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Abstract

We continue an audit-driven program in which finite-resolution scanning and readout are
treated as primary mathematical structure, rather than postulates external to an “ontic”
dynamics. Building on an earlier closed pipeline from noncommutative scanning to cusp co-
efficient spectra, Hecke dynamics, and Langlands semantics, we introduce an additional layer
“above the cusp”: a period—motive interface that explains why stable constants repeatedly
appear as m, log, and zeta-values.

On a controlled class of protocols we define a category Scan,i; whose objects are Kronecker-
type scans on tori equipped with algebraic (rational) readout kernels and auditable regular-
ization rules. We construct a holographic scanning functor HSP : Scan,g — PerDatum into
a category of period data and prove a closed realization theorem: for rationally independent
scan slopes, the long-time Birkhoff readout equals the Kontsevich—Zagier period associated
with HSP(P). Finite-resource implementations admit an explicit auditable error decompo-
sition into (i) a sampling discrepancy term controlled by diophantine properties of the scan
and (ii) a truncation/regularization term with provable bounds. In particular, for truncated
geometric kernels realizing ((d), the error budget yields a closed stability—truncation tradeoff
and an explicit optimized truncation-depth choice under any discrepancy certificate.

We provide reproducible pure-Python experiments realizing log 2, =, {(2) and {(3) via
one-, two-, and three-dimensional scans using truncated geometric kernels. As a toy model
for “constant selection” under a bounded description budget, we reproduce a low-complexity
search in which 473 4+ 72 + 7 emerges as the unique best approximation to a~' among
nonnegative integer combinations of 7,72, 7% with bounded coefficient sum. Finally, we
formulate a falsifiable selection principle: observable constants correspond to period data that
minimize a stability—complexity functional under finite resource constraints, motivating a
minimal operative notion of protocol-stable period data as protocol-invariant, stably realizable
period structures.

Keywords: holographic scanning principle; Kronecker scan; equidistribution; discrepancy;
Koksma—Hlawka inequality; Kontsevich—Zagier periods; motives; multiple zeta values; regular-
ization; error budget; functoriality; selection principle.

Conventions. Unless otherwise stated, log denotes the natural logarithm. “mod 17 refers
to reduction in R/Z. The scan time ¢ € Z>( denotes an iteration count of a protocol-defined
update (Layer 1). We identify the d-torus with T¢ = (R/Z)? and use the fundamental domain
[0,1)¢ when writing integrals. When convenient, we freely replace [0,1)% by [0,1]¢ in integrals
and discrepancy definitions, since the boundary has Lebesgue measure zero.
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1 Introduction: from the stairway to the motive

Foundational mathematical physics faces a persistent mismatch between what is modeled and
what is recorded. Microscopic descriptions privilege unitary evolution and continuous symme-
tries; observational records are discrete, finite-resolution, and statistical. The standard narra-
tive resolves this by placing continuity in “ontology” and discreteness in an externally imposed
measurement postulate. In the audit program pursued across the HPA—{) manuscripts, the
organizational stance is the opposite: readout is part of the structure. Time, probability, and
discreteness must arise within an explicit scan—readout protocol under finite information con-
straints, in a way that admits a concrete dependency chain (Layer 0/1) and a strict separation
from semantic narratives (Layer 2).

In a companion work, [1] (“The Stairway to Infinity”) formalized the climb from noncommu-
tative scanning to arithmetic rigidity and further to automorphic (Langlands) semantics. The
paper closed an auditable chain

Weyl pair = A, = (modular) geodesic/Gauss flow

(1)

=—> cusp g¢-coefficients = Hecke prime skeleton,

and left two explicit tasks open: a functorial upgrade of protocol-level constructions and a
principled equivalence criterion for protocols.

The present paper addresses a different, more “source-level” question that remains after
is closed:

« Why do stable constants persistently reappear as m, logarithms, and zeta-values?
o Why does the modular/Hecke route look canonical rather than contingent?

e What is the structural origin of the arithmetic rigidity observed at cusps, beyond the level
of coeflicient extraction procedures?

Our answer is not a new physical narrative; it is a further audit-compatible mathematical
move. We introduce a period—motive interface as a minimal structure “above the cusp” and show
that, in a controlled subcategory, scanning itself is an algorithmic realization of Kontsevich—
Zagier periods.

1.1 Core claim: scanning as a period realization

The key thesis is closed in the controlled protocol class Scanas (Section {f) and can be stated
as a single theorem by combining the realization results of Section [b| with the finite-resource
bounds of Section [6l

Theorem 1.1 (Scanning realizes periods with an auditable finite-N certificate). Let P =
(T, o, 2o, f,R) € Scanayg and let Py = {zo,...,zn-1} C [0, 1)¢ be its orbit-prefix point set.
Assume the rational-independence condition (or a ¢ Q if d = 1) and that the regularized
kernel fr is Riemann integrable on [0,1)%. Then

lim (P)y = per(HSP(P)) = /[0 o SR @) da 2)

N—o00
If, moreover, Varpgk (fr) < 0o, then for every N > 1 one has the explicit finite-resource bound
[(P)n — per(HSP(P))| < Varpk (fr) D (Pn).- (3)

Finally, if f is an ideal kernel and R is a reqularization rule, then the total error to the ideal
period admits an auditable sampling—reqularization decomposition (Proposition .



Proof. The limit statement is Corollary (or Corollary in d = 1). The finite-N
certificate is Corollary The final sentence is Proposition [6.7] O

Theorem has two consequences.

e Numerical layer. The repeated appearance of 7, log, and zeta-values is explained by
the fact that these constants are periods, and the protocol computes periods.

e Structural layer. “Protocol equivalence” can be anchored to period data: morphisms in
Scan,jg induce period-datum equivalences in PerDatum, hence Scan,j,-isomorphic protocols
yield identical long-time limits and identical period values (Section[d). A full classification
of protocols by period data is left as a separate problem.

1.2 What is new in this paper

Compared to [1], this paper contributes the following closed components.

« A controlled protocol category Scan,,. We define a subcategory of protocols whose
scan dynamics are Kronecker rotations on tori and whose readout kernels are rational
functions on [0,1)%, equipped with explicit regularization rules (Section .

e« A period-data category PerDatum and a functor HSP. We define PerDatum as a
category of period data and construct a holographic scanning functor HSP : Scan,, —
PerDatum mapping protocols to integrable rational kernels on [0, 1)d (Section .

e A closed realization theorem. We prove that, under the standard rational-independence
condition on the scan slope, the Birkhoff readout average converges to the period associated

with HSP(P) (Section [f)).

e Auditable error budgets. We provide explicit finite- NV error decompositions into discrepancy-
controlled sampling error and provable truncation/regularization error, and we emphasize
how these bounds propagate across protocol compositions (Section @

e Reproducible experiments and a toy selection signal. We provide pure-Python
scripts reproducing period realizations of log 2, m, ((2) and ((3) and a low-complexity con-
stant search illustrating a sharp “uniqueness gap” under a description budget (Section @

Beyond the closed components, we formulate a falsifiable selection principle as a program-
matic statement: under finite resources, period data that are stably realizable with low descrip-
tion complexity are preferentially selected. This principle is presented as a conjectural interface
(Section [7]) and does not enter the closed proof chain.

1.3 Relation to quasi—-Monte Carlo and Kronecker sequences

The deterministic finite-N certificate is classical in quasi-Monte Carlo (QMC) integration:
Koksma—Hlawka bounds the integration error of a point set by the product of a variation semi-
norm and a discrepancy seminorm [2H4]. Within that literature, Kronecker point sets and their
shifted variants are standard examples, closely related to rank-1 lattice rules: a generating vector
(here the scan slope «) produces a structured orbit on the torus, and translation by an initial
point zp corresponds to a shift [4,)5]. Discrepancy control for such constructions is classically
expressed via Erdés—Turan—Koksma inequalities and Diophantine approximation properties of
a [2-4116].

The emphasis of this paper is not to optimize discrepancy constants against the best available
QMC constructions, nor to replace randomized QMC methodology. Rather, we treat the point
set as an explicit protocol output generated by a simple dynamical rule, and we require that both



the kernel regularization and the discrepancy certificate be auditable within the protocol. This
motivates: (i) working with Kronecker scans (simple, parameterized by «), (ii) recording explicit
ETK-type certificates with explicit constants (Appendix [B.5]), and (iii) using regularizations
(such as the truncated geometric kernels for ((d)) that yield finite Hardy—Krause variation with
explicit bounds (Section [6]).

1.4 Relation to motives and to the Langlands chain

Motives organize the relations among periods by comparing different cohomological realizations
(Betti, de Rham, ¢-adic). We do not assume any conjectural statements from the general theory
of motives. The role of motives in this paper is organizational and appears only through a
minimal “period datum” interface that stays within Layer 0/1 audit constraints.

Nevertheless, the motive viewpoint offers a natural compatibility target for the stairway
chain: Hecke eigenvalues can be interpreted as Frobenius traces on suitable realizations of mo-
tives, while periods are the numerical shadows of comparison isomorphisms. Section [8formulates
a commutative-diagram objective that factors the functorial Langlands upgrade of 1] through
period data and motives.

Outline. Section [2] fixes the audit-layer conventions and clarifies how we use motives mini-
mally. Section [3| recalls periods and introduces a minimal notion of protocol-stable period data.
Section [ defines Scan,jy, PerDatum, and the functor HSP. Section [5] proves the main realization
theorem. Section [6] develops error budgets. Section [7] proposes the selection principle. Section
discusses compatibility with the Langlands chain. Section [J] provides reproducible experiments.
We conclude in Section 10l

2 Audit rules and layer discipline

The audit program enforces a strict separation between what is assumed, what is derived, and
what is merely interpreted. This paper follows the same discipline as |1,|7}8].

2.1 Layer conventions

Layer 0 (ontic). Only algebraic objects and states are allowed. No external time parameter,
probability postulate, or observer semantics is assumed. In the present paper, Layer 0 objects
are the underlying dynamical system (a torus rotation), the readout kernel, and the invariant
measure.

Layer 1 (protocol). A protocol specifies how “time” is realized as an iteration count, how
finite-resolution readout is implemented, and how statistics are induced from repeated readout.
In this paper, “time” is the scan index ¢t € Z>q, and probabilities arise from empirical distri-
butions along scan orbits (Birkhoff averages) and, optionally, from finite ensembles of initial
conditions used only as a numerical stabilization device.

Layer 2 (interpretation). Any physical semantics (spacetime, particles, gravity narratives)
is permitted only as commentary. It may not appear as a premise in Layer 0/1 arguments. This
paper stays in Layer 0/1 for the closed proof chain; interpretation-level language is avoided in
theorems and proofs.

