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Abstract

We give a short axiomatic upgrade of Omega Theory that makes the continuous–discrete
connection explicit and operational. The bridge is made concrete via intrinsic scan dynamics
(unitary scanning), finite-resolution projection readout via window kernels, and a canonical
integer-time coding (Ostrowski numeration, specializing to Zeckendorf in the golden case).
The upgrade isolates two structural sources of “quantumness” in the regulated description:
(i) intrinsic noncommutativity from a Weyl pair tied to the scan, and (ii) probability mea-
sures induced by finite-resolution readout (instrument and POVM structure), rather than
external sampling postulates. We also fix a canonical regularization convention for regulated-
to-continuum passages via orbit traces and Abel finite parts. Detailed mathematical con-
structions appear in the companion tool-paper [1], while the full physics manuscript develops
the micro-ontology, phenomenology, and cosmological templates [2].

Keywords: Scan–projection readout, Weyl pair, Ostrowski numeration, Zeckendorf de-
composition, Sturmian sequences, cut-and-project quasicrystals, induced measures, finite-part
regularization.
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1 Positioning and scope
This note isolates the minimal axiomatic upgrades needed to make the continuous–discrete
bridge explicit in Omega Theory. The guiding viewpoint is that a finite observer does not access
an external time parameter, nor an infinitely refined continuum: operational time and statistics
arise from a scan–projection readout of intrinsic phase data at finite resolution.

We treat the scan algebra and its readout as internal, not auxiliary: by holographic encod-
ing (O4) one may realize the observer-accessible sector and pointer/readout observables within
boundary degrees of freedom on the relevant code subspace, and by causal locality (O3) their
tick iteration is an intrinsic automorphism rather than an externally supplied clock parameter.

Division of labor. The companion physics manuscript [2] develops the full regulated micro-
ontology (QCA on quasicrystal substrates, holographic encoding, cosmological templates, and
interpretational structure). The companion mathematical tool-paper [1] develops self-contained
constructions behind the scan operator, window projection readout, Ostrowski/Zeckendorf co-
ordinates, and orbit-calculus/finite-part regularization. The present note only records the up-
graded axioms and the shortest consequence chain that connects them.

What is new here. Relative to the baseline axioms (static universe state, finite informa-
tion, causal locality, and holographic encoding), we add explicit axioms for scan–projection
readout, intrinsic noncommutativity (Weyl pair), induced probability measures from readout
(instrument/POVM structure), and a canonical orbit-regularization convention.

2 Upgraded axioms
We keep the baseline axioms O1–O4 and record the upgrade axioms O5–O6, together with a
regularization convention.

Axiom 2.1 (O1: Omega axiom). The physical universe is specified by a unique normalized
global state ωΩ on a quasi-local operator algebra A associated with a countable graph of finite-
dimensional degrees of freedom. There is no external time parameter; the fundamental descrip-
tion is a single state rather than a family {ω(t)}. Any “dynamics” is encoded as intrinsic
automorphisms acting on observables (O3), while operational clock-time is specified only after a
scan–projection readout is chosen (O5).

Axiom 2.2 (O2: Finite information). For any causally closed region with boundary area A, the
effective dimension of the regulated state space obeys a holographic bound of the form

dim Hregion ≤ exp(A/4ℓ2P ). (1)

Axiom 2.3 (O3: Causal locality). There exists a discrete-step causal update given by a unital
∗-automorphism U : A → A. In the regulated representation it is implemented by a unitary,
U(A) = U∗AU , and has finite-range causal propagation: local observables evolve to observables
supported only on bounded neighborhoods. Correlators are thus of Heisenberg/relational form
ωΩ(Un(A)) for n ∈ Z, without introducing a family of time-labeled states.

Axiom 2.4 (O4: Holographic mapping). There exists a holographic encoding map Φ from
bulk to boundary that is (approximately) isometric on the relevant code subspace and supports
approximate operator-algebra quantum error correction / entanglement-wedge reconstruction. In
particular, observer-accessible readout operators may be chosen within the boundary algebra on
the code subspace, and the effective observer state ωeff in O5 is obtained by restricting ωΩ (after
encoding) to those observables.
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Axiom 2.5 (O5: Scan–projection readout (and induced measure)). Any operational notion of
time available to a finite observer is obtained from a finite-resolution scan and projection of
intrinsic phase data. In particular, there exists a circle-valued phase readout x(τ) ∈ R/Z of an
intrinsic scan parameter τ and a stroboscopic sampling at ticks t ∈ Z≥0 (counting scan steps)
such that the sampled readout xt := x(τt) is modeled (in the generic aperiodic regime) by an
irrational circle rotation with slope α ∈ (0, 1) \ Q:

xt = x0 + tα (mod 1). (2)

In the continuum covariant model of O6, x is the spectral coordinate of the pointer mode
V and the scan acts as the translation x 7→ x + α, so the rotation model can be viewed as the
induced dynamics on the pointer spectrum.

