (Integer rigidity for α−1(µZ) in the ansatz nπ2). Let α−1
PDG(µZ) ≈ 127.955 be

the PDG reference value. Among all integers n with 1 ≤ n ≤ 50, the unique minimizer of

|nπ2 − α−1
PDG(µZ)| (48)

is n = 13, i.e. α−1(µZ) ≈ 13π2 is the unique best integer-π2 approximation at this coefficient
bound.

Proof. This is a finite check: evaluate |nπ2 − α−1
PDG(µZ)| for 1 ≤ n ≤ 50 and minimize.

Remark 6.6 (Scale-shift equivalent under one-loop QED running). Treat 13π2 − α−1
PDG(µZ) as

a scale-shift equivalent under the one-loop QED running (31) with coefficient bSM = 40/9 at the
electroweak scale. Then

log
(
µZ

µ∗

)
≈ 2π
bSM

(
13π2 − α−1

PDG(µZ)
)

≈ 4.94 × 10−1, (49)

so µ∗ ≈ 0.61µZ . Under the Fibonacci map µ(r) = µ0φ
r, this corresponds to a depth shift

δr ≈ 1.03. Since φ−1 = 0.618 . . ., the inferred scale ratio µ∗/µZ lies within a percent-level
neighborhood of a single discrete Fibonacci step µZ 7→ µZ/φ. Equivalently, one Fibonacci step
induces a one-loop QED shift

∆α−1
φ := bSM

2π logφ ≈ 3.40 × 10−1,

while the observed mismatch is 13π2 − α−1
PDG(µZ) ≈ 3.50 × 10−1, differing by 9.6 × 10−3 (about

2.8% of ∆α−1
φ ).

Proposition 6.7 (Discrete rigidity of the electroweak integers). Let α−1
PDG(µZ) ≈ 127.955 and

sin2 θW,PDG(µZ) ≈ 0.23122 be the PDG reference values [24]. Restrict to the π2-quantized ansatz

α−1(µZ) = nπ2, sin2 θW (µZ) = p

n
,

with an integer 1 ≤ n ≤ 50 and a reduced rational p/n (equivalently, gcd(p, n) = 1). Then the
unique choice consistent with Propositions 6.5 and 6.8 is (n, p) = (13, 3). Consequently,

α−1
2 (µZ) = 3π2, α−1

Y (µZ) = 10π2.

Proof. By Proposition 6.5, the unique best integer-π2 approximation in the stated range is
n = 13. With n fixed, Proposition 6.8 gives p/n = 3/13. The displayed values follow from
α−1 = α−1

2 + α−1
Y and sin2 θW = α−1

2 /α−1.
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The same integers coincide with dim(su(2)) = 3 and ∑f∈SM Y 2
f = 10 under the Standard

Model hypercharge assignments (Axiom 6.3), so the electroweak identification is simultaneously
fixed by representation content and by low-complexity rigidity.

Proposition 6.8 (Rational rigidity at low denominator). Let x ≈ 0.23122 be the PDG elec-
troweak mixing reference value. Among all reduced rationals p/q with 1 ≤ q ≤ 50 and gcd(p, q) =
1, the closest to x is 3/13.

Proof. This is a finite check: enumerate all pairs (p, q) with 1 ≤ q ≤ 50, 0 ≤ p ≤ q, and
gcd(p, q) = 1, and minimize |p/q − x|.

Proposition 6.9 (Geometric expression of running couplings). Given G(r) and an invariant
Ir(G), define an effective coupling by

αeff(µ(r)) = F (Ir(G)) . (50)

When increasing r corresponds to higher-resolution readout (shorter distances / higher energies),
the running of αeff is equivalent to the flow of Ir.

Proof. This is immediate: by definition, αeff depends on scale only through the composite map
r 7→ Ir(G) 7→ F (Ir), so varying r induces the running.

This definition matches the PDG practice of quoting scale-dependent effective parameters
and summarizing experimental constraints and theoretical frameworks [24].

6.6 A universal “multi-channel impedance” axiom

Extending the three-channel model for α−1
em, we state the following structural axiom for general

gauge couplings.

Axiom 6.10 (Multi-channel geometric impedance). For any effective coupling αa(µ), there
exists a finite channel decomposition

α−1
a,geo(r) =

Ja∑
j=1

Va,j(r), (51)

where each Va,j corresponds to a topologically distinguishable sector in readout (e.g., bulk reser-
voir, boundary screen, line scan, or richer internal fiber submanifolds).

Axiom 6.11 (Volume quantization of channel costs). Each channel cost is an integer-weighted
canonical phase volume built from the primitive set in Axiom 3.6: there exist products Ma,j of
primitives and integers na,j(r) ∈ N>0 such that

Va,j(r) = na,j(r) Vol(Ma,j). (52)

The scale dependence of na,j(r) is piecewise constant in r, with discrete jumps only at thresholds,
in the same sense as effective-field-theory decoupling and matching [4,24,39].

Together, Axioms 6.10 and 6.11 reduce “why is a coupling small/large?” to a finite rigidity
problem: a bounded search over integer weights and a finite primitive phase-space set, plus
threshold matching as part of the r 7→ µ(r) interface.
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7 Generalization II: mass ratios, spectral gaps, and mixing as
holonomy

7.1 Mass as internal winding and extra scan cycles

Nonassociative structures (e.g., octonions and related nonassociative algebras) are standard
mathematical objects in physics and geometry [34–36]. We adopt the scan-based mass–delay
chain as an internal axiom of the program (Axiom D.1 in Appendix D), which interfaces the
additional scan cycles required to resolve algebraic obstructions with effective time delays in
the readout layer. To avoid unit dependence, we restrict the primary geometricization target to
dimensionless mass ratios.

Definition 7.1 (Mass-ratio invariants). For particles i, j define

mi

mj
= Ii(G)
Ij(G) , (53)

where Ii(G) is a process cost or spectral quantity induced by the defect associated with particle i
(e.g., associator tension, holonomy data, or a spectral gap).

This definition fixes ratios; an overall scale is set by the reference choice. The task re-
duces to defining a computable family {Ii} whose ratios match the PDG mass-ratio data within
uncertainties [24].

7.2 Worked example: proton–electron mass ratio

To make the program quantitative beyond α, we record a second low-parameter worked example:
the proton–electron mass ratio µ = mp/me.

We strengthen Definition 7.1 by fixing a closed-theory invariant choice.

Axiom 7.2 (Mass invariants as phase-volume costs). For each particle class i, the mass invari-
ant Ii is given by a canonical phase-volume of an internal compact manifold Mi (or a finite
disjoint union of such manifolds), normalized so that the electron reference satisfies Ie = 1.

Vol
(

A⊔
a=1

Mi,a

)
=

A∑
a=1

Vol(Mi,a). (54)

For a baryon in three-color QCD (Nc = 3), the invariant is the sum over three color sectors
[4, 24].

Remark 7.3 (Normalization gauge for mass invariants). Mass ratios depend only on the ratios
Ii/Ij (Definition 7.1); the common multiplicative scale of {Ii} is fixed by the reference choice
Ie = 1 and plays the same role as a scale interface.

