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Abstract

In the HPA–Ω program, the universe is modeled ontically by a single normalized global
state and an intrinsic unitary scan; “time,” “probability,” and macroscopic irreversibility
are not postulated but induced by finite-resolution holographic readout [1–3]. This paper
develops the statistical mechanics of that interface. We introduce Arithmetic Statistical
Mechanics (ASM), in which microstates are deterministic phase orbits of a Weyl scan and
macrostates are the finite-depth symbol statistics produced by a scan–projection readout
protocol (O5). The central claim is that thermodynamic entropy is phase friction: the
accumulated arithmetic mismatch generated when a continuous unitary orbit is projected
onto a discrete distinguishable readout lattice. In the golden branch, this lattice is canonically
organized by Zeckendorf/Fibonacci coding.

We define phase friction using one-dimensional star discrepancy and its accumulated mis-
match EN = ND∗

N for irrational rotations. For badly approximable scan slopes, EN admits
an explicit logarithmic upper bound, while rational slopes exhibit linear growth correspond-
ing to periodic “thermal death” by phase locking [4, 5]. We then reinterpret gravity as an
entropic response: a coarse-grained mismatch density sources a phase potential Φ whose gra-
dient is a phase pressure. Finally, by identifying gravitational redshift with a computational
lapse field N = κ0/κ determined by routing overhead [2, 6], we obtain a simple rescaling
law for externally observed entropy production, dS/dt ∝ σ(x) N (x), describing gravitational
“computational cooling.” We propose a physical definition of life and intelligence as an active
error-correction phase: predictive feedback that pays a geometric Landauer cost to locally
reduce phase friction and stabilize low-entropy structure.

We provide reproducible toy experiments (Python) validating the logarithmic mismatch
bound for the golden branch, the periodicity of rational slopes, and the lapse rescaling of
entropy flow.

Keywords: holographic readout; arithmetic statistical mechanics; star discrepancy; phase
friction; Weyl pair; Zeckendorf coding; computational lapse; entropic gravity; geometric Lan-
dauer principle; intelligence as active error correction.

Conventions. Unless otherwise stated, log denotes the natural logarithm. “mod 1” refers
to reduction in R/Z ∼= T. We set c = 1 in theoretical derivations unless explicitly restored.
Throughout, “ontic” refers to the global unitary scan layer, while “operational” refers to finite-
resolution readout and implementation constraints.

∗Email: auric@aelf.io

1



Contents
1 Introduction: from unitarity to irreversibility 4

1.1 Contributions and structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Axioms and operational interface: scan–projection readout 5
2.1 Ontic layer: a static global state and intrinsic automorphism . . . . . . . . . . . 5
2.2 Operational layer: readout as a finite-resolution instrument . . . . . . . . . . . . 5
2.3 Weyl complementarity: the structural origin of readout noise . . . . . . . . . . . 6
2.4 Golden branch and canonical coding . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Arithmetic Statistical Mechanics: entropy as phase friction 6
3.1 Microstates, macrostates, and the readout lattice . . . . . . . . . . . . . . . . . . 7
3.2 Phase friction as discrepancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Entropy as arithmetic mismatch: two compatible definitions . . . . . . . . . . . . 8
3.4 Second law as monotonicity under readout coarse-graining . . . . . . . . . . . . . 8

4 Generalized first law: energy as computational flux 9
4.1 Computational temperature as tick rate . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Structure information: Zeckendorf-effective bits . . . . . . . . . . . . . . . . . . . 10
4.3 A first-law form for ASM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.4 Landauer cost and log-cost additivity . . . . . . . . . . . . . . . . . . . . . . . . . 10

5 Relativistic thermodynamics: computational lapse and gravitational cooling 11
5.1 Routing overhead and computational lapse . . . . . . . . . . . . . . . . . . . . . 11
5.2 Entropy-production rescaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.3 Interpretation and limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

6 Gravity as entropic response: phase potential and phase pressure 12
6.1 Mismatch density and phase potential . . . . . . . . . . . . . . . . . . . . . . . . 12
6.2 Entropic-force form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.3 Black holes as computational blackbodies . . . . . . . . . . . . . . . . . . . . . . 12

7 Third-law template and “heat death”: the golden attractor 13
7.1 Rational locking as periodic thermal death . . . . . . . . . . . . . . . . . . . . . . 13
7.2 Why the golden branch is special . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7.3 A structural route to 1/f -type noise . . . . . . . . . . . . . . . . . . . . . . . . . 14

8 The physical origin of intelligence: active error correction and reverse com-
pilation 14
8.1 Agents as predictive-feedback subsystems . . . . . . . . . . . . . . . . . . . . . . 14
8.2 Reverse compilation in the Ω dictionary . . . . . . . . . . . . . . . . . . . . . . . 14
8.3 Geometric Landauer principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
8.4 Information-thermodynamic bound on predictive gain . . . . . . . . . . . . . . . 15
8.5 Survival criterion and predictive efficiency . . . . . . . . . . . . . . . . . . . . . . 15

9 Testable templates and reproducible toy experiments 15
9.1 Holographic noise as a hierarchical spectral template . . . . . . . . . . . . . . . . 16
9.2 Golden ratios in biological rhythms (as a control-law hypothesis) . . . . . . . . . 16
9.3 Cosmological entropy flow and dark-energy parameterization . . . . . . . . . . . 17
9.4 Reproducible toy experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
9.5 Quantitative parameter identification and fits (toy model) . . . . . . . . . . . . . 17

2



10 Conclusion 17

A Symbols and notation 18

B Discrepancy bounds and entropy proxies 19
B.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
B.2 Continued fractions and an explicit bound . . . . . . . . . . . . . . . . . . . . . . 19
B.3 Rational slopes and linear mismatch . . . . . . . . . . . . . . . . . . . . . . . . . 20
B.4 Entropy production proxies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
B.5 Numerical sanity checks (toy) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

C Phase potential and the Newtonian limit 22
C.1 Variational closure and Poisson equation . . . . . . . . . . . . . . . . . . . . . . . 22
C.2 Point-source solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
C.3 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
C.4 Rigidity of the quadratic closure . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

D Geometric Landauer principle and impedance 24
D.1 Log-cost additivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
D.2 Landauer bound and geometric overhead . . . . . . . . . . . . . . . . . . . . . . . 24
D.3 A convenient impedance parameterization . . . . . . . . . . . . . . . . . . . . . . 24

E Reproducible toy experiments (Python) 25
E.1 Experiment A: star discrepancy and accumulated mismatch EN . . . . . . . . . . 25
E.2 Experiment B: computational lapse rescaling of entropy flow . . . . . . . . . . . . 28
E.3 Experiment C: least-squares fits for mismatch templates . . . . . . . . . . . . . . 30
E.4 Experiment D: 1/f spectrum from Fibonacci/geometric ladders . . . . . . . . . . 32

F Quantitative fits for mismatch templates 35

G Fibonacci hierarchy and 1/f spectra 36
G.1 Log-uniform scaling from Fibonacci times . . . . . . . . . . . . . . . . . . . . . . 36
G.2 Discrete log-uniform mixtures yield 1/f . . . . . . . . . . . . . . . . . . . . . . . 36
G.3 Numerical verification (toy) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

H 1/f spectrum fits (toy) 37

I Limitations and next steps 37

3



1 Introduction: from unitarity to irreversibility
Modern physics accommodates two time concepts that appear mutually incompatible:

• Unitary time: microscopic evolution is implemented by unitary operators and is, in
principle, reversible.

• Thermodynamic time: macroscopic readout loses accessible information and exhibits
irreversibility and entropy increase.

In the minimal axiomatization of the HPA–Ω framework [2, 3], this tension is not resolved by
abandoning unitarity. Instead it is layered: the ontic layer is modeled by a single global state
and intrinsic unitary scan; the operational layer is defined by finite-resolution scan–projection
readout protocols constrained by holographic capacity [7–9]. “Probability” and “time” become
properties of the readout interface, not primitive ingredients.

Thesis. This paper gives a micro-definitional, computable answer to “where does entropy come
from?” in that setting:

Thermodynamic entropy is phase friction: arithmetic mismatch accumulated when a
continuous unitary phase orbit is projected onto a discrete readout lattice.

In the golden branch, the readout lattice is canonically organized by Ostrowski/Zeckendorf
coding; the mismatch admits sharp computable bounds, and periodic locking for rational slopes
becomes a concrete model of “heat death by phase crystallization.” These statements require no
ad hoc stochastic noise assumption: the randomness is not ontic but readout-induced.

From thermodynamics to intelligence. Once entropy is understood as an interface cost,
it becomes natural to interpret stable low-entropy structures as error-correcting subsystems.
We propose that life and intelligence are not violations of the second law but its operational
complement: an active error-correction phase that uses predictive feedback to locally suppress
phase friction while exporting dissipation to an environment, paying a geometric Landauer cost.

1.1 Contributions and structure

• Arithmetic Statistical Mechanics (ASM). We define microstates as scan phase orbits
and macrostates as finite-depth readout statistics and codes (Section 3).

• Phase friction and entropy. We define phase friction via star discrepancy and accu-
mulated mismatch, derive computable upper bounds for badly approximable slopes, and
interpret entropy increase as an operational coarse-graining monotonicity (Section 3).

• First-law dictionary. We propose a generalized first law in which energy is computa-
tional flux, temperature is scan tick rate, and work includes geometric routing overhead
(Section 4).

• Computational lapse and cooling. We relate gravitational redshift to a computational
lapse N = κ0/κ and derive a rescaling law for externally observed entropy production
(Section 5).

• Gravity as phase pressure. We interpret gravity as an entropic/phase-pressure response
sourced by mismatch density, distinguishing it from purely statistical entropic gravity
proposals [10] (Section 6).

• Intelligence as active error correction. We define agents operationally and propose
a geometric Landauer principle with an impedance term (Section 8).
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• Reproducible toy experiments. We provide minimal Python experiments validating
mismatch growth bounds, rational lock-in, and lapse rescaling (Section 9 and Appendix E).

Outline. Section 2 summarizes the scan–projection readout interface used as the sole struc-
tural input. Sections 3–6 develop ASM, its thermodynamic dictionary, and the lapse rescaling
principle. Sections 7–8 discuss the golden-branch third-law template and intelligence as a phase
transition. Section 9 lists testable templates. Appendices record symbols, key formulas, and
reproducible code.

2 Axioms and operational interface: scan–projection readout
This paper uses one structural input: the layered HPA–Ω interface separating (i) an ontic unitary
scan from (ii) an operational finite-resolution readout. We state it in an intentionally minimal
form, compatible with the fuller developments in [1–3].

2.1 Ontic layer: a static global state and intrinsic automorphism

Axiom 2.1 (O1: global state without external time). The physical universe is described by a
normalized global state ωΩ on an observable algebra A. No externally imposed continuous time
parameter is assumed.

Axiom 2.2 (O2: finite information / holographic bound). For any causally closed region, the
effective accessible Hilbert-space dimension obeys a holographic bound

dim Hregion ≤ exp
(
A

4ℓ2P

)
, (1)

where A is an area measure associated with the boundary of the region [7–9].