In regulated finite settings, one may work with long-period rational approximants αn = pn/qn

(e.g. convergents of the continued fraction of α), so that the irrational rotation describes the
scaling/continuum limit qn → ∞ and the effective aperiodic regime at finite resolution.

Moreover, finite-resolution readout induces probabilities as a projection measure rather than
as an external sampling postulate: for each resolution parameter ε > 0 there is a family of effects
{E(ε)

k } with
∑

k E
(ε)
k = I and outcome statistics are determined by

P
(ε)
k = ωeff

(
E

(ε)
k

)
. (3)

In a Hilbert-space representation, ωeff(A) = Tr(ρA) for a density matrix ρ on Heff . A convenient
model for finite-resolution readout is a unitary pointer mode V with spectral measure ΠV on R/Z
(so that V =

∫
R/Z e2πix dΠV (x)); equivalently V = e2πiX for a circle-valued pointer observable

X. Given response functions w(ε)
k : R/Z → [0, 1] with

∑
k w

(ε)
k (x) = 1, the induced effects are

E
(ε)
k =

∫
R/Z

w
(ε)
k (x) dΠV (x). (4)

To describe sequential readouts, one may fix an associated instrument {I(ε)
k } (completely positive

maps) such that
∑

k I(ε)
k is trace preserving and Tr(I(ε)

k (ρ)) = Tr(ρE(ε)
k ). In finite dimensions

an operator-sum form exists,

I(ε)
k (ρ) =

∑
a

K
(ε)
k,a ρK

(ε)∗
k,a , E

(ε)
k =

∑
a

K
(ε)∗
k,a K

(ε)
k,a. (5)

In the sharp limit w(ε)
k → 1Wk

the effects reduce to projectors (window projections) and condi-
tioning reduces to the standard Lüders/Kraus instrument.

Axiom 2.6 (O6: Unitary scan algebra (Weyl pair)). The scan underlying tick-labeled readouts
is implemented by a nontrivial unitary Uscan on an effective observer sector Heff . The scan
is compatible with the causal update (O3) on the observer-accessible algebra: there exists an
observer-accessible subalgebra Aeff ⊆ A (or in the boundary algebra under Φ) and a representation
πeff : Aeff → B(Heff) such that

πeff(U(A)) = U∗
scan πeff(A)Uscan, A ∈ Aeff . (6)

Moreover, there exists a conjugate unitary V (a phase/pointer mode) such that

UscanV = e2πiαV Uscan, (7)

with the same irrational slope α as in O5. Consequently there are no nonzero states that are
simultaneous eigenvectors of Uscan and V , and quantitative uncertainty tradeoffs follow from the
Weyl relation.

3



Equivalently, U t
scanV U

−t
scan = e2πitαV . If V = e2πiX for a circle-valued pointer observable X,

then X 7→ X + α (mod 1) under the scan, matching the rotation model in O5.
Continuum model. A canonical covariant realization of the Weyl relation is on L2(R/Z) with

(Uscanψ)(x) = ψ(x+ α), (V ψ)(x) = e2πixψ(x), (8)

so that UscanV = e2πiαV Uscan and the induced action on the spectrum is the circle rotation
x 7→ x+ α.

Regulated realizations. In a strictly finite-dimensional regulated observer sector of dimension
d, an exact Weyl relation UscanV = e2πiαV Uscan forces e2πiαd = 1 (e.g. by taking determinants),
hence α ∈ Q. The irrational slope α is therefore to be understood as a limiting/continuum
parameter: regulated realizations use rational convergents αn = pn/qn with exact qn-dimensional
clock/shift Weyl pairs, and the irrational rotation algebra is recovered as qn → ∞ (see [1]).