Axiom 7.4 (Proton internal phase space). The proton is assigned three identical color sectors
(Nc = 3) [4, 24]. Each color sector is modeled by the compact phase space

Mq
∼= SO(3) × SO(3) × U(1), (55)

so that Mp is the disjoint union of three copies of Mq.
This choice is equivalent, at the level of canonical volumes, to the alternative factorization

SO(3) × SU(2) × RP 1, since Vol(SO(3)) Vol(U(1)) = Vol(SU(2)) Vol(RP 1) by the Z2 quotient
relations in Appendix G. We select SO(3) ×SO(3) ×U(1) as the projective-rotation convention:
rotational sectors are projectivized (spinorial double cover removed) while the phase circle is kept
unquotiented.
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Theorem 7.5 (Proton–electron mass ratio). Under Axioms 7.2–7.4, the geometric prediction
for the proton–electron mass ratio is

µgeo := mp

me
= 6π5 ≈ 1836.1181087117. (56)

Proof. By Axiom 7.2, mp/me = Ip/Ie = Ip since Ie = 1. By Axiom 7.4,

Ip = 3 Vol(SO(3) × SO(3) × U(1)). (57)

Using Vol(SO(3)) = π2 and Vol(U(1)) = 2π (Appendix G) gives

Ip = 3 (π2)(π2)(2π) = 6π5. (58)

Remark 7.6 (Minimal factor count for the π5 scaling). Under the primitive set P of Axiom 3.6
with canonical volumes (Appendix G), each primitive contributes at most a π2 factor to a product
volume. Therefore any product of two primitives has π-power at most 4, and the π5 scaling of
µgeo = 6π5 forces at least three primitive factors per color sector. The three-factor search domain
used in Proposition 7.7 is therefore the unique minimal domain that can realize the required
scaling.

Proposition 7.7 (Finite primitive factorization rigidity for µ). Fix the primitive candidate set
{U(1), SU(2), SO(3),RP 1} from Axiom 3.6 with canonical volumes (Appendix G), and restrict
a per-color sector Mq to be a product of three primitives (order irrelevant). Then the condition

3 Vol(Mq) = 6π5 (59)

holds if and only if

Mq
∼= SO(3) × SO(3) × U(1) or Mq

∼= SO(3) × SU(2) × RP 1. (60)

In particular, among the 20 three-factor multisets, these two are the unique solutions; the next-
closest candidate has relative deviation at least 2.73 × 10−1 (Table 3).

Proof. Use Vol(U(1)) = 2π, Vol(RP 1) = π, Vol(SO(3)) = π2, and Vol(SU(2)) = 2π2. Any
three-factor product has the form

Vol(Mq) = 2mπk,

where m counts how many factors are drawn from {U(1), SU(2)} and k is the sum of exponents
1 (for U(1) or RP 1) and 2 (for SU(2) or SO(3)). The condition 3 Vol(Mq) = 6π5 forces m = 1
and k = 5. Hence exactly two factors must contribute exponent 2 and one factor exponent 1.

If the exponent-1 factor is U(1), then m ≥ 1 already; to keep m = 1, both exponent-2 factors
must be SO(3), giving SO(3) × SO(3) × U(1). If the exponent-1 factor is RP 1, then m comes
only from SU(2) factors; to get m = 1 with two exponent-2 factors, exactly one is SU(2) and
the other is SO(3), giving SO(3) × SU(2) × RP 1.

Numerically, CODATA 2022 gives µexp ≈ 1836.15267343 [2], so

∆µ := µgeo − µexp ≈ −3.456 × 10−2,
∆µ
µexp

≈ −1.88 × 10−5. (61)

Equivalently, in the multiplicative error metric,

log
(
µgeo
µexp

)
≈ −1.88 × 10−5. (62)
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Equivalently, define the multiplicative matching factor

sµ := µexp
µgeo

= exp
(

− logµgeo
µexp

)
≈ 1 + 1.88 × 10−5. (63)

In the closed-theory reading, sµ is the matching input between the canonical phase-volume value
and the CODATA ratio; it encodes QCD binding and radiative structure.

In QCD, the proton mass is dominated by dynamical scale generation and strong-interaction
energy rather than by light-quark current masses [24, 43, 44]. Accordingly, the multiplicative
matching input sµ subsumes nonperturbative binding and radiative structure.

As a rigidity check analogous to Section 5, we minimize the CODATA error within the
five-term ansatz

µ(a, b, c, d, e) = aπ5 + bπ4 + cπ3 + dπ2 + eπ (64)

with small nonnegative integers.

Proposition 7.8 (Uniqueness at low coefficient complexity for µ). Within the coefficient-sum
complexity domain a, b, c, d, e ∈ Z≥0 and a + b + c + d + e ≤ 10, the unique minimizer of
|µ(a, b, c, d, e) − µexp| is (a, b, c, d, e) = (6, 0, 0, 0, 0), i.e., µgeo = 6π5, with relative error 1.88 ×
10−5. The next-best combination in the same domain has relative error at least 4.44 × 10−4.

Proof. This is a finite check by exhaustive enumeration over all (a, b, c, d, e) ∈ Z5
≥0 with a+ b+

c+ d+ e ≤ 10.

7.3 Mixing matrices as holonomy: from geometric phase to CKM/PMNS

The Ω framework uses standard geometric-phase language (Berry connection and holonomy)
on parameter manifolds [5–7, 26]. We therefore adopt the following geometric implementation
axiom.

Axiom 7.9 (Mixing matrices as holonomy). There exists a parameter manifold M associated
with the readout protocol / gauge choice / internal fiber structure, together with a U(1) or U(n)
connection A on M, such that generation mixing can be represented as holonomy along basic
loops:

Umix = P exp
(∮

γ⊂M
A
)
. (65)

Observable invariants (mixing angles, CP phases) correspond to conjugacy-class data of the
holonomy.

This template upgrades “angles/phases” from fit parameters to geometric objects (connec-
tion, curvature, and topology). It matches the unitarity structure used in the standard CKM/
PMNS parameterizations [45–48]. The PDG provides systematic reviews and conventions [24].
A short geometric-phase reminder is included in Appendix E.

7.4 A quantitative CP-odd reference: the Jarlskog invariant

For quark mixing, a basis-independent measure of CP violation is the Jarlskog invariant J ,
defined from the CKM matrix V by [49]

J := Im(VudVcsV
∗

usV
∗

cd) , (66)

equivalently by any of its rephasing-invariant forms. The PDG quotes [24]

JPDG = (3.00 ± 0.15) × 10−5. (67)
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In the Wolfenstein parametrization [50], one has at leading order

J = A2λ6η̄ +O(λ8), (68)

with the standard (λ,A, ρ̄, η̄) conventions summarized by the PDG [24].
To complement the holonomy axiom with a minimal quantitative rigidity check, we test the

one-parameter π-power ansatz

Jgeo(a, n) = 1
aπn

, a ∈ N>0, n ∈ N>0, (69)

which matches volume-normalized geometric costs and their inverses. Rigidity is stated at
bounded multiplicity and exponent complexity; Propositions 7.10 and 7.11 fix the corresponding
finite search domain.

Proposition 7.10 (Low-complexity π-power rigidity for CKM CP violation). Let JPDG =
3.00 × 10−5 be the PDG central value. Among all pairs (a, n) with 1 ≤ a ≤ 50 and 1 ≤ n ≤ 20,
the unique minimizer of |Jgeo(a, n) − JPDG| is (a, n) = (11, 7), yielding

Jgeo = 1
11π7 ≈ 3.009942547 × 10−5, (70)

with relative deviation 3.31 × 10−3, equivalently log(Jgeo/JPDG) ≈ 3.31 × 10−3. The next-best
pair in the same domain has relative deviation at least 9.37 × 10−3.

Proof. This is a finite check by enumeration over (a, n) in the stated domain.

Proposition 7.11 (Minimax rigidity over the PDG interval). Let the PDG reference interval
be J ∈ [J−, J+] with J− := 2.85 × 10−5 and J+ := 3.15 × 10−5 [24]. Among all pairs (a, n) with
1 ≤ a ≤ 50 and 1 ≤ n ≤ 20, the unique minimizer of the worst-case relative deviation

max
{∣∣∣∣Jgeo(a, n) − J−

J−

∣∣∣∣ , ∣∣∣∣Jgeo(a, n) − J+
J+

∣∣∣∣} (71)

is (a, n) = (11, 7), with worst-case value 5.61 × 10−2. The next-best pair in the same domain
has worst-case value at least 5.65 × 10−2.