Axiom 2.3 (O3: intrinsic update). There exists a discrete-step automorphism U : A → A
(implemented unitarily in controlled representations) such that correlations can be written as
ωΩ(Un(A)) for A ∈ A.

Axiom 2.4 (O4: holographic encoding with approximate reconstruction). There exists an en-
coding map Φ relating bulk and boundary operator algebras such that the effective readout observ-
ables can be represented on a boundary algebra, supporting approximate reconstruction consistent
with quantum error correction [11–13].

2.2 Operational layer: readout as a finite-resolution instrument

Axiom 2.5 (O5: scan–projection readout and induced probability). Fix a resolution parameter
ε > 0. A finite observer accesses the system through an operational instrument {I(ε)

k }k with
associated POVM effects {E(ε)

k }k ⊂ A satisfying∑
k

E
(ε)
k = 1, E

(ε)
k ≥ 0, (2)

and the induced outcome probabilities

P
(ε)
k = ωeff

(
E

(ε)
k

)
, (3)

where ωeff denotes the effective state on the accessible readout sector.
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Concretely, one may model readout by a “pointer” unitary V with spectral measure ΠV , and
define effects using a window kernel (response function) w(ε)

k on T ∼= R/Z:

E
(ε)
k =

∫
T
w

(ε)
k (x) dΠV (x). (4)

Discarding outcomes yields the unconditional readout channel (CPTP map)

Λ(ε)(ρ) =
∑

k

I(ε)
k (ρ), (5)

capturing operational irreversibility at fixed resolution [14,15].

2.3 Weyl complementarity: the structural origin of readout noise

Axiom 2.6 (O6: Weyl pair and intrinsic non-commutativity). The scan is implemented by a
unitary Uscan, and the pointer phase by a unitary V , satisfying a Weyl commutation relation

UscanV = e2πiα V Uscan, α ∈ (0, 1) \ Q. (6)

In the canonical representation on L2(T),

(Uscanψ)(x) = ψ(x+ α), (V ψ)(x) = e2πixψ(x), (7)

so the scan induces the irrational rotation orbit

xn = x0 + nα (mod 1). (8)

The key point is operational: because Uscan and V fail to commute, one cannot refine “time
access” and “phase readout” simultaneously without cost. In this paper, thermal fluctuations
and entropy production are interpreted as the unavoidable residual mismatch generated when
finite-resolution readout acts on this Weyl structure.

2.4 Golden branch and canonical coding

For a generic irrational slope α, windowed readout of the rotation orbit produces a Sturmian
mechanical word and is canonically encoded by an Ostrowski numeration system [16–18]. The
golden branch is the special choice

α = φ−1 =
√

5 − 1
2 , φ = 1 +

√
5

2 , (9)

whose continued fraction has constant partial quotients [0; 1, 1, 1, . . . ]. In this case, Ostrowski
representation reduces to Zeckendorf/Fibonacci coding: every natural number admits a unique
decomposition as a sum of non-consecutive Fibonacci numbers [19]. This provides a minimal-
alphabet canonical discretization for readout depth and will serve as the normalization reference
for “arithmetic” thermodynamic quantities in the next sections.

3 Arithmetic Statistical Mechanics: entropy as phase friction
Arithmetic Statistical Mechanics (ASM) is the statistical mechanics induced by scan–projection
readout. It does not assume ontic randomness. Instead, it counts readout equivalence classes of
a deterministic unitary orbit under finite resolution.
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3.1 Microstates, macrostates, and the readout lattice

Definition 3.1 (Microstate and macrostate in ASM). Fix a local effective degree of freedom
with pointer coordinate x ∈ T. The microstate is the scan orbit {xn}n≥1 generated by O6.
For a fixed readout resolution ε (O5), the macrostate is the discrete output sequence {kn} (or
an induced symbolic word {sn}) produced by windowing the orbit, together with a finite set of
statistics (histograms, correlations, coding depth) computed from a length-N window.

The finite readout resolution induces a discrete readout lattice: a partition of T into finitely many
distinguishable cells. In the golden branch, the natural notion of lattice depth is the Zeckendorf
coding depth associated with the Ostrowski system; heuristically, “spatial resolution” becomes
“coding depth.”

3.2 Phase friction as discrepancy

To quantify mismatch without adding stochasticity, we use star discrepancy for the Kronecker
sequence {xn}.

Definition 3.2 (Star discrepancy and accumulated mismatch). Let x1, . . . , xN ∈ [0, 1) be the
first N points of the scan orbit. The one-dimensional star discrepancy is

D∗
N := sup

0≤a≤1

∣∣∣∣ 1
N

#{1 ≤ n ≤ N : xn < a} − a

∣∣∣∣ . (10)

The accumulated mismatch (worst-case counting deviation) is

EN := ND∗
N . (11)

Theorem 3.3 (Koksma’s inequality: discrepancy controls readout error). Let x1, . . . , xN ∈ [0, 1)
and let f : [0, 1) → R have bounded variation V (f) in the sense of Hardy–Krause (in one
dimension this reduces to total variation). Then∣∣∣∣∣ 1

N

N∑
n=1

f(xn) −
∫ 1

0
f(x) dx

∣∣∣∣∣ ≤ V (f)D∗
N . (12)

Theorem 3.3 provides an operational meaning of phase friction: D∗
N upper-bounds the worst-

case readout bias for any bounded-variation observable at the readout layer. Standard references
include [4, 20].
In ASM we interpret:

• D∗
N as phase friction strength (a per-sample readout mismatch intensity);

• EN as accumulated phase friction (a finite-window “heat” generated by mismatch).

Theorem 3.4 (Logarithmic bound for badly approximable slopes). Let xn = x0 + nα mod 1
with α irrational. If α has bounded continued-fraction coefficients (equivalently, α is badly
approximable), then there exists a constant C(α) > 0 such that

D∗
N ≤ C(α) logN

N
for all N ≥ 2, (13)

and hence
EN ≤ C(α) logN. (14)

The golden branch α = φ−1 is extremal among badly approximable slopes in the Hurwitz sense,
providing near-minimal constants in such bounds [4,5].
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An explicit continued-fraction bound controlling D∗
N by partial quotients is recorded in Ap-

pendix B, Eq. (55).

Proposition 3.5 (Periodic “thermal death” for rational slopes). If α = p/q ∈ Q in lowest
terms, then the orbit has period q and the readout is eventually periodic (with period dividing q)
under any fixed finite-resolution window protocol. Moreover, for every N that is a multiple of q,
one has the explicit star-discrepancy lower bound

D∗
N ≥ 1

2q , (15)

and therefore the accumulated mismatch grows at least linearly:

EN = ND∗
N ≥ N

2q . (16)

A short proof of the universal 1/(2q) lower bound is given in Appendix B.
Proposition 3.5 expresses an operational form of heat death: phase locking collapses accessible
macrostates into a short periodic cycle, and mismatch accumulates at a constant per-step rate
under fixed finite resolution.

3.3 Entropy as arithmetic mismatch: two compatible definitions

ASM matches the HPA layer-separation principle: additive thermodynamic quantities arise from
log readout of multiplicative weights. This yields two compatible entropies.

Definition 3.6 (Readout log-weight entropy). Let w ∈ (0, 1] denote the operational success
weight of a macro-constraint (e.g. a discrimination task) under a fixed readout protocol. Define

Srd := kB (− logw). (17)

Definition 3.7 (Phase-friction entropy). For a length-N window define the phase-friction en-
tropy

Spf(N) := kB EN = kB ND
∗
N . (18)

Srd and Spf are calibrated differently but share the same structural meaning: entropy quanti-
fies the operational cost of making a coarse-grained description consistent with a continuously
scanned ontic orbit. In the golden branch, the cost can be normalized by Zeckendorf depth,
making Spf a directly computable proxy for thermodynamic entropy flow in toy models.

3.4 Second law as monotonicity under readout coarse-graining

Operational irreversibility is encoded by the unconditional readout channel Λ(ε) (O5), which
forgets the outcome record. A key point is that for the POVM {E(ε)

k } induced by readout, there
exists a canonical “square-root” (Lüders-type) instrument with Kraus operators Mk =

√
E

(ε)
k

[14, 15]. Its unconditional channel

Λ(ε)(ρ) =
∑

k

√
E

(ε)
k ρ

√
E

(ε)
k (19)

is automatically unital because Λ(ε)(1) = ∑
k E

(ε)
k = 1. Therefore, entropy monotonicity follows

without an extra assumption.
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Proposition 3.8 (Arithmetic second law (interface form)). Let ρ be an effective state on the
accessible sector, and let Λ(ε) be the outcome-discarding readout channel associated with the
square-root instrument of the induced POVM (O5). Then Λ(ε) is unital and the von Neumann
entropy satisfies

S
(
Λ(ε)(ρ)

)
≥ S(ρ). (20)

Moreover, the phase-friction entropy Spf provides a computable upper proxy for the coarse-
grained entropy production in rotation models, controlled by discrepancy bounds such as Theo-
rem 3.4.

Proof. Let d be the Hilbert-space dimension of the effective sector and let τ := 1/d be the
maximally mixed state. For any CPTP map Λ, quantum relative entropy satisfies the data-
processing inequality

D(ρ∥τ) ≥ D(Λ(ρ)∥Λ(τ)), (21)

see e.g. [15]. If Λ is unital then Λ(τ) = τ . Using D(ρ∥τ) = log d− S(ρ), one obtains

log d− S(ρ) ≥ log d− S(Λ(ρ)), (22)

equivalently S(Λ(ρ)) ≥ S(ρ).

Remark 3.9 (Why no external noise is needed). Theorem 3.4 is purely arithmetic: even a
perfectly deterministic unitary scan produces mismatch at finite readout resolution. In this sense,
“thermal noise” is structural—it is the residual of projecting a Weyl orbit onto a discrete readout
lattice.

4 Generalized first law: energy as computational flux
To elevate phase friction from a mismatch measure to a thermodynamic quantity, we need a
dictionary relating entropy to energy, temperature, and work. In the scan–projection semantics,
energy is not a primitive “substance”; it is the operational computational flux required to (i)
perform finite-resolution readout, and (ii) maintain and repair structure against phase friction.

4.1 Computational temperature as tick rate

Let τ denote scan-time (intrinsic step count) and t denote external/operational time. Define the
local scan tick rate

ν(x) := dτ
dt . (23)

In the Ω implementation dictionary, ν is controlled by routing overhead through a lapse field N
(Section 5). We define the computational temperature by a proportionality

Tc(x) := ηT ν(x), (24)

where ηT sets units (one may take ηT = 1 in natural units). The operational meaning is direct:
faster local ticking forces more scan samples through the same finite-resolution readout channel
per unit t, increasing mismatch generation rate.

Quantum speed-limit calibration. In microscopic quantum implementations, the tick rate
of distinguishable state updates is bounded by energy-time speed limits. For example, the
Margolus–Levitin bound implies that a system with average energy above its ground state sat-
isfies

ν ≤ 2(⟨H⟩ − E0)
πℏ

, (25)
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while the Mandelstam–Tamm bound implies ν ≤ 2∆H/(πℏ) [21, 22]. Lloyd’s “ultimate limits”
estimate uses these bounds to relate energy to an upper bound on logical operations per unit
time [23]. Therefore ηT can be fixed by calibration to such microscopic limits (e.g. by saturat-
ing an appropriate speed bound), or treated as an effective proportionality constant when the
underlying microscopic degrees of freedom are not specified.