2.2 A minimal “Layer —1” interface

Motives and their realization theories form a deep and wide subject. To keep the present paper
auditable, we adopt a strict strategy.



o All closed statements in the main text use only the period layer: integrals of rational func-
tions on semialgebraic domains (Kontsevich-Zagier periods). This layer admits explicit
definitions and stability properties required for finite-resolution protocols.

o Motives appear only as organizational language to name a potential source object behind
multiple realizations of the same period data. No unproven conjecture about motives is
used as an input.

o Whenever a statement uses motive-level terminology in a programmatic way (e.g. a com-
parison with f-adic realizations), it is explicitly labeled as conjectural/programmatic and
never used in the closed dependency chain.

In this sense, the paper uses a minimal “Layer —1” interface: not as a foundation beneath
Layer 0/1, but as a controlled vocabulary for organizing where period data might come from
and how it could connect to the Langlands chain.

2.3 Audit status classification

To make the boundary of the closed content explicit, Appendix [A] provides a status classification:

o Standard facts: results from equidistribution and discrepancy theory (Weyl/Kronecker
equidistribution, Koksma—Hlawka inequality).

+ New definitions: Scan,y, PerDatum, HSP, and protocol-stable period data (Sections

).

o Closed conclusions: the realization theorem (Section [5)) and the auditable error budget
decomposition (Section [6]).

e Programmatic conjectures: the selection principle (Section and the motive/Langlands
commutative-diagram objective (Section .

3 Periods, computability, and protocol-stable period data

This section recalls the period layer that will serve as our auditable “interface” to motives and
introduces a minimal, protocol-based stability notion for period data. Throughout, we keep the
closed proof chain within the period layer and use motive language only to indicate a possible
source structure for period relations.

3.1 Kontsevich—Zagier periods

Definition 3.1 (Kontsevich-Zagier period). A complex number P € C is a (Kontsevich-Zagier)
period if there exist

e an integer n > 1,

e a semialgebraic domain D C R™ defined by finitely many polynomial inequalities with
coefficients in Q, and

e a rational function f(z) € Q(z1,...,2n)

such that the integral converges absolutely and

P:/Df(a;)dxl---da:n. (4)



Kontsevich—Zagier periods form a countable Q-algebra under addition and multiplication [9].
They contain classical constants such as 7 and log 2, and encompass many special values arising
in arithmetic geometry and perturbative quantum field theory [9,/10].

Remark 3.2 (Controlled scope used in this paper). For auditable protocol realizations, we will
primarily use cubical representations with D = [0,1]% and f an integrable rational function on
D. This already captures the examples relevant for the experiments in Section [9 and is stable
under the discrepancy-based error analysis of Section [0

3.2 Period data as auditable objects

The KZ definition characterizes numbers. For functorialization, we need an object-level descrip-
tion.

Definition 3.3 (Period datum). A period datum is a triple (D, f, R) where:
e D CR?is a Q-semialgebraic domain,

o feQx,...,2q) is a rational function that is integrable on D after applying a regular-
ization rule R (possibly the identity),

o R specifies how to interpret f if it is presented via a convergent/reqularized expression
(e.g. truncation of a series, principal value conventions, or a limit along a prescribed
subsequence), producing an integrable kernel fr on D.

The associated numerical period is

per(D, f,R) := /D fr(z)dz. (5)

Remark 3.4 (When a period datum yields a Kontsevich-Zagier period). Definition is an
object-level encoding of an auditable integral value. If, moreover, D is Q-semialgebraic and the
reqularized kernel fr is (piecewise) rational with coefficients in Q on a finite Q-semialgebraic par-
tition of D and the integral converges absolutely (equivalently, fr € L'(D)), then per(D, f,R)
is a Kontsevich—Zagier period in the sense of Definition (by additivity over the partition).
All kernels used in the closed chain of this paper fall in this class: the one-dimensional bench-
marks are rational, and the truncations used for zeta-values produce polynomial (hence rational)
kernels.

Remark 3.5 (Motivic background, not used as an axiom). In the standard paradigm, periods
arise as pairings between de Rham cohomology classes and Betti homology classes (or, more
generally, between two realizations of the same motive). Relations among periods are governed
by the structure of motives and comparison isomorphisms [11,12]. This paper does not assume
any conjectural principle about periods or motives; we use the period datum only as an auditable
intermediate object.

3.3 A minimal operative notion of protocol-stable period data

The word “motive” suggests an origin. To keep the stability notion operational and falsifiable,
we define protocol-stable period data purely through finite-resolution realizability and protocol
invariance.

Remark 3.6 (Motive vs. period: what is constructed here). In standard arithmetic geome-
try, a motive is an abstract source object whose realizations (Betti, de Rham, (-adic) produce,
among other invariants, periods as numerical comparison data. In this paper we do not con-
struct a motive-valued functor from protocols, and we do not assume any period conjecture. The
only closed construction is the functor HSP : Scan,, — PerDatum (Section , i.e. a period
realization interface.



Definition 3.7 (Protocol-stable period datum). Fiz a class of protocols Scan,ys (defined in
Section . A period datum D = (D, f,R) is called a protocol-stable period datum (relative to
Scangig) if there exists a family of protocols {Px}ren C Scanaz and an auditable error budget
e(N,\) = 0 as N — oo such that:

o for each X, the protocol produces an empirical readout (Py)n (Deﬁnition satisfying

[(PA)x — per(D)| < (N, \)  for all N, (6)

o the wvalue per(D) is invariant under the protocol equivalence relation in Scan,, (Sec-
tion , i.e. equivalent protocols realize the same period datum up to the morphisms
of PerDatum.

Definition does not identify a protocol-stable period datum with “a number” alone; it
identifies a stable period structure that survives finite-resolution realization and protocol equiv-
alence. The selection principle in Section [7] will treat protocol-stable period data as candidates
that are preferentially realized under bounded resources.

4 From protocols to functors: Scan,,, PerDatum, and the holo-
graphic scanning functor

We now formalize a controlled category of scan-readout protocols and construct a functor to
period data. The guiding principle is to stay within a class where both the long-time limit
(equidistribution) and finite-resource error control (discrepancy) are available.

4.1 The controlled protocol category Scan,,

Definition 4.1 (Scanalg objects). An object of Scan,yg s a quintuple
P = (T4 a,z0, f, R), (7)
where:
o T = (R/Z)? is the mother space,
o a€R? s a scan slope (Kronecker rotation vector),
e x0 € T? is an initial condition,

o f is a readout kernel presented as a rational function in Q(x1,...,xq) on the fundamental
domain [0,1)?, understood on the complement of its pole locus (a semialgebraic set of
measure zero), and

o R is a reqularization rule that produces a kernel fr that is integrable on [0,1)? (and, in
the finite-resource regime of Section[6], has finite Hardy—Krause variation when discrepancy
bounds are invoked).

The protocol dynamics is the Kronecker scan
xy =x9+ta (mod 1), t € Z>o. (8)

Remark 4.2 (Regularization as an auditable component). In many period examples, the “ideal”
integrand is unbounded (e.g. 1/(1 — xy) on [0,1]2) even though the integral converges. To keep
finite-resource error budgets auditable, we treat reqularization as part of the protocol object: R
specifies a concrete, reproducible transformation of the presentation into an integrable rational
kernel. Section[d uses truncations that yield explicit bounds.



Definition 4.3 (Scan,, morphisms). Let P = (T% a, zo, f,R) and P’ = (T4, o, zf, f',R') be
objects of the same dimension d. A morphism ¢ : P — P’ is a torus automorphism of the form

o(r) =Mz +b (mod 1), (9)
with M € SLy(Z) and b € (Q/Z)¢ (a rational translation), such that:
o =Ma, xy = p(x0), frr = fro@ ™t a.e on[0,1)% (10)

Proposition 4.4 (Rational translations and closure into PerDatum). Let ¢(x) = Mz + b
(mod 1) with M € SLgq(Z) and b € (Q/Z)*. Choose representatives of b in [0,1)¢ and con-
sider the induced map on the fundamental domain

¥ [0,1)4 = [0,1)4, Y(z) = {Mz +b}.

Then 1 admits a finite Q-semialgebraic partition [0,1) = ||, D; such that for each i there exists
k; € Z4 with
Y(z) =Mz +b—Fk; forallze D;.

In particular, each restriction |p, is a C'-diffeomorphism defined over Q with |det Dy| = 1,
so 1 defines a morphism in PerDatum in the sense of Definition [{.11}

Proof. Write ¢(x) = Mx +b—n(z) where n(x) € Z% is the unique integer vector such that each
coordinate of ¢(x) lies in [0,1). The vector n(z) is locally constant and can change only when
some coordinate of Mx+b crosses an integer, i.e. along hyperplanes of the form (e;, Mz) = m—b;
with m € Z. Over the bounded domain [0,1)¢ only finitely many such hyperplanes occur.
If b € (Q/Z)¢, these hyperplanes have rational offsets, hence they induce a finite polyhedral
partition by Q-semialgebraic sets. On each cell D; the vector n(x) is constant, so v is affine
with rational coefficients and Jacobian M. O

Example 4.5 (Why irrational translations are excluded in Scanayg). In d =1 with M =1, the
torus translation p(x) =z +b (mod 1) corresponds on [0,1) to

x4+ b, 0<z<1-0,
r+b—1, 1-b<zx<l.

w(w)Z{Hb}:{

If b ¢ (Q/Z), then the breakpoint 1 — b is irrational, so this piecewise-affine representation
does not admit a finite partition into Q-semialgebraic sets on which ¥ is defined over Q. Such
translations therefore fall outside the controlled morphism class in Definition [{.11]

Remark 4.6 (What would change if one allowed arbitrary b € T9?). Allowing arbitrary b would
not affect measure preservation on T¢ and hence would not break the invariance statements
proved later. The rationality restriction is imposed to keep the functor HSP closed into the Q-
definable category PerDatum wused in this paper, so that morphisms are encoded by finite rational
data.

Morphisms in Definition [4.3] are auditable in the sense that they explicitly intertwine scan
dynamics and readout kernels while preserving Lebesgue measure on T¢ (since det M = 1). This
is sufficient for the functorial invariance statements we need.

4.2 Protocol outputs: Birkhoff averages and ensembles

Definition 4.7 (Birkhoff readout average). For a protocol P and a horizon N > 1, define the
N-step readout average

1 1

(PYn := N i: fr(xy), xy = w9 +ta (mod 1). (11)
t=0

10



For numerical stability, one may also average over a finite ensemble of initial conditions. This
does not change the theoretical limit under unique ergodicity but reduces variance in finite- N
experiments.

Definition 4.8 (Finite ensemble mean). Let {xék)},ff:l C T be K initial conditions, and let
P& denote the protocol with the same (d, o, f,R) but initial point xgk). Define

K
P)ivk = 72 2 (PW)w. (12)

2

Lemma 4.9 (Ensemble averaging preserves deterministic error certificates). Suppose [(P*))y —
P| <ey fork=1,...,K, where P € R is a target value and €, > 0 are bounds. Then

K
[Piwk - P| < ;{;gk

In particular, if a uniform bound |(P®))x — P| < ¢ holds for all k, then |(P)y — P| < e.

