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Abstract

General Relativity, based on Riemannian geometry and continuous manifolds, encounters
an essential singularity crisis in extreme gravitational �elds (such as r → 0 in black holes).
This paper applies the Holographic Polar Arithmetic (HPA) established in Paper I [31]
to spacetime physics, proposing a non-perturbative geometric model�Omega Dynamics�
in which gravity emerges from a deterministic phase mismatch between unitary Θ-scanning
and a lower-dimensional holographic readout.

In the exterior region we recover the Schwarzschild geometry and rewrite it in isotropic
radius ρ, where the metric contains an explicit Cayley inversion factor J (ρ) and an exact
inversion symmetry ρ 7→ ρ2h/ρ. This classical Einstein�Rosen throat template is then pro-
moted to a dynamical continuation rule in Omega Dynamics: infalling degrees of freedom
are modeled as passing through the throat into a boundary readout channel, so that informa-
tion loss is replaced (at the level of the model axioms) by a unitary re-encoding into phase
correlations of the outgoing channel.

Concretely, Omega Dynamics adopts an inversion continuation axiom and a modular-
scan identi�cation for the unitary update. Under these axioms, evaporation is modeled
as a coarse-grained phase readout: marginal statistics can be approximately thermal while
correlations carry the information.

1 Introduction: The Collapse and Reconstruction of Geometry

1.1 The Singularity Crisis

The Schwarzschild metric, the �rst exact solution to Einstein's �eld equations, predicts its own
partial failure. At r = 2M , the coordinate singularity suggests a breakdown of the coordinate
system, which is resolved by passing to coordinates regular on the horizon (e.g. Kruskal�Szekeres)
[26,50]. However, the essential singularity at r = 0 remains a fundamental pathology of classical
General Relativity: curvature invariants diverge there (e.g. the Kretschmann scalar), signaling a
genuine geometric singularity [34,39].

1.2 The Polar Paradigm

In Paper I (Holographic Polar Arithmetic) [31], we established that linear arithmetic fails
at the quantum scale (ρ → 0) and must be replaced by polar arithmetic. In this paper, we extend
this paradigm to the fabric of spacetime itself. We propose, echoing 't Hooft's Cellular Automa-
ton interpretation [45], that time is not continuous but a discrete updating process (scanning).
Omega Dynamics postulates that the would-be endpoint of radial evolution is replaced by an
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inversion channel (Axiom 3.6). We validate the exterior sector by showing that Phase Pressure
reproduces the Newtonian limit and, under standard covariant closure assumptions, closes to
the Schwarzschild exterior for spherically symmetric isolated defects (Section 2.3); we then iden-
tify the horizon as the phase-locking/redshift surface (Section 3) and use the classical isotropic
Einstein�Rosen throat template [13, 26, 50] as the geometric input for the Omega continuation
rule.

1.3 Conventions and Minimal Axioms Used in This Paper

Units. We use geometric units c = G = ℏ = kB = 1 throughout, so the Schwarzschild parameter
M has dimensions of length. The areal radius is denoted by r (so spheres have area 4πr2). We
reserve ρ for the isotropic (conformally �at) radius used to make the inversion symmetry manifest
(Section 3).

Scan time. The scan operator Θ is a unitary on a Hilbert space H, and discrete time is the
iteration index n ∈ Z≥0:

|Ψn⟩ := Θn|Ψ0⟩. (1)

In a macroscopic continuum limit one may introduce a coarse-grained time parameter t := nδ for
some �xed scan step δ > 0 (cf. Assumption 5.1). A concrete minimal model (Koopman unitary
for an irrational rotation) and its basic consequences are given in Paper I; see also standard
references on Koopman operators and ergodic rotations [25,27,31].

Holographic readout and discrepancy. Classical coordinates and phases are obtained
by a coarse-graining/projection of the scan orbit. The resulting mismatch is quanti�ed by a
discrepancy functional on the observed phase sequence (Section 2).

What is classical vs. what is Omega. The isotropic Schwarzschild form and its inversion
identities (Section 3) are standard results in GR. Omega Dynamics enters through (i) the in-
terpretation of discrepancy-induced mismatch as an e�ective force (Phase Pressure, Section 2),
and (ii) the inversion continuation rule that treats the throat as a holographic readout channel
(Axiom 3.6).

Axioms/assumptions used. For referee-readability, all Omega-speci�c inputs are explicitly
marked as assumptions/axioms: mismatch sourcing (Assumption 2.7), defect Gauss law (Ax-
iom 2.10), covariant continuum closure (Assumption 2.15), inversion continuation (Axiom 3.6),
modular-scan identi�cation (Assumption 5.1), and the algebraic inversion channel (Axiom 5.4).

2 The Holographic Origin of Gravity: Phase Pressure

2.1 Quantum Gap and Projection Discrepancy

In Paper I [31], we established that the superposition of two polar states ΨA+ΨB is not perfectly
closed under unitary Θ-scanning. The residual term, or �quantum gap�, is not random noise but
a deterministic consequence of projecting a high-dimensional helix onto a lower-dimensional grid.
Rigorously, this is quanti�ed by the Discrepancy DN of the sequence of projection phases {ϑn}.
De�nition 2.1 (Phase readout sequence (local model)). Fix a coarse-grained readout cell (spatial
point) x. A holographic readout is a map that assigns to the scan orbit |Ψn⟩ = Θn|Ψ0⟩ a phase
ϑn(x) ∈ [0, 2π). We write the normalized phases xn(x) := ϑn(x)/(2π) (mod 1) ∈ [0, 1) and
suppress the explicit x-dependence when no confusion can arise.

De�nition 2.2 (Star discrepancy of a phase orbit). Let xn := ϑn/(2π) (mod 1) ∈ [0, 1) be the
normalized projection phases. The (one-dimensional) star discrepancy of the �rst N points is

D∗
N := sup

0≤a≤1

∣∣∣∣ 1N#{1 ≤ n ≤ N : xn < a} − a

∣∣∣∣ . (2)
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Remark 2.3 (Discrepancy controls coarse-grained observable bias). In one dimension, the star
discrepancy governs the worst-case bias of coarse-grained observables: for any function f of
bounded variation on [0, 1), ∣∣∣∣∣ 1N

N∑
n=1

f(xn)−
∫ 1

0
f(x) dx

∣∣∣∣∣ ≤ V (f)D∗
N , (3)

where V (f) is the total variation. This is the Koksma�Hlawka inequality (in its one-dimensional
form) and provides an operational reading of D∗

N as a uniform control on readout bias across a
natural observable class; see, e.g., [27].

