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Abstract

We propose a constructive spacetime framework in the HPA–Ω (Holographic Phase Arith-
metic / Omega axiom system) scan–readout paradigm, designed to unify discrete compu-
tation and continuous geometry under finite information and finite resolution. The central
mechanism is an explicit scan–projection readout discipline: operational time is defined as an
internal relational scale of phase scanning, while probability is induced by finite-resolution
readout kernels (POVMs) rather than imposed as an external axiom. Intrinsic noncommu-
tativity is captured by a Weyl pair, providing a structural source of complementarity and
uncertainty.

To fold a one-dimensional instruction stream into higher-dimensional locality, we intro-
duce a Hilbert Folding Axiom: at each resolution level n, discrete time steps are mapped
by a Hilbert space-filling address to a d-dimensional holographic screen lattice, turning spa-
tial adjacency into a verifiable addressing effect. We define computational lapse via routing
overhead κ(x), and identify the lapse field N (x) = κ0/κ(x) as an operational redshift factor.
Using discrepancy certificates and Abel finite-part regularization along the canonical path
r ↑ 1, we construct auditable trace observables and a phase potential whose Newtonian limit
exhibits a 1/r profile.

Finally, under a single explicit bridge assumption—a holographic trace formula (HTF)
embedding zeta-zero modes into an Abel-regularized scan trace—we prove a conditional
rigidity statement: any nontrivial zero off the critical line would force an interior pole in the
unit disk |r| < 1, contradicting holomorphy of the geometric side dictated by bounded scan
readout. We conclude with reproducible scripts: Hilbert-address locality checks, golden-scan
discrepancy bounds, a toy Abel pole-barrier demonstration, an FFT Poisson solver for the
phase potential, and a Wigner–Smith time-delay interface for extracting κWS(E).

Keywords: Hilbert curve; space-filling address; HPA–Ω; scan–projection readout; Weyl
pair; POVM; star discrepancy; computational lapse; routing overhead; Abel finite part; holo-
graphic trace formula; Riemann hypothesis (conditional).

Conventions. Unless otherwise stated, log denotes the natural logarithm. We use t ∈ Z≥0 for
discrete protocol time (ticks), n ∈ N for resolution level, and r ∈ (0, 1) for Abel weights. The
canonical Abel path refers to the limit process r ↑ 1 with r ∈ (0, 1), applied to Abel generating
functions that are defined (and holomorphic) for |r| < 1.
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1 Introduction
Classical continuum models implicitly assume access to arbitrarily fine resolution. At singulari-
ties and at infinity, this assumption becomes not merely inconvenient but structurally unstable:
divergences are symptoms of a mismatch between infinite-resolution idealization and the finite
information/finite computation available to any operational observer. The HPA–Ω stance is
that operational time and operational probability must be endogenous to a scan–readout proto-
col, rather than externally postulated semantics.

Context in the holography literature. The broader motivation is consistent with the
holographic principle and the modern “bulk locality from boundary structure” viewpoint [1–6].
The distinguishing emphasis of the present work is constructive and protocol-native: we insist
that locality, time, and probability are defined at finite resolution and are auditable within a
scan–readout discipline.

Comparison to tensor-network locality constructions. Constructive bulk locality is also
pursued in tensor-network approaches, most prominently MERA/entanglement-renormalization
constructions and their holographic interpretations [7, 8]. Our Hilbert-folding move is different
in spirit: it makes locality an explicit address effect at each finite resolution n, and then treats
compilation/routing overhead as a physical resource that can be calibrated.

Comparison to complexity–gravity proposals and computational capacity. The idea
that computational resources are geometrized in gravity has an extensive literature (e.g. complex-
ity=action/volume and related proposals) [9, 10]. Our “computational lapse” dictionary differs
in that it is tied to a concrete, auditable overhead κ(x) for implementing screen-local tasks, and
it yields direct redshift-type ratios at the protocol level. At a schematic level, κ can be read as
a local cost multiplier in any circuit-depth or routing-cost functional for realizing screen-local
operations on a given substrate. A quantitative comparison to complexity=volume/action pro-
posals would therefore proceed by fixing a specific cost functional and checking whether the
induced lapse factors renormalize local costs in a way compatible with known bulk/boundary
variational structures (rather than only at the level of analogies). It is also complementary in
scope to recent “complexity equals anything” directions and related developments in alternative
complexity measures and deformations [11–16]. For broader discussions of computation as a
physical bound, see also [17].

Relation to discrete spacetime programs. Hilbert folding is one particular constructive
route from a discrete substrate to an effective geometry. It is complementary to causal-set
approaches, where causal order is the primitive and continuum geometry is reconstructed sta-
tistically [18].

Modern uncertainty frameworks. On the quantum side, beyond variance-form bounds
such as Massar–Spindel, the literature includes entropic uncertainty relations and computable
(SDP/polynomial-optimization) uncertainty frontiers [19–22]. Section 6 situates the protocol
tradeoff in this broader landscape.

Operator-theoretic RH programs. Our conditional RH mechanism isolates the hard con-
tent into a single trace-bridge assumption (HTF), in the tradition of “explicit formula as
trace” approaches [23]. This is compatible with, but logically distinct from, the Hilbert–
Pólya/quantization viewpoint and the Berry–Keating H = xp heuristic, which aim to produce
a concrete spectral object whose mode decomposition encodes the zeros [24]. Recent explicit
operator constructions, including prolate-wave operators, exemplify the kind of spectral input
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HTF presupposes [25]. To make clear that HTF is not an empty slogan, Appendix E records
a fully explicit HTF-style trace identity in the function-field setting (Weil zeta for curves over
finite fields), where the analogue of RH is known and the pole-barrier mechanism becomes a
transparent spectral-radius statement.