Proof. Triangle inequality. O

4.3 The period-data category PerDatum

Definition 4.10 (PerDatum objects). An object of PerDatum is a period datum (D, f,R) as in
Definition . In this paper we will mostly use the cubical case D = [0,1)%,

Definition 4.11 (PerDatum morphisms). A morphism (D, f,R) — (D', f',R’) is a map 1 :
D — D' for which there exists a finite semialgebraic partition D = | " D; such that each
restriction 1| p, : D; — ¥(D;) is a C1-diffeomorphism defined over Q and the change-of-variables
identity holds almost everywhere:

fr(@)dz = fr(¢(x)) | det DyY(z)| dz, (13)
so that per(D, f,R) = per(D', f", R').

Definition encodes the idea that period data should be considered up to auditable
changes of variables and regularization conventions.

4.4 The holographic scanning functor HSP
Definition 4.12 (Holographic scanning functor). Define a functor
HSP : Scan,j, — PerDatum (14)

as follows.
o On objects: for P = (T o, x9, f, R), set

HSP(P) := ([0,1)%, f, R). (15)

o On morphisms: if ¢ : P — P’ is a Scanyg morphism, define HSP(p) to be the induced
change of variables on fundamental domains, viewed as a PerDatum morphism in the sense

of Definition [{.11].
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Remark 4.13 (Fundamental domains and a.e. maps). The torus automorphism ¢(x) = Mx+0b
(mod 1) is smooth on T? but, when represented on the fundamental domain [0,1)%, it becomes a
piecewise-affine map x — {Mx+b} with discontinuities only along a finite union of codimension-
1 hyperplanes coming from wrap-around. Since these discontinuity sets have Lebesgue measure
zero, the “a.e.” formulation in Deﬁnitian@ and the piecewise-C' formulation in Deﬁm’tion
make HSP(p) well-defined and auditable.

Lemma 4.14 (Category structure and functoriality). With Definitions and Scanyig
and PerDatum are categories, and HSP (Deﬁm’tz’on is a well-defined functor.

Proof. Scan,lg. Composition of torus automorphisms (M, by) and (Ma, by) is (Mo My, Maby+b2);
if by,by € (Q/Z)% then Mayby + by € (Q/Z)¢ since My € SL4(Z). The intertwining conditions
are preserved under composition, and the identity morphism is (7, 0).

PerDatum. Identity morphisms are given by ¢ =id. If ¢» : D — D’ and ¢/ : D' — D" are
piecewise-C'! semialgebraic morphisms over Q, then 9 o v is piecewise-C'' on a finite semialge-
braic refinement of the domain partition, and the change-of-variables identity composes on
each piece (hence a.e. on D).

HSP. On objects, HSP is defined by . On morphisms, HSP(y) is well-defined by Re-
mark and satisfies HSP(id) = id and HSP (9 0 1) = HSP(p3) o HSP(¢1) because both are
induced by the same underlying torus automorphisms and their compositions. O

Proposition 4.15 (Functorial invariance of readout averages). If ¢ : P — P’ is a morphism in
Scan,yg, then for every N > 1,
(P)n = (P')n, (16)

and the associated period values agree:

per(HSP(P)) = per(HSP(P")). (17)
Proof. The intertwining conditions imply ¢(z;) = « for all t and fr,(z}) = fr(x:), hence
. Since ¢ preserves Lebesgue measure on T¢, the change-of-variables identity gives . O
4.5 Protocol equivalence and period invariants

The previous paper [1] emphasized the need for an equivalence criterion for protocols. In the
controlled setting of Scan,,, we can state a minimal long-time criterion.

Definition 4.16 (Long-time statistical equivalence). Two protocols P,P’ € Scan,y, are long-
time statistically equivalent, written P ~o P’, if both limits exist and

lim (P)y = lim <73/>N. (18)

N—oo N—oo

If, moreover, the common value equals per(HSP(P)) = per(HSP(P')), we say the protocols are
period-equivalent.

In Sections [f] and [6] we show that, under standard rational-independence conditions on «,
long-time statistics are determined by the period datum and finite-N stability is controlled by
discrepancy and regularization errors.

5 Main results: Birkhoff averages realize periods

This section establishes the closed core of the paper: in the controlled protocol class Scangig,
long-time readout averages agree with the period values produced by the functor HSP.
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5.1 One-dimensional realization

Theorem 5.1 (Weyl equidistribution = period realization in d = 1). Let « € R\ Q and define
xy = w9 +ta (mod 1) on TL. If f : [0,1) — R is Riemann integrable, then

Jm Z f() / f (19)
Proof. The sequence (x¢)¢>0 is uniformly distributed modulo 1 for irrational « [2,/13]. Weyl’s
criterion implies for all Riemann integrable f. 0

Corollary 5.2 (Protocol limit equals the period value in d = 1). Let P = (T}, a, 20, f,R) €
Scanyg with o ¢ Q and suppose fr is Riemann integrable on [0,1). Then

Jim (P)y = per(HSP(P / fr(x (20)

5.2 Multi-dimensional realization

Theorem 5.3 (Kronecker equidistribution = period realization). Let o € R? satisfy the
rational-independence condition

1,a1,...,aq are linearly independent over Q. (21)

Define x; = x¢ + ta (mod 1) on T, If f : [0,1)¢ — R is Riemann integrable, then

N-1

. 1
lim N Z flze) = /[0,1)d f(z)dx. (22)

Proof. Condition implies that the Kronecker sequence (x:) is uniformly distributed on
T [2]. As in the one-dimensional case, uniform distribution implies for Riemann integrable
f. O

Corollary 5.4 (Main realization theorem for Scan,g). Let P = (T, o, 29, f, R) € Scangig satisfy
1) and assume fr is Riemann integrable on [0,1)¢. Then

]\}iinw(P)N = per(HSP(P)) = /[071)d fr(z)dz. (23)

Moreover, the limit is independent of xg.

Remark 5.5 (Beyond Riemann integrability). If fr € L'(T%), ergodicity of the irrational
rotation under implies that holds for almost every initial condition xog by the Birkhoff
ergodic theorem [14]. We restrict to Riemann integrable kernels in the closed chain because this
supports explicit discrepancy-based error bounds for finite resources.

5.3 Canonical period examples realized by scans

The following examples will be used as reproducible benchmarks in Section[d] They also illustrate
why the “special constants” of the earlier papers appear naturally: they are periods with low-
complexity cubical representations.

Example 5.6 (log2 as a one-dimensional scan period). Let f(z) = 1471: on [0,1). Then
L1
/0 1+$d:c:log27 (24)
and Theorem implies that for any irrational o,
N-1 1

lim

— —— = log 2. 25
Nﬁ\ooNgl—i—{xg—i—ta} ©8 (25)
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Example 5.7 (7 as a one-dimensional scan period). Let f(z) = on [0,1). Then

4
1+a2
Lq
——dr = 26
/0 1+2 0T (26)
and Theorem [5.1] yields a scan realization of .

16
(1 +22)(1+y?)

/ 16 drd —(/14(1 )2— 2 (27)
o2 A+a)1+y) YTy 14227) T

Under the rational-independence condition in d =2, Theorem yields a scan realization
of ©2 wvia a two-dimensional protocol.

Example 5.8 (72 as a two-dimensional scan period). Let f(x,y) = on [0,1)2.

Then

64
(I+2?)(1+y*)(1 + 2%)

Example 5.9 (7% as a three-dimensional scan period). Let f(z,y,2) =

on [0,1)3. Then

/ 64 dz dyd (/1 I >3 3 (28)
T z = T =T .
o A+ 22) (121 +22) Y o 1+a2

Under ind=3, Theorem yields a scan realization of ™ via a three-dimensional protocol.

Multiple zeta values are also periods [9,/10], but their most naive cubical representations
involve integrands with boundary singularities. Section [f] introduces truncation regularizations
that keep kernels bounded and yield explicit error bounds.

5.4 Resonant (rationally dependent) scan slopes

The rational-independence hypothesis is the clean regime in which the scan explores the
full torus and the limiting statistic equals the full-cube integral. When rational relations exist,
the scan lives on a lower-dimensional subtorus and the limit changes accordingly. This behavior
is standard and can be stated as a closed quantitative alternative to Theorem [5.3|

Theorem 5.10 (Subtorus reduction in the resonant case). Let Tp(x) = 2 + a (mod 1) on T¢
with arbitrary o € R, Let H := {ta (mod 1) : t € Z} be the orbit-closure subgroup, which is
a subtorus of T%, and let my denote its Haar probability measure. Then for every continuous
function f : T* = R and every xo € T¢,

‘ 1 N—-1 . B
i 2= F(The0) = / Ty dma(), (29)

N—oo N —

If H="T¢ (equivalently, holds), then reduces to .

Lemma 5.11 (Explicit description of the orbit-closure subtorus). Define the annihilator lattice

Aa):={heZ: (ha)cZ}.

Then the orbit-closure subgroup H = {ta (mod 1) : t € Z} satisfies
H={zeT: (h,z) =0 (mod 1) for all h € A()}.

Moreover, A(a) = {0} if and only if holds, in which case H = T¢.
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Proof of Lemma[5.11] Characters of T? are indexed by h € Z% via y,(z) := e2™h®) - One has
Xn(ta) = e2mit{h.@) g5 v is identically 1 on the cyclic subgroup generated by « if and only if
(h,a) € Z, i.e. h € A(a). The subgroup H is the smallest closed subgroup containing «, hence
it equals the intersection of kernels of all characters that vanish on «, which gives the displayed
description. The final statement follows because is equivalent to A(a) = {0} for translations
on T?; see standard treatments of rotations on compact abelian groups [2,/14,/15]. O

Proof of Theorem [5.10} The translation T, is uniquely ergodic on each coset of its orbit-closure
subgroup; see standard treatments of rotations on compact abelian groups and Kronecker’s
theorem [2,/14}/15]. Unique ergodicity implies uniform convergence of Birkhoff averages for
continuous observables to the Haar integral on the orbit closure, yielding ([29). O

Remark 5.12 (Interpretation-layer note: “locking”). When rational relations constrain H to
be a proper subtorus, the protocol’s long-time statistic becomes a lower-dimensional average. In
interpretation-layer language this resembles phase locking or plateau behavior under resonance
constraints. Theorem is the Layer 0/1 mathematical statement behind such narratives.

6 Finite-resource error budgets: discrepancy plus regularization

The realization theorem (Corollary [5.4) identifies the long-time limit. For finite resources, the
relevant object is an auditable error budget: a bound on

|(P)x = per(HSP(P))| (30)

that is explicit and propagates under protocol composition.

6.1 Sampling discrepancy and Koksma—Hlawka type bounds
Let

Py :={z0,...,xx_1} C [0,1)% (31)
be a finite point set. Its star discrepancy is

1N

d
¥ 2 Low@) = JTv
=0 j=1

Dy (Pn):= sup
uel0,1)4

(32)

For brevity we write D} := D3 (Pn) when the point set is understood.