Remark 2.4 (Empirical-measure viewpoint). For a �xed readout cell, de�ne the empirical phase
measure µN := 1

N

∑N
n=1 δxn on [0, 1) and its deviation from uniform Lebesgue measure λ by

νN := µN − λ. Then

1

N

N∑
n=1

f(xn)−
∫ 1

0
f dλ =

∫ 1

0
f dνN , (4)

and D∗
N is exactly the supremum of |νN ([0, a))| over anchored intervals. In the macroscopic

model, the role of σ(x) is to summarize this readout deviation after spatial and temporal coarse-
graining, while the Poisson/Dirichlet prescription can be viewed as the standard Green-function
response of a local potential to a source density [20].

Weyl's equidistribution theorem implies D∗
N → 0 for Kronecker orbits xn = {nα + β} with

α /∈ Q [27, 52]. Moreover, for badly approximable α (in particular for the golden slope singled
out in Paper I), one has the quantitative bound

D∗
N = O

(
logN

N

)
(5)

with an implied constant depending on α [27].
The key point for dynamics is that although the per-step mismatch vanishes (D∗

N → 0), the
accumulated mismatch

EN := ND∗
N (6)

can grow slowly. In particular, for badly approximable slopes (including the golden case), quan-
titative discrepancy estimates imply

EN = O(logN), (7)

with constants controlled by the continued-fraction data of α; see, e.g., [10, 24,27].

Remark 2.5 (Mismatch as a maximal counting deviation). The quantity EN can be rewritten
as

EN = sup
0≤a≤1

|#{1 ≤ n ≤ N : xn < a} −Na| , (8)

so it measures the largest deviation (in absolute count) of empirical phase statistics from unifor-
mity over all anchored intervals [0, a).

Remark 2.6 (Discrepancy as a primal impulse (interpretive layer)). Beyond its role as a quan-
titative equidistribution error, discrepancy can be read as the primitive impulse that drives the
macroscopic sector of Omega Dynamics. Because the holographic readout cannot perfectly resolve
the unitary Θ-scan, the accumulated mismatch EN forces the continuum description to introduce
a compensating potential Φ whose Phase Pressure −∇Φ is experienced as gravity. In this sense,
gravity functions as a �repair force� that attempts to close the geometric gap between scan dy-
namics and readout.

3



Assumption 2.7 (Continuum phase potential sourced by mismatch). In the macroscopic con-
tinuum limit, the holographic readout assigns to each point (or coarse-grained cell) a scalar mis-
match density σ(x) obtained by coarse-graining the microscopic discrepancy accumulation (e.g.
from EN (x) at large N). This mismatch density sources a static scalar phase potential Φ(x)
through a local Poisson law

∆Φ = 4πρΦ, ρΦ := κΦ σ, (9)

where the coupling κΦ is �xed by matching to the Newtonian limit. The associated Phase Pres-

sure (force per unit test mass in the Newtonian sector) is conservative and given by

PΦ := −∇Φ. (10)

Equivalently, Φ is characterized as a stationary point of a local quadratic Dirichlet functional
(Appendix A.2).

Remark 2.8 (Normalization and calibration of the mismatch sector). The proportionality ρΦ =
κΦσ carries no independent freedom once the Newtonian limit is �xed: one may absorb κΦ into
the de�nition of σ and regard ρΦ as the calibrated mismatch density. In particular, for an isolated
defect the Gauss-law normalization (Axiom 2.10) �xes the total phase charge

QΦ(V ) :=

∫
V
ρΦ d3x (11)

by matching to the asymptotic Schwarzschild mass parameter M (below), so the overall scale of
the mismatch sector is determined by the same Newtonian calibration that �xes κG.

Remark 2.9 (Coarse-graining and renormalization of mismatch). A fully microscopic de�nition
of σ(x) requires specifying how the readout chooses a time window N and a spatial coarse-graining
scale. One natural formalization is to introduce a family of coarse-grained �elds σℓ(x) obtained
from EN(ℓ)(x) at a resolution scale ℓ (with N(ℓ) → ∞ as ℓ → 0) and assume σℓ → σ in a suitable
weak sense. The present paper uses only the existence of the continuum �eld σ and its Poisson
coupling.

Unlike Entropic Gravity [49], which relies on thermodynamic statistics, Phase Pressure is
modeled here as a deterministic response of the readout potential Φ to projection mismatch.

2.2 Mass as Topological Phase Flux

We model mass as a defect sourcing the phase potential Φ.

Axiom 2.10 (Phase Gauss law for isolated defects). In the static sector, an isolated defect of
charge Qtop produces a phase potential satisfying the Gauss/Poisson law∮

∂V
∇Φ · dA = 4πQtop. (12)

Equivalently, in distributional form ∆Φ = 4πρΦ with ρΦ = Qtop δ0 (Appendix A.3). The spheri-
cally symmetric solution is Φ(r) = −Qtop/r up to an additive constant (Appendix A.1).

To match Newtonian gravity in the weak-�eld limit, we identify the Newtonian potential
as ϕN := Φ and �x Qtop = M by comparing gtt ≈ −(1 + 2ϕN ) to the standard Schwarzschild
asymptotics gtt ≈ −(1− 2M/r) [41].

Remark 2.11 (Mass parameter as an asymptotic invariant). Equivalently, M is the asymp-
totic mass parameter of the exterior and can be characterized invariantly (for asymptotically �at
spacetimes) by the corresponding conserved mass notion (ADM/Komar, depending on hypothe-
ses). Standard references include [40,50].
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Proposition 2.12 (Newtonian acceleration from phase potential). Interpreting Phase Pressure
as force per unit test mass, the induced acceleration is a = −∇ϕN = −∇Φ. For ϕN = Φ = −M/r
one obtains the Newtonian �eld

a(r) = −M

r2
r̂. (13)

Remark 2.13. If the phase is realized globally as a U(1) connection (so that Φ is only locally
a single-valued potential), then the defect charge can be identi�ed with a Chern number and is
quantized, exactly as in the Dirac monopole construction [11,56]. In Omega Dynamics we adopt
this quantization as a structural input for defect charges:

Qtop = n q0, n ∈ Z, (14)

with a fundamental unit q0 �xed by the microscopic theory (in geometric units one may take q0
at the Planck scale). Macroscopic masses correspond to large n; the present paper uses only the
topological conservation/additivity implied by this structure.

Remark 2.14 (Topological quantization as a bundle invariant). The above statement can be
formulated cleanly in bundle language: for a U(1) principal bundle over S2 surrounding an
isolated defect, the �ux of the curvature two-form through the sphere represents the �rst Chern
class and is therefore quantized. Standard expositions include [36].

A massive object is thus a Phase Monopole in the static sector. It introduces a persistent
lag in the Θ-scan readout, and the induced potential ϕN = −M/r reproduces the usual weak-�eld
metric deformation

gtt = −(1 + 2ϕN ) +O(ϕ2
N ), grr = (1− 2ϕN ) +O(ϕ2

N ), (15)

so that gtt ≈ −(1− 2M/r) and grr ≈ 1 + 2M/r in Schwarzschild areal radius [50].