Convention R1 (Orbit regularization and finite parts). Effective continuum observables
are defined as limits of regulated scan-orbit functionals: orbit averages are taken as orbit traces
(ergodic/Haar averages on orbit closures), while divergent orbit sums are assigned a canonical
finite part via Abel regularization and pole subtraction [1]. When multiple regulators are present
(finite dimension q, finite resolution ε, Abel parameter r), the finite-part assignment is defined
at fixed (q, ε) by the Abel limit r ↑ 1 and pole subtraction, and only afterwards one takes
scaling/continuum limits. In this note we treat r ↑ 1 as the innermost limit, take q → ∞ along
convergents when passing from rational to irrational slope, and take the sharp readout limit
ε ↓ 0 only when a projective/window idealization is required. When different paths in (q, ε) lead
to different limits, this convention fixes the canonical path/order.

Assumption 2.7 (R2: Existence of canonical scaling limits). For the class of scan-orbit func-
tionals and readout kernels considered, the iterated limits specified in Convention R1 exist along
the canonical path/order, and define the effective continuum quantities used below.

3 Minimal consequence chain
We record the shortest implication chain that ties the new axioms together; detailed construc-
tions and proofs are given in [1] and in the companion physics manuscript [2].

3.1 Relational ticks from scan covariance

By O3, correlators are defined by iterating the intrinsic update U on observables under the single
state ωΩ. By O6, on the observer-accessible algebra Aeff the same iteration is implemented by
the scan unitary Uscan in the effective representation. Hence tick-labeled readouts are naturally
modeled as orbits under Uscan: for any finite-resolution effect E(ε)

k ,

P
(ε)
k (t) = ωeff

(
U∗t

scanE
(ε)
k U t

scan

)
, (9)

and, for a circle pointer mode V = e2πiX , the Weyl relation implies X 7→ X + α (mod 1) under
each tick.

The formula above gives the unconditioned single-tick statistics in the static state. For
sequential readout (conditioning/back-action), one uses the instrument structure from O5, in-
terleaved with the scan evolution.
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3.2 From scan–projection to canonical coding

Axiom O5 gives a canonical map from a continuous intrinsic parameter to a discrete symbolic
stream once a readout partition and resolution are fixed. A convenient two-outcome special-
ization uses the sharp windows WL = [0, 1 − α) and WS = [1 − α, 1) (exchanging L ↔ S
corresponds to the complementary partition). At finite resolution ε, choose response functions
w

(ε)
L , w

(ε)
S : R/Z → [0, 1] with w

(ε)
L + w

(ε)
S = 1 and w

(ε)
L,S → 1WL,S

as ε ↓ 0, and let E(ε)
L,S be the

induced effects as in O5. The tick-t symbol distribution is then

Pε(σt = S) = ωeff
(
U∗t

scanE
(ε)
S U t

scan

)
, Pε(σt = L) = ωeff

(
U∗t

scanE
(ε)
L U t

scan

)
. (10)

More generally, the associated instrument determines the joint law of a finite symbol string
by sequential composition; the above are the single-tick marginals. Concretely, let Uscan(ρ) :=
UscanρU

∗
scan. With the convention that a scan step separates successive readouts, the joint

probability of a length-T outcome string (k0, . . . , kT −1) is

Pε(k0, . . . , kT −1) = Tr
(
I(ε)

kT −1
◦ Uscan ◦ · · · ◦ I(ε)

k0
(ρ)

)
, (11)

where ρ represents ωeff on Heff . In a commutative pointer model where X has a sharp value xt

at tick t, the marginals reduce to Pε(σt = S) = w
(ε)
S (xt) and Pε(σt = L) = w

(ε)
L (xt).

In the sharp (window) limit w(ε)
L,S → 1WL,S

the effects become window projectors. In the
commutative/classical pointer idealization where the pointer phase follows the rotation model
xt = x0 + tα (mod 1), this reduces to the deterministic window coding: define the binary word
σt ∈ {L, S} by

σt :=
{
L, xt ∈ WL,

S, xt ∈ WS .
(12)

Equivalently, letting st := ⌊x0 + (t + 1)α⌋ − ⌊x0 + tα⌋ ∈ {0, 1}, one may take σt = S iff st = 1
and σt = L iff st = 0 (mechanical word form). For irrational α this produces a Sturmian word
of slope α; changing x0 shifts the word (and may affect only finitely many symbols when x0 lies
on a window boundary). A canonical representative is the characteristic word obtained by the
choice x0 = 0. The same continued-fraction data of α = [0; a1, a2, . . . ] yields a canonical integer
coordinate system for tick indices (Ostrowski numeration): writing pn/qn for the convergents,
every t ∈ Z≥0 has a unique expansion

t =
N∑

n=0
bnqn, 0 ≤ bn ≤ an+1, bn = an+1 ⇒ bn−1 = 0. (13)

Proposition 3.1 (Golden specialization). For the golden slope choice α = ϕ−2 (with ϕ =
(1 +

√
5)/2), the induced Sturmian coding is the Fibonacci word and the Ostrowski numeration

specializes to Zeckendorf coding (no adjacent Fibonacci summands).