Theorem 6.1 (Koksma-Hlawka inequality). Let f : [0,1) — R have bounded variation in the

sense of Hardy-Krause, denoted Vargk (f) < co. Then for any point set xg,...,xx_1 € [0,1)%,
1 N-
— x)dz| < Var Dy, 33
x go )=, S @) < Var() D (33)

Remark 6.2. We use Theorem as a standard discrepancy-to-error bridge [2]. In d = 1,
bounded Hardy—Krause variation reduces to classical bounded variation, and becomes the
Koksma inequality.

For protocols P € Scan,jg, the point set is the scan orbit prefix z; = xo + ta (mod 1), and
f is the regularized kernel fr.

Corollary 6.3 (Sampling error bound for regular kernels). Let P = (T¢, o, zo, f,R) € Scanaig
and assume Vargk (fr) < co. Then

|(P)x — per(HSP(P))| < Varuk(fr) Diy(Py). (34)
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Remark 6.4 (Discrepancy certificates for Kronecker scans). In Scanaig, the point set Py is the
Kronecker orbit prefic x; = xo + ta (mod 1). Appendiz records the Erddés—Turdn—Koksma
inequality and a closed specialization to Kronecker scans, yielding the explicit finite-IN certificate

DN (Pn) < Cqg By u(a; N),

valid for every integer H > 1, with an admissible constant choice Cq = (3/2) (Theorem
and an explicit computable bracket term By p(c; N) (Definition .

6.2 Regularization and truncation as auditable error terms

Many period representations involve kernels that are integrable but unbounded. To keep finite-N
sampling error auditable, we adopt a two-stage realization:

o first, replace the ideal kernel f by a bounded (or finite-variation) regularized kernel fr,
e then, sample fr along the scan orbit.

This yields a generic decomposition.

6.3 Singularity sets of measure zero and orbit avoidance

One subtlety in period realizations is that an “ideal” integrand may have a singular locus (e.g. a
rational pole set) of Lebesgue measure zero. While such singularities do not affect the integral
when the function is integrable, they can be a numerical hazard if a protocol samples exactly
on the singular set. For Kronecker scans this risk is negligible in a precise sense.

Lemma 6.5 (Almost-sure avoidance of null singular sets). Let T, : T — T% be a translation
To(z) = z+a (mod 1) and let S C T¢ be a measurable set of Haar (Lebesgue) measure m(S) = 0.
Then the set of initial conditions whose orbit hits S at some time,

E = {xg € T?: 3t € Z>¢ such that T.(zo) € S},
also satisfies m(E) = 0.

Proof. For each t > 0, the set T, *(S) is a translate of S and hence has measure zero. Since
[e.o]
E= T8,
t=0

countable subadditivity yields m(E) < Y, m(T;4(S)) = 0. n

Remark 6.6 (Why we still regularize). Lemma addresses the event of hitting the singular
set. It does mot control near-singular excursions, which can dominate finite-N error when the
kernel is unbounded. For closed, auditable finite-resource bounds we therefore encode requlariza-
tion/truncation as part of the protocol object (Deﬁnition and use bounded-variation kernels
whenever quantitative control is required.

Proposition 6.7 (Auditable error decomposition). Let f be an “ideal” kernel on [0,1) with a
reqularized version fr integrable on [0,1)%. For a protocol P using fr at horizon N,

|(P)x —per(0, 1)1, £,1d)| < [(P)w — per([0,1), £, R)| + [per([0,1)%, £, R) — per([0,1)", £,1d)| .

sampling error reqularization error

(35)

Proof. Triangle inequality. O
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The second term in is designed to admit a direct analytical bound. The first term is
bounded by discrepancy inequalities such as .

Remark 6.8 (What “Id” means in per(D, f,1d)). When we write per(D, f,1d), we mean the
(Lebesgue) integral of the ideal kernel f on D whenever it exists as an absolutely integrable func-
tion, and the standard improper integral whenever f has integrable singularities (e.g. boundary
singularities of rational kernels). Regularization rules R are introduced not to change the target
value but to produce kernels with finite-variation/discrepancy certificates at finite resources.

6.4 Truncated geometric kernels and zeta-values

We now record a regularization that will be used in the experiments: truncated geometric kernels
whose integrals are generalized harmonic numbers and whose truncation error admits an explicit

bound.
Definition 6.9 (Truncated geometric kernel). For M € N define, on [0,1),

M—-1 [ d "
gM(l‘l,...,l‘d) = Z (H .Cli‘j) . (36)

n=0 \j=1
Lemma 6.10 (Integral of truncated geometric kernel). For d > 1 and M € N,

M
1 d
/[0 i gy (z)dz = Z a = H](V[). (37)

Proof. Expand , use Tonelli’s theorem for the finite sum, and compute

d " d 1 1 d
) de— / nq :<> ,
/[0,1)d jHlxj ! ]Hl o T T \nd

Reindex n 4+ 1 +— n to obtain (37)). O
Proposition 6.11 (Exact Hardy—Krause variation of gys). For every d > 1 and M € N,
Vargk (gar) = (24 — 1)(M — 1). (38)

Proof. For n > 1, the monomial term H;-lzl z7 has nonnegative mixed partial derivatives on
[0,1]%. For functions with continuous mixed partial derivatives, the Hardy-Krause variation
admits the standard representation as a sum of integrals of absolute mixed derivatives over all
faces anchored at 1 (see, e.g., [3,4]). Since all relevant derivatives are nonnegative, absolute
values can be dropped. For a subset u C {1,...,d} with |u| = k > 1, the k-fold mixed derivatix;e
ne

of H;-lzl z’} restricted to the face where variables outside u are set to 1 equals nk [Ljcu 2

Integrating over [0, 1]* yields n*-(1/n)*¥ = 1. Summing over n = 1,..., M —1 gives a contribution
M —1 for each nonempty subset u, and there are 2¢ —1 such subsets. Summing the contributions

yields . O

Corollary 6.12 (Auditable finite-N bound for gys sampling). Let P € Scan,g be a d-dimensional
protocol with reqularized kernel fr = gy. Then for the orbit prefix point set Py,

|(P) = HP| < (27 = 1)(M — 1) Dy (Py). (39)
Proof. Combine Corollary [6.3] with Proposition [6.11 O

For d = 2 and d = 3, the limits H](\? — ((2) and H](;) — ((3) are classical, and the integral
test yields explicit tails.
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Proposition 6.13 (Truncation bounds for {(2) and ¢((3)). For M > 1,

1
2) -~ HY < — 4
0<(¢(2) M < (40)
® _ 1
0<((3)—Hy, <2M2' (41)
Proof. Use the integral remainder bound for decreasing positive series:
=1 /°<> _ 1
— < x %dr = ————, s> 1,
n:%:+l n? M (S o 1>MS_1

and take s =2 and s = 3. O

Remark 6.14 (Why truncation is preferable for auditability). The “ideal” kernel 1/(1 — xy)
on [0,1]? is not bounded near xy = 1, complicating finite-N sampling bounds. By replacing it
with the polynomial kernel gyr(x,y) = 27114:—01 (zy)™, we obtain: (i) an exact period H](\;) at finite
M, (ii) a uniform integrand regularity compatible with discrepancy bounds, and (iii) an explicit

truncation remainder controlled by . The same strateqy applies to d = 3.

Corollary 6.15 (Stability—truncation tradeoff and an optimized choice of M for ((d)). Fix
an integer d > 2 and let gy be the truncated geometric kernel (Deﬁm’tz’on on [0,1)¢. Let
P € Scanyg be a d-dimensional protocol with regularized kernel fr = gy and orbit-prefiz point
set Py. Assume a (possibly protocol-dependent) explicit discrepancy certificate

Dy(Pn) < én.

Then the total deviation from ((d) satisfies the auditable bound

1
(P = )] < (2! = DM = by + (12)
sampling error —
truncation error
In particular, with A := (2 — 1)6x and the integer choice
M= [A7Y4] (43)
one obtains the explicit rate bound
(P)n — ()] < 720 AU/ 4 4 (14)

For d = 2 this yields |(P)n — ((2)] < 24/30n5 + 30w, and for d = 3 it yields |[(P)n — ((3)] <
%(76]\/)2/3—1—75]\/.

Proof. By Corollary and Lemma [6.10
(P — HP| < (27 = 1)(M = 1) Di(Py) < (21 = 1)(M — 1) b.
For the truncation remainder, the integral test gives

@ _ ~— 1 S 1

0<¢ld)—HD = S g/ el = —
Mo At T u (d —1)Md-1

which yields (42]) by Proposition For (44]), note that M > A~V implies M—(d=1) < Ald=1)/d

and that M —1 < M < A-1/d 4 1, hence

1 1
d_ _ < ~1/d _ Ald—1)/d < (d—1)/d
(2= 1)(M - 1)y <A(AV41) = A A e S A .
Summing these bounds gives (44)). O
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6.5 Benchmark one-dimensional kernels: explicit variation constants

For monotone functions f : [0,1] — R, the Jordan variation satisfies Var(f) = |f(1) — f(0)|.
Therefore the d = 1 Koksma inequality (the d = 1 case of Theorem yields explicit constants
for the benchmark kernels used in Section [9

Proposition 6.16 (Explicit 1D variation constants). Let fiog(z) = H% and fr(z) = ﬁ on
[0,1]. Then

Var(fiog) = 5, Var(fr) = 2. (45)

Proof. Both kernels are smooth and strictly decreasing on [0, 1]. Hence Var(f) = f(0)—f(1). O

Proposition 6.17 (Hardy—Krause variation for separable products). Let f; : [0,1] — R be C*
functions with finite Jordan variation Var(f;) < oo, and define

d
F(z1,...,2q) := H fi(xj) on [0, 1]%.
=1
Then F' has finite Hardy—Krause variation (anchored at 1) and

d
Vargg (F H (Var(f;) +|£;(1 H 1£i(1 (46)

Proof. For C' functions, the anchored Hardy-Krause variation admits the mixed-derivative
representation (Remark [B.4). For a nonempty subset u C {1,...,d}, the mixed derivative of

F(xy;1) factorizes:
Hlul
w——F(z; 1) = | [T £ ) ([ T] 0]
HJGU Oz, (jEu ) (k¢u
Therefore

/[0,1]|u )| day, = (lglfk ) (E/ |fi(a \dx) = (£|fk(1)|) (EVar(fj)>,

since f; is C1 and Var(f;) = fgl | fj(z)|dz. Summing over all nonempty u and expanding the
product gives . ]

Corollary 6.18 (Explicit Hardy-Krause constants for the 72 and 7% kernels). Let fr(x) = Hﬁ%
on [0,1] and define

olul
Hjeu ax]

(CCu,

16 64
F: = =Jr w\Y)s F3(z,y, = = Jr ™ m\Z)-
Then
VarHK(Fg) == 12, VaI”HK(Fg) = 56. (47)
Proof. By Proposition Var(fz) =2 and fr(1) = 2. Apply Proposition[6.17] with d = 2 and
d=3. O
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6.6 Propagation rules for composed protocols

Auditability requires that error budgets compose. For the present paper, it suffices to record
the following simple propagation rule.