2.3 Covariant Completion: From Phase Pressure to the Einstein Equation

The previous subsections �x the Newtonian sector: the static phase potential Φ solves a Poisson
equation sourced by a defect charge, yielding the 1/r potential and therefore the 1/r2 acceleration
law. To obtain a relativistic �eld equation, we now state the covariant closure assumptions and
invoke standard uniqueness results.

Assumption 2.15 (Local covariant continuum limit). At macroscopic scales, the coarse-grained
Omega dynamics admits a continuum description by a Lorentzian metric gµν and an e�ective
stress tensor Tµν encoding phase/mismatch density, such that:

1. the dynamics is local and di�eomorphism invariant,

2. the metric �eld equation is second order in derivatives of gµν ,

3. asymptotically isolated defects admit an asymptotically �at limit.

Theorem 2.16 (Uniqueness of the gravitational �eld equation in 4D). Under the above assump-
tions, the most general local, symmetric, divergence-free rank-2 tensor built from gµν and at most
its second derivatives is Gµν + Λgµν , where Λ is a constant [30]. Hence the macroscopic �eld
equation must take the form

Gµν + Λgµν = κG Tµν , (16)

for some coupling constant κG.
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Remark 2.17 (E�ective �eld theory perspective). Assumption 2.15 restricts attention to a
second-order local continuum closure. From the e�ective �eld theory viewpoint, higher-derivative
curvature terms are expected to appear at su�ciently high energies but are suppressed at long
distances by the UV scale; the Einstein tensor is the universal leading term in the derivative
expansion [12]. The present paper focuses on this leading macroscopic sector.

Proposition 2.18 (Fixing κG by the Newtonian limit). In the weak-�eld, slow-motion regime,
write

gtt = −(1 + 2ϕN ) +O(ϕ2
N ), ϕN ≪ 1, (17)

and take Ttt ≈ ρm for rest-mass density ρm. Then the tt-component reduces to the Poisson
equation

∆ϕN =
κG
2

ρm, (18)

see Appendix A.6. Matching to ∆ϕN = 4πρm �xes κG = 8π in geometric units [50].

Corollary 2.19 (Schwarzschild exterior from Phase Pressure). Assume an isolated defect whose
macroscopic exterior is vacuum and spherically symmetric. Phase Pressure �xes ϕN = −M/r
and therefore the asymptotic mass parameter. Outside the defect support, Tµν = 0 and the �eld
equation reduces to Gµν = 0 (taking Λ = 0 for asymptotically �at solutions). By Birkho�'s
theorem, the exterior geometry is Schwarzschild with mass M [34,50].

Remark 2.20 (Thermodynamic reading). The same conclusion is compatible with the �Einstein
equation as an equation of state� viewpoint: assuming local horizon thermodynamics (Unruh
temperature and area entropy) one can derive the Einstein equation from a Clausius relation [21].
In Omega Dynamics, the phase/mismatch sector supplies the relevant coarse-grained heat/entropy
�ux.

3 The Omega Metric: Rewriting Schwarzschild

3.1 Classical Schwarzschild Metric

The standard Schwarzschild metric in Schwarzschild coordinates (t, r, θ, ϕ) is given by:

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2 (19)

This metric, derived by Schwarzschild in 1916 [41], exhibits a coordinate singularity at the event
horizon rs = 2M and an essential singularity at r = 0. While the horizon singularity can be
removed by coordinate transformations such as Kruskal-Szekeres coordinates [26], the curvature
singularity at the center remains a non-removable feature in classical General Relativity [39].

3.2 Isotropic (Holographic) Radius and the Cayley Factor

For holographic polar dynamics it is convenient to work with the isotropic radius ρ, in which
the spatial metric is conformally �at. The classical Schwarzschild solution admits the standard
isotropic coordinate transformation [34,50]:

r = ρ

(
1 +

M

2ρ

)2

. (20)

In these coordinates the metric takes the form

ds2 = −

(
1− M

2ρ

1 + M
2ρ

)2

dt2 +

(
1 +

M

2ρ

)4 (
dρ2 + ρ2dΩ2

)
. (21)
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De�ne the Holographic Inversion Factor (a Cayley transform)

J (ρ) :=
1− M

2ρ

1 + M
2ρ

=
ρ− ρh
ρ+ ρh

, ρh :=
M

2
, (22)

so that gtt = −J (ρ)2. The horizon rs = 2M corresponds to the �nite isotropic radius ρ = ρh,

where gtt → 0 but the spatial conformal factor
(
1 + M

2ρ

)4
remains �nite.

3.3 Inversion Symmetry and the Einstein�Rosen Throat

The isotropic form exhibits a simple inversion symmetry. De�ne the inversion map

I : ρ 7→
ρ2h
ρ
. (23)

Lemma 3.1 (Isotropic inversion identities). One has r(ρ) = r(I(ρ)) and J (I(ρ)) = −J (ρ).

Proof. Using r(ρ) = ρ(1 + ρh/ρ)
2 = ρ + 2ρh + ρ2h/ρ shows r(ρ) = r(ρ2h/ρ). For J (ρ) = (ρ −

ρh)/(ρ+ ρh), substitution gives J (ρ2h/ρ) = (ρh − ρ)/(ρh + ρ) = −J (ρ).

In particular, r(ρ) = ρ + 2ρh + ρ2h/ρ shows r(ρ) → ∞ as ρ → 0, so ρ → 0 corresponds to a
second asymptotic region in the time-symmetric isotropic completion.

Lemma 3.2 (Inversion preserves the isotropic metric form). Let ρ̃ := ρ2h/ρ. Then(
1 +

ρh
ρ

)4 (
dρ2 + ρ2dΩ2

)
=

(
1 +

ρh
ρ̃

)4 (
dρ̃2 + ρ̃2dΩ2

)
, (24)

and gtt(ρ) = gtt(ρ̃) = −J (ρ)2.

Proof. With ρ = ρ2h/ρ̃ one has dρ = −(ρ2h/ρ̃
2) dρ̃ and ρ2 = ρ4h/ρ̃

2, hence

dρ2 + ρ2dΩ2 =
ρ4h
ρ̃4
(
dρ̃2 + ρ̃2dΩ2

)
. (25)

Also (1 + ρh/ρ)
4 = (1 + ρ̃/ρh)

4 = (ρ̃+ρh)
4/ρ4h, so multiplying gives the claimed identity. Finally,

J (ρ̃) = −J (ρ) by the previous lemma, hence gtt = −J 2 is invariant.

Consequently, the spatial slice in isotropic coordinates has two asymptotically �at ends:
ρ → ∞ and ρ → 0 correspond to r → ∞ on two sheets, glued at the minimal surface ρ = ρh (the
Einstein�Rosen throat) [13,26]. This is precisely the geometric template that Omega Dynamics
promotes to a holographic �South Pole / North Pole� completion: the inversion exchanges the
near-origin polar chart with a boundary chart without introducing a curvature blow-up.