Proof. This is a finite check by enumeration over (a, n) in the stated domain, evaluating the
worst-case error at the endpoints J− and J+.

Closed-theory assignment. The rigidity winner (a, n) = (11, 7) is implemented by an ex-
plicit finite phase-space assignment.

Axiom 7.12 (CP-odd phase space and discrete multiplicity). Define the CP-odd readout sector
by

MCP ∼= SO(3) × SO(3) × SO(3) × RP 1, (72)

so Vol(MCP) = π7 under the canonical normalization (Appendix G). Define the discrete multi-
plicity by the combined gauge-sector dimension

dCP := dim(su(3)) + dim(su(2)) = 8 + 3 = 11, (73)

and set
Jgeo := 1

dCP Vol(MCP) = 1
11π7 . (74)

This fixes both the exponent n = 7 and the coefficient a = 11 by geometry and finite group
data rather than by fitting a free holonomy connection (Remark E.2).
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Proposition 7.13 (Finite primitive factorization rigidity for the CP-odd phase space). Fix
the primitive set P from Axiom 3.6 with canonical volumes (Appendix G). Since each primitive
contributes at most a π2 factor, any product of three primitives has π-power at most 6, so the
π7 scaling forces at least four primitive factors. Among all products of exactly four primitives
(order irrelevant), the condition

Vol(M) = π7 (75)

holds if and only if
M ∼= SO(3) × SO(3) × SO(3) × RP 1.

Proof. From Appendix G, each primitive volume is one of 2π, 2π2, π2, π. Any four-factor product
has the form 2mπk with m ∈ {0, 1, 2, 3, 4} and k ∈ {4, 5, 6, 7, 8}. The constraint 2mπk = π7

forces m = 0 and k = 7, so no factor can be U(1) or SU(2), and the exponent pattern must be
(2, 2, 2, 1). Hence the factors are three copies of SO(3) and one copy of RP 1.

8 Generalization III: c, gravity, and cosmology—from compila-
tion lapse to dimensionless combinations

8.1 The status of c: defining constant and baseline propagation

In the SI, c belongs to the defining-constants layer [1]. In the HPA program, c is the baseline
propagation speed in a regime where both gravitational stretching (delays) and high-energy
“shortcuts” are negligible. We keep these two layers explicitly separated: metrologically, c
is a fixed interface; physically, effective propagation is controlled by geometry and readout
mechanisms.

8.2 Gravitational time delay as computational slowdown: lapse in the Ω
framework

Define a computable “computational lapse” from one-dimensional nearest-neighbor compila-
tion/routing costs. This provides an explicit interface with the standard relativistic lapse func-
tion that relates coordinate time to proper time in a 3 + 1 decomposition [15].

Definition 8.1 (Computational lapse from routing costs). Let κ(x) denote the local routing
overhead and define

N (x) = κ0
κ(x) , dτloc(x) = N (x) dt. (76)

Operationally: larger routing costs imply fewer intrinsic updates per unit background depth,
corresponding to gravitational time dilation as computational slowdown.

Proposition 8.2 (Interface identification with a GR lapse). In a static spacetime with rel-
ativistic lapse N(x) (so dτ = N(x) dt for static observers), define the routing-cost field by
κ(x) := κ0/N(x). Then the computational lapse N (x) of Definition 8.1 equals the GR lapse
N(x). In Schwarzschild coordinates, N(r) =

√
1 − 2GM/(rc2), hence

κ(r)
κ0

= 1√
1 − 2GM/(rc2)

= 1 + GM

rc2 +O

(
G2M2

r2c4

)
. (77)

Proof. The first statement is immediate from the definitions. The Schwarzschild lapse is the
standard gtt relation [15], and the expansion uses (1 − x)−1/2 = 1 + x/2 +O(x2).
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8.3 G and cosmological parameters: geometricize only dimensionless combi-
nations

CODATA provides a recommended value for G with a comparatively large uncertainty [2]. We
encode the interface discipline as an axiom.

Axiom 8.3 (Interface-only treatment of G). The Newton constant G is treated as a metrological
interface constant that converts geometric/spectral costs into SI readouts. Consequently, the
primary geometricization targets are dimensionless combinations such as Gm2/(ℏc), Λℓ2P , and
H0tP rather than the decimal value of G itself.

8.4 A worked example: gravitational fine-structure constant at the proton
scale

Define the dimensionless Newton coupling (gravitational “fine-structure constant”) for a particle
of mass m by

αG(m) := Gm2

ℏc
, (78)

and in particular αG(p) = Gm2
p/(ℏc) for the proton. The associated logarithmic inverse

IG(m) := log
(
αG(m)−1) (79)

is the scan–readout “impedance” variable: αG(m) = exp(−IG(m)), so IG is the log-cost of the
multiplicative weight αG. This matches the role of logarithms in renormalization and dimen-
sional transmutation [4, 24].

Axiom 8.4 (Gravitational three-stratum impedance in log form). At the proton scale, assign
each stratum j a multiplicative weight w(G)

j := exp(−V (G)
j ) and define the geometric Newton

coupling by
αG,geo(p) :=

∏
j

w
(G)
j . (80)

The logarithmic impedance is the log-cost

IG(p) := − logαG,geo(p) = V
(G)

bulk + V
(G)

boundary + V
(G)

line , (81)

where the costs V (G)
j are canonical phase volumes with phase spaces

M(G)
bulk

∼= U(1) × SO(3), M(G)
boundary

∼= SU(2), M(G)
line

∼= U(1), (82)

and costs V (G)
j = Vol(M(G)

j ) under the canonical volume normalization.

Remark 8.5 (Primitive factorization equivalences at fixed volumes). Under the primitive set
P = {U(1), SU(2), SO(3),RP 1} (Axiom 3.6), the canonical-volume identities in Appendix G
imply the exchange

Vol(U(1) × SO(3)) = Vol(SU(2) × RP 1) = 2π3, Vol(SU(2)) = Vol(U(1) × RP 1) = 2π2.

Thus the bulk and boundary volumes in Axiom 8.4 admit equivalent primitive factorizations
related by Z2 quotients; the choice records a projective convention, as in the proton phase-space
assignment.
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Proposition 8.6 (Primitive factorization rigidity for the gravitational strata). Fix the primitive
set P from Axiom 3.6 with canonical volumes (Appendix G). Impose the minimal factor counts
compatible with the π-powers of the stratum costs: realize V (G)

line = 2π and V
(G)

boundary = 2π2 each
by a single primitive, and realize V (G)

bulk = 2π3 by a product of two primitives. Then

M(G)
line

∼= U(1), M(G)
boundary

∼= SU(2),

and the bulk admits exactly the two equivalent factorizations

M(G)
bulk

∼= U(1) × SO(3) or M(G)
bulk

∼= SU(2) × RP 1,

which have the same canonical volume (Remark 8.5).

Proof. By Appendix G, the primitive volumes are 2π, 2π2, π2, π. For one-factor realizations,
2π occurs only for U(1) and 2π2 occurs only for SU(2) among primitives.

For two-factor products, the exponent condition π3 forces exponent pattern (1, 2) and the
coefficient 2 forces exactly one factor to contribute a coefficient 2. Hence the two possibilities
are U(1) × SO(3) and SU(2) × RP 1, which have equal volume by the displayed identities in
Remark 8.5.