Lemma 6.19 (Linear combination rule). Let 162 be estimators for numbers P; with bounds
|P; — P;| <e&;. For any scalars ¢; € R,

NP = P
i i

This rule is sufficient for the low-complexity constant search of Section[9.6] where candidates
are linear combinations of precomputed period primitives.

< Z |ciles. (48)

7 A selection principle: stability under finite resources

The realization theorem shows that, under equidistribution, the asymptotic value of a scan
protocol depends only on the period datum. In particular, for a fixed kernel fr, the integral is
independent of the scan slope « as long as holds. This shifts the locus of “selection” away
from the infinite-time limit and toward the finite-resource regime: what differs across protocols
is not the limit value but the stability and cost with which that value is realized.

7.1 Value-rate separation

Let P = (T, o, zg, f,R) and P’ = (T%, o/, z}), f, R) share the same kernel but use different scan
slopes. If both slopes satisfy , then

N—oo N—oo

fim Py = Jim (Phy= [ e
[0,1)4
However, the finite-N errors generally differ:
‘<7D>N - /fn‘ depends on o through Dy (Py),

where Py = {xg,...,rN_1} denotes the scan-orbit prefix on [0, 1)¢. This is the operational con-
tent of value-rate separation: selection does not choose the integral, but chooses how efficiently
the protocol realizes it.

7.2 Stability metrics and bounded description budgets

To make the notion of selection falsifiable, we require a cost functional that can be evaluated
(or upper-bounded) from auditable protocol data.

Definition 7.1 (Finite-horizon stability bound). For a protocol P € Scanm, at horizon N,
define a stability bound
StabN(P) = VarHK(fR) D?V(PN) (49)

whenever Varpg (fr) < 0o.

Definition uses Corollary as a canonical, auditable choice. Alternative bounds (e.g.
bounds in terms of continued-fraction digits in d = 1) may be substituted, provided they remain
auditable within the protocol.

Selection also requires a cost for describing the protocol. In the present controlled setting,
the dominant contributions are: the symbolic complexity of the kernel (degree, coefficient sizes,
number of terms), and the regularization parameters (e.g. the truncation depth M).

20



Definition 7.2 (Protocol description complexity (schematic)). Let Comp(P; N) denote a com-
putable surrogate for the description-and-implementation cost of running a protocol P up to
horizon N. A concrete default choice in Scan,, is

Comp(P; N) :=d + size(fr) + cost(R) + log(l+ N), (50)

where size(fr) is a syntactic size of a rational presentation of fr (e.g. total number of nonzero
coefficients plus degree and coefficient height), and cost(R) accounts for regularization param-
eters (e.g. truncation depth M ). Different reasonable encodings change by at most multi-
plicative/additive constants (in the sense of invariance theorems for description complexity) and
are interchangeable at the level of the programmatic conjecture; see, e.g., [10].

Definition 7.3 (Naive height of period data). Let fr be represented as a reduced rational

function p/q with p,q € Z[z1,...,xq] having no common factor. Define the naive height
H(fr):=max{H(p),H(q)}, H(p) := max{|c| : ¢ is a coefficient of p}. (51)
Any rational presentation in Q(x1,...,x4) can be put into this form by clearing denominators

and dividing by the content ged; the resulting height is well-defined up to the obvious sign nor-
malization. For a cubical period datum HSP(P) = ([0,1)%, f,R), define

Height(HSP(P)) :=log (1 + H(fr)) + deg(p) + deg(q), (52)

as a computable arithmetic-geometric size surrogate.

Remark 7.4 (Example: truncated geometric kernels). For gp(x) = ZnM:_Ol(Hle xj)", one has

H(gpyr) = 1 and cost(R) is naturally linear in M if gar is evaluated as a length-M sum, or
logarithmic in M if evaluated via the closed form (1 —pM)/(1 — p) with fast exponentiation. In
either case, the truncation depth is a direct, auditable complexity knob in .

7.3 Selection principle (programmatic conjecture)

We now state a programmatic, falsifiable selection principle. It is not used as an input to any
closed theorem.

Conjecture 7.5 (Selection by stability—complexity optimization). There exists a functional Jn
on a class of admissible protocols C C Scangg of the form

JIN(P) = Staby(P) + AComp(P; N) + pHeight(HSP(P)), (53)

with A, i > 0, such that the period data empirically observed as “constants” correspond to near-
minimizers (or extremizers) of Jn as N ranges over accessible horizons.

The term Height(HSP(P)) is optional and programmatic: it is intended to encode arith-
metic/geometric “size” of the period datum (in the spirit of heights in arithmetic geometry)
and to penalize excessively high-complexity realizations. The conjecture is falsifiable because
each term in can be operationalized: Staby can be upper-bounded by discrepancy bounds,
Comp is a bounded description budget, and candidate height surrogates can be compared by
predictive performance.

7.4 An operational falsification protocol (schematic)

To make the term “falsifiable” concrete in the present audit setting, one may fix:

o a finite resource horizon N and a finite description budget (which determines a finite
candidate subclass Cy,p C Scanglg),
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o a concrete encoding of Comp (Definition and a concrete height surrogate (Defini-

tion ,

o weights A, u (which may be fit on a calibration set and then frozen).

For each candidate protocol P € Cy p one then computes (or upper-bounds) Jn(P) from au-
ditable data. Given an empirical constant target T with an uncertainty interval, one tests
whether there exists a near-minimizer family {P,} whose realized period values fall inside that
interval while maintaining low Jpy. If, across a sufficiently rich and auditable candidate class, ob-
served constants systematically fail to align with near-minimizers (or if low-7y near-minimizers
systematically predict values not observed), the conjecture is falsified in that regime. Lemma
isolates a quantitative rigidity mechanism that makes such tests robust to finite uncertainty bars.

7.5 Why the golden branch appears

In one dimension, the discrepancy of Kronecker sequences is controlled by Diophantine properties
of a, typically expressed via continued fractions [2,(17]. Badly approximable slopes (bounded
continued-fraction coefficients) yield improved uniformity bounds at finite horizons. The golden
ratio ¢ is extremal in the sense that it is the most badly approximable number: it maximizes
the constant ¢(a) in inequalities of the form

-
q q

I

over irrational a.
More precisely, Hurwitz’s theorem implies that for every irrational « there exist infinitely
many rationals p/q with
‘a _ p‘ o1
al = Vg
and the constant 1/v/5 is best possible; the extremal case is attained on the golden branch
(continued fraction [1;1,1,...]) and its SLo(Z) orbit [17}1§].
This extremality can be upgraded from a qualitative heuristic to an explicit stability certifi-
cate in our audit framework. If o has bounded partial quotients a,, < A, then Proposition
yields the closed bound

2A(3 +log, N)
N .

For a one-dimensional protocol with bounded-variation kernel fr, the d = 1 Koksma inequality
therefore gives the explicit finite-resource guarantee

Dy (Pn) <

2A(3 +log, N)
i .

[(P)n — per(HSP(P))| < Var(fr) Dy (Pn) < Var(fr)

The golden branch has A = 1, minimizing this constant-type certificate.

Within the selection principle framework, the golden branch is therefore not a numerological
artifact: it is a concrete scan choice that improves stability bounds for a wide class of kernels
under finite resources.

7.6 Protocol-stable period data as stable period structures

Definition can now be read as a stability constraint: a protocol-stable period datum is a
period datum that admits realizations whose Jy cost remains small under bounded resources,
and whose value is invariant under protocol equivalence. Under this perspective, “motive”
provides a language for organizing relations among such stable period data, while selection is
enforced at the protocol layer through finite-horizon stability and complexity.
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7.7 Dimension cost and an effective curse of dimensionality

The selection principle becomes sharper when dimension is made explicit. For explicit low-
discrepancy constructions in quasi-Monte Carlo integration, one has upper bounds of the form

(log N)**
Dy <Cy——+— 54
N = Yd N ) ( )
for some dimension-dependent constant Cy for explicit low-discrepancy constructions [3;4]. Com-
bined with Koksma—Hlawka, this yields the generic finite-horizon estimate

(log N)4~!
.

Thus, for fixed horizon N, the auditable bound deteriorates rapidly with dimension d; equiva-
lently, achieving a target accuracy € requires a horizon satisfying

|(P)x = pex(HSP(P))| < Varuk(fr) Ca (55)

N > W (log N)@~1. (56)

In the present program, this motivates an explicit dimension penalty in the selection func-
tional : high-dimensional period data are “expensive” to stabilize under bounded resources,
and low-dimensional periods (1D/2D/3D) are naturally favored as stable observables.

Remark 7.6 (Lower bounds: the dimension penalty is not removable). The deterioration with d
s not merely an artifact of a particular construction. For d > 2, Roth’s theorem gives a general
lower bound on star discrepancy: for any N -point set in [0,1]%, one has

. (log N)(d=1)/2
> -
DN = Cd N

for a positive constant cq depending only on d [19,/20]. In particular, in dimension d = 2
one can strengthen the logarithmic exponent [21]. These bounds support the interpretation that
high-dimensional stable realizations are intrinsically more expensive under finite resources.

7.8 Robustness under target perturbations (rigidity via gap)

Many “selection” statements are metrological in nature: one compares a finite candidate class
against a target value known only up to an error bar. The following lemma isolates a purely
quantitative rigidity mechanism: a large best-vs-second-best gap implies robustness under per-
turbations.

Lemma 7.7 (Gap-stability of a unique minimizer). Let V' be a finite set of real candidates and
let T € R be a target. Let vy € V be the unique minimizer of v — T, and let vo € V be a
minimizer among V \ {vi}. Define the margin

m:=|vg —T|—|v, —T| > 0. (57)

Then for every perturbed target T' € R with |T" — T| < m/2, the unique minimizer of |v — T"|
over v € V is still v,.

Proof. For any v € V, triangle inequality gives
|’U—T/|Z|U—T|—|T,—T|, |U*_T/|§|U*_T|+|T,_T|'
Hence for v # vy,

=T —=|ve =T'>(Jv=T|— v, =T|) =2|T" = T| >m —2|T" = T| > 0.
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8 Compatibility target: factoring the Langlands upgrade through
periods and motives

The earlier “stairway” work [1] emphasized a functorial upgrade objective: to construct a holo-
graphic Langlands functor from a category of scan protocols into a category of automorphic
representations, with provable compatibility across renormalization flow, cusp discretization,
and Hecke dynamics. The present paper contributes a new, auditable arrow—the functor
HSP : Scan,jg — PerDatum—and uses it to formulate a refined compatibility target.