4.2 Structure information: Zeckendorf-effective bits

In the golden branch, readout depth is canonically organized by Zeckendorf/Fibonacci coding
[19]. Let I denote the number of effective internal bits (or more generally, effective Ostrowski
depth) that can be stably maintained under a given readout-and-control protocol. I measures
structure capacity:

• larger I corresponds to finer internal models and more stable correlations;

• smaller I corresponds to coarse macrostates near equilibrium.

4.3 A first-law form for ASM

Proposition 4.1 (Generalized first law (computational flux form)). At fixed readout proto-
col class (fixed ε and window family), the externally observed change of computational flux E
decomposes as

dE = Tc dSpf + Ξ dI + δWgeom. (26)

Here Spf is phase-friction entropy (Section 3), Ξ is the “chemical potential” conjugate to sta-
ble structure information I, and δWgeom is geometric work associated with changes in routing
overhead / impedance.

Proposition 4.1 can be read as a bookkeeping identity in the standard thermodynamic sense [24]:
for a fixed protocol class, one may treat E as an effective state function E = E(Spf , I, geom)
and define the conjugate variables by partial derivatives,

Tc :=
(
∂E

∂Spf

)
I,geom

, Ξ :=
(
∂E

∂I

)
Spf ,geom

,

with δWgeom collecting protocol-dependent geometric work terms. The physical content is that
finite-resolution readout forces an unavoidable tradeoff between dissipated mismatch and main-
tainable internal structure.

4.4 Landauer cost and log-cost additivity

The log structure of Srd = kB(− logw) (Section 3) matches the multiplicative-to-additive con-
version intrinsic to readout. In particular, when independent constraints have success weights
w1, w2, their joint weight is w1w2 and the total log-cost is additive.

Landauer’s principle provides a lower bound on the energetic cost of erasing one bit at
temperature T [25, 26]:

Werase ≥ kBT ln 2. (27)

In HPA–Ω, the relevant temperature is the computational temperature Tc and the total cost
includes geometric impedance (Appendix D). This makes explicit how maintaining low-entropy
structure is compatible with the second law: entropy is exported to the environment through
an operationally irreversible readout-and-erase channel [27,28].
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5 Relativistic thermodynamics: computational lapse and grav-
itational cooling

This section connects entropy production to gravitational redshift via the Ω implementation
dictionary: time dilation is computational slowdown.

5.1 Routing overhead and computational lapse

In the Ω program, microscopic evolution is modeled by a local unitary update (e.g. a PQCA
step) that can be exactly compiled into a one-dimensional nearest-neighbor circuit on a finite
region [2,6]. The required circuit depth defines the routing overhead field κ(x): the operational
cost of moving information through local connectivity to realize the update. A reference region
defines κ0 and the computational lapse

N (x) = κ0
κ(x) , dτloc(x) = N (x) dt. (28)

Higher routing overhead means fewer realizable logical updates per unit background depth dt,
hence a slower local clock. Identifying N with the GR lapse gives an operational dictionary for
redshift in static spacetimes [29–31].

5.2 Entropy-production rescaling

Let Spf(x; τ) denote the accumulated phase-friction entropy generated by a fixed readout proto-
col up to intrinsic scan time τ at location x (Section 3). We define the (possibly time-dependent)
mismatch density by the scan-time derivative

σ(x, τ) := 1
kB

dSpf(x; τ)
dτ , (29)

interpreted in discrete scan time as a difference quotient when needed. With this definition, the
scan-time entropy production law is simply

dSpf
dτ = kB σ(x, τ). (30)

Then the entropy production rate with respect to external time t is rescaled by the computational
lapse:

dSpf
dt = dSpf

dτ
dτ
dt = kB σ(x, τ) N (x). (31)

Equation (31) is the thermodynamic content of gravitational time dilation in this framework:

• larger mismatch density σ produces more entropy per scan step;

• stronger gravity corresponds to smaller N (larger routing overhead), so external observers
see slower entropy flow.

We call this effect computational cooling: in regions where computation is slowed by geo-
metric overhead, the externally observed entropy-production rate is suppressed.

5.3 Interpretation and limits

The lapse rescaling does not imply that mismatch disappears in strong gravity; rather, it means
that mismatch accumulation is “time-dilated” in the external description. When N → 0 (an
idealized horizon limit in the GR dictionary), external entropy flow tends to zero, consistent
with clock freezing. In Section 6 we connect the same mismatch density to a phase potential
and a phase-pressure acceleration.
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6 Gravity as entropic response: phase potential and phase pres-
sure

This section summarizes the thermodynamic interpretation of the “phase pressure” mechanism
developed in the HPA–Ω literature [6, 32]. The guiding idea is that coarse-grained readout
mismatch acts as a source for an effective potential whose gradient generates an acceleration. In
contrast to purely statistical entropic-gravity proposals [10], the source is deterministic mismatch
induced by scan–projection incompatibility.

6.1 Mismatch density and phase potential

Let σ denote a coarse-grained mismatch density (Section 5). On macroscopic scales we define
the phase potential Φ as the stationary point of a quadratic functional SΦ[Φ;σ] (Appendix C);
equivalently, Φ satisfies the Poisson equation [33]:

∆Φ = 4π ρΦ, ρΦ := κΦ σ, (32)

where κΦ is a coupling constant. Its normalization can be fixed by matching the exterior
monopole term to the Newtonian potential, κΦQσ = GMg (Appendix C, Eq. (77)). The associ-
ated phase-pressure field is the conservative vector field

PΦ := −∇Φ. (33)

For isolated localized sources, Eq. (32) yields a 1/r potential in the weak-field regime, recovering
the Newtonian template at leading order (Appendix C).

6.2 Entropic-force form

Define a computational free energy functional

Ffree := E − TcSpf , (34)

where E is computational flux and Tc is computational temperature (Section 4). In a quasi-
static approximation, effective dynamics tends to decrease Ffree. For a degree of freedom with
coordinate x, the corresponding force is

Fentropic := −∇xFfree = −∇xE + Spf∇xTc + Tc ∇xSpf . (35)

In the isothermal and weak-backreaction regime (∇Tc ≈ 0 and |∇E| subleading for the effective
degree of freedom), Eq. (35) reduces to the standard entropic-force form F ≈ Tc∇S [24]. When
Spf is controlled by the mismatch density σ and σ sources Φ, the phase-pressure field PΦ
provides a geometric representative of this entropic response. In words: matter flows toward
configurations that reduce mismatch production and routing impedance.

6.3 Black holes as computational blackbodies

Black-hole thermodynamics suggests that horizons act like thermal boundaries [34–36]. In the
present semantics, the horizon limit corresponds to a strong-overhead region where N → 0 (Sec-
tion 5). External observers then see effective freezing of internal scan dynamics; mismatch that
cannot be actively repaired by the slowed local computation is exported through the boundary
readout channel and appears approximately thermal at the level of marginal statistics, while
correlations can carry information [32].

This coexistence of thermal marginals with global unitarity is consistent with the modern
understanding of the information paradox. In unitary evaporation, the fine-grained entropy of
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Hawking radiation follows a Page curve [37]. In semiclassical gravity, the island formula (and
related replica-wormhole methods) reproduces the Page curve and resolves the paradox within
controlled settings [38, 39]. In HPT language: outcome-discarding readout channels naturally
generate approximately thermal coarse-grained statistics, while the ontic unitary scan retains
the correlations required for information recovery.

7 Third-law template and “heat death”: the golden attractor
ASM makes the “heat death” problem concrete: if scan slopes are rational (or effectively ra-
tional at the accessible resolution), the orbit locks into a short cycle, collapsing the accessible
macrostate space. Conversely, badly approximable slopes resist such locking.

7.1 Rational locking as periodic thermal death

For α = p/q, the orbit visits only q phase points. Under any fixed finite-resolution window family,
the induced readout becomes eventually periodic with period dividing q. The accumulated
mismatch grows linearly (Proposition 3.5), so a fixed fraction of readout steps become irreparably
“miscounted” with respect to the uniform reference. Operationally, this is a form of crystalline
equilibrium: the system loses macroscopic openness by phase locking.

7.2 Why the golden branch is special

The mechanism preventing rapid periodic lock-in is arithmetic. Irrational slopes are approxi-
mated by rationals via continued fractions; small denominators yield short pseudo-periods. A
slope is badly approximable if it cannot be too well approximated by rationals, equivalently if
its continued-fraction coefficients are bounded [5]. Such slopes yield strong uniform-distribution
control and hence logarithmic mismatch bounds (Theorem 3.4).

The golden branch α = φ−1 = [0; 1, 1, 1, . . . ] is extremal in the classical Hurwitz/Markov
sense. Hurwitz’s theorem states that for any irrational α there exist infinitely many rationals
p/q such that ∣∣∣∣α− p

q

∣∣∣∣ < 1√
5 q2 , (36)

and the constant
√

5 is optimal: for α = φ−1 one has the uniform lower bound∣∣∣∣φ−1 − p

q

∣∣∣∣ ≥ 1√
5 q2 for all p

q
∈ Q, (37)

so φ−1 is among the hardest irrationals to approximate by rationals [5]. Operationally, this delays
the onset of short pseudo-periods at a given approximation tolerance, maximizing resistance to
phase-locking.

In ASM this means:

• long avoidance of short pseudo-periods (maximal resistance to phase locking),

• simultaneously, nonzero but controlled mismatch (entropy production remains finite and
computable).

This motivates a third-law template: perfect “zero-friction” readout (vanishing mismatch at
all depths) is unattainable for finite observers; attempting to suppress mismatch indefinitely
drives the system toward periodic lock-in (loss of openness), rather than toward a frictionless
continuum.

13



7.3 A structural route to 1/f-type noise

Many complex systems exhibit 1/f -type spectra, often associated with hierarchical time scales
and near-criticality [40, 41]. In ASM the Zeckendorf/Fibonacci hierarchy provides a canonical
ladder of time scales. When a readout protocol aggregates approximately equal-weight relax-
ation contributions across this ladder, 1/f behavior follows quantitatively (Appendix G). In
the minimal closure where readout aggregates approximately equal-weight relaxation contribu-
tions across a Fibonacci (asymptotically geometric) ladder of characteristic times, one obtains
a quantitative 1/f band with an explicit prefactor (Appendix G, Proposition G.1):

S(f) ≈ w

4f logφ (38)

over the intermediate frequency range separating the smallest and largest Zeckendorf-resolved
scales. More generally, bounded nonuniform ladder weights still yield a robust 1/f mid-band; the
weights affect only the prefactor, which is bracketed between w−/(4f logφ) and w+/(4f logφ)
(Appendix G, Corollary G.2).

8 The physical origin of intelligence: active error correction and
reverse compilation

In a universe where phase friction is unavoidable for finite observers, stable low-entropy structure
requires continuous repair. This section proposes an operational definition of life and intelligence
as a phase transition: the emergence of predictive feedback loops that actively suppress local
mismatch production while exporting dissipation.