Remark 8.7 (Numerical isolation of serial composition in the logarithmic variable). Let V1 :=
V

(G)
bulk = 2π3, V2 := V

(G)
boundary = 2π2, and V3 := V

(G)
line = 2π. For the CODATA reference value

IG(p) = log(αG(p)−1) ≈ 88.024824446, standard alternatives to serial addition give√
V 2

1 + V 2
2 + V 2

3 = 65.3809724311 (rel. − 2.57 × 10−1),
max{V1, V2, V3} = 62.0125533606 (rel. − 2.96 × 10−1),

(V −1
1 + V −1

2 + V −1
3 )−1 = 4.4259282857 (rel. − 9.50 × 10−1),

(83)

where “rel.” denotes the relative deviation from IG(p). By contrast, the serial sum gives V1 +
V2 + V3 = 2π3 + 2π2 + 2π = 88.0349474700 (rel. +1.15 × 10−4).

In the multiplicative variable αG = exp(−IG), these alternatives correspond to ratios αG/
αG(p) of order 6.82 × 109 (Euclidean), 1.98 × 1011 (max), and 2.03 × 1036 (parallel). The serial
sum gives αG,geo(p)/αG(p) ≈ 9.90 × 10−1.

Theorem 8.8 (Proton Newton coupling from canonical volumes). Under Axiom 8.4,

IG(p) = 2π3 +2π2 +2π ≈ 88.034947470, αG,geo(p) = exp
(
−IG(p)

)
≈ 5.84666×10−39. (84)

Proof. Using Appendix G, Vol(U(1)) = 2π, Vol(SU(2)) = 2π2, and Vol(SO(3)) = π2. Therefore

Vol(U(1) × SO(3)) = (2π)(π2) = 2π3, (85)

and the sum gives IG(p) = 2π3 +2π2 +2π. Then αG,geo(p) = exp(−IG(p)) by the definition (79).

Numerical comparison. CODATA 2022 gives αG(p) = Gm2
p/(ℏc) ≈ 5.90615 × 10−39 [2], so

the relative deviation of αG,geo(p) is −1.01 × 10−2. Equivalently,

log
(
αG,geo(p)
αG(p)

)
≈ −1.01 × 10−2. (86)

Equivalently, define the multiplicative matching input

sG := αG(p)
αG,geo(p) = exp

(
− logαG,geo(p)

αG(p)

)
≈ 1 + 1.01 × 10−2. (87)

Equivalently, in the logarithmic impedance variable, IG(p) = log(αG(p)−1) ≈ 88.024824446
(CODATA) versus IG,geo(p) = 2π3 + 2π2 + 2π ≈ 88.034947470, i.e. ∆IG := IG,geo(p) − IG(p) ≈
+1.01 × 10−2 and ∆IG/IG(p) ≈ +1.15 × 10−4.
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Proposition 8.9 (Low-complexity rigidity for IG(p)). Let IG(p) be computed from CODATA
via (79). Among all triples (a, b, c) ∈ Z3

≥0 with a+ b+ c ≤ 10, the unique minimizer of∣∣aπ3 + bπ2 + cπ − IG(p)
∣∣ (88)

is (a, b, c) = (2, 2, 2). The next-best triple in the same coefficient-sum domain has relative error
at least 4.94 × 10−3.

Proof. This is a finite check: enumerate all triples (a, b, c) ∈ Z3
≥0 with a + b + c ≤ 10 and

minimize the absolute error.

9 Black holes and boundaries: the area law as an extreme form
of readout channel counting

Black-hole thermodynamics provides an established link between boundary geometry and en-
tropy: the Bekenstein–Hawking entropy is proportional to horizon area [11,13,14,16],

SBH = kBc
3

4GℏA = kBA

4ℓ2P
. (89)

In the HPA language, readout is an orthogonal cut: it partitions a conserved whole into
distinguishable channels and counts the residual mismatch as impedance. Accordingly, for hori-
zons saturating the covariant entropy bound, the area law is the saturation of boundary readout
channel count, and deviations are attributed to

1. lattice effects of discrete scan (e.g., non-Euclidean counting induced by canonical coding);

2. additional channel impedances from internal fiber defects;

3. finite-resolution coarse-graining in the readout window.

9.1 Channel counting and entropy bounds

We import the covariant entropy bound and the semiclassical area law as external inputs, and
we isolate the minimal internal identification needed to interface scan–readout channel counting
with gravitational entropy bounds.

Axiom 9.1 (Boundary readout entropy as channel count). For a boundary screen of area A
at resolution r, let N∂(A, r) denote the maximal number of mutually distinguishable readout
outcomes allowed by the protocol. Define the associated boundary readout entropy by

S(A, r) := kB log N∂(A, r). (90)

This is the canonical channel-count entropy of a finite outcome set [51,52].

Proposition 9.2 (Covariant entropy bound as a channel-capacity bound). The covariant en-
tropy bound implies, at leading order,

log N∂(A, r) ≤ A

4ℓ2P
, (91)

up to subleading corrections.

Proof. The covariant entropy bound gives S(A, r) ≤ kBA/(4ℓ2P ) [19]. Substitute Axiom 9.1.
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Theorem 9.3 (Area law from boundary channel counting). If a horizon saturates the covariant
entropy bound (as in the Bekenstein–Hawking entropy law), then

S(A) = kBA

4ℓ2P
(92)

at leading order.

N∂(A) = exp
(
A

4ℓ2P

)
(93)

at the level of maximal channel count.

Proof. Saturation turns Proposition 9.2 into

log N∂(A) = A

4ℓ2P
.

Substitute Axiom 9.1.

Remark 9.4 (Bekenstein bound route to the coefficient 1/4). The Bekenstein bound states
S ≤ 2πkBER/(ℏc) for a system of energy E contained in radius R [12]. For a Schwarzschild
black hole, take E = Mc2, R = Rs = 2GM/c2, and A = 4πR2

s [15]. Then

S ≤ 2πkB
(Mc2)(2GM/c2)

ℏc
= 4πkBGM

2

ℏc
= kB

A

4ℓ2P
, (94)

where ℓ2P = Gℏ/c3. Thus the same coefficient 1/4 follows from the bound plus Schwarzschild
geometry, with equality for black holes.

9.2 Subleading corrections as a data-facing target

Quantum and statistical-mechanical analyses of black-hole entropy generically predict subleading
corrections to the area law, often of logarithmic form, with coefficients that depend on the field
content and the ensemble [53–55].

S(A) = kB

(
A

4ℓ2P
+ β log A

ℓ2P
+O(1)

)
, (95)

where β is theory/ensemble dependent [53–55].
Within the HPA–Ω program, these corrections are finite-resolution and discrete-coding effects

in the boundary channel count N∂(A, r). Equivalently, they are controlled subleading terms in
log N∂(A, r) beyond the leading term A/(4ℓ2P ).

Matching the sign and scaling of the leading correction provides a falsifiability interface for
any explicit construction of N∂(A, r) from scan–readout primitives.

10 Falsifiable route and intermediate claims
To avoid a non-testable narrative, we isolate explicit falsifiable intermediate claims. Each item
is refuted by numerical experiments or by data confrontation.

1. Robustness of log-cost composition. In the three-stratum αem model, serial con-
straints multiply weights and the additive impedance is the logarithmic readout − log
(Axiom 5.1, Propositions 3.3 and 3.4). Replacing the resulting serial sum by standard
alternatives produces large deviations at fixed channel costs (Remark 5.2). The same
isolation holds for the logarithmic Newton coupling IG(p) (Remark 8.7). This isolates
the log-cost serial rule as the low-complexity composition compatible with the numeric
reference values.
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2. Scale choice and RG/discreteness error budget. The discrepancy α−1
CODATA−α−1

geo ≈
−3.05×10−4 is mapped to a finite-resolution interface correction in Section 5: equivalently,
the multiplicative matching input is sα = wCODATA/wgeo = exp(−(α−1

CODATA − α−1
geo)) ≈

1+3.05×10−4. Under one-loop electron-only running the equivalent scale shift is µeff/µ0 ≈
1.0029, corresponding to a sub-step depth correction δr ≈ 5.96×10−3 under the Fibonacci
map.