Scan–projection as the primitive interface. In the HPA–Ω closed layer, the observer does
not directly access an external continuous time parameter. Instead, the observer accesses a finite-
resolution readout of an intrinsic phase scan. Probability is induced by the readout instrument
(POVM/effects) at a given resolution ε, and nonclassicality arises from two structural sources:
(i) the intrinsic noncommutativity of a Weyl pair in the scan algebra, and (ii) the finite-resolution
projection kernel that defines the effective readout statistics.

The missing link: from one-dimensional scan to higher-dimensional locality. To
upgrade scan–readout from a deterministic sampling mechanism into a constructive spacetime
theory, one must answer a concrete question: how can a one-dimensional instruction stream
produce a verifiable notion of multi-dimensional spatial locality? This paper proposes an explicit
and auditable answer: Hilbert folding.

Hilbert folding: space as an address effect. At each finite resolution level n, we define a
d-dimensional holographic screen lattice Σn = {0, 1, . . . , 2n −1}d. A discrete Hilbert space-filling
address map Hn : {0, 1, . . . , 2dn − 1} → Σn is a bijection whose key property is one-step locality:
consecutive indices map to neighboring lattice sites. We elevate the existence of such an address
family to an axiom (Hilbert Folding Axiom, H1). With H1, spatial locality is not a background
geometric assumption but a checkable compilation/addressing effect.

Computational-lapse gravity. Once locality is defined on the screen lattice, the implemen-
tation question becomes physical: to realize screen-local interactions using a one-dimensional
scan substrate (nearest-neighbor gates in scan time), one must pay a routing/compilation over-
head. We define a local routing overhead κ(x) and introduce the computational lapse field

N (x) = κ0
κ(x) .

Operationally, N is the ratio between local relational time and global ticks, and therefore func-
tions as a redshift factor. In the weak-field regime, a Poisson closure for a phase potential yields
the expected 1/r profile and a Newtonian acceleration template.

A conditional Riemann critical-line rigidity derivation. The final part of the paper
addresses the Riemann Hypothesis (RH). We do not claim an unconditional proof in classical
analytic number theory. Instead, we state an explicit bridge assumption—a holographic trace
formula (HTF) that embeds the zero-mode contribution of ζ into an Abel-regularized scan
trace consistent with the Ω finite-part convention. Under HTF, we prove a closed-layer rigidity
theorem: any off-critical zero ρ forces an interior pole of the spectral-side Abel factor at r =
e−(ρ− 1

2 ) with |r| < 1, contradicting holomorphy of the geometric side dictated by bounded scan
readout. Thus, given HTF, all nontrivial zeros satisfy Re(ρ) = 1

2 .

Contributions and organization. The paper provides:

• a concrete Hilbert-folding axiom that turns 1D scan time into d-dimensional address lo-
cality;

• an operational definition of computational lapse as routing overhead, with a redshift/time-
dilation dictionary;
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• an auditable regularization discipline (Abel first, then finite part) compatible with finite
information readout;

• a conditional critical-line rigidity theorem under a single explicit trace-bridge assumption
(HTF);

• reproducible scripts implementing Hilbert addressing checks, discrepancy certificates, Abel
pole-barrier toys, and Poisson potential solvers.

Section 2 collects protocol objects (scan sequences, discrepancy, Abel regularization) and
the discrete Hilbert addressing template. Section 3 states the closed-layer axioms used in the
paper, including the Hilbert Folding Axiom. Sections 4–5 develop constructive spacetime from
Hilbert folding. Sections 6–7 treat intrinsic quantum structure and computational-lapse gravity.
Section 8 sketches a minimal discrepancy-driven dynamical closure. Appendix D gives the
conditional RH rigidity theorem. Section 9 provides reproducible numerics and scripts.

2 Preliminaries: scan objects, discrepancy certificates, Hilbert
addressing, and Abel regularization

2.1 Kronecker phase scans and Abel regularization

The minimal deterministic scan model is a Kronecker rotation on the circle:

xt = x0 + tα (mod 1), t ∈ Z≥0, α ∈ (0, 1) \ Q. (1)

Given a bounded readout kernel f : T → C, the Abel-regularized orbit sum is

Sf (r) :=
∑
t≥0

rtf(xt), 0 < r < 1. (2)

For every |r| < 1, the series converges absolutely and defines a holomorphic function of r. This
“move infinity to the boundary” principle is the closed-layer replacement for informal divergent
orbit sums.

Fourier-resolvent form. If f has an absolutely summable Fourier series,

f(x) =
∑
m∈Z

f̂(m) e2πimx,
∑
m∈Z

∣∣∣f̂(m)
∣∣∣ < ∞,

then substituting into (2) yields the resolvent identity

Sf (r) =
∑
m∈Z

f̂(m) e2πimx0 1
1 − r e2πimα

, |r| < 1. (3)

Thus, Sf is holomorphic on the unit disk and admits a controlled boundary expansion as r ↑ 1.

Finite-part extraction. For uniquely ergodic rotations, Abel means converge to the space
average for sufficiently regular f . We define the Abel finite part along the canonical path r ↑ 1
by

FP
∑
t≥0

f(xt) := lim
r↑1

(
Sf (r) −

∫ 1
0 f(x) dx

1 − r

)
, (4)

whenever the limit exists. In the Ω discipline, admissibility of an “infinite” protocol quantity is
tied to the existence of such a canonical finite part.
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2.2 Star discrepancy and deterministic error certificates

Let PN = {x0, . . . , xN−1} ⊂ [0, 1) be the scan prefix. The one-dimensional star discrepancy is

D∗
N (PN ) := sup

u∈[0,1]

∣∣∣∣ 1
N

#{t < N : xt < u} − u

∣∣∣∣ . (5)

The discrepancy controls deterministic sampling error via Koksma-type bounds: for functions
of bounded variation Var(f),∣∣∣∣∣ 1

N

N−1∑
t=0

f(xt) −
∫ 1

0
f(x) dx

∣∣∣∣∣ ≤ Var(f)D∗
N (PN ), (6)

see [26,27].