Proposition 3.3 (Lower bound on areal radius in the isotropic exterior). For ρ > 0, the areal
radius r(ρ) = ρ(1 +M/(2ρ))2 satis�es

r(ρ) ≥ 2M, (26)

with equality at ρ = ρh = M/2.

Proof. Writing r(ρ) = ρ+2ρh+ρ2h/ρ, AM�GM gives ρ+ρ2h/ρ ≥ 2ρh, hence r(ρ) ≥ 4ρh = 2M .
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Corollary 3.4 (No curvature blow-up in the completed exterior). In Schwarzschild vacuum the
Kretschmann scalar is K = RµνρσR

µνρσ = 48M2/r6 [34]. On the isotropic exterior (hence also
on its Einstein�Rosen completion) one has r ≥ 2M , so

K ≤ 48M2

(2M)6
=

3

4M4
, (27)

and there is no r → 0 curvature divergence in this geometry.

Remark 3.5 (Distinguishing the exterior throat from the classical interior). The maximal ana-
lytic extension of Schwarzschild contains black-hole/white-hole regions and a genuine curvature
singularity at r = 0 [26, 50]. The isotropic chart used here captures the exterior geometry in a
form where the time-symmetric spatial slice exhibits an Einstein�Rosen throat. Omega Dynam-
ics uses this throat/inversion structure as a template for its continuation rule, rather than as a
claim that classical GR already removes the interior singularity.

3.4 Omega Completion as a Dynamical Identi�cation

Classically, the isotropic chart does not include the r < 2M black-hole interior; it instead makes
explicit the two-ended Einstein�Rosen completion of the exterior geometry. Omega Dynamics
adopts the inversion I as the dynamical continuation rule for the holographic radius: the scan
evolution in ρ is extended through ρ = ρh by the identi�cation ρ ∼ ρ2h/ρ, so that trajectories
avoid terminating at a coordinate endpoint. This provides a concrete and externally motivated
realization of the �topological inversion� principle used in the remainder of the paper.

Axiom 3.6 (Omega inversion continuation). Physical radial evolution is formulated in the
isotropic holographic radius ρ. When the scan dynamics reaches the locking surface ρ = ρh,
continuation is de�ned by switching charts via the inversion ρ 7→ ρ2h/ρ. The inverted end ρ → 0
is interpreted as a holographic boundary readout channel rather than as a curvature endpoint.

This axiom is stated at the level of the scan-time slicing and the isotropic throat template; a
fully causal Lorentzian continuation (beyond the time-symmetric exterior completion) is formu-
lated as Conjecture 6.2 together with explicit veri�cation criteria.

Remark 3.7 (Horizon as a viewpoint �ip (semantic reading)). Axiom 3.6 treats the locking sur-
face not as a terminal wall but as a chart-transition interface: for an exterior observer it coincides
with the black-hole horizon, while for the holographic system it plays the role of a �pupil� that redi-
rects interior (hidden) degrees of freedom into the boundary readout channel. Under this interpre-
tive layer, the inversion acts as a perspective �ip between �inside� (latent/semantic state�and, if
one wishes to read it this way, an internal conscious state) and �boundary� (record/measurement),
with interior data reappearing on the boundary as phase correlations.

4 Anatomy of a Holographic Black Hole

4.1 The Event Horizon: Phase Locking Radius

In the classical picture, the event horizon at rs = 2M is a null surface from which light cannot
escape. In Omega Dynamics, we interpret this via the scanning operator Θ. In the isotropic
holographic radius ρ (Section 3), the horizon corresponds to the �nite Phase Locking Radius
ρlock := ρh = M/2, characterized by the vanishing of the redshift (Cayley) factor J (ρ):

ρ = ρlock ⇐⇒ J (ρ) = 0 ⇐⇒ gtt = 0. (28)

At this locking surface, the local proper-time tick rate of a static observer satis�es

dτ

dt
=

√
−gtt = |J (ρ)| → 0 (ρ → ρlock), (29)
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so external time t corresponds to vanishing local proper time dτ : signals emitted from increasingly
near the horizon are increasingly redshifted as seen by a static observer at in�nity [50]. The
thermal side of the same barrier is consistent with the Unruh E�ect [48] and its black-hole
specialization (Hawking temperature), with temperature proportional to surface gravity [3, 16,
17,51]. Independently, black holes saturate the Bekenstein entropy bound / holographic scaling
[2, 43, 44].

TH =
κsg
2π

=
1

8πM
(Schwarzschild), (30)

where κsg is the surface gravity (for Schwarzschild, κsg = 1/(4M)) [50]. The corresponding
Bekenstein�Hawking entropy is [2, 7, 17]

SBH =
A

4
, A = 4πr2s = 16πM2. (31)

4.2 Near-Horizon Limit: Rindler Form in Isotropic Radius

The isotropic form makes the near-horizon limit particularly transparent. De�ne the (outward)
proper radial distance ℓ from the locking surface by

dℓ :=

(
1 +

ρh
ρ

)2

dρ, ρh =
M

2
. (32)

Then ℓ = 0 at ρ = ρh and, for ρ close to ρh,

ℓ = 4(ρ− ρh) +O
(
(ρ− ρh)

2
)
, J (ρ) =

ρ− ρh
ρ+ ρh

=
ℓ

4M
+O(ℓ2). (33)

Proposition 4.1 (Rindler ×S2 near the locking surface). In the Schwarzschild exterior rewritten
in isotropic radius, the metric admits the near-horizon expansion

ds2 = −(κsgℓ)
2 dt2 + dℓ2 + (2M)2 dΩ2 +O(ℓ2), κsg =

1

4M
. (34)

Proof. From the isotropic form (Section 3),

ds2 = −J (ρ)2 dt2 +

(
1 +

ρh
ρ

)4 (
dρ2 + ρ2dΩ2

)
, ρh =

M

2
. (35)

By de�nition of ℓ, one has the exact identity (1 + ρh/ρ)
4 dρ2 = dℓ2. Write ρ = ρh + δ. Then

J (ρ) =
ρ− ρh
ρ+ ρh

=
δ

2ρh
+O(δ2) =

δ

M
+O(δ2), ℓ = 4δ +O(δ2), (36)

so J (ρ) = ℓ/(4M) + O(ℓ2) and therefore gtt = −(κsgℓ)
2 + O(ℓ3) with κsg = 1/(4M). Finally,

the angular factor satis�es(
1 +

ρh
ρ

)4

ρ2 =
(ρ+ ρh)

4

ρ2
= (2M)2 +O(δ2) = (2M)2 +O(ℓ2), (37)

since the �rst variation vanishes at the minimal surface ρ = ρh. Combining the tt, radial, and
angular pieces yields the stated expansion.