3. Resolution-map calibration. With the golden-branch choice and the Fibonacci map
µ(r) = µ0φ

r (Axiom 6.2), the PDG reference scales {mµ,mτ ,mW ,mZ} map to depths
within δ0 = 0.134 of integers under the rigid reference choice µ0 = me (Table 7). Under a
uniform null for the fractional parts, the corresponding probability is (2δ0)4 ≈ 5.2 × 10−3

(Proposition H.2). In the same anchor set, the multiplicative minimax center satisfies
µ∗

0 = 0.998672me and yields δ∗
0 = 0.131118 (Proposition H.3).

4. Electroweak matching rigidity. The minimal volume-quantized prediction in The-
orem 6.4 gives sin2 θW (µZ) = 3/13 and α−1(µZ) = 13π2 with the explicit deviations
recorded in Section 6. Proposition 6.5 isolates n = 13 as the unique best integer-π2 ap-
proximation for α−1(µZ) at 1 ≤ n ≤ 50, and Proposition 6.8 isolates 3/13 as the best
reduced rational at denominator ≤ 50 for the PDG reference value. Proposition 6.7 com-
bines the two to uniquely fix α−1

2 = 3π2 and α−1
Y = 10π2.

5. Dispersion signatures. Discrete scan induces energy-dependent group-velocity correc-
tions (Appendix F). Signal-front causality is enforced by analyticity at high frequency,
which fixes vfront = c in causal linear response (Proposition F.2).

6. Mass-ratio rigidity signals. The proton–electron ratio is fixed by a finite phase-volume
assignment (Theorem 7.5) together with a finite primitive factorization rigidity statement
(Proposition 7.7, Table 3) and a low-complexity integer rigidity check (Proposition 7.8).
The data-facing interface is a multiplicative matching input sµ = µexp/µgeo ≈ 1 + 1.88 ×
10−5.

7. CP-odd rigidity signals. The CKM Jarlskog invariant exhibits a stable low-complexity
π-power signature: Proposition 7.10 gives the unique best fit at the PDG central value,
and Proposition 7.11 gives the unique minimax solution over the PDG interval in the same
bounded search domain. The corresponding closed-theory realization is fixed by the CP-
odd phase-space assignment and discrete multiplicity in Axiom 7.12, and the phase-space
factorization is rigid at minimal factor count under the primitive set (Proposition 7.13).

8. Gravitational coupling in log form. The logarithmic Newton coupling IG(p) =
log(αG(p)−1) exhibits a stable low-complexity π-polynomial signature (Proposition 8.9)
and the serial aggregation rule is isolated at fixed three-stratum costs (Remark 8.7). The
phase-space assignment in Axiom 8.4 is tested directly against CODATA via Theorem 8.8,
with multiplicative matching input sG = αG(p)/αG,geo(p) ≈ 1 + 1.01 × 10−2. Its primitive
factorizations are rigid at minimal factor count under the primitive set (Proposition 8.6).

11 Conclusion
We develop a geometricization framework for physical constants within HPA–Ω that is structured
to be reviewable, extensible, and falsifiable.

• Conceptually, observable “constants” are framed as geometric/spectral invariants of a
scan–readout protocol, rather than as coefficients written into equations from the start.
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• Metrologically, we enforce a strict separation between defining constants (scale interfaces)
and dimensionless invariants (physical targets).

• Methodologically, we provide a general template C(r) = F (Ir(G)) together with explicit
worked examples, including theorem-level values for α−1

em and mp/me and an electroweak
matching prediction for sin2 θW . We also record a data-facing calibration of the Fibonacci
resolution map against standard PDG scales.

• Physically, we formulate unified geometric languages for running couplings (as resolution
flow, including QCD dimensional transmutation), mixing matrices and CP violation (as
holonomy and rephasing invariants), gravitational time dilation (as computational lapse),
and the black-hole area law (as saturation of an entropy bound expressed by boundary
channel counting).

• Scientifically, we separate imported external inputs, internal axioms, derived theorems,
and data-facing rigidity checks, and we list intermediate falsifiable claims.
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Type Statement / role in the chain

External Revised SI as a defining-constants interface; CODATA recommended values
as data-facing targets [1, 2].

External Running couplings in QFT (scale dependence) and geometric phase/holonomy
in quantum mechanics [3–7].

External Electroweak relations among g, g′, e and θW [4, 8–10].
External Black-hole area law, entropy bounds, and the holographic principle/covariant

entropy bound [11–19].
External Continued-fraction Diophantine approximation and discrepancy control un-

derlying the golden branch [20–22].
Axiom Geometricization template C(r) = F (Ir(G)) together with a logarithmic read-

out discipline and explicit phase-space/volume axioms for the worked exam-
ples (Sections 3, 5, 7, 6, 8, 9).

Derived Minimal projective closure of the primitive candidate set (Proposition 3.7)
and canonical group-volume identities for U(1), SU(2), SO(3), and projective
quotients (Appendix G).

Derived Uniqueness of the logarithmic readout cost under multiplicative composition
(Proposition 3.4).

Derived Three-channel value α−1
geo = 4π3 + π2 + π (Theorem 5.6).

Derived Proton–electron mass ratio µgeo = 6π5 (Theorem 7.5) and electroweak mixing
sin2 θW = 3/13 (Theorem 6.4).

Derived Proton Newton coupling in log form IG(p) = log(αG(p)−1) = 2π3 + 2π2 + 2π
(Theorem 8.8).

Derived Discrete-scan dispersion in a nearest-neighbor model (Proposition F.1) and
interface identification of the computational lapse with a GR lapse (Proposi-
tion 8.2).

Derived Area law from boundary channel counting under the covariant entropy bound
plus saturation (Theorem 9.3).

Fit Rigidity checks for low-complexity integer/rational ansätze (Propositions 5.7,
5.5, 7.7, 7.8, 6.5, 6.8, 6.7, 7.10, 7.11, 7.13, 8.6, and 8.9, Tables 2, 4, 3, 5, and
6; plus a data-facing calibration of the resolution map and near-integer depth
tests (Propositions H.2, H.3, and H.4, Tables 7, 8, and 9).

Table 1: Logic audit. We mark what is imported from established literature, what is posited
as an internal axiom of the HPA–Ω program, what is derived as a theorem, and what is tested
as a low-complexity fit/rigidity check.