Golden-branch logarithmic stability. For the golden slope α = φ−1 with φ = (1 +
√

5)/2,
a convenient explicit bound is

D∗
N (PN ) ≤

2
(
2 + logφN

)
N

, (7)

which we will use as an illustrative certificate in Section 9; see Appendix B and [26,27].

2.3 Discrete Hilbert addressing (space-filling folding at finite resolution)

Fix an integer dimension d ≥ 2. At resolution n ∈ N, define the d-dimensional screen lattice

Σn := {0, 1, . . . , 2n − 1}d, |Σn| = 2dn. (8)

Definition 2.1 (Discrete Hilbert address map). A map Hn : {0, 1, . . . , 2dn − 1} → Σn is a
discrete Hilbert address map if it is a bijection and if the ordered list (Hn(0), Hn(1), . . . ,Hn(2dn−
1)) forms a Hamiltonian path on the grid with one-step locality.

For standard Hilbert constructions, one-step locality holds in the Manhattan metric:

∥Hn(t+ 1) −Hn(t)∥1 = 1, 0 ≤ t < 2dn − 1. (9)

In this paper, Hn is treated as a finite-resolution addressing primitive. The continuous Hilbert
curve is a classical limiting object, but operational claims are always formulated at finite n.

2.4 Weyl pairs and finite-resolution readout

Let Heff be an effective observer Hilbert space. A Weyl pair (U, V ) is a pair of unitaries satisfying

UV = e2πiα V U, (10)

which is the algebraic source of complementarity for scan shift and phase pointer. In the canon-
ical circle representation,

(Uψ)(x) = ψ(x+ α), (V ψ)(x) = e2πixψ(x),

U implements the Kronecker shift (1).
Finite-resolution readout is encoded by a POVM {E(ε)

k }k (effects summing to 1) and an
effective state ωeff :

P(ε)
k = ωeff

(
E

(ε)
k

)
,

∑
k

E
(ε)
k = 1, (11)

see [28–30].
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2.5 Routing overhead and computational lapse

Hilbert addressing turns scan time into screen locality, but implementing screen-local interac-
tions using a one-dimensional scan substrate requires compilation. We denote by κ(x) a local
routing overhead (e.g. minimal swap depth) required to enact a prescribed screen-local operation
near lattice site x ∈ Σn. The computational lapse is defined by

N (x) = κ0
κ(x) , (12)

where κ0 is a reference overhead in a homogeneous region. This provides an operational redshift
dictionary: larger compilation cost corresponds to smaller local proper time per global tick.

2.6 Abel mode factors and an interior pole barrier

The conditional RH mechanism used later is a simple analytic fact about Abel transforms of
exponential modes.

Lemma 2.2 (Abel pole barrier for off-critical growth). Fix ρ ∈ C and define at = e(ρ− 1
2 )t. For

|r| < 1, ∑
t≥0

rtat = 1
1 − r e(ρ− 1

2 )
.

If Re(ρ) > 1
2 , then the right-hand side has a pole at

rρ := e−(ρ− 1
2 ), |rρ| = e−(Re(ρ)− 1

2 ) < 1.

Proof. This is the geometric series identity for the complex ratio r e(ρ− 1
2 ). If Re(ρ) > 1

2 , then∣∣∣e(ρ− 1
2 )
∣∣∣ > 1, so the reciprocal rρ satisfies |rρ| < 1 and annihilates the denominator.

Lemma 2.2 will be paired with the holomorphy of bounded scan traces on |r| < 1 to obtain
a contradiction under the HTF bridge assumption.

2.7 Minimal primitives and terminology map

To streamline terminology, Table 1 lists the small set of primitives used in the closed-layer
arguments and their standard mathematical counterparts.

Normalization conventions. The reference overhead κ0 fixes the zero of the potential Φ =
log(κ/κ0) and should be chosen in a homogeneous reference region or reference band. In the
time-delay interface, τ0 fixes the dimensionless scale of κWS(E) = τWS(E)/τ0 (Appendix F).

3 Axioms and layer discipline in HPA–Ω (with a Hilbert-folding
extension)

3.1 Closed layer vs. interpretation layer

We adopt a strict two-layer writing discipline:

• Closed layer: explicit axioms, regularization conventions, and theorems provable from
them.

• Interpretation layer: physical narratives (black holes, wormholes, agency, etc.) that do
not enter the proof chain.

All formal results in this paper are stated in the closed layer, with assumptions clearly declared.
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HPA–Ω term / symbol Standard object / reading
scan ticks t discrete time index (protocol time)
scan unitary Uscan unitary shift/rotation implementing scan dynamics
phase pointer V and Weyl relation noncommutative Weyl pair (complementarity source)
readout kernel / POVM {E(ε)

k } generalized measurement (effects at resolution ε)
effective state ωeff normal state; in finite dimensions ωeff(E) = Tr(ρE)
Hilbert folding Hn discrete space-filling address map (Hamiltonian path locality)
routing overhead
κ(x;Gphys, πn,G)

compilation/routing depth for a fixed local task family on a
specified hardware graph and placement

time-delay overhead proxy
κWS(E)

Wigner–Smith total delay normalized by τ0
(energy/scale-dependent experimental proxy; distinct from
spatial κ(x))

computational lapse
N (x) = κ0/κ(x)

ratio of local relational time to global ticks (redshift factor)

computational potential
Φ(x) = − log N (x)

dimensionless potential; ϕN = −c2Φ in Newtonian units

star discrepancy D∗
N deterministic equidistribution error certificate

Abel regularization S(r) =
∑
atr

t holomorphic generating function on |r| < 1
finite part FPr↑1 constant-term extraction along the canonical Abel path
HTF trace-bridge assumption (explicit-formula-as-trace in Abel

coordinates)

Table 1: Minimal primitives and terminology map used throughout the paper.