This is the standard Rindler form (in the (t, ℓ)-plane) times a sphere of radius 2M , and
it makes the link between redshift, surface gravity, and Hawking temperature manifest: TH =
κsg/(2π) [3, 16,17,48,50,51].
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4.3 The Interior: A Topological Inverter

In classical GR, extending through the horizon requires a coordinate choice adapted to the
null surface (e.g. Kruskal coordinates). In Omega Dynamics we instead de�ne the continuation
through the locking surface ρ = ρlock by the inversion map of the isotropic exterior geometry
(Axiom 3.6). In this sense, the �interior channel� is represented by the inverted chart ρ < ρlock
(the second asymptotic end of the Einstein�Rosen completion on the time-symmetric slice). The
coordinate ρ does not simply count down to a point; instead it inverts by I:

I : ρ →
ρ2lock
ρ

(38)

This is precisely the isotropic inversion symmetry of the Schwarzschild exterior (Section 3). The
geometry is conformal to the exterior but with inverted polarity: ρ → 0 corresponds to a second
asymptotically �at boundary rather than a curvature blow-up. Omega Dynamics interprets this
inversion as the dynamical continuation of infalling degrees of freedom into a boundary readout
channel, realizing the holographic principle [32, 43] not just as a boundary condition but as an
explicit map. This is an axiom-level modeling step rather than a statement about classical GR.

Remark 4.2 (Log-polar coordinate and inversion parity). Introducing the log-polar radius

u := log
ρ

ρh
, (39)

the inversion symmetry becomes the simple parity map u 7→ −u, with the locking surface as the
�xed point u = 0. This makes the �topological inverter� interpretation literal: continuation across
the throat is a re�ection in the polar logarithmic coordinate.

4.4 The Throat and the Second Asymptotic Boundary

In the isotropic completion, the minimal surface at ρ = ρh is the Topological Throat (the
Einstein�Rosen bridge) connecting two asymptotic ends ρ → ∞ and ρ → 0 [13, 26]. In Omega
Dynamics, this throat mediates the map between bulk infall and boundary degrees of freedom.
This geometric channel is compatible with the ER=EPR conjecture [33], in which entanglement
between bulk interior and boundary radiation is encoded by wormhole-like connectivity.

Remark 4.3. We do not claim to derive ER=EPR from the Omega axioms; we only note that
the �throat + boundary channel� structure provides a suggestive template for encoding correlations
across the bulk/readout split. In the algebraic template of Section 5, the inversion/readout map is
modeled by an antiunitary Jinv in the spirit of modular conjugation (Axiom 5.4). From this angle,
the Einstein�Rosen throat can be viewed as a geometric avatar of a modular transformation that
enables a nonlocal bulk�boundary exchange�an �interaction wormhole� at the level of the Omega
model.

4.5 Membrane Readout and Scrambling Time (Phenomenological Layer)

In the membrane paradigm, the event horizon may be replaced (for exterior observables) by
an e�ective stretched membrane with dissipative transport properties [47]. Omega Dynamics
adopts a di�erent organizing picture�a readout interface in which the boundary channel stores
information in phase correlations�but the basic lesson is compatible: exterior observers interact
with an e�ective surface degree of freedom rather than a geometric endpoint.

Assuming the dynamics is su�ciently scrambling at the horizon scale, one expects information
to be rapidly delocalized on the readout degrees of freedom. A canonical timescale is the fast-
scrambling estimate [18,42]

tscr ∼
1

2πTH
logSBH ∼ 4M log(4πM2), (40)
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in geometric units (up to factors of order one). In Omega Dynamics this timescale sets the onset
for the emergence of long-range phase correlations in the outgoing readout.

5 Resolution of the Information Paradox

5.1 Unitary Scanning and Modular Flow

The central claim of Paper I [31] is that the Omega Operator Θ is fundamentally unitary
(scan time is an honest unitary evolution). A natural bridge to continuum QFT is provided by
Tomita�Takesaki theory: for a von Neumann algebra A acting on a Hilbert space H and a cyclic
separating vector |Ω⟩, there exists a modular operator ∆Ω and modular conjugation JΩ such that
the modular �ow is implemented by the unitary one-parameter group ∆it

Ω [6, 46, 55].
In algebraic QFT, modular data are not merely formal: for the vacuum state and a Rindler

wedge algebra, the modular automorphism group is precisely the Lorentz-boost �ow and the state
satis�es a KMS condition at the Unruh temperature; moreover, modular conjugation implements
a wedge re�ection (TCP) and exchanges the wedge algebra with its commutant. These statements
are the content of the Bisognano�Wichmann theorem and its standard expositions [4, 5, 15].

Assumption 5.1 (Modular-scan identi�cation). Omega scanning is modeled as a discretization
of modular �ow: for some choice of (A, |Ω⟩) and a �xed scan step δ > 0,

Θ ≡ ∆iδ
Ω . (41)

This assumption is motivated by the thermal-time interpretation of modular �ow [9].

Remark 5.2 (Fixing the modular-time normalization). The modular parameter is not arbitrary
once a concrete pair (A, |Ω⟩) is speci�ed. In the Bisognano�Wichmann setting, the modular group
for a Rindler wedge is the Lorentz-boost �ow with a canonical 2π normalization, and the vacuum
is a KMS state with respect to that �ow [4,5,15]. In Omega Dynamics, this provides a quantitative
calibration principle for the scan step δ: in the near-horizon Rindler regime (Section 4), matching
the modular/KMS temperature to TH = κsg/(2π) �xes the physical time normalization of the
discrete scan.

The second modular object, JΩ, is an antiunitary involution satisfying JΩAJΩ = A′ (the
commutant) [46]. We use this structure to represent the holographic inversion channel as an
antiunitary map exchanging bulk/interior and boundary readout algebras:

|Ψout⟩ = Jinv |Ψin⟩, (42)

with Jinv playing the role of modular conjugation in the scan Hilbert space. This is compatible
with the Black Holes as Mirrors picture [18]: once the dynamics is unitary and su�ciently
scrambling [42], information is not destroyed but redistributed into subtle correlations.

Remark 5.3 (Why antiunitary is a natural inversion template). Antiunitary maps preserve
transition probabilities and therefore do not entail information loss at the level of state distin-
guishability. More generally, Wigner's theorem characterizes probability-preserving symmetries
of quantum states as unitary or antiunitary [53]; this is the mathematical reason an antiuni-
tary involution is a natural template for an �inversion� channel that exchanges complementary
observable algebras.