8.1 Agents as predictive-feedback subsystems

Definition 8.1 (Agent). A subsystem S is an agent if, under finite computational flux E, it
can:

1. acquire conditional information about its environment through a finite-resolution readout
instrument (O5),

2. maintain an internal model that predicts future readout outcomes of the scan,

3. implement feedback operations that reduce its own phase-friction entropy production rate
relative to the passive baseline.

This definition converts Maxwell-demon language into engineering constraints: the demon does
not violate the second law because it must pay readout and erasure costs [25–27]. What an
agent accomplishes is not entropy elimination but entropy redirection: moving dissipation into
an external waste channel while protecting internal structure.

8.2 Reverse compilation in the Ω dictionary

In the Ω implementation picture, local update rules are exactly compilable into nearest-neighbor
circuits; the required depth is the routing overhead κ(x) (Section 5). “Forward compilation”
maps dynamics to required overhead; “reverse compilation” is the agentic operation: using
limited internal bits I to infer which future phase information will be read out and to preconfigure
control operations that cancel mismatch.

In HPA language, prediction corresponds to compressing future readout words in the canon-
ical Zeckendorf/Ostrowski coordinate system, while control corresponds to applying phase cor-
rections compatible with the Weyl structure. The net effect is a local reduction of mismatch
density σ(x) and therefore a reduction in Spf production.
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8.3 Geometric Landauer principle

Landauer’s bound provides the minimal energetic cost of erasing one bit at temperature T [25].
In HPA–Ω, the operational temperature is Tc and the erasure must be implemented through a
geometric communication network with routing overhead. This motivates a refined principle:

Werase ≥ kBTc ln 2 + Zgeom, (39)

where Zgeom is a geometric impedance term capturing the extra work required to route and
re-encode information through constrained locality. Appendix D records a minimal formulation
consistent with the additivity of log-costs.

8.4 Information-thermodynamic bound on predictive gain

Feedback control admits a quantitative upper bound: the work (or free-energy) advantage achiev-
able by measurement-and-feedback is limited by the information acquired. In stochastic ther-
modynamics, generalized second-law inequalities take the form

⟨W ⟩ ≥ ∆F − kBT I, (40)

where I is an appropriate mutual-information term between measurement outcomes and system
degrees of freedom [42,43]. Interpreting T as the computational temperature Tc in HPA–Ω, we
obtain an operational bound on predictive free-energy gain:

Ḟpred ≤ kBTc İpred, (41)

where İpred denotes the mutual-information rate between the agent’s internal state and future
readout outcomes (a “thermodynamics of prediction” interface) [44].

8.5 Survival criterion and predictive efficiency

Let Ḟpred denote the rate of free-energy gain achieved by prediction-and-control, and let Ẇdiss
denote the dissipation rate required to maintain structure against phase friction. A necessary
condition for sustained existence is

Ḟpred > Ẇdiss. (42)
Combining Eq. (42) with the information bound (41) yields a directly testable necessary condi-
tion in terms of an information rate:

İpred >
Ẇdiss
kBTc

. (43)

Define the predictive efficiency

ηpred := Ḟpred

Ẇdiss
. (44)

On this view, evolution is the search for architectures that maximize ηpred under constraints
imposed by readout resolution, routing overhead, and mismatch density. Intelligence is then a
phase transition in which an error-correcting feedback loop becomes self-sustaining and scalable
in Zeckendorf depth.

9 Testable templates and reproducible toy experiments
The HPA–Ω program is a closed inference chain from scan–projection axioms to macroscopic
templates. The appropriate empirical posture is to specify testable interfaces: spectral tem-
plates, scaling laws, and reproducible toy-model checks that can be extended in concrete micro-
scopic implementations.
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9.1 Holographic noise as a hierarchical spectral template

If an experimental setup is sensitive enough that instrumental thermal noise is subdominant,
then the dominant residual may originate from finite-resolution readout mismatch rather than
stochastic bath noise. ASM predicts that such mismatch need not be white: multi-scale coding
(Ostrowski/Zeckendorf hierarchies) imprints a canonical ladder of time scales. In the minimal
closure where readout aggregates approximately equal-weight relaxation contributions across
the (asymptotically geometric) Fibonacci ladder, one obtains a quantitative 1/f mid-band with
explicit prefactor (Appendix G, Proposition G.1 and Table 3):

S(f) ≈ w

4f logφ. (45)

More generally, bounded nonuniform ladder weights still produce a robust 1/f mid-band; the
weights affect only the prefactor (Appendix G, Corollary G.2). This provides a falsifiable inter-
face: the slope, band limits, and prefactor are determined once the effective ladder range and
the aggregation weight w are fixed by the instrument kernel and the scale flow.

9.2 Golden ratios in biological rhythms (as a control-law hypothesis)

ASM does not attribute mystical significance to the golden ratio. Instead, it yields a quantita-
tive anti-locking criterion rooted in Diophantine approximation. In coupled-oscillator systems,
phase locking occurs near rational resonances and is organized by Arnold tongues; high-order
resonances (large denominators) are typically much narrower and therefore harder to lock into
at fixed noise/coupling strength [45,46].

Fix an operational locking tolerance δ > 0 (set by noise level, coupling strength, or measure-
ment resolution). Define the resonance susceptibility index

Qδ(α) := min
{
q ∈ N : ∃ p ∈ Z s.t.

∣∣∣∣α− p

q

∣∣∣∣ < δ

}
. (46)

If Qδ(α) is large, the system must access high-order resonances before it can phase-lock within
tolerance δ.

Proposition 9.1 (Diophantine lower bound on resonance susceptibility). If α is badly approx-
imable, then there exists a constant c(α) > 0 such that∣∣∣∣α− p

q

∣∣∣∣ ≥ c(α)
q2 for all p

q
∈ Q (47)

see e.g. [5]. For any tolerance δ > 0, this implies the quantitative anti-locking bound

Qδ(α) ≥
⌈(

c(α)
δ

)1/2⌉
. (48)

By Hurwitz/Markov extremality (Section 7), the golden branch α = φ−1 achieves the maxi-
mal uniform constant c(φ−1) = 1/

√
5 and satisfies the sharp lower bound∣∣∣∣φ−1 − p

q

∣∣∣∣ ≥ 1√
5 q2 ⇒ Qδ(φ−1) ≥

⌈( 1√
5 δ

)1/2
⌉
, (49)

which is (in the Hurwitz sense) maximal among irrational ratios [5]. This motivates a concrete
control-law hypothesis: if an adaptive oscillator network is selected to resist low-order phase
locking at a given effective tolerance δ, it should favor badly-approximable ratios, with the
golden branch as the extremal candidate. A natural statistical test is to estimate δ from observed
coupling/noise and compare the empirical distribution of inferred ratios against the predicted
anti-locking index Qδ.
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9.3 Cosmological entropy flow and dark-energy parameterization

If dark energy is reinterpreted as a background “openness” budget required to prevent global
periodic locking, then it is natural to associate an effective energy density ρσ(a) to a cosmo-
logical mismatch reservoir. In an FLRW background, covariant energy conservation implies the
continuity equation

d log ρσ

d log a = −3
(
1 + wσ(a)

)
, (50)

so the equation-of-state parameter is determined by the scale flow:

wσ(a) = −1 − 1
3

d log ρσ

d log a . (51)

In particular, a stationary background mismatch reservoir (dρσ/da ≈ 0 on Hubble time scales)
predicts wσ ≈ −1 [47, 48]. Deviations from −1 directly measure the slow running of the mis-
match reservoir and therefore provide a clean observational interface for the “openness budget”
interpretation.

9.4 Reproducible toy experiments

Appendix E provides minimal Python scripts validating:

• logarithmic mismatch-growth compatibility for the golden branch (Theorem 3.4),

• linear mismatch growth and periodicity for rational slopes (Proposition 3.5),

• lapse rescaling of externally observed entropy flow (Eq. (31)),

• least-squares envelope fits for mismatch templates (Appendix F),

• a toy 1/f spectrum from Fibonacci/geometric relaxation ladders (Appendix G).

These experiments are not intended as definitive phenomenology; they are unit tests of the
interface claims in the simplest controlled setting.

9.5 Quantitative parameter identification and fits (toy model)

The mismatch-growth bounds of Section 3 can be turned into measurable parameters. For badly
approximable slopes, discrepancy theory implies the asymptotic template

E↑
N (α;x0) = Cα(x0) logN +Bα(x0) + o(1), (52)

while rational slopes satisfy a linear lower bound EN ≥ N/(2q) for α = p/q (Proposition 3.5).
In the simplest periodic case α = 1/2, EN is exactly linear with an explicit coefficient depending
on the initial phase x0 (Appendix B).

We perform least-squares fits of these templates to the toy data generated by the scripts in
Appendix E. The fitted constants (including goodness-of-fit metrics) are reported in Appendix F,
providing a concrete calibration of “phase friction” in the minimal 1D model.

10 Conclusion
Holographic Phase Thermodynamics (HPT) provides a unified operational picture in the HPA–Ω
framework:

• Ontically, the universe is unitary and information-preserving.
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• Operationally, finite-resolution scan–projection readout induces probability, thermody-
namic time, and irreversibility.

• Entropy admits a micro-definitional origin as phase friction: accumulated arithmetic mis-
match of a Weyl scan orbit under discrete readout.

• Gravitational redshift is computational slowdown governed by a lapse N = κ0/κ, implying
computational cooling of externally observed entropy flow.

• Gravity can be modeled as an entropic/phase-pressure response sourced by mismatch
density.

• Life and intelligence are active error-correction phases: predictive feedback that locally
suppresses phase friction while paying a geometric Landauer cost.

The central shift is semantic but testable: instead of treating thermodynamics as an emergent
average over unknown microstates, ASM treats it as an inevitable interface cost of finite readout
acting on a deterministic unitary scan. The resulting scaling laws and spectral templates invite
targeted tests once explicit microscopic realizations and measurement kernels are fixed.

A Symbols and notation
This appendix records frequently used symbols.

• ωΩ: normalized global state on the observable algebra A.

• A: (effective) observable algebra; A ∈ A denotes an observable.

• U : A → A: intrinsic discrete-step automorphism (update).

• Uscan: unitary scan operator in the Weyl pair (O6).

• V : pointer unitary; ΠV : its spectral measure.

• α ∈ (0, 1) \ Q: scan slope in the Weyl commutation relation.

• T ∼= R/Z: circle (phase space); “mod 1” denotes reduction in T.

• ε > 0: readout resolution parameter.

• {I(ε)
k }: readout instrument; {E(ε)

k }: associated POVM effects; Λ(ε) = ∑
k I(ε)

k : outcome-
discarding channel.

• xn = x0 + nα mod 1: scan orbit points on T.

• D∗
N : one-dimensional star discrepancy of {x1, . . . , xN }.

• EN = ND∗
N : accumulated mismatch.

• Srd = kB(− logw): log-weight readout entropy proxy.

• Spf(N) = kBEN : phase-friction entropy for a length-N window.

• σ(x): mismatch density (entropy production per scan step) at location x.

• κΦ: coupling constant in the phase-potential source ρΦ = κΦσ.