3.2 Scan–projection readout and induced probability (O5)

Axiom 3.1 (O5: scan–projection readout and induced measure). At finite resolution ε > 0,
the observer accesses a family of readout effects {E(ε)

k }k (a POVM) on an effective Hilbert space
Heff , satisfying

∑
k E

(ε)
k = 1. Given an effective state ωeff , the outcome probabilities are induced

by
P(ε)

k = ωeff
(
E

(ε)
k

)
.

Operational (discrete) time is represented by scan ticks t ∈ Z≥0 indexing the internal scan.

This axiom encodes the principle that probability is not an external semantic postulate but
an interface object induced by finite-resolution readout.

3.3 Scan algebra and Weyl pair noncommutativity (O6)

Axiom 3.2 (O6: scan algebra with a Weyl pair). On Heff there exist unitary operators Uscan
and V satisfying the Weyl relation

UscanV = e2πiαV Uscan, α ∈ (0, 1) \ Q.

The noncommutativity is intrinsic and provides a structural source of complementarity and
uncertainty for scan shift and phase pointer readout.

3.4 Canonical regularization path: Abel first, then finite part (R1)

Axiom 3.3 (R1: Abel first, then finite part). Infinite-horizon scan traces are defined by Abel
regularization on |r| < 1 and are compared/renormalized only along the canonical path r ↑ 1.
When a universal divergence of the form c−1/(1 − r) is present, the admissible protocol value is
the finite-part constant term extracted along this path.

10



3.5 Hilbert folding (H1): a constructive spacetime extension

Axiom 3.4 (H1: Hilbert Folding Axiom). For each resolution level n ∈ N and each fixed
dimension d ≥ 2, there exists a discrete Hilbert address map

Hn : {0, 1, . . . , 2dn − 1} → Σn = {0, 1, . . . , 2n − 1}d

that is a bijection and satisfies one-step locality (9). The observer-accessible boundary degrees
of freedom at resolution n are organized on the screen lattice Σn with nearest-neighbor locality,
and scan ticks address them by x(n)

t := Hn(t mod 2dn).

H1 makes “space” an explicit finite-resolution object, derived from scan time by an auditable
address map. Implementation overhead (routing) then becomes a physical resource that can be
measured and compared across regions.

Remark (mathematical existence). The existence of discrete Hilbert orders with one-step
locality is a standard constructive fact in the space-filling curve literature [31, 32]. The axiom
content of H1 is the physical identification of observer-accessible boundary degrees of freedom
with such an addressable lattice at each resolution.

4 Hilbert folding: from tick time to holographic screen locality

4.1 Addressing at finite resolution

Fix d ≥ 2. At resolution level n, the screen lattice Σn in (8) has 2dn sites. By Axiom 3.4, there
exists a bijective address map Hn with one-step locality (9). We interpret Hn as a compiler-
visible and auditable specification of how scan ticks visit screen degrees of freedom.

Because Hn is a bijection, it admits an inverse

H−1
n : Σn → {0, 1, . . . , 2dn − 1},

and therefore supports two primitive operations:

• forward addressing (tick → site): t 7→ Hn(t);

• reverse addressing (site → tick): x 7→ H−1
n (x).

This invertibility is essential: locality is not only a geometric notion but a compilable addressing
relation.

4.2 Locality as a verifiable adjacency constraint

The defining local constraint (9) implies that the scan visits screen sites along a nearest-neighbor
path:

Hn(0) ∼ Hn(1) ∼ · · · ∼ Hn(2dn − 1),

where ∼ denotes ℓ1 nearest-neighbor adjacency on the grid. Thus, any scan-layer update that
couples consecutive ticks corresponds to a screen-local propagation.

Conversely, implementing a prescribed screen-local interaction (nearest neighbors on Σn)
on a one-dimensional scan substrate typically requires routing: degrees of freedom must be
swapped/moved in scan order so that neighboring sites become neighboring ticks. This is the
source of computational overhead κ(x) and, ultimately, computational lapse (Section 7).
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4.3 A constructive view of “space”

Within this framework, “space” is defined at each resolution level n as the graph (Σn,∼),
where ∼ is a chosen nearest-neighbor relation (e.g. ℓ1). The scan is not embedded into a pre-
existing manifold; rather, the manifold is an effective description of how the address-induced
neighborhood structure behaves under coarse graining.

Two consequences are immediate:

• Locality is protocol-relative. The same underlying scan dynamics can induce different
effective spatial neighborhoods under different admissible address maps (different compi-
lation conventions).

• Continuum geometry is an emergent coarse-grained object. The continuous
Hilbert curve H : [0, 1] → [0, 1]d provides a classical scaling limit of Hn under appro-
priate normalization, but operational claims are always made at finite n and finite readout
resolution.

A quantitative locality fact (Hölder regularity). For the continuous Hilbert curve H :
[0, 1] → [0, 1]d, one has Hölder continuity with exponent 1/d: there exists a constant Cd such
that

∥H(t) −H(s)∥∞ ≤ Cd |t− s|1/d (s, t ∈ [0, 1]),

see, e.g., [32]. This provides a quantitative backbone for the “finite resolution” viewpoint:
small parameter increments induce small spatial displacements after coarse graining, with a
deterministic scale law.