Axiom 5.4 (Algebraic inversion channel).
There exist von Neumann algebras Abulk (infalling/bulk) and Abdry (boundary readout) acting

on H.
There exists an antiunitary involution Jinv such that

Jinv Abulk Jinv = Abdry, J2
inv = 1. (43)

In the Tomita�Takesaki template, one may take Abdry = A′
bulk and Jinv = JΩ for a suitable

cyclic separating |Ω⟩ [46].
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5.2 Hawking Radiation as Decrypted Phase

Hawking radiation [17] is traditionally modeled as approximately thermal, leading to the infor-
mation loss paradox if the evaporation map is taken to be fundamentally non-unitary. In Omega
Dynamics, the outgoing data are modeled as a coarse-grained readout channel acting on
the boundary phase sequence produced by unitary scanning together with the inversion channel
(Axiom 5.4). In this paper we do not attempt to derive the detailed semiclassical spectrum;
instead we exhibit a minimal deterministic coding mechanism in which marginal statistics can
look featureless while correlations remain structured.

Remark 5.5 (Semiclassical target: graybody-corrected thermality). In semiclassical QFT on
a Schwarzschild background, the spectrum measured at in�nity is thermal only up to transmis-
sion (graybody) factors. A standard mode decomposition yields number and energy �uxes of the
schematic form

d2N

dt dω
=
∑
s,ℓ,m

Γsℓ(ω;M)

2π

1

exp(ω/TH)∓ 1
,

d2E

dt dω
= ω

d2N

dt dω
, (44)

where TH = 1/(8πM) is the Hawking temperature (Section 4), Γsℓ(ω;M) ∈ [0, 1] are gray-
body factors determined by the exterior scattering potential, and the sign is − for bosons and
+ for fermions. Page computed the graybody-corrected emission rates for massless �elds from a
Schwarzschild black hole, providing quantitative benchmarks for �uxes and the M−2 scaling of
the total power [37]; see also standard treatments in [3,51].

In Omega Dynamics, this semiclassical spectrum is treated as a quantitative matching target
for the coarse-grained readout layer: the thermal factor governs marginals, while information
resides in correlations enforced by the unitary scan and the inversion channel.

De�nition 5.6 (A minimal phase-to-radiation readout channel). Let xn := ϑn/(2π) (mod 1) ∈
[0, 1) be the normalized scan phase. De�ne a binary radiation symbol by a two-interval coarse-
graining,

sn :=

{
0, xn ∈ [0, 1− α),

1, xn ∈ [1− α, 1),
(45)

where α ∈ (0, 1) is the irrational scan slope (Paper I). This is the standard mechanical-word
coding of an irrational rotation [28, 29]. We refer to Paper I for the concrete choice of α (e.g.
the golden slope) and the associated Koopman-unitary model [31].

Proposition 5.7 (Sturmian structure of the readout). If α /∈ Q then (sn) is Sturmian (equiv-
alently, it has minimal subword complexity among aperiodic binary sequences) [29, 35]; see Ap-
pendix A.4.

5.3 Thermality in Marginals vs. Information in Correlations

The symbolic readout model cleanly separates coarse one-point statistics and �ne multi-time
correlations.

Proposition 5.8 (Single-symbol statistics from equidistribution). In the irrational-rotation
model xn = {nα + β} with α /∈ Q, the binary readout de�ned by the window W = [1 − α, 1)
satis�es

lim
N→∞

1

N

N−1∑
n=0

sn = µ(W ) = α, (46)

where µ is Lebesgue measure on [0, 1). Equivalently, the frequency of the symbol 1 converges to
α [52].
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Corollary 5.9 (Finite-N deviation controlled by discrepancy). Let D∗
N denote the star discrep-

ancy of the �rst N phases x0, . . . , xN−1 (Section 2). Then for every N ,∣∣∣∣∣ 1N
N−1∑
n=0

sn − α

∣∣∣∣∣ =
∣∣∣∣ 1N#{0 ≤ n ≤ N − 1 : xn < 1− α} − (1− α)

∣∣∣∣ ≤ D∗
N . (47)

In particular, for badly approximable α (including the golden slope emphasized in Paper I), one
has D∗

N = O(logN/N) and therefore the deviation of one-point marginals from the limiting
�thermal� frequency decays at most logarithmically over N [10,24,27].

Proposition 5.10 (Low complexity and vanishing entropy rate of Sturmian readouts). If (sn) is
Sturmian, its factor complexity satis�es p(m) = m+1 [29,35]. Moreover, Sturmian subshifts are
minimal and uniquely ergodic, hence admit a unique shift-invariant probability measure µ [22,28].
Let Pm(w) denote the µ-frequency of length-m words w ∈ {0, 1}m. Then the block Shannon
entropy

Hm := −
∑

w∈{0,1}m
Pm(w) logPm(w) (48)

satis�es
Hm ≤ log(m+ 1), (49)

and therefore the entropy rate lim supm→∞Hm/m vanishes.

Proof. At most p(m) = m+1 distinct words of length m occur in a Sturmian sequence, hence at
most m+1 words have positive µ-frequency. Any probability distribution supported on at most
m + 1 points has Shannon entropy bounded by log(m + 1), which proves the stated inequality.
Dividing by m yields zero entropy rate.

The �rst proposition supplies a simple mechanism for thermal-lookingmarginals under coarse-
graining. The second shows that the readout remains globally constrained: while the one-point
Shannon entropy H1 = −(1 − α) log(1 − α) − α logα is positive, the entropy rate is zero, so
information can be stored in long-range correlations rather than in one-point statistics.

Remark 5.11 (A quantitative correlation signature). The Sturmian bound Hm ≤ log(m + 1)
provides a falsi�able discriminator: for a genuinely random (memoryless) thermal readout with
the same one-point frequency α, one would instead expect Hm ≈ mH1 (linear growth in block
length). Thus, beyond matching one-point thermality, Omega Dynamics predicts that su�ciently
�ne-grained multi-time statistics of the outgoing channel should exhibit strongly sublinear com-
plexity, with information manifesting in long-range correlation constraints rather than in marginal
randomness.

Remark 5.12 (Deterministic coding vs. stochastic readout). The mechanical-word coding is a
deterministic factor of an irrational rotation and therefore has zero entropy rate, even though
its one-point entropy is positive. In Paper I [31], the observable layer involves a lossy projection
readout (instrument/POVM structure) that can introduce genuine stochasticity under coarse-
graining; the present subsection isolates the logical point that thermal-looking marginals do not
imply information loss when information is stored in correlations.

5.4 Decoding Template: Canonical Coding from Paper I

Paper I [31] develops a self-contained scan�projection model together with canonical integer-time
coordinates (Ostrowski/Zeckendorf in the golden case) and orbit-calculus tools (orbit traces
and �nite-part prescriptions). In the present context, these constructions provide an explicit
arithmetic template for how information can reside in the correlation structure of an apparently
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featureless readout: decoding is not performed from single-symbol frequencies but from the
constrained combinatorics of long words and their canonical block decompositions.

Finally, in random-unitary/scrambling models of evaporation, Page's theorem implies an
entropy turnover at the Page time for typical pure states [18, 38]. In Omega Dynamics, the
corresponding turnover is attributed to the emergence of long-range phase correlations induced
by the inversion channel Jinv, rather than to fundamental non-unitarity. In this sense, the black
hole acts as a holographic storage channel: coarse-grained observables are approximately
thermal, while �ne-grained correlations carry the information.