8.1 A commutative-diagram objective

In the classical modular setting, three layers are tightly related:

« Period layer: integrals of algebraic or modular differential forms against cycles, yielding

periods (Section [3.1).

o (-adic layer: Galois representations whose Frobenius traces encode arithmetic spectra,
such as Hecke eigenvalues in the modular case [22}[23].

e Automorphic layer: automorphic representations organizing Hecke actions and their
local parameters [24].

Motives provide a conjecturally universal organization principle for these compatibilities, with
periods appearing as comparison invariants between realizations.
The present work motivates the following objective for the audit program:

Scangig ISP, perDatum Mo Mot B, GalRep and Mot 22t AutRep, (58)

where:

o Mot is a suitable category of motives (or a computable subcategory, e.g. mixed Tate mo-
tives),

o Mot attaches a motive to a period datum when available (programmatic),
e Real; takes an f-adic realization, producing a Galois representation,

o Aut associates an automorphic representation (or parameter) in regimes where Langlands
correspondences are known.

In this diagram, the arrow HSP is closed and auditable within this paper. The arrows Mot,
Realy, and Aut are classical in several standard regimes (e.g. mixed Tate motives and modular
motives), but they are not available as a uniform construction on arbitrary period data. In the
present paper we therefore treat them as programmatic interfaces and aim to instantiate them
only in controlled test cases.

Appendix [D]records two such classical test cases. The first is the mixed Tate period calculus
on P!\ {0,1,00}, where iterated-integral periods include log2 and ((2). The second is the
modular/elliptic setting, where weight-2 newforms have period integrals controlling L(f,1) and
admit f-adic realizations with Frobenius traces given by Hecke eigenvalues.

8.2 How this relates to the stairway chain

The stairway chain [1] produces, within Layer 0/1, a route from scan protocols to the Hecke prime
skeleton and cusp coefficient data. In standard arithmetic geometry, the same coefficient data can
be interpreted as part of the realization data of modular motives: Hecke eigenvalues correspond
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to Frobenius traces in suitable ¢-adic realizations, while periods arise from comparison between
Betti and de Rham realizations.

The contribution of the present paper is to isolate a stable numerical interface in the middle:
period data that are directly computable from scan averages. This isolates an auditable passage

protocol = period datum = (candidate motive source),

and clarifies the division of labor:

o the closed part explains why periods (hence 7,log, (-values) emerge from protocols and
how finite-resource errors are controlled;

o the programmatic part aims to integrate this period interface with the Hecke/Langlands
interface of |1] to obtain a genuinely functorial closure.

8.3 A controlled modular-motive test case

As a concrete target for future work, one may restrict to modular forms of low weight/level
and the associated modular motives. In this regime, both sides admit explicit computations:
cusp forms have Fourier expansions with Hecke eigenvalues; their periods can be computed as
integrals of modular forms on suitable cycles; and Deligne’s construction attaches f-adic Galois
representations with matching traces [22,23]. Appendix @] spells out this classical chain at the
level of period integrals and Frobenius traces.

The scan-period interface of this paper suggests a computable experiment: choose kernels
whose associated period data are known to coincide with modular periods, and compare their
scan realizations with the cusp/Hecke data extracted by the stairway pipeline. Such a compari-
son would provide an auditable bridge from scan protocols to motivic realizations in a controlled
modular setting.

9 Reproducible experiments (pure Python)

This section provides reproducible toy experiments that validate the paper’s new computable
claims: scan protocols in Scan,, realize periods and admit auditable error decompositions.
Standard mathematical facts (equidistribution, period closure properties) are not “proven” nu-
merically; the experiments only demonstrate that the proposed implementations behave as pre-
dicted under finite resources.

9.1 Reproducibility protocol

All experiments are implemented in pure Python 3 with no third-party dependencies. To repro-
duce the results:

e run python3 scripts/period_scan_experiments.py to generate the scan-period tables;

e run python3 scripts/alpha_inverse_search.py to generate the low-complexity con-
stant search table.

The scripts write IXTEX row files into sections/generated/ which are included below.

9.2 Experiment I: log?2 via a one-dimensional scan

We use the golden-branch slope o = ¢! and the kernel f(z) = p%;p (Example . The target
value is log 2.
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N (P)n  (P)n —log2 Dy, Var(f) Dy ratio

10,000 0.693107871664 —3.93x107° 3x107* 15x107* 26 x 107!
50,000 0.693147942126 +7.62x 10°7 5.1 x107° 2.6 x 107° 3x 1072
200,000 0.693147233266 +5.27 x 107® 1.2x107° 6.1 x107% 87x1073

Table 1: log2 realized as a scan period via the kernel f(z) = 1/(1 + x) and the golden-branch
slope a = ¢!, The scripts compute the one-dimensional star discrepancy D3 exactly from its
definition and report the deterministic Koksma certificate |(P)n — log2| < Var(f) D}, (Propo-

sition [6.16]).

N (P)n (P)n —m Dy, Var(f) Dy ratio

10,000 3.141419572078 —1.73x107* 3x107* 6x107* 29x 107!
50,000 3.141596841077 +4.19 x 1076 5.1 x 107° 1x107%  4.1x1072
200,000 3.141593512097 +8.59 x 1077 1.2x107° 24x107° 3.5 x 1072

Table 2: 7 realized as a scan period via the kernel f(z) = 4/(1 + 2?) and the golden-branch
slope. As in Table [l the scripts compute Dy exactly and report the deterministic Koksma
certificate.

A closed, parameter-free finite-N certificate for the golden branch. Since a = ¢!

has bounded continued-fraction coefficients, Proposition yields the explicit bound
2(3 +log, N)

N .
Combining this with Proposition gives the fully explicit inequality

3+ log, N 1
N Jfiog(z) = 11z

independent of any numerical estimation of discrepancy.

Dy(Py) <

[(P)n —log 2| < Var(fiog) Dy (Pn) <

9

A simple rate fit (log—log). Using the same data, the script also performs a least-squares
fit of log |(P)n — log 2| against log N over the tabulated horizons, yielding the empirical slope

Blog2 = —2.214,

which should be read as a descriptive summary of these horizons rather than a claimed asymp-
totic law. The closed certificate above is O((log N)/N), while the observed absolute error can
decay faster on specific kernels and finite ranges.

9.3 Experiment II: 7 via a one-dimensional scan

We keep the same slope o = ¢! and use the kernel f(z) = ﬁ (Example . The target
value is .

A closed, parameter-free finite- N certificate for the golden branch. Combining Propo-
sition with Proposition yields

. 4(3 + log, N) 4
[(P)n — 7| < Var(fr) Dy(Pn) < — N fr(z) = T2
A simple rate fit (log—log). Analogously, the least-squares log-log slope for |(P) — 7| over
the tabulated horizons is
B = —1.786.
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(N,M,K) H Pinx Ping—C2) Py —HP  trunc. bound < 1/M B 2 Varuk(gm) B, ratio
(200,000,5,000,10) 300 1.644033442945 —9.01 x 10~*  —7.01 x 10~* 2x107* 1.3 x1072 44x10° 1.6x1076
(1,000,000,5,000,10) 800 1.644335771403 —5.98 x 10~ —3.98 x 10~* 2x107% 3.9x1073 1.3 x 10? 3x10°6
(2,000,000,20,000,20) 800 1.644862011186 —7.21 x 107 —2.21 x 107° 5x107% 2.6 x 1073 3.5x10%> 6.3x10°8

Table 3: ((2) realized via a two-dimensional scan and an auditable truncation. The total error is
decomposed into sampling error (fifth column) and truncation error (sixth column bound). For
each (N, M, K) case, the ETK truncation parameter H (second column) is chosen by minimizing
the computable Kronecker bracket term By y(a; N) (Definition over the fixed candidate
set Ha = {10, 20, 30, 40, 50, 80, 100, 150, 200, 300, 500,800}. The last three columns report this
By m(o; N) (written as By, g in the table) and the resulting fully numerical sampling certificate
obtained from the ETK inequality with the explicit constant Cy = (3/2)% = 9/4 (Theorem [B.5)):
namely D} (Py) < 9Bn g(a; N) and hence [(P)yy — HJ(\Z)| < 9Varpk (9um)Bw,u(a; N). The
ratio column is [{(P)y x — Hﬁ)\/(%VarHK(gM)BMH(a; N)).

9.4 Experiment III: ((2) via a two-dimensional scan with truncation

We use the truncated geometric kernel gp/(z,y) = ,];4:701 (zy)™ (Definition [6.9)), whose exact
period is H](\? (Lemma @b The truncation remainder satisfies ((2) — H](é) < 1/M (Proposi-
tion. The scan slope is @ = (¢~ !,1/2—1) and we report an ensemble mean over K random
initial conditions (Definition with a fixed seed.

A closed total-error certificate. For each (N, M, K) case, Propositionand Corollary
yield the deterministic inequality

1

W
where the right-hand side is auditable from protocol data once a discrepancy certificate for Py is
fixed. Corollary [6.15| makes the stability—truncation tradeoff explicit and provides an optimized
choice of M once an explicit upper bound on D} (Py) is available.

(Pivi — <) < [Phvy — HP| + (¢(2) - HY) < Varux(gn) Di(Py) +

On conservatism of the multi-dimensional certificates. For d > 2 we report the com-
putable bracket term By g (co; N) (Deﬁnition together with the explicit choice Cy = (3/2)%
in Theorem The truncation parameter H is chosen from a fixed candidate list by mini-
mizing By g (a; N) (reported in the tables). These choices are made for audit simplicity and
uniform reproducibility rather than tightness; the bound can be tightened further by enlarging
the candidate list, using sharper variants of ETK, or using sharper Diophantine information on
a. The closed theoretical conclusions of the paper do not depend on any particular constant
choice.

9.5 Experiment IV: ((3) via a three-dimensional scan with truncation

We use the kernel gps(z,y,z) = Zﬁ/[:_l(x z)"™ with exact period H](é) and truncation remainder

¢(3) — H](\i) < 1/(2M?) (Proposition [6.13)). The scan slope is a = (¢, v/2 — 1,3 — 1).

A certified numerical reference for ((3). Since ((3) has no known closed form, we use
a certified reference interval obtained from the defining series. Fix My = 200,000 and set

H](\jzef = Zﬁ/[:“ef n~3. Proposition [6.13| implies

1
2M?2

ref

We define (3)yef as the midpoint of this certified interval, so that |¢(3) — ¢(3)ref| < 1/(4M2;).