• Qσ =
∫
R3 σ(x) d3x: total mismatch charge of a localized source.
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• MΦ = κΦQσ: exterior monopole strength in Φ(r) ∼ −MΦ/r.

• κ(x): routing overhead (compilation depth) at x; κ0 reference overhead.

• N (x) = κ0/κ(x): computational lapse (slowdown factor).

• τ : intrinsic scan time (step count); t: external/operational time.

• ν = dτ/dt: local tick rate; Tc = ηT ν: computational temperature.

• E: computational flux (available resource rate); I: effective stable structure bits; Ξ: con-
jugate chemical potential.

• Φ: phase potential; PΦ = −∇Φ: phase pressure.

• Zgeom: geometric impedance term in the geometric Landauer principle.

• ζgeom: dimensionless constant in Zgeom = ζgeom kBTc log(κ/κ0).

B Discrepancy bounds and entropy proxies
This appendix records explicit arithmetic bounds for the Kronecker sequence xn = x0+nα mod 1
and their interpretation as entropy proxies in ASM.

B.1 Definitions

Given points x1, . . . , xN ∈ [0, 1), define the empirical distribution function

FN (a) := 1
N

#{1 ≤ n ≤ N : xn < a}, 0 ≤ a ≤ 1. (53)

The star discrepancy and accumulated mismatch are

D∗
N := sup

0≤a≤1
|FN (a) − a| , EN := ND∗

N . (54)

B.2 Continued fractions and an explicit bound

Let α = [0; a1, a2, . . . ] be the continued fraction of α, with convergents pm/qm. For each N ≥ 1,
choose m such that qm ≤ N < qm+1. Classical results bound the discrepancy of the Kronecker
sequence in terms of the partial quotients [4, 5]:

D∗
N ≤ 1

N

(
1 +

m∑
i=1

ai

)
. (55)

A proof-level bound (Denjoy–Koksma + Ostrowski). For completeness we record a
standard proof route (with explicit constants) based on the Denjoy–Koksma inequality for ro-
tations and Ostrowski block decomposition.
Theorem B.1 (Ostrowski–Denjoy–Koksma bound for interval counts). Let xn = x0 +nα mod 1
with α irrational. Let W ⊂ [0, 1) be any interval and define

SN (W ) :=
N−1∑
n=0

1W (x0 + nα). (56)

Write the Ostrowski expansion N = ∑m
k=0 bkqk (relative to α). Then for every x0 ∈ [0, 1),

|SN (W ) −N µ(W )| ≤ 2
m∑

k=0
bk ≤ 2

m∑
k=0

ak+1, (57)

where µ is Lebesgue measure.
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Proof. Let f := 1W − µ(W ). Then f has bounded variation Var(f) = 2 and
∫ 1

0 f dµ = 0. For
each k ≥ 0, the Denjoy–Koksma inequality for rotations gives a uniform bound at convergent
times: ∣∣∣∣∣∣

qk−1∑
j=0

f(x0 + jα)

∣∣∣∣∣∣ ≤ Var(f) = 2, (58)

see e.g. [20,49,50]. Now expand N = ∑m
k=0 bkqk and decompose the length-N sum into bm blocks

of length qm, then bm−1 blocks of length qm−1, and so on (Ostrowski block decomposition; see
e.g. [17, 18]). Applying the qk-time bound to each block yields the first inequality. The second
follows from the standard digit bounds b0 < a1 and bk ≤ ak+1.

Corollary B.2 (Star discrepancy bound). For the Kronecker sequence one has

EN = ND∗
N = sup

0≤a≤1
|SN ([0, a)) −Na| ≤ 2

m∑
k=0

ak+1, (59)

where m is the index such that qm ≤ N < qm+1.

Proof. Apply Theorem B.1 to W = [0, a) and take the supremum over a ∈ [0, 1].

Bounded type implies logarithmic mismatch. If α is badly approximable, the partial
quotients are uniformly bounded, ai ≤ A. Then Corollary B.2 gives EN ≤ 2A(m + 1). Since
ak+1 ≥ 1 implies qk+1 ≥ qk + qk−1, one has qk ≥ Fk (Fibonacci), hence m = O(logN) and
therefore

D∗
N = O

( logN
N

)
, EN = O(logN). (60)

Golden branch constants. For α = φ−1, all partial quotients satisfy ai = 1 and qm = Fm+1
(Fibonacci numbers). Then Eq. (55) becomes

D∗
N ≤ m+ 1

N
whenever Fm+1 ≤ N < Fm+2, (61)

which makes the logarithmic growth of EN explicit.

B.3 Rational slopes and linear mismatch

If α = p/q with gcd(p, q) = 1, then {xn} takes values on a q-point lattice and is periodic with
period q. For N that is a multiple of q, the multiset {x1, . . . , xN } consists of the same q points
repeated equally often, hence its star discrepancy equals the star discrepancy of the underlying
q-point set.

Lemma B.3 (Universal lower bound for 1D star discrepancy). Let 0 ≤ y1 ≤ · · · ≤ yq < 1. Then
the 1D star discrepancy of the q-point set satisfies

D∗
q ≥ 1

2q . (62)

Proof. For a sorted set, the star discrepancy admits the standard 1D formula

D∗
q = max

{
max
1≤i≤q

(
i

q
− yi

)
, max

1≤i≤q

(
yi − i− 1

q

)}
.

If D∗
q < 1/(2q), then for every i we would have

yi >
i

q
− 1

2q = 2i− 1
2q and yi <

i− 1
q

+ 1
2q = 2i− 1

2q ,

a contradiction.
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N EN (α = φ−1) EN (α =
√

2 − 1) EN (α = 1/2)
100 1.763207 1.374521 37.654321
300 1.821446 2.092946 112.962963

1000 1.793023 1.927121 376.543211
3000 2.345318 2.934988 1129.629633

10000 3.350444 3.706156 3765.432110
30000 2.823758 3.305305 11296.296330

100000 2.691072 2.855873 37654.321100

Table 1: Representative accumulated mismatch. The rational slope exhibits linear growth,
while the irrational slopes remain at O(logN) scale (consistent with Corollary B.2).

Consequently, for α = p/q and every N divisible by q,

D∗
N ≥ 1

2q , EN = ND∗
N ≥ N

2q . (63)

This is the arithmetic mechanism behind periodic phase locking and the collapse of accessible
macrostates under fixed finite resolution.

Exact period-2 case α = 1/2. Let α = 1/2 and write a := x0 − ⌊x0⌋ ∈ [0, 1). Then the
orbit visits the two points {a, a+1/2 mod 1}, which can be written as {u, u+1/2} for a unique
u ∈ [0, 1/2). For even N , the empirical distribution assigns weight 1/2 to each point, and a
direct evaluation of the empirical CDF shows

D∗
N = max

(
u,

1
2 − u

)
, EN = N max

(
u,

1
2 − u

)
. (64)

This matches the exact linear fit observed in the toy experiment for α = 1/2.

B.4 Entropy production proxies

In ASM the phase-friction entropy for a length-N window is

Spf(N) = kBEN . (65)

If one interprets D∗
N as a per-step mismatch intensity, a natural scan-time proxy for the entropy

production rate is
dSpf
dτ ∼ kB D

∗
N , (66)

with the understanding that the right-hand side depends on the scale N at which coarse-graining
is performed. The lapse rescaling dS/dt = (dS/dτ)(dτ/dt) then yields Eq. (31) in the main text.

B.5 Numerical sanity checks (toy)

To make the arithmetic bounds tangible, Table 1 reports representative values of EN at the
phase offset x0 = 0.123456789 for two irrational slopes and one rational slope. Empirical values
fluctuate with N and with x0 (because star discrepancy is anchored at 0), but the qualitative
separation between logarithmic and linear regimes is robust.
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Log-fit diagnostic (finite range). Fitting EN ≈ A logN + B over the N values in Table 1
yields

Aφ−1 ≈ 0.196992, Bφ−1 ≈ 0.786635, R2 ≈ 0.6337, (67)

and
A√

2−1 ≈ 0.267471, B√
2−1 ≈ 0.450037, R2 ≈ 0.6460. (68)

This fit is not a theorem; it is an operational diagnostic consistent with the O(logN) bound.

x0-sensitivity (toy). At N = 30000, a uniform grid x0 ∈ {0, 1
16 , . . . ,

15
16} gives:

slope minEN maxEN mean std
φ−1 2.421996 3.421996 2.629265 0.382915√

2 − 1 2.551632 3.551632 2.848136 0.339885
1/2 7500.000000 15000.000000 11250.000000 2296.396634

C Phase potential and the Newtonian limit
This appendix records the minimal variational closure used for the phase potential Φ and its
weak-field interpretation.

C.1 Variational closure and Poisson equation

Let σ(x) denote a coarse-grained mismatch density in three spatial dimensions, and define an
effective source density ρΦ = κΦσ with coupling constant κΦ. We define the phase potential Φ
as the stationary point of the quadratic functional

SΦ[Φ;σ] :=
∫
R3

d3x
( 1

8π |∇Φ|2 + κΦ σΦ
)
, (69)

with appropriate boundary conditions (e.g. Φ → 0 at spatial infinity). The Euler–Lagrange
equation is the Poisson equation

∆Φ(x) = 4π ρΦ(x) = 4πκΦ σ(x). (70)

The associated phase-pressure field is

PΦ(x) = −∇Φ(x). (71)

C.2 Point-source solution

On R3 with decay boundary condition at infinity, the Green’s function for ∆ gives

Φ(x) = −
∫
R3

ρΦ(y)
|x − y|

d3y. (72)

Equivalently, ∆(1/|x|) = −4πδ(x) [51].

Mismatch charge and exterior monopole. Define the total mismatch charge

Qσ :=
∫
R3
σ(y) d3y. (73)

For compactly supported σ, the far-field expansion is

Φ(r) = −MΦ
r

+O(r−2), MΦ := κΦQσ. (74)
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Thus the monopole coefficient is fixed by the total mismatch charge Qσ and the calibration
constant κΦ. For a localized isolated source σ(x) = Qδ(3)(x) one obtains

Φ(r) = −κΦ
Q

r
, r = |x|. (75)

Then
PΦ(r) = −∇Φ(r) = −κΦ

Q

r2 r̂, (76)

and MΦ = κΦQ as expected. In the Newtonian limit, ΦN (r) = −GMg/r for gravitational mass
Mg, so matching the monopole term yields the calibration condition

κΦQσ = GMg. (77)

Equivalently, one may define an effective mass density ρσ := (κΦ/G)σ so that ∆Φ = 4πGρσ

and Mg =
∫
ρσ. In this effective template, gravity is interpreted as a deterministic response to

readout mismatch density rather than a fundamental interaction.

C.3 Remarks

The Poisson closure is a macroscopic effective choice consistent with locality and the existence
of a scalar potential sourced by a coarse-grained density. In the full HPA–Ω program, σ is
expected to be computable from explicit microscopic readout protocols and local implementation
constraints; the present paper uses it as the minimal interface object enabling thermodynamic
and phenomenological predictions.