4.4 Algorithmic realization (2D) and locality check

For d = 2, a standard bitwise construction provides a concrete Hn and is easy to verify by brute
force. Appendix A records a pure-Python implementation and checks (9) for orders up to n = 8
in milliseconds. This implementation is included only as an auditable reference construction
consistent with the standard literature [32].

5 Constructive spacetime: coarse-grained geometry from folded
scan dynamics

5.1 Locality as a compilation/addressing effect

At resolution n, the physical adjacency graph is the screen lattice (Σn,∼). The scan order
provides an addressing of this graph, but it does not in general preserve all local interactions
for free. Instead, the cost of implementing a screen-local gate using scan-nearest-neighbor prim-
itives depends on the local routing overhead κ. This yields a natural operational meaning of
“curvature” or “gravitational potential” in terms of inhomogeneous compilation cost.

In particular, regions in which κ is larger are regions in which local operations take more
global ticks to realize. This is the structural origin of the lapse field (12) and of gravitational
redshift in this framework (Section 7).

5.2 Why a non-differentiable address still yields smooth effective geometry

The continuous Hilbert curve is nowhere differentiable, and even the discrete address path is
highly tortuous at fine scales. However, physical measurement is always performed with finite
resolution. Let w(ε) be a readout kernel at scale ε (or, equivalently, a POVM element family
E(ε)). The effective observable is a coarse-grained field Φε obtained by smoothing over many
lattice sites.
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In this regime, discrete differential operators on Σn (graph Laplacian, discrete gradients)
can approximate continuum operators provided ε is large compared with the lattice spacing 2−n

and the readout kernel is sufficiently regular. Thus, classical smooth geometry is an effective
description of coarse-grained fields, not a microscopic property of the address curve itself.

5.3 Scale as resolution: Hilbert self-similarity and canonical time coding

Hilbert addressing is strictly hierarchical: Hn+1 is built recursively from Hn by subdividing the
lattice into 2d subcubes and connecting appropriately rotated/reflected subpaths. This induces
a natural notion of “coarse graining”: the map n 7→ n − 1 groups 2d sites into a block and
projects Σn to Σn−1.

On the time side, canonical integer codings (Ostrowski/Zeckendorf for the golden branch)
provide a multi-scale decomposition of scan time. Together, these two hierarchical structures
support a renormalization viewpoint in which:

• resolution level n acts as a discrete spatial scale;

• Abel weight r acts as an analytic radial coordinate (regularizing long tails before taking
the boundary limit);

• coarse-grained dynamics is defined by pushing forward the scan/readout protocol through
these scale maps.

5.4 Admissible address maps and robustness under coarse graining

Hilbert folding (Axiom 3.4) commits to a concrete finite-resolution addressing primitive, but
the broader scan–fold paradigm admits alternative address families. This matters because the
addressing enters the compilation problem and therefore the overhead field κ (Section 7.1.1). At
the same time, physical predictions are formulated at finite readout resolution, so only coarse-
grained features of protocol fields are observable. This subsection records a minimal robustness
statement in the closed layer.

Definition 5.1 (Admissible address family (coarse-grained locality class)). An address family
{An}n≥1 with An : {0, 1, . . . , 2dn − 1} → Σn is called admissible if each An is a bijection and
if there exist constants Cd > 0 and cd > 0 such that, after rescaling Σn to the unit cube by
x̃ := 2−nx, the induced discrete path obeys a uniform Hölder-type locality bound

∥∥2−nAn(t) − 2−nAn(s)
∥∥

∞ ≤ Cd

∣∣∣∣ t− s

2dn

∣∣∣∣1/d

, s, t ∈ {0, . . . , 2dn − 1},

and a uniform non-degeneracy bound in the reverse direction∣∣∣∣ t− s

2dn

∣∣∣∣ ≤ cd

∥∥2−nAn(t) − 2−nAn(s)
∥∥d

∞ .

Continuous Hilbert/Peano-type constructions satisfy such bi-Hölder bounds in their classical
forms; see [32].

Remark 5.2 (Hilbert vs. Z-order (Morton) locality). Different admissible families can have sub-
stantially different clustering properties at finite resolution, and therefore different compilation
overhead landscapes. In spatial indexing, Hilbert orders are known to provide stronger cluster-
ing/locality than Z-order/Morton-type orders for a wide range of window queries and locality
metrics; see [33]. In the present framework, this translates into a principled sensitivity channel:
the map choice changes the distribution of address separations and therefore changes κ and N
in substrate models where compilation is dominated by scan-order routing.
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Definition 5.3 (Neighbor index separation and a scan-chain overhead proxy). Fix an admissible
address map An : {0, 1, . . . , 2dn−1} → Σn and write its inverse as A−1

n : Σn → {0, 1, . . . , 2dn−1}.
For a screen-neighbor edge {x, y} ∈ Escreen define the scan-order separation

∆An(x, y) :=
∣∣∣A−1

n (x) −A−1
n (y)

∣∣∣ .
Define the associated local scan-chain overhead proxy by

κ̃An(x) := max
y∼x

∆An(x, y),

interpreted as the largest scan-order separation among screen neighbors of x.

Proposition 5.4 (Scan-chain lower bound from address separations). Assume the hardware
graph is the unit-weight path on vertices {0, 1, . . . , 2dn −1} and the placement is πn(x) = A−1

n (x).
Then implementing any primitive interaction between screen neighbors {x, y} ∈ Escreen using
adjacent primitives on the chain requires at least ∆An(x, y) global ticks. Consequently, for any
local update task family Gx that requires at least one interaction between x and each of its
neighbors, the compilation overhead satisfies

κ(x) ≥ κ̃An(x),

up to fixed constant factors determined by the primitive gate set and scheduling convention.