(a, b, c) a+ b+ c aπ3 + bπ2 + cπ ∆ ∆/α−1
CODATA

(4, 1, 1) 6 137.0363037759 +3.05 × 10−4 +2.22 × 10−6

(4, 0, 4) 8 136.5914773356 −4.45 × 10−1 −3.24 × 10−3

(3, 4, 1) 8 135.6388402988 −1.40 × 100 −1.02 × 10−2

Table 2: Exhaustive integer search in the ansatz aπ3 + bπ2 + cπ over the coefficient-sum domain
a, b, c ∈ Z≥0 and a + b + c ≤ 10. Here ∆ = (aπ3 + bπ2 + cπ) − α−1

CODATA. The minimizer is
(4, 1, 1); the gap to the next best solution is large at fixed complexity budget. Integer-relation
algorithms such as PSLQ provide a complementary, non-exhaustive route [38].
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Per-color sector Mq µgeo = 3 Vol(Mq) ∆ ∆/µexp

SO(3) × SO(3) × U(1) 6π5 = 1836.1181087117 −3.46 × 10−2 −1.88 × 10−5

SO(3) × SU(2) × RP 1 6π5 = 1836.1181087117 −3.46 × 10−2 −1.88 × 10−5

SU(2) × U(1) × U(1) 24π4 = 2337.8181848161 +5.02 × 102 +2.73 × 10−1

SO(3) × U(1) × U(1) 12π4 = 1168.9090924080 −6.67 × 102 −3.63 × 10−1

SU(2) × U(1) × RP 1 12π4 = 1168.9090924080 −6.67 × 102 −3.63 × 10−1

SO(3) × SO(3) × RP 1 3π5 = 918.0590543558 −9.18 × 102 −5.00 × 10−1

SO(3) × SO(3) × SO(3) 3π6 = 2884.1675807259 +1.05 × 103 +5.71 × 10−1

U(1) × U(1) × U(1) 24π3 = 744.1506403272 −1.09 × 103 −5.95 × 10−1

SO(3) × U(1) × RP 1 6π4 = 584.4545462040 −1.25 × 103 −6.82 × 10−1

SU(2) × RP 1 × RP 1 6π4 = 584.4545462040 −1.25 × 103 −6.82 × 10−1

U(1) × U(1) × RP 1 12π3 = 372.0753201636 −1.46 × 103 −7.97 × 10−1

SO(3) × RP 1 × RP 1 3π4 = 292.2272731020 −1.54 × 103 −8.41 × 10−1

U(1) × RP 1 × RP 1 6π3 = 186.0376600818 −1.65 × 103 −8.99 × 10−1

RP 1 × RP 1 × RP 1 3π3 = 93.0188300409 −1.74 × 103 −9.49 × 10−1

SO(3) × SU(2) × U(1) 12π5 = 3672.2362174234 +1.84 × 103 +1.00 × 100

SU(2) × SU(2) × RP 1 12π5 = 3672.2362174234 +1.84 × 103 +1.00 × 100

SO(3) × SO(3) × SU(2) 6π6 = 5768.3351614518 +3.93 × 103 +2.14 × 100

SU(2) × SU(2) × U(1) 24π5 = 7344.4724348468 +5.51 × 103 +3.00 × 100

SO(3) × SU(2) × SU(2) 12π6 = 11536.6703229037 +9.70 × 103 +5.28 × 100

SU(2) × SU(2) × SU(2) 24π6 = 23073.3406458073 +2.12 × 104 +1.16 × 101

Table 3: Full enumeration over three-factor products of primitives {U(1), SU(2), SO(3),RP 1}
(with canonical volumes) for a per-color sector Mq. The only candidates achieving µgeo =
3 Vol(Mq) = 6π5 are the two solutions in Proposition 7.7; the next candidate has order-one
relative error. Here ∆ = µgeo − µexp with µexp ≈ 1836.15267343 [2].

(a, b, c, d, e) a+b+c+d+e µ(a, b, c, d, e) ∆ ∆/µexp

(6, 0, 0, 0, 0) 6 1836.1181087117 −3.46 × 10−2 −1.88 × 10−5

(5, 3, 0, 1, 1) 10 1835.3368940831 −8.16 × 10−1 −4.44 × 10−4

(6, 0, 0, 0, 1) 7 1839.2597013653 +3.11 × 100 +1.69 × 10−3

Table 4: Rigidity check for µ = mp/me in the ansatz µ(a, b, c, d, e) = aπ5 + bπ4 + cπ3 +
dπ2 + eπ over the coefficient-sum domain a, b, c, d, e ∈ Z≥0 and a+b+c+d+e ≤ 10. Here ∆ =
µ(a, b, c, d, e) − µexp. Exhaustive enumeration shows (6, 0, 0, 0, 0) is the unique minimizer in the
stated domain. Integer-relation algorithms such as PSLQ provide a complementary route [38].

a n Jgeo(a, n) ∆ ∆/JPDG

11 7 3.009942547 × 10−5 +9.94 × 10−8 +3.31 × 10−3

35 6 2.971889924 × 10−5 −2.81 × 10−7 −9.37 × 10−3

34 6 3.059298451 × 10−5 +5.93 × 10−7 +1.98 × 10−2

Table 5: Rigidity check for the CKM Jarlskog invariant in the ansatz Jgeo(a, n) = 1/(aπn) over
1 ≤ a ≤ 50 and 1 ≤ n ≤ 20. Here ∆ = Jgeo(a, n)−JPDG with reference value JPDG = 3.00×10−5

(PDG central value). Exhaustive enumeration shows (a, n) = (11, 7) is the unique minimizer in
the stated domain.
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(a, b, c) a+b+c aπ3 + bπ2 + cπ ∆ ∆/IG(p)
(2, 2, 2) 6 88.034947470 +1.01 × 10−2 +1.15 × 10−4

(2, 1, 5) 8 87.590121030 −4.35 × 10−1 −4.94 × 10−3

(0, 9, 0) 9 88.826439610 +8.02 × 10−1 +9.11 × 10−3

Table 6: Rigidity check for the proton logarithmic Newton coupling IG(p) = log(αG(p)−1) in
the ansatz aπ3 + bπ2 + cπ over the coefficient-sum domain a, b, c ∈ Z≥0 and a + b + c ≤ 10.
Here ∆ = (aπ3 + bπ2 + cπ) − IG(p) with IG(p) computed from CODATA via (79). Exhaustive
enumeration shows (2, 2, 2) is the unique minimizer in the stated domain.
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A Notation and layer conventions
We keep a strict separation of layers.

• Ontology layer. Multiplicative structure and phase structure are treated as primitives.

• Scan layer. A genuine unitary scan operator Θ introduces time as iteration count.

• Readout layer. A window projection and an orthogonal cut map continuous structure
to discrete distinguishable outcomes; canonical coding (Ostrowski/Zeckendorf) fixes the
readout grammar.

• Observable layer. The residual mismatch (gap/impedance) is the data-facing remainder
and controls error budgets.

Resolution parameter r. The symbol r denotes a resolution/coarse-graining parameter.
Depending on context it is instantiated as coding bit depth, window scale, scan depth, or (in
the Ω setting) effective compilation depth. The only requirement is that there exists a map
r 7→ µ(r) connecting resolution flow to running couplings.

Complexity budgets. Finite rigidity checks are stated at bounded integer complexity. For
nonnegative coefficient vectors a = (a1, . . . , ak) ∈ Zk

≥0 in polynomial π-ansätze we use the
coefficient-sum complexity

∥a∥1 :=
k∑

i=1
ai

and impose a fixed budget ∥a∥1 ≤ B (e.g. B = 10 in the α−1, IG(p), and µ integer searches).
For rational approximations we bound the denominator q ≤ Q (e.g. Q = 50 for sin2 θW ). For
primitive phase-space factorizations we bound the factor count. Every rigidity proposition states
its finite domain explicitly.

Reproducibility. All finite rigidity checks and calibration tables in this paper are repro-
ducible by a unified script included with the source: scripts/hpa_omega_geometry.py. Run-
ning python3 scripts/hpa_omega_geometry.py emit-tex writes the LaTeX row fragments
into sections/generated/, which are input by Tables 2, 3, 4, 5, 6, and Appendix H. Running
python3 scripts/hpa_omega_geometry.py all prints the corresponding values, multiplicative
log-ratio error metrics, and search winners.

B Relations among electromagnetic constants (revised SI)
Starting from

α = e2

4πϵ0ℏc
, (96)

and using
ϵ0 = 1

µ0c2 , ℏ = h

2π , (97)

we obtain

α = e2

4π (1/(µ0c2)) (h/(2π)) c = µ0e
2c

2h . (98)

Hence
µ0 = 2αh

e2c
. (99)
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In the revised SI, c, h, e are defining constants while α is experimentally determined, so the
uncertainty of µ0 is controlled by that of α [1, 2, 23].