C.4 Rigidity of the quadratic closure

The functional SΦ[Φ;σ] in Eq. (69) can be viewed as a rigidity statement: under mild symmetry
assumptions, the Poisson closure is the unique local quadratic response law for a shift-symmetric
scalar potential.

Proposition C.1 (Uniqueness of the local quadratic action). Assume an effective macroscopic
scalar potential Φ is defined only up to an additive constant (shift symmetry), and that its
stationary response to a source density σ is governed by a local action functional that is (i)
quadratic in Φ and its first derivatives, (ii) translation and rotation invariant in R3, and (iii)
involves no higher than first derivatives of Φ in the bulk. Then, up to an overall scale and
boundary terms, the unique bulk quadratic form is

∫
|∇Φ|2, and the unique linear coupling to σ

is
∫
σΦ. Consequently the Euler–Lagrange equation is Poisson:

∆Φ = 4πκΦ σ, (78)

with κΦ set by calibration.

Proof. By shift symmetry, no bulk term proportional to Φ2 is allowed, and Φ can enter only
through derivatives or linearly through the source coupling. The most general translation- and
rotation-invariant quadratic bulk form built from first derivatives is∫

R3
a ∂iΦ ∂iΦ d3x

for some constant a > 0 (Einstein summation). Cross-terms differ only by boundary contribu-
tions after integration by parts. The only local linear source coupling consistent with symmetries
is
∫
b σΦ d3x. Varying yields −2a∆Φ + b σ = 0, which is equivalent to Poisson after rescaling

and fixing the normalization to the conventional 4π factor [33].
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Signed discrepancy vs. mismatch charge. The signed equidistribution defect µN − µ has
zero total charge and therefore cannot generate a monopole 1/r term. The σ used in this paper is
not a signed measure; it is a nonnegative coarse-grained cost density (phase-friction production),
which can carry nonzero total charge in isolated defect sectors.

Flux characterization. By the divergence theorem and ∆Φ = 4πκΦσ,∫
SR

PΦ · dS = −
∫

BR

∆Φ d3x = −4πκΦ

∫
BR

σ d3x, (79)

so in the limit R → ∞ one has

MΦ = κΦQσ = − 1
4π lim

R→∞

∫
SR

PΦ · dS. (80)

D Geometric Landauer principle and impedance
This appendix records a minimal formulation of the geometric Landauer bound used in the main
text.

D.1 Log-cost additivity

In the scan–projection semantics, operational “success” is naturally multiplicative: if two inde-
pendent constraints have weights w1, w2 ∈ (0, 1], then their joint weight is w = w1w2. Defining
a log-cost

C := − logw, (81)

one obtains additivity
C = C1 + C2, Ci := − logwi. (82)

This is the structural reason entropies appear as logarithms in ASM.

D.2 Landauer bound and geometric overhead

Landauer’s principle bounds the minimal work required to erase one bit at temperature T
by [25,26]

Werase ≥ kBT ln 2. (83)

In HPA–Ω, the relevant operational temperature is the computational temperature Tc, and
erasure must be implemented on a constrained local network with routing overhead κ (or equiv-
alently lapse N = κ0/κ). This motivates a refined bound

Werase ≥ kBTc ln 2 + Zgeom. (84)

D.3 A convenient impedance parameterization

The term Zgeom captures extra work required by geometric constraints such as routing, locality,
and impedance. A convenient choice consistent with log-cost additivity and with monotonic
increase of cost under slowdown is forced (up to a single dimensionless constant) by a simple
functional equation.

Proposition D.1 (Log-overhead form). Let s := κ/κ0 ≥ 1 denote the dimensionless routing-
overhead factor and assume that the geometric impedance term can be written as

Zgeom(s) = kBTc F (s), (85)
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where F : [1,∞) → R satisfies the normalization F (1) = 0 and the log-additivity condition

F (s1s2) = F (s1) + F (s2) (s1, s2 ≥ 1), (86)

expressing the multiplicative composition of serial overhead factors. If F is measurable (or
continuous) on [1,∞), then there exists a constant ζgeom ≥ 0 such that

Zgeom(s) = ζgeom kBTc log s = ζgeom kBTc log
(
κ

κ0

)
= ζgeom kBTc log

( 1
N

)
. (87)

Proof. Define g : R≥0 → R by g(x) := F (ex). Then g(x + y) = g(x) + g(y) for all x, y ≥ 0.
Measurability (or continuity) implies the standard Cauchy conclusion g(x) = ζgeomx for some
constant ζgeom, hence F (s) = ζgeom log s.

This form makes the semantics transparent:

• larger routing overhead κ (smaller N ) increases the minimal work cost,

• serial routing segments contribute additively in log-overhead.

The paper uses Zgeom as an interface term: the dimensionless constant ζgeom can be fixed once
an explicit compilation-depth model or a benchmark calibration protocol is chosen.

E Reproducible toy experiments (Python)
This appendix contains reference implementations for Section 9. They require only Python 3
(no third-party dependencies). A minimal requirement file is provided in requirements.txt.

E.1 Experiment A: star discrepancy and accumulated mismatch EN

"""
Experiment A: star discrepancy and accumulated mismatch for rotation sequences.

Pure-Python (no third-party dependencies) reference implementation.

We compare accumulated mismatch E_N = N * D_N^* for:
- an irrational slope (golden branch),
- another irrational slope (sqrt(2) - 1),
- a rational slope (1/2) as a simple phase-locking / periodic case.

The output illustrates compatibility with O(log N) for badly approximable
irrationals, and linear growth for rational slopes.
"""

from __future__ import annotations

import math

def rotation_points(alpha: float, N: int, x0: float = 0.0) -> list[float]:
pts: list[float] = []
x = float(x0)
a = float(alpha)
for n in range(1, N + 1):

x = x0 + n * a
pts.append(x - math.floor(x))

return pts
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def star_discrepancy(points: list[float]) -> float:
"""1D star discrepancy for points in [0, 1)."""
x = sorted(points)
N = len(x)
invN = 1.0 / float(N)

d1 = 0.0
d2 = 0.0
for idx, xi in enumerate(x, start=1):

i_over_N = idx * invN
im1_over_N = (idx - 1) * invN
d1 = max(d1, abs(i_over_N - xi))
d2 = max(d2, abs(xi - im1_over_N))

return max(d1, d2)

def accumulated_mismatch(alpha: float, N: int, x0: float = 0.0) -> float:
pts = rotation_points(alpha, N, x0=x0)
D = star_discrepancy(pts)
return float(N) * D

def unique_points_count(alpha: float, N: int, x0: float = 0.0, tol: float = 1e-12) ->
int:↪→

pts = rotation_points(alpha, N, x0=x0)
quant = set()
inv_tol = 1.0 / tol
for p in pts:

q = int(round(p * inv_tol))
quant.add(q)

return len(quant)

def linfit(xs: list[float], ys: list[float]):
"""Least squares fit y = a x + b and R^2."""
n = len(xs)
mx = sum(xs) / n
my = sum(ys) / n
sxx = sum((x - mx) ** 2 for x in xs)
sxy = sum((x - mx) * (y - my) for x, y in zip(xs, ys))
a = sxy / sxx if sxx != 0 else float("nan")
b = my - a * mx
sst = sum((y - my) ** 2 for y in ys)
sse = sum((y - (a * x + b)) ** 2 for x, y in zip(xs, ys))
r2 = 1.0 - sse / sst if sst != 0 else float("nan")
return a, b, r2

def stats(vals: list[float]):
n = len(vals)
mean = sum(vals) / n
var = sum((v - mean) ** 2 for v in vals) / n
return min(vals), max(vals), mean, math.sqrt(var)

def main() -> None:
alpha_golden = (math.sqrt(5.0) - 1.0) / 2.0
alpha_sqrt2 = math.sqrt(2.0) - 1.0
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alpha_rational = 1.0 / 2.0

Ns = [100, 300, 1_000, 3_000, 10_000, 30_000, 100_000]
x0 = 0.123456789

print("N, E_N(golden), E_N(sqrt2-1), E_N(rational=1/2)")
Eg_list: list[float] = []
Es_list: list[float] = []
for N in Ns:

Eg = accumulated_mismatch(alpha_golden, N, x0=x0)
Es = accumulated_mismatch(alpha_sqrt2, N, x0=x0)
Er = accumulated_mismatch(alpha_rational, N, x0=x0)
Eg_list.append(Eg)
Es_list.append(Es)
print(f"{N:>8d} {Eg:>12.6f} {Es:>12.6f} {Er:>14.6f}")

print("\nCompatibility check: E_N/log N (smaller and slowly varying suggests O(log
N))")↪→

print("N, Eg/logN, Es/logN, Er/logN")
for N in Ns:

logN = math.log(float(N))
Eg = accumulated_mismatch(alpha_golden, N, x0=x0) / logN
Es = accumulated_mismatch(alpha_sqrt2, N, x0=x0) / logN
Er = accumulated_mismatch(alpha_rational, N, x0=x0) / logN
print(f"{N:>8d} {Eg:>12.6f} {Es:>12.6f} {Er:>14.6f}")

print("\nPeriodicity sanity check (unique points count for N=2000):")
Np = 2000
ug = unique_points_count(alpha_golden, Np, x0=x0)
us = unique_points_count(alpha_sqrt2, Np, x0=x0)
ur = unique_points_count(alpha_rational, Np, x0=x0)
print(f"golden: {ug} unique points (should be large)")
print(f"sqrt2-1: {us} unique points (should be large)")
print(f"1/2: {ur} unique points (should be 2)")

# Explicit continued-fraction envelope bounds for two standard badly-approximable
slopes.↪→

# Using the bound D_N^* <= (1 + sum_{i=1}^m a_i)/N for q_m <= N < q_{m+1},
# where a_i are continued-fraction partial quotients and q_m are denominators.
#
# For golden: a_i=1, q_m=F_{m+1}, so E_N <= 1+m when F_{m+1}<=N<F_{m+2}.
# For sqrt(2)-1: a_i=2, q_m follow Pell-type recurrence q_{m+1}=2q_m+q_{m-1}.
def fib_index_for_N(N: int) -> int:

# Return m such that F_{m+1} <= N < F_{m+2}, with F_1=1,F_2=1.
f_prev, f = 1, 1 # F_1, F_2
m = 1 # corresponds to F_{m+1}=F_2 initially
while True:

f_next = f_prev + f # next Fibonacci
if f_next > N:

return m
f_prev, f = f, f_next
m += 1

def pell_index_for_N(N: int) -> int:
# Denominators for [0;2,2,2,...] satisfy q_0=1,q_1=2,q_{m+1}=2q_m+q_{m-1}.
q_prev, q = 1, 2
m = 1
while True:
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q_next = 2 * q + q_prev
if q_next > N:

return m
q_prev, q = q, q_next
m += 1

print("\nExplicit envelope upper bounds from continued fractions (via
Kuipers--Niederreiter):")↪→

print("N, E_N(golden), bound_golden, E_N(sqrt2-1), bound_sqrt2-1")
for N in Ns:

Eg = accumulated_mismatch(alpha_golden, N, x0=x0)
Es = accumulated_mismatch(alpha_sqrt2, N, x0=x0)

m_g = fib_index_for_N(N)
bound_g = 1.0 + float(m_g) # 1 + sum a_i = 1 + m (all a_i=1)

m_s = pell_index_for_N(N)
bound_s = 1.0 + 2.0 * float(m_s) # 1 + sum a_i = 1 + 2m (all a_i=2)

print(f"{N:>8d} {Eg:>12.6f} {bound_g:>12.6f} {Es:>12.6f}
{bound_s:>12.6f}")↪→

print("\nFit diagnostic for irrationals: E_N ~ A log N + B (finite range)")
xs = [math.log(float(N)) for N in Ns]
A_g, B_g, r2_g = linfit(xs, Eg_list)
A_s, B_s, r2_s = linfit(xs, Es_list)
print(f"golden: A={A_g:.6f}, B={B_g:.6f}, R2={r2_g:.6f}")
print(f"sqrt2-1: A={A_s:.6f}, B={B_s:.6f}, R2={r2_s:.6f}")

print("\nPhase-offset sensitivity at N=30000 over x0 in {0,1/16,...,15/16}:")
N0 = 30000
x0s = [i / 16.0 for i in range(16)]
for name, alpha in [("golden", alpha_golden), ("sqrt2-1", alpha_sqrt2), ("1/2",

alpha_rational)]:↪→

vals = [accumulated_mismatch(alpha, N0, x0=float(xx)) for xx in x0s]
mn, mx, mean, sd = stats(vals)
print(f"{name:>6s}: min={mn:.6f} max={mx:.6f} mean={mean:.6f} std={sd:.6f}")

if __name__ == "__main__":
main()

E.2 Experiment B: computational lapse rescaling of entropy flow
"""
Experiment B: computational lapse rescaling of entropy flow.