Proof. On a path graph with unit weights, information cannot propagate faster than one edge
per tick. Thus any interaction between sites placed at chain positions A−1

n (x) and A−1
n (y)

requires at least their graph distance, which equals
∣∣A−1

n (x) −A−1
n (y)

∣∣. The local-update bound
follows by taking the maximum over the required neighbor interactions.

Remark 5.5 (Address-family dependence of N(x) on a scan chain). In the GR dictionary of
Section 7, the lapse N is identified with the operational field N = κ0/κ, hence also with the poten-
tial Φ = − logN = log(κ/κ0). In the scan-chain specialization πn(x) = A−1

n (x), Proposition 5.4
shows that address-order neighbor separations control the overhead landscape and therefore di-
rectly control the lapse landscape. This makes the dependence of N(x) on the choice of address
family (Hilbert vs. Morton/Z-order, etc.) an experimentally testable effect: Tables 3 and 12
report the induced proxy statistics and the corresponding redshift ratios for fixed substrate model,
with only the address family varied. Since all physical comparisons are formulated either as lapse
ratios or as potentials (which are invariant under global tick reparameterizations; Remark 7.5),
the sensitivity to address choice is a genuine spatial inhomogeneity rather than a coordinate
artifact.

Remark 5.6 (Address choice as a protocol gauge (diffeomorphism analogy)). In continuum
gravity, diffeomorphism invariance expresses the fact that physical predictions do not depend
on the choice of coordinates. In the present constructive setting, an address family plays a
role closer to a protocol gauge choice: it is a concrete discrete chart that fixes how scan time is
folded into screen locality and therefore fixes a concrete compilation problem on a given substrate.
Accordingly, at fixed microscopic substrate the lapse landscape can depend on the address choice
(Remark 5.5). Operational invariance is recovered only after specifying the readout resolution:
Definition 5.8 formalizes when two protocol realizations are indistinguishable at scale ε, and
Proposition 5.7 then bounds the induced changes in coarse-grained potentials and lapse ratios.
In this sense, diffeomorphism-style “gauge freedom” is replaced here by an explicit, testable
universality statement at finite resolution.
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5.4.1 A stability estimate for coarse-grained potentials

Let w(ε) be a nonnegative readout kernel at scale ε with
∫
w(ε) = 1. For any field F define

its coarse-graining by convolution Fε := w(ε) ∗ F . If Φ is defined as the Poisson potential of a
protocol-defined source density σ (Section 8.4), then small changes in σ imply small changes in
Φ in standard Sobolev norms.

Proposition 5.7 (Stability of Poisson potentials under source perturbations). Let Ω ⊂ R3 be
a domain with fixed boundary conditions (periodic, Dirichlet, or suitable decay at infinity). Let
σ1, σ2 be two source densities and let Φ1,Φ2 solve

−∆Φi = 4πGσi

with the same boundary convention. Then

∥∇(Φ1 − Φ2)∥L2(Ω) ≤ 4πG ∥σ1 − σ2∥H−1(Ω) .

Proof. Set δΦ = Φ1 − Φ2 and δσ = σ1 − σ2. Then −∆δΦ = 4πGδσ. Testing against δΦ and
integrating by parts yields

∥∇δΦ∥2
L2(Ω) = 4πG ⟨δσ, δΦ⟩ ≤ 4πG ∥δσ∥H−1(Ω) ∥∇δΦ∥L2(Ω) ,

hence the claimed estimate.

Definition 5.8 (Resolution-ε universality class (protocol equivalence)). Fix a boundary conven-
tion on Ω and a readout kernel w(ε) of width ε with

∫
w(ε) = 1. Consider two protocol realizations

(address family, routing scheme, hardware graph Gphys, placement πn, horizon and regulariza-
tion budgets, etc.) that induce source densities σ1, σ2 in the sense of Definition 8.7. Define the
coarse-grained sources σi,ε := w(ε) ∗ σi. For a tolerance δ > 0, we say the two realizations are
(ε, δ)-equivalent if

∥σ1,ε − σ2,ε∥H−1(Ω) ≤ δ.

The collection of realizations mutually (ε, δ)-equivalent forms an operational universality class
at readout resolution ε.

Proposition 5.9 (Coarse-grained invariance of potentials and lapse ratios in a universality
class). Fix a boundary convention on Ω such that a Poincaré-type inequality holds in the chosen
gauge (e.g. periodic with zero-mean gauge, or Dirichlet with Φ|∂Ω = 0), and let CP be the
corresponding constant:

∥f∥L2(Ω) ≤ CP ∥∇f∥L2(Ω) .

Let two protocol realizations be (ε, δ)-equivalent in the sense of Definition 5.8. Let Φi,ε denote
the Poisson potentials of the coarse-grained sources:

−∆Φi,ε = 4πGσi,ε

with the same boundary convention and gauge choice, and define the corresponding coarse-grained
lapse fields Ni,ε := e−Φi,ε. Then:

1. Energy-norm invariance.

∥∇(Φ1,ε − Φ2,ε)∥L2(Ω) ≤ 4πGδ.

2. Pointwise invariance after readout smoothing. For any nonnegative normalized
kernel w̃(ε) used to read out the potential at scale ε, define Φ̃i,ε := w̃(ε) ∗ Φi,ε and Ñi,ε :=
e−Φ̃i,ε. Then ∥∥∥Φ̃1,ε − Φ̃2,ε

∥∥∥
L∞(Ω)

≤ 4πGCP

∥∥∥w̃(ε)
∥∥∥

L2(Ω)
δ,
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and therefore for all x ∈ Ω one has the multiplicative lapse bound

exp
(
−∆ε

)
≤ Ñ1,ε(x)

Ñ2,ε(x)
≤ exp

(
∆ε
)
, ∆ε := 4πGCP

∥∥∥w̃(ε)
∥∥∥

L2(Ω)
δ.