We also record
ϵ0 = 1

µ0c2 , Z0 =
√
µ0
ϵ0

= µ0c. (100)

C Substitutability list for the three-channel α model
Theorem 5.6 is a closed-theory statement conditional on explicit axiom choices. We list the main
substitution points (each of which defines an alternative closed model that is tested against data).

1. Channel-composition and readout projection. Axiom 5.1 uses multiplicative compo-
sition of serial constraints (wtot = ∏

j wj) together with the logarithmic readout projection
α−1

geo = − logwtot. Replacing either ingredient changes the value of α−1
geo and is falsifiable

by the same rigidity protocol.

2. Impedance functional (volume vs alternative invariants). Axiom 5.3 uses canonical
volume. Replacing it by other geometric/spectral invariants (e.g., spectral determinants,
analytic torsion, or normalized action functionals) yields alternative quantitative predic-
tions.

3. Normalization / scale. The canonical-volume choice presupposes a unit-radius normal-
ization for the underlying compact manifolds. Changing this normalization rescales the
impedance and must be fixed by an independent calibration convention.

4. Stratum identification. Axiom 5.4 fixes the phase spaces as U(1) ×SU(2), SO(3), and
RP 1. Alternative identifications (e.g., different quotients or bundles) define distinct closed
models.

D Mass–delay as a scan-based axiom
Axiom D.1 (Scan-based mass–delay chain). Internal algebraic obstructions (nonassociative
defects) act as phase-impedance centers that require extra scan cycles to resolve locally [34–36].
The resulting increase in local scan density induces an effective metric stretching/time delay in
the readout layer.

The chain is

nonassociative defect −→ phase-impedance center
−→ extra scan cycles
−→ increased local scan density
−→ metric stretching / time delay (Shapiro-like).

(101)

The relativistic dispersion E2 = p2 + m2 provides a standard orthogonal decomposition
between observable momentum and a rest-energy term. Empirically, gravitational time delay
provides an operational reference for slowing effects [56].

External reference: Schwarzschild lapse and Shapiro delay. In Schwarzschild coordi-
nates, the metric has gtt = −(1 − 2GM/(rc2))c2, so a static clock at radius r satisfies

dτ =
√

1 − 2GM
rc2 dt, (102)

exhibiting gravitational time dilation through the lapse factor
√

1 − 2GM/(rc2) [15].
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Under the interface identification in Proposition 8.2, the corresponding routing-cost overhead
is

κ(r)
κ0

=
(

1 − 2GM
rc2

)−1/2
= 1 + GM

rc2 +O

(
G2M2

r2c4

)
. (103)

For light propagation past a gravitating body, the Shapiro time delay for a radar signal is,
at leading post-Newtonian order,

∆tShapiro ≈ 2GM
c3 log

(4r1r2
b2

)
, (104)

for endpoints at radii r1, r2 and impact parameter b [56, 57].
These standard formulas provide the external operational target for any scan-based identi-

fication of “extra cycles” with effective delays.

E Geometric-phase foundations for the holonomy template
For a family of normalized states |ψ(λ)⟩ parameterized by λ on a manifold, define the Berry
connection and curvature [5, 6, 26]

A = i ⟨ψ|dψ⟩ , F = dA. (105)

For a closed loop C, the geometric phase is

γgeom[C] =
∮

C
A =

∫
S: ∂S=C

F, (106)

which is gauge-invariant at the level of curvature. The mixing-holonomy axiom in Axiom 7.9 uses
the non-Abelian generalization with a U(n) connection and path-ordered exponentiation [7,26].

Proposition E.1 (Any unitary can be realized as holonomy on a circle). For any U ∈ U(n),
there exists a U(n) connection on the trivial bundle over S1 whose holonomy along the generator
of π1(S1) equals U .

Proof. Choose a matrix logarithm H such that U = exp(iH). On S1 with angular coordinate
θ ∈ [0, 2π], define a constant u(n)-valued connection one-form A = iH dθ/(2π). Then the
path-ordered exponential reduces to an ordinary exponential and

P exp
(∮

S1
A
)

= exp
(∫ 2π

0

iH
2π dθ

)
= exp(iH) = U.

Standard holonomy theory is developed in [58].

Remark E.2 (Predictivity requires geometric rigidity). Proposition E.1 shows that a holon-
omy representation is formally universal. Therefore, a predictive constant-geometry model must
specify M and A by geometric rigidity (e.g., fixed bundles/metrics, minimal cycles, symmetry
constraints), rather than by free fitting of a general connection.

F On c and dispersion signatures: boundary conditions
In the “gravitational stretching vs high-energy shortcut” picture, the standard speed of light c
arises as the baseline limit in which both effects are negligible.
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Group velocity versus signal front. If a dispersive relation ω = ω(k) is induced (e.g., by
discrete scan), the phase and group velocities are

vph = ω

k
, vg = dω

dk . (107)

It is standard that vg can exceed c (or become negative) in dispersive media without enabling
superluminal signaling; what constrains causality is the propagation of the wavefront, controlled
by analyticity of the response function and the high-frequency limit [59,60].

A minimal discrete-scan dispersion model. Discrete nearest-neighbor updates produce
k-dependent group velocity. A standard example is the central-difference discretization of the
one-dimensional wave equation.

Proposition F.1 (Dispersion from a nearest-neighbor discretized wave equation). Discretize
utt = c2uxx on a uniform lattice xj = ja and times tn = n∆t by

un+1
j − 2un

j + un−1
j

∆t2 = c2u
n
j+1 − 2un

j + un
j−1

a2 . (108)

Plane-wave solutions un
j = exp(i(kja− ωn∆t)) satisfy

sin2
(
ω∆t

2

)
= ν2 sin2

(
ka

2

)
, ν := c∆t

a
, (109)

and the group velocity is
vg(k) = dω

dk = c
cos(ka/2)√

1 − ν2 sin2(ka/2)
. (110)

In particular, ω = ck +O(k3) as k → 0, while vg depends on k for ν ̸= 1.

Proof. Substitute the plane-wave ansatz into the update equation and simplify using cosx =
1 − 2 sin2(x/2). Differentiate the dispersion relation implicitly to obtain vg(k), and use sin x =
x+O(x3) for the low-k expansion.

Proposition F.2 (Front velocity from analyticity). In causal linear response, the effective re-
fractive index n(ω) is analytic in the upper half-plane and satisfies n(ω) → 1 as ω → ∞.
Consequently the wavefront (signal-front) velocity equals c:

vfront = c. (111)

Proof. Define
vfront := lim

ω→∞
ω

k(ω) = c

limω→∞ n(ω) , (112)

and the stated analyticity and high-frequency limit imply limω→∞ n(ω) = 1 and hence vfront = c
[59, 60].

Boundary condition for discrete-scan dispersion. Accordingly, any scan-induced disper-
sion is treated at the level of vg(ω), while compatibility with locality/causality is enforced by
Proposition F.2.

34



G Canonical volumes of the phase spaces
We record the elementary volume computations used in Theorem 5.6.