Pure-Python (no third-party dependencies) reference implementation.

We treat the per-scan-step mismatch density sigma as a toy proxy given by
star discrepancy D_N^* for a large window N. The externally observed entropy
production rate is then:

dS/dt = k_B * sigma * lapse.

This script demonstrates linear scaling in the lapse factor.
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"""

from __future__ import annotations

import math

def rotation_points(alpha: float, N: int, x0: float = 0.0) -> list[float]:
pts: list[float] = []
a = float(alpha)
for n in range(1, N + 1):

x = x0 + n * a
pts.append(x - math.floor(x))

return pts

def star_discrepancy(points: list[float]) -> float:
x = sorted(points)
N = len(x)
invN = 1.0 / float(N)

d1 = 0.0
d2 = 0.0
for idx, xi in enumerate(x, start=1):

i_over_N = idx * invN
im1_over_N = (idx - 1) * invN
d1 = max(d1, abs(i_over_N - xi))
d2 = max(d2, abs(xi - im1_over_N))

return max(d1, d2)

def main() -> None:
kB = 1.0
alpha_golden = (math.sqrt(5.0) - 1.0) / 2.0
N = 100_000
x0 = 0.123456789

D = star_discrepancy(rotation_points(alpha_golden, N, x0=x0))
sigma = D # per-scan-step mismatch proxy

print("Using sigma := D_N^* for the golden branch as a toy proxy.")
print(f"N={N}, D_N^*={D:.8e}")

lapses = [1.0, 0.5, 0.2, 0.1, 0.02]
print("\nToy rescaling: dS/dt = k_B * sigma * lapse")
baseline = kB * sigma * lapses[0]
for L in lapses:

rate = kB * sigma * L
ratio = rate / baseline if baseline != 0.0 else float("nan")
print(f"lapse={L:>6.2f} dS/dt={rate:.8e} ratio={ratio:.4f}")

if __name__ == "__main__":
main()

29



E.3 Experiment C: least-squares fits for mismatch templates
"""
Experiment C: least-squares fits for mismatch-growth templates.

Pure-Python (no third-party dependencies) reference implementation.

We fit:
(i) irrationals: E_N = a * log N + b

(ii) rationals: E_N = c * N + d

The script prints fitted coefficients and R^2, and can emit a LaTeX table.

Usage:
python3 scripts/experiment_c_fit_tables.py
python3 scripts/experiment_c_fit_tables.py --latex

"""

from __future__ import annotations

import math
import sys
from dataclasses import dataclass

def rotation_points(alpha: float, N: int, x0: float = 0.0) -> list[float]:
pts: list[float] = []
a = float(alpha)
for n in range(1, N + 1):

x = x0 + n * a
pts.append(x - math.floor(x))

return pts

def star_discrepancy(points: list[float]) -> float:
x = sorted(points)
N = len(x)
invN = 1.0 / float(N)

d1 = 0.0
d2 = 0.0
for idx, xi in enumerate(x, start=1):

i_over_N = idx * invN
im1_over_N = (idx - 1) * invN
d1 = max(d1, abs(i_over_N - xi))
d2 = max(d2, abs(xi - im1_over_N))

return max(d1, d2)

def accumulated_mismatch(alpha: float, N: int, x0: float = 0.0) -> float:
pts = rotation_points(alpha, N, x0=x0)
D = star_discrepancy(pts)
return float(N) * D

@dataclass(frozen=True)
class Fit:

a: float
b: float
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r2: float

def linear_regression(x: list[float], y: list[float]) -> Fit:
n = len(x)
if n != len(y) or n < 2:

raise ValueError("Need at least two data points with matched lengths.")

sx = sum(x)
sy = sum(y)
sxx = sum(v * v for v in x)
sxy = sum(xi * yi for xi, yi in zip(x, y))

denom = n * sxx - sx * sx
if denom == 0.0:

raise ValueError("Degenerate x values (cannot fit).")

a = (n * sxy - sx * sy) / denom
b = (sy - a * sx) / n

y_mean = sy / n
ss_tot = sum((yi - y_mean) ** 2 for yi in y)
ss_res = sum((yi - (a * xi + b)) ** 2 for xi, yi in zip(x, y))
r2 = 1.0 - (ss_res / ss_tot if ss_tot != 0.0 else 0.0)

return Fit(a=a, b=b, r2=r2)

def as_latex_row(label: str, model: str, fit: Fit) -> str:
return (

f"{label} & {model} & {fit.a:.6f} & {fit.b:.6f} & {fit.r2:.6f} \\\\"
)

def running_max(values: list[float]) -> list[float]:
out: list[float] = []
m = -float("inf")
for v in values:

if v > m:
m = v

out.append(m)
return out

def main() -> None:
alpha_golden = (math.sqrt(5.0) - 1.0) / 2.0
alpha_sqrt2 = math.sqrt(2.0) - 1.0
alpha_rational = 1.0 / 2.0

Ns = [100, 300, 1_000, 3_000, 10_000, 30_000, 100_000]
x0 = 0.123456789

def series(alpha: float) -> list[float]:
return [accumulated_mismatch(alpha, N, x0=x0) for N in Ns]

Eg = series(alpha_golden)
Es = series(alpha_sqrt2)
Er = series(alpha_rational)
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x_log = [math.log(float(N)) for N in Ns]
x_lin = [float(N) for N in Ns]

Eg_env = running_max(Eg)
Es_env = running_max(Es)

fit_g = linear_regression(x_log, Eg_env)
fit_s = linear_regression(x_log, Es_env)
fit_r = linear_regression(x_lin, Er)

print("Fit templates:")
print(" irrationals: E_N = a * log N + b")
print(" rationals: E_N = c * N + d\n")

print(f"Initial phase x0 = {x0}")
print(f"N samples = {Ns}\n")

print("Golden branch (envelope fit):")
print(f" a={fit_g.a:.6f}, b={fit_g.b:.6f}, R^2={fit_g.r2:.6f}")
print("sqrt(2)-1 (envelope fit):")
print(f" a={fit_s.a:.6f}, b={fit_s.b:.6f}, R^2={fit_s.r2:.6f}")
print("Rational 1/2:")
print(f" c={fit_r.a:.6f}, d={fit_r.b:.6f}, R^2={fit_r.r2:.6f}\n")

want_latex = "--latex" in sys.argv[1:]
if want_latex:

print("% LaTeX table rows (a,b,R^2):")
print(as_latex_row(r"$\\alpha=\\varphi^{-1}$", r"$E_N^{\\uparrow}=a\\log

N+b$", fit_g))↪→

print(as_latex_row(r"$\\alpha=\\sqrt{2}-1$", r"$E_N^{\\uparrow}=a\\log N+b$",
fit_s))↪→

print(as_latex_row(r"$\\alpha=1/2$", r"$E_N=cN+d$", fit_r))

if __name__ == "__main__":
main()

E.4 Experiment D: 1/f spectrum from Fibonacci/geometric ladders
"""
Experiment D: 1/f spectrum from Fibonacci/geometric relaxation ladders.

Pure-Python (no third-party dependencies) reference implementation.

We construct a ladder spectrum
S(f) = sum_k w * tau_k / (1 + (2*pi*f*tau_k)^2)

with:
(A) geometric times tau_k = tau0 * r^k
(B) Fibonacci times tau_k = tau0 * F_{k+1}

and fit log S vs log f over a mid-band to estimate the slope and R^2.
"""

from __future__ import annotations
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import math
from dataclasses import dataclass
import sys

@dataclass(frozen=True)
class Fit:

slope: float
intercept: float
r2: float

def linfit(xs: list[float], ys: list[float]) -> Fit:
n = len(xs)
mx = sum(xs) / n
my = sum(ys) / n
sxx = sum((x - mx) ** 2 for x in xs)
sxy = sum((x - mx) * (y - my) for x, y in zip(xs, ys))
slope = sxy / sxx if sxx != 0.0 else float("nan")
intercept = my - slope * mx
sst = sum((y - my) ** 2 for y in ys)
sse = sum((y - (slope * x + intercept)) ** 2 for x, y in zip(xs, ys))
r2 = 1.0 - sse / sst if sst != 0.0 else float("nan")
return Fit(slope=slope, intercept=intercept, r2=r2)

def fib_times(K: int, tau0: float = 1.0) -> list[float]:
# Use F_{k+1} with F_0=0,F_1=1.
f0, f1 = 0, 1
out: list[float] = []
for _ in range(K + 1):

f0, f1 = f1, f0 + f1 # now f0 = F_{k+1}
out.append(tau0 * float(f0))

return out

def geometric_times(K: int, r: float, tau0: float = 1.0) -> list[float]:
return [tau0 * (r ** k) for k in range(K + 1)]

def ladder_spectrum(freqs: list[float], taus: list[float], w: float = 1.0) ->
list[float]:↪→

out: list[float] = []
for f in freqs:

omega = 2.0 * math.pi * f
s = 0.0
for tau in taus:

x = omega * tau
s += w * tau / (1.0 + x * x)

out.append(s)
return out

def logspace(f_min: float, f_max: float, n: int) -> list[float]:
if f_min <= 0.0 or f_max <= 0.0 or f_max <= f_min:

raise ValueError("Need 0 < f_min < f_max.")
a = math.log10(f_min)
b = math.log10(f_max)
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step = (b - a) / (n - 1)
return [10.0 ** (a + i * step) for i in range(n)]

def fit_band(freqs: list[float], S: list[float], f_lo: float, f_hi: float) -> Fit:
xs: list[float] = []
ys: list[float] = []
for f, s in zip(freqs, S):

if f_lo <= f <= f_hi and s > 0.0:
xs.append(math.log(f))
ys.append(math.log(s))

if len(xs) < 5:
raise ValueError("Not enough points in fit band.")