Proof sketch. For x0 = 0 the coding above is the (characteristic) mechanical word of slope α.
When α = ϕ−2 = [0; 2, 1, 1, 1, . . . ] this mechanical word is the Fibonacci word. The correspond-
ing convergent denominators satisfy qn+1 = qn +qn−1, hence are Fibonacci numbers (up to index
shift), and the Ostrowski admissibility constraint reduces to digits bn ∈ {0, 1} with no adjacent
1’s, i.e. Zeckendorf decomposition.

3.3 Unitary scanning, Weyl pairs, and intrinsic uncertainty

Axiom O6 postulates a Weyl pair (Uscan, V ) with irrational commutation phase. This is the
minimal algebraic source of incompatibility between scan-time and phase/pointer localization.
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Proposition 3.2 (No common eigenvectors). If UscanV = e2πiαV Uscan with α /∈ Q, then Uscan
and V have no nonzero common eigenvector.

Proof. Suppose ψ ̸= 0 is a common eigenvector, Uscanψ = uψ and V ψ = vψ with |u| = |v| = 1.
Then UscanV ψ = uvψ while the Weyl relation gives UscanV ψ = e2πiαV Uscanψ = e2πiαvuψ. Thus
uv = e2πiαuv, forcing e2πiα = 1, contradicting α /∈ Q.

3.4 Finite-dimensional rational approximants

In regulated finite-dimensional realizations compatible with the holographic cutoff (O2), one
works with rational slopes α = p/q. Exact Weyl pairs exist in dimension q, and irrational slopes
are recovered as scaling limits along convergents αn = pn/qn; notably, the same denominators qn

also underlie the Ostrowski coordinates of tick indices. Operationally, O2 bounds the available
effective dimension in any finite observer region, and hence bounds the accessible denominators
q of exact Weyl pairs; the irrational α is therefore observed only through long-period rational
approximants and finite prefixes of the limiting symbolic stream.

Proposition 3.3 (Rational Weyl pair (clock/shift)). Let α = p/q with gcd(p, q) = 1. On Cq

define unitaries V and U by

(V ψ)j = e2πij/qψj , (Uψ)j = ψj+1 (mod q). (14)

Then UpV = e2πip/qV Up.

Proof. A direct computation gives (UV ψ)j = e2πi(j+1)/qψj+1 and (V Uψ)j = e2πij/qψj+1, hence
UV = e2πi/qV U and therefore UpV = e2πip/qV Up.

On the symbolic side, the same rational approximants yield periodic mechanical words: for
α = p/q and window coding as above, xt+q = xt and hence σt+q = σt. Over one period one has

#{0 ≤ t < q : σt = S} =
q−1∑
t=0

(
⌊(t+ 1)α⌋ − ⌊tα⌋

)
= ⌊qα⌋ = p, (15)

so the period block contains p symbols S and q−p symbols L (a Christoffel/mechanical rational
block). Along convergents αn = pn/qn → α these periodic blocks converge in the product
topology to the characteristic Sturmian word of slope α (see [1]).

3.5 Rotation algebra viewpoint and canonical trace

The Weyl relation in O6 defines the (irrational) rotation algebra Aα, the universal C∗-algebra
generated by unitaries U, V with UV = e2πiαV U (a noncommutative 2-torus). For irrational α,
Aα admits a canonical tracial state τ characterized on Fourier monomials by

τ(UmV n) =
{

1, (m,n) = (0, 0),
0, otherwise,

(16)

and this trace is unique among tracial states [3, 4]. In the covariant continuum model of O6,
restricting τ to the commutative subalgebra generated by V recovers the Haar average on the
circle, matching the orbit-trace normalization used in Convention R1.