Proof. By Definition 5.8, one has the coarse-grained source bound

∥σ1,ε − σ2,ε∥H−1(Ω) ≤ δ.

Applying Proposition 5.7 to the pair (σ1,ε, σ2,ε) yields the energy-norm bound. For the pointwise
statement, set δΦε := Φ1,ε − Φ2,ε and note

Φ̃1,ε − Φ̃2,ε = w̃(ε) ∗ δΦε.

Young’s inequality gives
∥∥∥w̃(ε) ∗ δΦε

∥∥∥
L∞

≤
∥∥∥w̃(ε)

∥∥∥
L2

∥δΦε∥L2 . The Poincaré inequality bounds
∥δΦε∥L2 ≤ CP ∥∇δΦε∥L2 . Combining with the energy estimate yields the stated L∞ bound.
The multiplicative lapse bound follows from Ñi,ε = exp(−Φ̃i,ε).

Remark 5.10 (Practical robustness criterion at resolution ε). If a change of address map (or
other protocol parameters) modifies the source density only at scales below the readout resolution,
then the coarse-grained sources σ1,ε and σ2,ε are close, and Proposition 5.7 implies that the
coarse-grained potentials Φ1,ε and Φ2,ε (hence Ni,ε = e−Φi,ε) are close as well. Thus, sensitivity
of physical conclusions to the address map can be made quantitative: it is controlled by the norm
of the induced source perturbation after coarse graining. Equivalently, within the universality
class of Definition 5.8, the coarse-grained lapse field Nε = Nε is insensitive to microscopic
address/graph details beyond their impact on the coarse-grained source.

6 Intrinsic quantumness: Weyl pairs, induced probability, and
uncertainty as a protocol tradeoff

6.1 Weyl pairs as the algebraic source of complementarity

By Axiom 3.2, the scan algebra contains a Weyl pair (Uscan, V ) satisfying

UscanV = eiθV Uscan, θ := 2πα ̸≡ 0 (mod 2π).

This obstructs simultaneous diagonalization: one cannot prepare a state that is arbitrarily close
to an eigenstate of both scan shift and phase pointer. In the scan–readout semantics, this is the
structural origin of complementarity.

6.2 Readout instruments and the derived Born form

At resolution ε, the readout channel is encoded by a POVM {E(ε)
k } (Axiom 3.1). The probability

assignment is induced by the effective state:

P(ε)
k = ωeff

(
E

(ε)
k

)
.

In finite-dimensional approximations, this becomes the Born form Pk = Tr(ρEk). Thus, prob-
ability is a derived interface object controlled by the readout resolution and the instrument
design, rather than an external stochastic postulate [28–30].
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Born form from effect-additivity (Gleason–Busch). The appearance of Tr(ρE) is not an
extra modeling choice once one commits to POVM-based readout and noncontextual additivity
on effects. In a finite-dimensional Heff , every normal state ωeff has the form ωeff(E) = Tr(ρE)
for a density operator ρ. More generally, the following theorem shows that any consistent
probability assignment on effects is necessarily of this form.

Theorem 6.1 (Gleason–Busch representation for POVMs (informal statement)). Let H be a
complex Hilbert space and let µ be a map assigning probabilities to effects E (0 ≤ E ≤ 1) such
that:

• µ(1) = 1 and µ(E) ≥ 0;

• for any finite POVM {Ek}k with
∑

k Ek = 1, one has
∑

k µ(Ek) = 1 (equivalently, µ is
finitely additive on coexistent effects).

Then there exists a density operator ρ such that µ(E) = Tr(ρE) for all effects E.

Reference. This is a POVM/effect-space version of Gleason’s theorem; see [30] for a simple proof
and discussion of hypotheses.

6.3 A variance-form uncertainty relation (Massar–Spindel)

Following [34], for a normalized state |ψ⟩ define the unitary variances

∆2
U := 1 − |⟨ψ|U |ψ⟩|2 , ∆2

V := 1 − |⟨ψ|V |ψ⟩|2 .

Theorem 6.2 (Weyl-pair uncertainty (variance form)). Let U, V be unitary operators satisfying
UV = eiθV U with the phase chosen so that 0 ≤ θ ≤ π, and set A = tan(θ/2). Then for any
normalized state |ψ⟩,

(1 + 2A) ∆2
U ∆2

V +A2(∆2
U + ∆2

V ) ≥ A2. (13)

Reference. This is Theorem 1 of [34]; see also the derivation in [35, Appendix].

6.4 Entropic uncertainty at finite resolution

Variance bounds such as (13) capture one aspect of complementarity. Finite-resolution read-
out naturally also supports entropic uncertainty relations, which are often tighter and directly
operational in information-theoretic tasks. For two projective measurements corresponding to
orthonormal bases {|xi⟩} and {|zj⟩}, the Maassen–Uffink bound states

H(X) +H(Z) ≥ −2 log c, c := max
i,j

|⟨xi⟩ zj | ,

where H(·) is the Shannon entropy of the induced outcome distribution [19]. With quantum
side information (memory), the bound strengthens to a conditional-entropy form [20].