¢(3)e [HY . H) +

ref’
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(N,M,K) H (P)nkg (P)ng —CB)ret (P)Ng — H(\g,) trunc. bound < 1/(2M?) By % Varyx (gar) By,i ratio

(200,000,2,000,10) 30 1.202133251644 +7.63x 107°  4+7.65 x 107° 1.2x 1077 7.3 x 1072 34x10% 22x1078
(1,000,000,2,000,10) 100  1.202099490850 +4.26 x 107 +4.27 x 1070 12x1077 2.7x1072 1.3x10° 3.3x1078

Table 4: {(3) realized via a three-dimensional scan with auditable truncation. The third column
uses the certified reference ((3)yer defined above; it satisfies |((3) — ¢(3)ret| < 1/(4M2;). As in
Table (3], for each (N, M, K) case the ETK truncation parameter H (second column) is chosen
by minimizing the computable Kronecker bracket term By g (a; N) (Definition over the
fixed candidate set Hz = {10, 20, 30,40, 50,60,80,100}. The last three columns report this
By u(a; N) (written as By, in the table) and the resulting fully numerical sampling certificate

obtained from the ETK inequality with the explicit constant C3 = (3/2)3 = 27/8 (Theorem [B.5)):
namely D} (Py) < %BN,H(a;N) and hence [(P)nj — H](S)| < %VarHK(gM)BNvH(a;N). The

ratio column is [(PYy s — H\P|/(Z Varuk (9ar) By, (o; N)).

A closed total-error certificate. Independently of the reference ((3);ef, Propositionand
Corollary [6.3] imply the deterministic bound

(Povie = <) < [Phvie = HP| + (¢8) = HAY) < Varui(gar) Dy (Py) +

2M?2°

As in the d = 2 case, Corollary provides an optimized truncation choice once a discrepancy
certificate is fixed.

9.6 Experiment V: low-complexity constant search for o™!

As a toy model for “selection under a bounded description budget”, we reproduce an exhaustive
search over the low-complexity ansatz

v(a,b,c) = ar® + bn® + cr, a,b,c € Z>o, a+b+c<10, (59)

targeting the CODATA 2022 central value o~ 1(0) = 137.035999177 [25]. This complexity
domain contains the geometric candidate (a,b,c) = (4,1,1) used in the constants-geometry
manuscript [26]. The goal here is not metrology, but a sharp uniqueness gap under a fixed
budget.

Why this particular ansatz is auditable in the present framework. The primitives
7,72, 73 are themselves low-complexity cubical scan periods in Scanyiy (Examples .
Once a finite-resource certificate is available for each primitive at a chosen horizon, Lemma [6.19
shows that the propagated uncertainty of any linear combination is controlled by the coeflicient
¢! size a + b+ c. This provides a direct stability rationale for the coefficient-sum budget and for
restricting to the nonnegative cone (avoiding cancellation-driven instability).

Remark 9.1 (Running and scheme dependence (interpretation-layer note)). The electromag-
netic coupling a(p) is scale- and scheme-dependent in quantum field theory; CODATA quotes the
low-energy value a(0) in a specific metrological convention. In this paper, the bounded-complezity
search should be read as a protocol-level rigidity signal at a fized reference convention: it tests
whether a low-description geometric expression is uniquely selected within a constrained ansatz
class. Any map from a geometric baseline to an operational coupling across scales belongs to
interpretation-layer modeling and is treated elsewhere in the HPA-Q program.

Proposition 9.2 (Uniqueness gap at fixed coefficient-sum complexity). Within the complexity
domain a,b,c € Z>o and a + b+ c < 10, the unique minimizer of |am® + br? + cr — 1| (with
a~t =137.035999177) is (a,b,c) = (4,1,1), with relative error 2.22 x 1075, The next-best triple
in the same domain has relative error at least 3.24 x 1073,
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a+b+c v(a,b,c) A Aot

)

) 6 137.0363037759 +3.05 x 1074 +2.22 x 1076
) 8 136.5914773356 —4.45x 107! -3.24x 1073
) 8 135.6388402988 —1.4x10° —1.02x 1072
)
)

9 138.7804329524  +1.74 x 109  +1.27 x 1072
10 135.1940138585  —1.84 x 10° —1.34 x 1072

Table 5: Exhaustive search over am® + br? + em with a,b,¢ > 0 and a + b + ¢ < 10, targeting
a~! = 137.035999177 (CODATA 2022 central) [25]. Here A = v(a,b,c) — a~!. The minimizer
is (4,1,1) and the gap to the next best solution is large at fixed complexity.

Proof. This is a finite check by exhaustive enumeration over all triples (a,b,c) € Z320 with
a+b+c < 10 and minimization of the absolute error; see scripts/alpha_inverse_search.py,
which generates the top-candidate table rows included in Table O

Corollary 9.3 (Robustness under target perturbations). Let V = {am3 + br? +cm: a,b,c €
Z>o, a+b+c <10} and let T = o~ =137.035999177. Then the minimizer v, = 47° + 72 + 7
remains the unique minimizer of |[v — T'| over v € V for every perturbed target T' satisfying
|T" — T| < m/2, where m is the best-vs-second-best margin in Lemma . In particular, the
observed gap in Table[d] yields a wide robustness interval compared to metrological uncertainties.

10 Conclusion

This paper introduced a period—motive interface as a minimal, audit-compatible “layer above
the cusp” for the holographic scanning program. On a controlled protocol category Scanaig
with algebraic (rational) readout kernels and explicit regularization rules, we constructed a
holographic scanning functor HSP into a category of period data and proved a closed realization
theorem: for rationally independent scan slopes, the long-time Birkhoff readout equals the
Kontsevich—Zagier period associated with HSP(P).

For finite resources, we formulated an auditable error budget that decomposes the total
deviation into (i) a discrepancy-controlled sampling error and (ii) a regularization/truncation
error with provable bounds. Pure-Python experiments reproduced scan realizations of log 2,
7, ¢(2) and ¢(3) within this audited framework, and a bounded-complexity constant search
illustrated a sharp uniqueness gap for a low-description ansatz targeting o !.

Beyond the closed chain, we stated a falsifiable selection principle: observable constants
correspond to period data that are stably realizable under bounded resources and low description
complexity. We also formulated a compatibility target that factors the functorial Langlands
upgrade through period data and motives. In this sense, the present work does not replace the
stairway; it supplies a source-level interface that explains why the climb repeatedly encounters
the same special constants and provides a computable bridge to motivic organization.

A Audit status classification
This appendix records the audit status of the main components of the paper.

A.1 Closed chain (definitions and theorems)
o Standard facts.

— Weyl/Kronecker equidistribution for irrational rotations (Theorems 5.3) [2,13].
— Discrepancy bounds such as Koksma—Hlawka (Theorem [2].
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New definitions.

— Scangyg (Definitions .
PerDatum and period data (Definitions 4.11)).

— Holographic scanning functor HSP (Definition 4.12]).
— Protocol-stable period data (Definition [3.7).

Closed conclusions.

— Scan averages realize period values (Corollaries 5.4)).
— Auditable error decomposition and truncation bounds (Proposition , Proposi-

tion [6.13)).

A.2 Programmatic components (not used as premises)

 Selection principle. Conjecture[7.5|proposes a falsifiable stability—complexity functional;
it is not used in any proof.

o Motivic/Langlands compatibility. Section [§] formulates a commutative-diagram ob-
jective factoring functorial upgrades through periods and motives; it is not assumed.

B Additional mathematical notes

B.1 On unique ergodicity of Kronecker rotations

For « satisfying , the translation = — = + a on T¢ is uniquely ergodic with respect to Haar
measure. As a consequence, for continuous f, Birkhoff averages converge uniformly in the initial
condition. In the main text we used the equivalent uniform distribution formulation because it
interfaces directly with discrepancy bounds and Riemann integrable kernels.

B.2 On discrepancy estimates and Diophantine properties

The star discrepancy of the Kronecker sequence {xo + ta} admits explicit bounds in terms of
Diophantine approximation properties of «; in d = 1 these are controlled by continued fractions
[2,/17]. This paper does not require a specific bound, only that discrepancy provides an auditable
sampling error term (Corollary . The selection principle (Section @ uses these estimates as
motivation.

B.3 A closed 1D rate bound for constant-type rotations (bounded partial
quotients)

For one-dimensional scans x; = xg + ta (mod 1), finite-horizon stability can be made fully
explicit under a standard Diophantine regularity condition.

Proposition B.1 (Star discrepancy for bounded partial quotients). Let o« = [0; a1, ag,...] be
trrational with bounded partial quotients a, < A. Then the star discrepancy of the Kronecker
point set Py = {{zo+ta}:0<t < N —1} C[0,1) satisfies

2A(3 +log, N)

(60)

where ¢ = (1 ++/5)/2.
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Proof. Let ¢, denote the continued-fraction convergent denominators of «, and write the Os-
trowski expansion N = 377" bjq;. For u € [0,1], set fu(r) = 1j9,4)(z) —u, so that fol fu=0and
Var(f,) < 2.

By the Denjoy—Koksma inequality at convergent lengths [14}27,28], each block sum over a
length-g; orbit segment is bounded by Var(f,) uniformly in the starting point. Applying an
Ostrowski block decomposition and summing over the b; blocks yields

N-1 m .
> fulzo + ta)| < Var(fy) Z <2 Z
=0 =0 =0

Dividing by N and taking the supremum over u gives
DN(PN < — Z b
] 0

If a,, < A, then Ostrowski digits satisfy b; < a;j41 < A, hence >772(b; < A(m + 1). Moreover,
Gn+1 = Qpt+1qn + Gn-1 > Gn + Gn—1 1mphes qn > F, for Flbonacm numbers and F,, > 4,0”’2 for
n > 2. Since ¢, < N, we obtain gom_Q < N, hencem < 2—|—log<p N. Therefore m+1 < 3—|—log¥, N
and

2A(3 + log, N
Dy (Py) < 2AB T o8, N).
N
O
Remark B.2. For the golden branch o = ¢~ one has A = 1, giving an explicit certified

O((log N)/N) discrepancy bound. Combined with Proposition this turns the log2 and 7
scan realizations into fully quantified, parameter-free finite-N bounds.

B.4 Hardy—Krause variation (definition)

The Koksma-Hlawka inequality (Theorem uses bounded variation in the sense of Hardy—
Krause. We recall a standard definition (anchored at 1) and a useful representation for smooth
functions.

Definition B.3 (Hardy Krause variation anchored at 1). Let f : [0,1]? — R. For a nonempty
subset u C {1,...,d}, write x, = (;)jeu and let (xy;1) denote the point in [0,1]? obtained
by setting coordinates in u to x, and all remaining coordinates to 1. Define the Hardy—Krause
variation anchored at 1 by

Vargk (f) = Y V(f(51);u), (61)
0#uC{l,...,d}

where V(f(+;1);u) is the Vitali variation of the function x, — f(z4;1) on [0, 1],

Remark B.4 (Smooth-case representation). If f has continuous mized partial derivatives of all
orders up to d, then one has the standard representation

Hlul

‘ mf(iﬁu; 1)

VarHK(f) = Z /
O£uc L.,y Y 104

dzy, (62)

see, e.g., [3,4).
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B.5 Erdés—Turan—Koksma inequality and a Kronecker discrepancy bound

The following inequality bounds star discrepancy by exponential sums. It provides a closed
quantitative bridge from the scan slope « to a finite-N discrepancy certificate.