For rational α = p/q, the corresponding rotation algebra is represented by the q-dimensional
clock/shift Weyl pair (hence by a matrix algebra), and the canonical trace reduces to the nor-
malized matrix trace, matching the regulated averaging prescription.
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3.6 One mechanism for both time readout and quasicrystal texture

The scan–projection mechanism is not restricted to “time.” Replacing the tick index by a spatial
index along a lattice geodesic yields Sturmian/Fibonacci textures, while interpreting the same
window data as an acceptance window yields a cut-and-project (model-set) geometry. In this
way, Fibonacci coin textures in a 1D reduction, phason shifts, and Zeckendorf-clocked drives
can be traced to the same scan–projection source (see [2] for the QCA setting).

3.7 Projection kernels and induced measures (Born/instrument structure)

Axiom O5 makes probability a derived object of finite-resolution readout: once the effects
{E(ε)

k } are fixed by the readout kernel, the state functional ωeff induces the outcome law
P

(ε)
k = ωeff(E(ε)

k ). In regulated finite-dimensional realizations, representing ωeff by a density
matrix immediately yields the Born form P

(ε)
k = Tr(ρE(ε)

k ).
Conversely, if one starts from an abstract assignment of probabilities to (generalized) mea-

surement effects and imposes standard consistency requirements (normalization, additivity under
coarse-graining, and noncontextuality), Gleason-type theorems for POVMs (Busch) constrain
the assignment to be of trace form [5,6].

3.8 Orbit traces and Abel finite parts

Convention R1 fixes a canonical normalization for regulated-to-continuum passages: orbit aver-
ages become Haar/orbit traces, and constant terms in divergent orbit sums are fixed by Abel
finite parts.
Proposition 3.4 (Orbit trace for irrational rotations). Let α /∈ Q and xt = x0 + tα (mod 1).
Then the rotation is uniquely ergodic with invariant measure dx, and for any continuous f one
has

lim
N→∞

1
N

N−1∑
t=0

f(xt) =
∫ 1

0
f(x) dx. (17)

Proof sketch. It suffices to check the claim on Fourier modes f(x) = e2πimx and then use density
of trigonometric polynomials. For m = 0 the statement is trivial; for m ̸= 0 the finite average is
a geometric sum and its magnitude is O(1/N) because e2πimα ̸= 1 for irrational α.

Accordingly, in the irrational rotation regime the orbit trace appearing in Convention R1 is
the Haar average

∫ 1
0 f(x) dx, independent of x0. For Abel regularization, define

S(r) :=
∑
t≥0

rtf(xt), 0 < r < 1, (18)

and note that the Abel-averaged orbit mean is (1−r)S(r); for continuous f one has (1−r)S(r) →∫ 1
0 f(x) dx as r ↑ 1. The finite part prescription fixes the constant term after subtracting the

pole:

FP
∑
t≥0

f(xt) := lim
r↑1

(
S(r) − 1

1 − r

∫ 1

0
f(x) dx

)
, (19)

whenever the limit exists; existence along the canonical scaling path/order is part of Assump-
tion 2.7.

Example. For f ≡ 1, S(r) = (1−r)−1 and FP
∑

t≥0 1 = 0. For the Fourier mode f(x) = e2πimx

with m ̸= 0, the orbit average vanishes and

S(r) = e2πimx0

1 − r e2πimα
−−→
r↑1

e2πimx0

1 − e2πimα
, (20)

so the Abel finite part coincides with the Abel limit.
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4 Discussion and pointers
Why this upgrade matters. The upgrade axioms O5–O6 (together with Convention R1)
remove several recurring ambiguities in static-universe frameworks: (i) they make “time” an
explicit scan–projection readout rather than an external label; (ii) they identify an intrinsic
algebraic origin of incompatibility/uncertainty via a Weyl pair; (iii) they treat probability as
induced by readout kernels/instruments; and (iv) they fix a regularization convention tied to
the scan orbit.

In the holographic setting (O4), the same upgrade also clarifies where the operational struc-
tures live: the effective scan/readout sector can be taken as boundary-local on the code sub-
space, so that the resulting discrete symbolic streams and induced measures are compatible with
entanglement-wedge reconstruction and with the regulated holographic description.

Where to look for details. For mathematical constructions (scan operator realizations,
window projections, Ostrowski/Zeckendorf coordinates, and orbit-calculus/finite-part tools), see
[1]. For the physics program (QCA on quasicrystals, holographic encoding, continuum limits,
and phenomenological templates), see [2].
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