return linfit(xs, ys)

def main() -> None:
phi = (1.0 + math.sqrt(5.0)) / 2.0
tau0 = 1.0
K = 24 # gives tau_max ~ phi^K or F_{K+1} ~ phi^{K+1}/sqrt(5)
w = 1.0

taus_geo = geometric_times(K, r=phi, tau0=tau0)
taus_fib = fib_times(K, tau0=tau0)

f_min = 1e-4
f_max = 1e2
freqs = logspace(f_min, f_max, 500)

S_geo = ladder_spectrum(freqs, taus_geo, w=w)
S_fib = ladder_spectrum(freqs, taus_fib, w=w)

# Choose a mid-band that satisfies the asymptotic conditions in Proposition
app:fibonacci_1f.↪→

# We enforce omega*tau_min << 1 and omega*tau_max >> 1 with conservative margins.
tau_min_geo, tau_max_geo = min(taus_geo), max(taus_geo)
tau_min_fib, tau_max_fib = min(taus_fib), max(taus_fib)
tau_min = min(tau_min_geo, tau_min_fib)
tau_max = max(tau_max_geo, tau_max_fib)

f_lo = 10.0 / (2.0 * math.pi * tau_max) # omega*tau_max >= 10
f_hi = 0.1 / (2.0 * math.pi * tau_min) # omega*tau_min <= 0.1
fit_geo = fit_band(freqs, S_geo, f_lo=f_lo, f_hi=f_hi)
fit_fib = fit_band(freqs, S_fib, f_lo=f_lo, f_hi=f_hi)

print("1/f ladder spectrum fit (log-log): log S = slope * log f + intercept")
print(f"Fit band: f in [{f_lo}, {f_hi}]")
print(f"Geometric r=phi: slope={fit_geo.slope:.4f}, R^2={fit_geo.r2:.6f}")
print(f"Fibonacci: slope={fit_fib.slope:.4f}, R^2={fit_fib.r2:.6f}")

# Theoretical slope is -1, and the prefactor for the continuous-log approximation
is ~ w/(4 ln r).↪→

pref = w / (4.0 * math.log(phi))
print(f"Theory (continuous log-uniform, r=phi): slope=-1, prefactor~={pref:.6f}

(units of S*f)")↪→

if "--latex" in sys.argv[1:]:
print("% LaTeX table rows: model & K & fit-band & slope & R^2")
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band = f"[{f_lo:.3e},{f_hi:.3e}]"
print(f"Geometric ($r=\\varphi$) & {K} & {band} & {fit_geo.slope:.6f} &

{fit_geo.r2:.6f} \\\\")↪→

print(f"Fibonacci ($\\tau_k\\propto F_k$) & {K} & {band} & {fit_fib.slope:.6f}
& {fit_fib.r2:.6f} \\\\")↪→

if __name__ == "__main__":
main()

F Quantitative fits for mismatch templates
This appendix reports least-squares fits for the toy mismatch-growth templates discussed in
Section 9. A practical subtlety is that EN for Kronecker sequences exhibits number-theoretic
oscillations and is not monotone in N . Since the theoretical statements are envelope bounds
(e.g. EN = O(logN) for badly approximable slopes), we fit an empirical upper envelope

E↑
N := max

M≤N
EM , (88)

approximated on a discrete sample of N values by the running maximum.

Dataset. We use initial phase x0 = 0.123456789 and sample sizes

N ∈ {100, 300, 103, 3 × 103, 104, 3 × 104, 105}.

The fitted values below are produced by the pure-Python script scripts/experiment_c_fit_
tables.py (Appendix E).

Slope Model a b R2

α = φ−1 E↑
N = a logN + b 0.290129 0.211636 0.857333

α =
√

2 − 1 E↑
N = a logN + b 0.366607 -0.144242 0.904830

α = 1/2 EN = cN + d 0.376543 0.000000 1.000000

Table 2: Toy-model fits for mismatch templates. For irrational slopes we fit the empirical
envelope E↑

N to the logarithmic template; for the rational slope the mismatch is exactly linear
(Appendix B).

Provable envelope coefficients from continued fractions. Appendix B, Eq. (55) implies
an explicit envelope bound of the form

EN ≤ aub(α) logN +O(1)

for badly approximable slopes. For the golden branch α = φ−1 (all partial quotients ai = 1 and
qm = Fm+1) one obtains

aub(φ−1) = 1
logφ ≈ 2.078087.

For α =
√

2 − 1 = [0; 2, 2, 2, . . . ] (all partial quotients ai = 2 and qm growing at rate 1 +
√

2)
one obtains

aub(
√

2 − 1) = 2
log(1 +

√
2)

≈ 2.269185.

These are rigorous but not optimized; they provide a non-asymptotic calibration scale against
which the fitted envelope coefficients a may be compared.
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G Fibonacci hierarchy and 1/f spectra
This appendix closes the 1/f claim as a quantitative consequence of a Fibonacci/Zeckendorf
scale hierarchy combined with a standard spectral superposition law.

G.1 Log-uniform scaling from Fibonacci times

Let (Fk)k≥0 denote Fibonacci numbers with F0 = 0, F1 = 1, Fk+1 = Fk +Fk−1. The closed form

Fk = φk − φ̂k

√
5

, φ̂ = −φ−1, (89)

implies the asymptotic ratio Fk+1/Fk → φ and therefore the log-spacing

logFk+1 − logFk → logφ. (90)

Hence Fibonacci times are asymptotically geometric: they form an approximately uniform lattice
in log τ .

G.2 Discrete log-uniform mixtures yield 1/f

Consider a family of relaxation-time modes indexed by k with time constants

τk = τ0 r
k, r > 1, (91)

and mode weights wk ≥ 0. A standard Lorentzian single-mode spectrum takes the form

Sk(ω) = wk
τk

1 + (ωτk)2 , (92)

which captures (up to normalization) the power spectrum of a wide class of exponentially relaxing
fluctuations (e.g. random-telegraph or OU-type components) [40,41].

Proposition G.1 (Geometric relaxation ladder implies 1/ω plateau). Assume wk ≡ w (scale-
equipartition across log-time). Define the ladder spectrum

SK(ω) =
K∑

k=0
w

τ0r
k

1 + (ωτ0rk)2 . (93)

Then for intermediate frequencies satisfying

ωτ0 ≪ 1 ≪ ωτ0r
K , (94)

one has the asymptotic approximation

SK(ω) = w

ω log r

(
π

2 + o(1)
)
, (95)

and therefore in frequency f = ω/(2π),

SK(f) = w

4f log r (1 + o(1)) . (96)

Proof. Approximate the sum by an integral over log τ . Since τk = τ0r
k, the spacing in log τ is

constant ∆ = log r, so

SK(ω) ≈ w

∆

∫ τ0rK

τ0

τ

1 + (ωτ)2
dτ
τ

= w

ω∆ [arctan(ωτ)]τ0rK

τ0
.

Under ωτ0 ≪ 1 ≪ ωτ0r
K , the bracket tends to π/2, yielding the stated approximation.
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Corollary G.2 (Robustness to nonuniform weights). Assume the weights are bounded, w− ≤
wk ≤ w+ for all k. Under the same intermediate-frequency condition ωτ0 ≪ 1 ≪ ωτ0r

K , the
ladder spectrum satisfies

w−
4f log r (1 + o(1)) ≤ SK(f) ≤ w+

4f log r (1 + o(1)) , (97)

and therefore exhibits a robust 1/f mid-band. The weights affect only the prefactor, which is set
by the effective log-scale average of wk across the contributing ladder range.

Proof. Each summand in SK is nonnegative and linear in wk, so termwise bounds give

K∑
k=0

w−
τ0r

k

1 + (ωτ0rk)2 ≤ SK(ω) ≤
K∑

k=0
w+

τ0r
k

1 + (ωτ0rk)2 .

Applying Proposition G.1 to the constant-weight ladders yields the stated bounds after convert-
ing ω to f = ω/(2π).

Fibonacci/Zeckendorf specialization. Taking r = φ and τk ∝ Fk yields the same interme-
diate scaling because Fk+1/Fk → φ. Thus a multi-scale readout that aggregates approximately
equal-weight relaxation contributions across Zeckendorf depth predicts a 1/f band with an ex-
plicit prefactor proportional to (logφ)−1.

G.3 Numerical verification (toy)

Appendix E includes a pure-Python script that constructs SK(f) for both geometric and Fi-
bonacci ladders, performs a log–log linear fit over an automatically selected mid-band, and
reports the fitted spectral slope and R2. Representative fit parameters (fit band, slope, R2) are
reported in Appendix H.

H 1/f spectrum fits (toy)
This appendix reports the fitted spectral slopes for the ladder spectra constructed in Appendix G.
The results are produced by scripts/experiment_d_1f_spectrum.py –latex (Appendix E),
which selects a fit band satisfying the asymptotic conditions in Proposition G.1.

Model K Fit band [fmin, fmax] slope R2

Geometric (r = φ) 24 [1.535 × 10−5, 1.592 × 10−2] -1.006145 0.999976
Fibonacci (τk ∝ Fk) 24 [1.535 × 10−5, 1.592 × 10−2] -1.002940 0.999988

Table 3: Log–log fits for ladder spectra in the asymptotic mid-band. Both constructions yield
slopes near −1 with R2 ≈ 1, consistent with Proposition G.1.

I Limitations and next steps
From 1D rotation to many-body holography. The present paper uses the one-dimensional
irrational rotation as a controlled prototype in which discrepancy and mismatch accumulation
are explicit and computable. Extending σ(x) to realistic many-body holographic models re-
quires specifying (i) the microscopic scan and update architecture, (ii) the concrete measurement
kernels w(ε)

k , and (iii) the coarse-graining/scale-flow map relating window length N to spatial
resolution.
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Multi-window and spatial coarse-graining. Section 7 and Appendix G derive a quanti-
tative 1/f band under an explicit ladder-aggregation closure (log-uniform relaxation times with
approximately equal or bounded weights). Equal-weight aggregation yields an explicit prefactor,
while bounded nonuniform weights preserve the 1/f mid-band and only modify the prefactor
within a controlled range (Corollary G.2). The remaining open step is microscopic: to compute
the ladder weights wk from a concrete readout kernel family and an explicit scale flow, and
to justify when the relaxation-mode superposition model is an accurate effective description of
mismatch fluctuations.

Operational extraction of routing overhead. The lapse dictionary N = κ0/κ is opera-
tionally meaningful only if proxies for compilation depth can be extracted (directly in explicit
circuit models, or indirectly via observables such as phase delays and scattering times). Con-
necting these proxies to gravitational redshift in laboratory settings remains a key empirical
interface.

Quantifying intelligence as a phase transition. The agent definition and survival criterion
in Section 8 specify what should be computed (predictive gain vs. dissipation) but do not yet
fix a unique microscopic model of control loops. Instantiating Ḟpred and Ẇdiss in concrete
architectures is the next step for turning the “intelligence phase” proposal into a quantitative
theory.
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