Theorem B.5 (Erdés-Turan-Koksma inequality (star discrepancy)). Let Py = {zo,...,an-1} C
[0,1)¢ and let H > 1 be an integer. Define

d
= [[max{1,|h;|},  h=(h1,....hq) € Z°

Then one may take Cy = (3/2)? such that

* 1 1 1 = 2mi(h,zt)
Dy(Pn) < Cy Tt > ) |V e (63)
hezd t=0
0<|[hlloc<H

Definition B.6 (ETK bracket term). For a point set Py = {xo,...,xny_1} C [0,1)¢ and an
integer H > 1, define

! LN~ it
B Py) = — - mih,ae) | 4
i A r<>’N_e o
heZ t=0
0<||hlloc<H
Remark B.7. With Deﬁm’tz’on the inequality can be written as
DN (Py) < Cy By u(Pn), (65)

with an explicit admissible choice Cy = (3/2).

Remark B.8. We use Theorem as a standard tool; the explicit admissible choice Cy =
(3/2)% (and closely related variants) is standard in the quasi-Monte Carlo literature, see, e.g., [3,
Ch. 2] or [f, Ch. 3]. In Section [ we report the explicit bracket term in (with a fized
truncation parameter H ) and multiply it by this Cq to obtain a fully numerical star-discrepancy
certificate.

Lemma B.9 (Geometric-series bound for Kronecker exponential sums). Let § € R and define

10]] := min,,ez |0 — m| (distance to the nearest integer). Then for every N > 1,
= 1
Z 2mt0) < min {N, } . (66)
= 2||6l

Proof. If 0 € Z, the left-hand side equals N. Otherwise,

N-1 omig 1 — e2miNG
€ T T amo
t=0
SO Noi
Z 627Tit9 < 2 _ — 1 .
= ~ |1 =29 |sin(70)]
Using |sin(76)| > 2||¢|| yields (66). The bound by N is trivial. O
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Proposition B.10 (Auditable discrepancy bound for Kronecker scans). Let z; = xg + ta
(mod 1) with a € RY and point set Py = {wo,...,xxy_1} C [0,1)%. Then for every integer
H>1,

1 1 1
D (PN> <Cyl= + min{ } s (67)
N H EZ% r(h) "2N[(h )|
0<[[hllc<H
with Cy as in Theorem [B.5
Proof. For h € 74,
N-1 N-1
eQm(h ) _ 27r1 h,xo) 6277115 (h,or)
t=0 t=0

so the modulus is independent of xg. Apply Theorem [B.5 and bound the exponential sum by
Lemma [B.9l O

Definition B.11 (Computable Kronecker bracket term). For a € RY and integers N, H > 1,
define

1 1 L
B “N) = — Sy min g 1, oo
valeN)y=gg 2 e | o
0<||h||lco<H

Remark B.12 (From ETK to an auditable Kronecker certificate). For a Kronecker orbit prefix
Py ={zo +ta (mod 1) : 0 <t < N — 1}, Definition [B.¢ and Lemma[B.9 imply

By u(Pn) < By u(o;N),
and hence
Dy(Pn) < CyBn(a; N). (69)

In Section@ we report the computable quantity By g(a; N) and choose H from fized candidate
lists by minimizing it.

B.6 A Diophantine-rate corollary (explicit)

The computable bracket term By g(o; N) is designed for auditability and direct evaluation.
In some regimes one may prefer a closed rate bound in terms of Diophantine approximation
constants of . The following corollary is a standard consequence of Proposition together
with a crude but explicit bound on the ETK weight sum.

Definition B.13 (Diophantine condition (sup-norm form)). We say that o € R? satisfies a
Diophantine condition of type (c,T) if there exist constants ¢ > 0 and 7 > 0 such that for all
0+ heZ?,

I, || = T (70)

Lemma B.14 (A crude ETK weight-sum bound). For every integer H > 1,

>

hezd
0<||hllc<H

142 —-1< 2log H 1
" (h) ( + Z ) (3+2log ) (71)
Proof. Write the sum over ||h|lc < H as a product of one-dimensional sums:

> 1](_2 =0 \mr}):<l”,§c>

d

hezd
lPllo<H
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Removing the h = 0 term yields the first inequality. For the second, use 21?:1 El<1+logH
for H > 1. ]

Corollary B.15 (Explicit discrepancy bound under a Diophantine condition). Assume a € R?
satisfies the Diophantine condition of type (¢, ) with T > 0. Let Py = {xo + ta (mod 1) :
0<t<N-—1} and let N > 1. Then for every integer H > 1,

1 HT

D% (Px) < -
~l N)_Cd<H * oNe

(34 2log H)d> : (72)

with the same admissible constant Cy = (3/2)? as in Theorem . In particular, with the
explicit choice
1
H:=[(2Ne)7T ], (73)

one obtains the closed rate bound

D3(Py) < 2C4 (2N¢)™ 7 (3 + 2log H)". (74)

Proof. By Proposition and ([70)),

i {1 ! } < mi {1 Hh”go} < H' (0 < ||h|leo < H)

min<1l, ————— min —
"2N|[{h,a)|| | — " 2Nec¢ | ~ 2Nc¢ om

which gives after applying Lemma|B.14, For , the choice implies H~! < (2N¢)~V/(+1)

and H™/(2N¢) < (2N¢)~1/(7+1) Substitute these into and absorb constants. O

Remark B.16. Sharper bounds are available in the discrepancy literature by using refined Dio-
phantine information and sharper ETK variants; see, e.g., [244,6]. The purpose of Corol-
lary[B-15] is to provide a fully explicit closed certificate within the present audit style.

C Reproducibility notes

The scripts used in Section [9] are included in the paper directory:

o scripts/period_scan_experiments.py generates scan-period estimates for log 2, m, {(2)
and ((3) and writes WTEX table rows into sections/generated/. In particular it writes
log2_rows.tex, pi_rows.tex, zeta2_rows.tex, zeta3_rows.tex and the auxiliary fit
snippets log2_fit.tex, pi_fit.tex.

e scripts/alpha_inverse_search.py performs an exhaustive bounded-complexity enu-
meration in the ansatz am® 4 br? 4 cm and writes the top candidates into sections/
generated/alpha_integer_search_rows.tex.

All randomness is controlled by fixed seeds. The numerical values in the main text tables
are obtained by executing these scripts on a standard Python 3 interpreter. For the multi-
dimensional discrepancy certificates, the scripts compute the explicit Kronecker bracket term
By, (a; N) (Definition [B.11)), choose H from fixed candidate lists by minimizing it, and use the
explicit ETK constant Cy = (3/2)? (Theorem to report fully numerical star-discrepancy
and sampling certificates.
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D Worked motivic examples: periods with Frobenius-trace data

Section (8| formulates a compatibility target in which the closed functor HSP : Scan,, —
PerDatum is followed by (programmatic) motive and realization arrows. The goal of this ap-
pendix is to anchor that target by recording two classical, fully worked test cases in which:

e a period datum is canonically associated to a standard geometric source;

o the same source carries (-adic realizations with Frobenius traces (hence an Euler product
and an L-function);

e the corresponding automorphic object is explicit.

Nothing in this appendix is used in the closed proof chain of the paper; it serves only as a
controlled reference point for what the arrows in mean in standard arithmetic geometry.

D.1 Mixed Tate test case: P!\ {0,1,00} and iterated integrals

Let X := P!\ {0,1,00}. A standard period calculus on X is generated by the logarithmic

1-forms
dt dt
wo ‘= 7, Wi = m,
and their iterated integrals along paths between rational points. These iterated integrals are
periods of the (unipotent) fundamental group of X and lie in the period algebra of mixed Tate

motives over Z (and more generally over Z[1/N] when endpoints involve N') [9}/10,29].

A rational-endpoint period for log2. The basic scan-period example fol (14+2)"tdz = log 2
can be rewritten as an iterated-integral period on X with rational endpoints. Indeed, with the
change of variables z = ¢/(1 —t) one has dz/(1 + x) = dt/(1 —t) and

1 de 172 q¢ 1/2
log2 = = —_— = . 75
o8 /0 1+ /o 1—¢ /0 w1 (75)

Thus log 2 is realized as a period datum (D, f,Id) with D =[0,1/2] C R and f(¢t) =1/(1 —1t) €
Q(t), which lies in the controlled cubical setting of this paper.

Multiple zeta values as periods on X. Multiple zeta values admit a well-known iterated
integral representation on X (see, e.g., [9,10]): for integers n > 2,

¢y = [ ()

In particular,

C(2)=/01w1wo=/0 dt; dt (77)

b
<ti<ta<1l 1 =11 t2

which is a Kontsevich—Zagier period with a Q-semialgebraic domain (a simplex) and a rational
integrand.

Interpretation for the compatibility target. In this test case, the “motive” arrow in (58]
can be instantiated within the standard mixed Tate framework: the motivic source is a mixed
Tate object attached to X (e.g. via the unipotent fundamental group), and its periods include the
iterated integrals above. The point of recording f is that they provide a concrete bridge
from our cubical period data to a motivic organization where period relations are governed by
a well-studied structure [104[29].
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D.2 Modular/elliptic test case: weight-2 newforms, periods, and Frobenius
traces

Let f(2) = >_,>1 @n ¢" be a normalized weight-2 newform on I'g(NV), with ¢ = e?™%_ Tts L-series

1S
Gn

L(f,s) := Z o R(s) > 1.
n=1

The Mellin transform gives the classical period integral expression (see, e.g., [2430])

(27)T(s) L(f, 5) = /0 T ) e, (78)

and in particular at s =1,
L(f,1) = 2r / F(it) dt. (79)
0

Equivalently, the holomorphic differential wy¢ := 27if(2) dz on the modular curve Xo(N) has
periods given by integrals of wy along 1-cycles (modular symbols), and these periods control
special values such as L(f,1).

Frobenius traces from /¢-adic realizations. Deligne attaches to f an ¢-adic Galois rep-
resentation py, whose Frobenius traces recover the Hecke eigenvalues [22,23]. Concretely, for
primes p{ N/,

Tr(pye(Froby)) = ap, (80)

and the Euler factors of L(f,s) are determined by these traces.

Elliptic curve specialization. When the Hecke field of f is Q, the modular abelian variety
attached to f is an elliptic curve E/Q and the motive may be identified with H'(E); in this
case ([80) specializes to the familiar point-counting identity

ap :p—’_l_#E(]Fp)a

and the period integrals of the Néron differential on F yield the real/imaginary periods of E.
The equality L(E,s) = L(f,s) provides a concrete instance of the “period-motive-Frobenius”
chain in (58]).

Interpretation for the compatibility target. This modular test case is a regime in which
the arrows “period data — motive — f-adic realization” and “motive — automorphic repre-
sentation” are classical. It therefore provides a canonical benchmark for any future attempt to
connect scan-realized period data (via HSP) with Hecke/Frobenius trace data extracted from
protocol-level constructions.
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