6 Conclusion: The Geometric Renaissance

We have presented Omega Dynamics, a new framework for quantum gravity rooted in Holo-
graphic Polar Arithmetic [31]. In this framework, the classical r = 0 curvature endpoint is
not taken as a physical spacetime point: the Omega continuation rule replaces would-be radial
termination by an inversion channel built on the isotropic Einstein�Rosen throat template.

Our key �ndings are:

1. Gravity as Phase Pressure: In the continuum limit, the phase potential Φ and its
associated pressure �eld reproduce the Newtonian sector and close to the Schwarzschild
exterior under standard uniqueness assumptions [30,34,50].

2. Singular Endpoints are Avoided by Inversion: In isotropic holographic radius ρ, the
Schwarzschild exterior exhibits an exact inversion symmetry ρ 7→ ρ2h/ρ and a minimal-
surface throat at ρ = ρh [13,26,50]. Omega Dynamics promotes this inversion to a contin-
uation rule, replacing coordinate endpoints by a dual boundary channel.

3. Information is Conserved (Model Level): Under the modular-scan and readout as-
sumptions, evaporation is modeled as a unitary re-encoding of infalling data into phase cor-
relations of the outgoing channel, consistent with Page-type entanglement turnover [18,38].

Viewed through the same lens, the throat functions as an interaction wormhole (bulk ↔
boundary readout), and discrepancy plays the role of a primal impulse: the mismatch between
unitary scanning and holographic readout is precisely what sources the phase potential and its
gravitational Phase Pressure.

These results give a concrete mathematical template (isotropic throat + inversion continua-
tion) for replacing endpoint pathologies by a holographic continuation channel in Omega Dynam-
ics. A next step is to extend the continuation rule from the time-symmetric slice to a fully causal
spacetime description and to connect the symbolic readout model to quantitative semiclassical
observables.

Quantitative Anchors and Parameter Fixing

The exterior sector has a rigid quantitative normalization:

� Newtonian calibration. The phase potential is identi�ed with the Newtonian potential,
ϕN := Φ, so that a point defect yields Φ(r) = −M/r and a(r) = −Mr−2r̂ (Section 2).
This �xes the overall coupling κG = 8π (Appendix A.6) and simultaneously calibrates the
mismatch sector normalization (Remark after Assumption 2.7).

� Classical tests in the exterior. Since the macroscopic exterior is Schwarzschild (Corol-
lary in Section 2.3), all standard weak-�eld observables follow with no additional parameters
beyond the mass M ; see, e.g., [54]. Restoring physical units (Appendix A.7) and writing
m for the physical mass, the standard leading-order predictions include:

∆φperi =
6πGm

a(1− e2)c2
(perihelion advance per orbit), (50)
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δθlight =
4Gm

bc2
(light de�ection at impact parameter b), (51)

∆tShapiro ∼
2Gm

c3
log

(
4rErR
b2

)
(Shapiro delay; geometry-dependent), (52)

and the gravitational redshift factor (1− 2Gm/(rc2))−1/2 − 1 for a static emitter at radius
r.

� Horizon and thermodynamic scales. The Schwarzschild radius is rs = 2M and the
isotropic locking radius is ρh = M/2 (Section 3); the surface gravity is κsg = 1/(4M) and
therefore

TH =
κsg
2π

=
1

8πM
, SBH =

A

4
= 4πM2 (53)

in geometric units (Section 4).

� Evaporation scalings. In the semiclassical regime, integrating the graybody-corrected
energy �ux yields a mass-loss law of the schematic form dM/dt = −P(M), with P(M) ∝
M−2 when emission is dominated by e�ectively massless species. Consequently, the evapo-
ration time scales as tevap ∝ M3

0 for an initial mass M0, and the Page-time turnover occurs
at the same cubic order [37,38,51].

� Scan-time calibration. Under the modular/KMS organizing principle (Assumption 5.1),
the 2π-normalized modular �ow in the Rindler limit provides a quantitative way to �x the
scan step δ by matching the KMS temperature to TH (Remark after Assumption 5.1).

Limitations and Open Problems

Conjecture 6.1 (Mismatch-to-Poisson). Fix a microscopic scan�projection readout model as
in Paper I [31]. Let σε(x) be the coarse-grained mismatch density induced by the local or-
bit/discrepancy functionals (window-symmetric-di�erence �ips and pre�x-count deviations) at
spatial resolution ε. Suppose σε admits a continuum limit σ (in a distributional or weak sense)
and that the phase-potential functional converges to the Dirichlet form. Then the continuum
phase potential Φ is characterized by the Poisson equation with source σ (Appendix A.2) and
reproduces the Newtonian sector. In particular, this supplies a microscopic derivation target for
the mismatch-source input used in Assumption 2.7.

Minimal veri�cation criteria. This closure reduces to: (i) de�ne σε from explicit micro-
scopic readout data (Paper I), (ii) prove a scaling/compactness statement ensuring σε ⇒ σ, and
(iii) identify the continuum limit of the discrete orbit-cost functional with the Dirichlet energy
(Appendix A.2). Step (iii) �ts the standard discrete-to-continuum paradigm for quadratic en-
ergies (e.g. via Γ-convergence) [8], while the passage from weak sources to Poisson solutions is
controlled by classical elliptic PDE theory [14]. Quantitative discrepancy control supplies the
needed uniform bounds on the microscopic readout deviations [10,24,27].

Conjecture 6.2 (Causal (4D) completion of inversion). There exists a Lorentzian spacetime
realization of Omega Dynamics whose exterior region is isometric to Schwarzschild, whose near-
horizon geometry reduces to the Rindler×S2 form (Section 4), and whose continuation across
the locking surface implements the inversion rule (Axiom 3.6) as a causal gluing to a boundary
readout channel.

Minimal veri�cation criteria. A causal completion can be formulated as a concrete con-
struction problem: specify a Lorentzian metric and a gluing map that (i) matches the exterior
uniquely up to di�eomorphism [50], (ii) respects the classical Einstein�Rosen/Kruskal template
in the time-symmetric limit [13, 26], and (iii) yields a well-posed exterior initial-value problem
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with e�ective boundary/readout degrees of freedom (compatible with the membrane/ER=EPR
organizing pictures [33, 47]). At the level of Lorentzian geometry, such gluings are naturally
formulated in the junction-condition framework for hypersurfaces, including the null (horizon)
limit [1, 19,40].