Lemma G.1 (Volumes of U(1), SU(2), SO(3), and projective quotients). With the standard
(unit-radius) normalizations,

Vol(U(1)) = 2π, Vol(SU(2)) = Vol(S3) = 2π2. (113)

Moreover, the Z2 quotients satisfy

Vol(SO(3)) = Vol(SU(2)/{±1}) = π2, Vol(RP 1) = Vol(U(1)/{±1}) = π. (114)

Consequently,
Vol(U(1) × SU(2)) = 4π3. (115)

Proof. The first identity is the circumference of the unit circle.
For SU(2) ∼= S3, use hyperspherical coordinates on S3 with volume element

dV = sin2 χ sin θ dχdθ dϕ, χ ∈ [0, π], θ ∈ [0, π], ϕ ∈ [0, 2π]. (116)

Then
Vol(S3) =

∫ π

0
sin2 χdχ

∫ π

0
sin θ dθ

∫ 2π

0
dϕ =

(
π

2

)
· 2 · 2π = 2π2. (117)

The quotient maps SU(2) → SU(2)/{±1} ∼= SO(3) and U(1) → U(1)/{±1} ∼= RP 1 are
two-sheeted Riemannian coverings under the induced quotient metrics. Let π : M → M/{±1}
denote either map and dV,dV̄ the corresponding volume forms. Since π is a local isometry one
has π∗(dV̄ ) = dV , and since the covering has degree 2,

Vol(M) =
∫

M
dV =

∫
M
π∗(dV̄ ) = 2

∫
M/{±1}

dV̄ = 2 Vol(M/{±1}),

so the quotient volumes are halved.
Finally, Vol(U(1) × SU(2)) = Vol(U(1)) Vol(SU(2)) = (2π)(2π2) = 4π3.

H Calibration of the Fibonacci resolution map
This appendix records a data-facing calibration of the Fibonacci resolution–energy map in Ax-
iom 6.2. We fix the reference scale to the electron mass,

µ0 = me, (118)

and define
r(µ) := log(µ/me)

logφ . (119)

With r identified as Zeckendorf depth (maximal Fibonacci index), integer shifts r 7→ r + 1
correspond to multiplicative rescaling by φ.

Table 7 places the muon and tau thresholds near r ≈ 11 and r ≈ 17, and the electroweak
reference scale near r ≈ 25. This anchors r as a discrete depth coordinate with finite matching
corrections at thresholds, matching leading-log running combined with decoupling/matching in
effective field theory [4, 24,39].

The anchor set {mµ,mτ ,mW ,mZ} consists of scheme-stable threshold scales used in the
standard running-coupling conventions. By Proposition H.4, any multiplicative matching factor
µ 7→ sµ induces an additive shift in r, so composite/hadronic scales enter as matching inputs
rather than as integer-depth anchors.
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Scale µ µ [GeV] r(µ) r − round(r)
me 5.1099895 × 10−4 0.000 0.000
mµ 1.0565838 × 10−1 11.080 +0.080
mτ 1.77686 16.945 −0.055
mp 0.9382721 15.618 −0.382
mW 80.377 24.866 −0.134
mZ 91.1876 25.128 +0.128

Table 7: Calibration of the Fibonacci resolution coordinate r(µ) = log(µ/me)/ logφ at standard
particle-physics scales (values from PDG conventions [24]). The near-integer depth tests in this
appendix use the leptonic/electroweak subset {mµ,mτ ,mW ,mZ}; the proton scale is included
for comparison and enters as a matching input rather than an integer-depth anchor.

Scale µ r∗(µ) µ0(µ) [GeV] µ0(µ)/me µ0(µ)/me − 1
mµ 11 5.3093 × 10−4 1.0390 +3.90 × 10−2

mτ 17 4.9758 × 10−4 0.9737 −2.63 × 10−2

mW 25 4.7912 × 10−4 0.9376 −6.24 × 10−2

mZ 25 5.4356 × 10−4 1.0637 +6.37 × 10−2

Table 8: Inferred reference scales µ0(µ) = µ/φround(r(µ)) from near-integer depth assignments
for standard leptonic/electroweak scales.

Definition H.1 (Uniform null model for fractional parts). Fix reference scales {µi}N
i=1 and de-

fine δi := r(µi)− round(r(µi)) ∈ [−1/2, 1/2]. The uniform null model is that the fractional parts
of {r(µi)} are independent and uniform on [0, 1] (equidistribution theory provides the canoni-
cal uniform baseline) [21]. This is a statistical null model used to quantify how restrictive the
near-integer event is; it is not an additional axiom of the HPA–Ω program.

Proposition H.2 (Near-integer depth probability under the uniform null). Under Defini-
tion H.1,

P
(

max
1≤i≤N

|δi| ≤ δ0

)
= (2δ0)N . (120)

For {µi} = {mµ,mτ ,mW ,mZ} one has δ0 = 0.134 from Table 7 and N = 4, hence (2δ0)N ≈
5.2 × 10−3.

Proof. Under the null, each δi is uniform on [−1/2, 1/2], so P(|δi| ≤ δ0) = 2δ0. Independence
gives the product.

Equivalently, an inverse check infers µ0 from a near-integer depth assignment. Let r∗(µ) :=
round(r(µ)) and define µ0(µ) := µ/φr∗(µ). For electroweak and leptonic reference scales, the
inferred values cluster around me:

Proposition H.3 (Multiplicative minimax centering of the reference scale). Fix scales {µi}N
i=1

and an integer depth assignment {r∗
i }N

i=1. Define the implied reference scales

µ0,i := µi

φr∗
i
. (121)

Then the choice
µ∗

0 :=
√

min
i
µ0,i max

i
µ0,i (122)
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Scale µ µ [GeV] r(µ) r − round(r)

Λ(5)
MS 2.09 × 10−1 12.497 +0.497

mc 1.27 16.247 +0.247
mb 4.18 18.722 −0.278
mt 1.7276 × 102 26.456 +0.456

Table 9: Extended calibration of the Fibonacci resolution coordinate r(µ) = log(µ/me)/ logφ
for additional QCD/heavy-flavor scales, using standard reference values [24].

uniquely minimizes the multiplicative worst-case deviation maxi

∣∣ log(µ0,i/µ0)
∣∣. Equivalently, µ∗

0
uniquely minimizes maxi |r(µi) − r∗

i | since

r(µi) − r∗
i = log(µ0,i/µ0)

logφ . (123)

For {µi} = {mµ,mτ ,mW ,mZ} with (r∗
µ, r

∗
τ , r

∗
W , r∗

Z) = (11, 17, 25, 25) one finds

µ∗
0 ≈ 5.1032 × 10−4 GeV = 0.998672me, (124)

and the resulting maximal depth deviation decreases from δ0 = 0.133880 (Table 7) to δ∗
0 =

0.131118, giving (2δ∗
0)4 ≈ 4.73 × 10−3 under the same uniform null. Thus the rigid convention

µ0 = me lies within 0.13% of the multiplicative minimax center for this electroweak/leptonic
anchor set.

Proof. For µ0 > 0 define t := logµ0 and ti := logµ0,i. Then maxi | log(µ0,i/µ0)| = maxi |ti − t|.
This is minimized uniquely at the midrange t∗ = (mini ti + maxi ti)/2, i.e. µ∗

0 = exp(t∗) =√
mini µ0,i maxi µ0,i. The equivalence with minimizing maxi |r(µi)−r∗

i | follows by the displayed
identity.

Table 9 lists additional QCD/heavy-flavor reference scales. These are scheme-dependent and
enter as matching inputs rather than as integer-depth anchors.

Proposition H.4 (Scheme rescaling induces an additive depth shift). Define

r(µ) := log(µ/me)
logφ .

If a convention or renormalization scheme rescales a reference scale multiplicatively, µ′ = s µ
with s > 0, then

r(µ′) = r(µ) + log s
logφ. (125)

In particular, the fractional part of r(µ) is not invariant under such rescalings. Near-integer
depth tests are meaningful only for scheme-stable anchor scales; scheme-dependent scales are
treated as matching inputs.

Proof. This is immediate from the definition:

r(µ′) = log(sµ/me)
logφ = log(µ/me)

logφ + log s
logφ.
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