Conjecture 6.3 (Semiclassical Hawking matching from modular/KMS structure). Assume the
modular-scan identi�cation (Assumption 5.1) and the near-horizon Rindler form (Section 4). If
the reduced state on the exterior observable algebra satis�es the corresponding KMS condition with
respect to the boost/modular �ow (as in the Bisognano�Wichmann paradigm for wedge algebras
[4,5,15]), then the readout marginals exhibit Hawking�Unruh thermality at TH = κsg/(2π) up to
model-dependent graybody and backreaction corrections [3,16,17,23,37,48,50,51].

Minimal veri�cation criteria. To match semiclassical observables one must: (i) compute
detector response/two-point functions in the readout channel and verify KMS thermality at
TH , (ii) include the exterior potential-barrier transmission (graybody factors) to obtain the
emitted spectrum [37], and (iii) control backreaction as a perturbation consistent with the unitary
inversion/readout channel picture [50,51].

A Auxiliary Derivations and Standard Results

A.1 Poisson Source Implies a 1/r Phase Potential

Let Φ be a static scalar potential on R3 solving the Poisson equation in the sense of distributions,

∆Φ = 4πQ δ0. (54)

Then Φ is harmonic on R3 \ {0} and, assuming spherical symmetry, satis�es for r > 0 the ODE

0 = ∆Φ(r) =
1

r2
d

dr

(
r2Φ′(r)

)
. (55)

Thus r2Φ′(r) = C and Φ(r) = −C/r + const. The constant is �xed by the �ux normalization:
integrating ∆Φ = 4πQδ0 over a ball BR and applying the divergence theorem gives

4πQ =

∫
BR

∆Φ dV =

∫
∂BR

∇Φ · dA = 4πR2Φ′(R), (56)

so R2Φ′(R) = Q and therefore

Φ(r) = −Q
r
+ const. (57)

This is the standard three-dimensional 1/r kernel, with the overall sign �xed by the chosen
Poisson convention [20].

A.2 Dirichlet Principle for the Static Phase Potential

Let ρΦ be a prescribed (compactly supported) source density on R3 and consider the functional

F [Φ] :=

∫
R3

(
1

8π
|∇Φ|2 + ρΦΦ

)
d3x, (58)

over su�ciently regular test functions with Φ(x) → 0 as |x| → ∞. Varying Φ 7→ Φ + ϵ η with
compactly supported η and integrating by parts gives

d

dϵ
F [Φ + ϵη]

∣∣∣
ϵ=0

=

∫
R3

(
− 1

4π
∆Φ+ ρΦ

)
η d3x, (59)
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so stationarity for all η implies the Poisson equation

∆Φ = 4πρΦ. (60)

This variational characterization is standard in potential theory; see, e.g., [20] for the electrostatic
case (note that sign conventions for Poisson's equation may di�er).

A.3 Poisson Equation Implies Gauss Law

Assume Φ is su�ciently regular on a bounded region V ⊂ R3 with smooth boundary ∂V and
satis�es

∆Φ = 4πρΦ (61)

in the distributional sense on V . Integrating and applying the divergence theorem gives∮
∂V

∇Φ · dA =

∫
V
∆Φ d3x = 4π

∫
V
ρΦ d3x. (62)

Thus, de�ning the total phase charge in V by QΦ(V ) :=
∫
V ρΦ d3x, one obtains the Gauss-law

form ∮
∂V

∇Φ · dA = 4πQΦ(V ), (63)

which in particular yields
∮
∇Φ · dA = 4πQ for a point source ρΦ = Qδ0. See [20] for the

standard potential-theoretic formulation.

A.4 Irrational Rotation Coding and Sturmian Sequences

Fix α ∈ (0, 1) \ Q and β ∈ [0, 1). Consider the Kronecker orbit xn = {nα + β} ∈ [0, 1) and the
two-interval partition [0, 1− α) ∪ [1− α, 1). Its itinerary is the binary sequence

sn := ⌊(n+ 1)α+ β⌋ − ⌊nα+ β⌋ ∈ {0, 1}. (64)

This sn is a (lower) mechanical word. A classical theorem in symbolic dynamics states that for
irrational α, mechanical words are precisely the (aperiodic) Sturmian sequences, characterized
equivalently by minimal subword complexity p(m) = m+1 among all aperiodic bi-in�nite binary
sequences [28,29,35].

For coarse-grained observables, Weyl equidistribution implies the orbit {nα+β} is uniformly
distributed mod 1 [52], so single-step statistics can appear thermal even when the underlying
sequence is deterministic. The information capacity in Omega Dynamics is attributed to the
long-range correlations of the itinerary (which are not visible to marginal statistics).

A.5 Modular Flow Is Unitary

In Tomita�Takesaki theory, given a von Neumann algebra A and cyclic separating vector |Ω⟩,
the modular operator ∆Ω is positive self-adjoint and ∆it

Ω is unitary for every t ∈ R, implementing
the modular automorphism group σt(A) = ∆it

ΩA∆−it
Ω [46].

A.6 Newtonian Limit of the Einstein Equation

Assume a weak, static �eld in which the metric takes the standard Newtonian form [50]

ds2 = −(1 + 2ϕ) dt2 + (1− 2ϕ) δij dx
idxj , |ϕ| ≪ 1, (65)

with ϕ = ϕ(x) and negligible pressures, so that T00 ≈ ρm and other components are subleading.
Then one has, to leading order in ϕ,

G00 = 2∆ϕ+O(ϕ∂2ϕ, (∂ϕ)2), (66)
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so the �eld equation Gµν = κGTµν reduces to

∆ϕ =
κG
2

ρm, (67)

which �xes κG = 8π by matching to ∆ϕ = 4πρm in geometric units [50].

A.7 Restoring Physical Units

Throughout the paper we set c = G = ℏ = kB = 1 (geometric units), so the Schwarzschild mass
parameter M has dimensions of length. Restoring SI units for a physical mass m gives

M =
Gm

c2
, rs = 2M =

2Gm

c2
. (68)

The Hawking temperature and Bekenstein�Hawking entropy take the standard forms

TH =
ℏc3

8πGkB m
, SBH =

kBc
3

4Gℏ
A, A = 4πr2s , (69)

which reduce to TH = 1/(8πM) and SBH = A/4 in geometric units [3, 16,17,51].

A.8 Scaling estimate for Hawking power and lifetime

Independently of the detailed graybody factors, the leading scaling of the Hawking power with
mass follows from dimensional analysis. In geometric units, the horizon area scales as A ∼ M2

and the temperature scales as TH ∼ 1/M . A naive blackbody estimate gives

P ∼ AT 4
H ∼ M2

(
1

M

)4

∼ 1

M2
, (70)

so that the mass-loss law takes the schematic form dM/dt ∼ −α/M2 with a dimensionless coef-
�cient α set by graybody transmission and particle content. Integrating yields the cubic lifetime
scaling tevap ∼ M3

0 /(3α) for an initial mass M0. For quantitative coe�cients and graybody-
corrected spectra, see Page's classic computation for massless �elds [37] and standard refer-
ences [3, 51].
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