6.5 SDP and polynomial-optimization uncertainty frontiers

Beyond analytic inequalities, modern approaches compute tight uncertainty tradeoffs for fixed
finite measurement families using convex optimization. For finite observables and POVMs,
measurement-uncertainty regions can be characterized and approximated by semidefinite pro-
grams [21]. More recently, state polynomial optimization provides systematic hierarchies yield-
ing uncertainty relations and tight constants from polynomial constraints on states [22]. These
frameworks provide a quantitative route from a specified instrument family {E(ε)

k }k to testable
uncertainty frontiers. This complements the variance-form Weyl-pair bound.
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6.6 Protocol interpretation: address sharpness vs. global context

Equation (13) admits a direct operational translation in the scan–readout setting:

• making the phase pointer channel sharp (small ∆V ) requires a more selective readout
instrument, which increases the cost of maintaining global coherence under scan dynamics;

• making scan access “cheap” (small ∆U , near invariance under Uscan) reduces distinguisha-
bility across ticks and forces longer horizons or deeper protocols to accumulate reliable
information.

Thus, uncertainty is reinterpreted as a resource lower bound reflecting the incompatibility
between sharpening local addresses and retaining global contextual information under finite-
resolution readout.

Coupling to routing overhead

In the scan–fold framework, sharpening “where” and “when” is not only an algebraic tradeoff
(Weyl-pair complementarity), but can also become a compilation tradeoff once the readout
instrument and locality primitive are embedded into a constrained substrate. Concretely, any
protocol refinement that requires more selective screen-local addressing or denser local couplings
increases the required routing dilation/congestion on the hardware graph (Section 7.1.1), hence
increases the local overhead field κ(x). In the lapse dictionary (Section 7.1), this decreases
N(x) = κ0/κ(x). In scan-chain realizations this dependence is directly controlled by address-
order separations of screen neighbors (Proposition 5.4). A fully quantitative inequality linking a
chosen POVM family {E(ε)

k }k to a lower bound on κ requires specifying an explicit compilation
model for implementing that instrument. In this paper we treat this as an auditable interface.
Once a concrete instrument family and routing model are fixed, one can compute the induced
uncertainty region (∆U ,∆V ) and the resulting κ landscape and compare them.

6.7 Readout regularity and bandwidth: controlled approximation of differ-
ential operators

To connect coarse-grained closed-layer fields to continuum differential operators (as used in the
Poisson template), the readout must suppress sub-lattice scales and provide sufficient regularity.
We record a concrete sufficient condition in a standard band-limited setting.

Definition 6.3 (Kernel-form readout and effective bandwidth). Let the screen be embedded as a
periodic box and let h := 2−n denote the lattice spacing at resolution n. We say a readout POVM
at resolution ε admits a kernel form if the induced coarse-grained scalar field can be written as
a convolution

Fε = w(ε) ∗ F, w(ε) ≥ 0,
∫
w(ε) = 1,

for a nonnegative normalized kernel w(ε) of spatial width ε (equivalently, a low-pass transfer func-
tion ŵ(ε)). We call Kε an effective bandwidth if ŵ(ε)(k) is negligible for |k| > Kε (for example,
compactly supported or rapidly decaying), so that Fε is effectively band-limited to frequencies
|k| ≲ Kε.

Proposition 6.4 (Band-limited error bounds for discrete gradients and Laplacians). Consider
a d-dimensional periodic box and a band-limited field f whose Fourier support satisfies f̂(k) = 0
for |k| > K. Let ∇h and ∆h denote the standard centered finite-difference gradient and Laplacian
on the grid of spacing h. Then there exists a dimension-dependent constant Cd > 0 such that,
at grid points,

∥∇hf − ∇f∥L2 ≤ Cd (Kh)2 ∥∇f∥L2 , ∥∆hf − ∆f∥L2 ≤ Cd (Kh)2 ∥∆f∥L2 .
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In particular, if the readout kernel enforces an effective bandwidth Kε ≍ 1/ε (Definition 6.3)
and the scale separation h ≪ ε holds, then the discretization error is O((h/ε)2) in these norms.

Proof sketch. On a periodic domain, discrete difference operators are Fourier multipliers with
symbols that approximate the continuum symbols: for example, in one dimension the centered
difference derivative has symbol sin(kh)

h while the continuum derivative has symbol k. For |k| ≤ K

one has
∣∣∣ sin(kh)

h − k
∣∣∣ ≤ c (Kh)2 |k| and similarly for the second derivative symbol, yielding the

stated bounds after summing over Fourier modes.

Remark 6.5 (Interpretation as a POVM regularity condition). Proposition 6.4 isolates concrete
readout requirements: the POVM must act as a low-pass filter at scale ε (bandwidth Kε ≲ 1/ε)
and the lattice spacing must satisfy h ≪ ε. Under these conditions, coarse-grained closed-layer
operators built from discrete gradients/Laplacians approximate their continuum counterparts
with a controlled error, so the continuum Poisson template of Section 8.4 becomes quantitatively
meaningful.

7 Computational-lapse gravity: routing overhead, redshift, and
a phase-potential Newtonian limit

7.1 Routing overhead and the lapse field

Hilbert folding defines screen locality, but physical implementation depends on how screen-local
operations are compiled into scan-nearest-neighbor primitives. To make the “routing overhead”
κ precise and falsifiable, we fix a minimal compilation model.
Assumption 7.1 (Hardware graph, primitive gate set, and scheduling). At resolution n, the
observer-accessible degrees of freedom are labeled by screen sites x ∈ Σn (Axiom 3.4). Physical
primitives are executed on a hardware interaction graph Gphys = (Vphys, Ephys) equipped with
integer edge weights w(e) ∈ Z>0 interpreted as the number of global scan ticks required to execute
a fixed primitive two-body operation supported on e ∈ Ephys. A placement map πn : Σn → Vphys
assigns each screen site to a physical vertex. In addition to two-body primitives on edges, we allow
arbitrary single-site primitives on vertices at unit tick cost (absorbed into the tick definition)
and, when needed, bounded-cost measurement/reset primitives as part of the readout interface
(Axiom 3.1).

Scheduling constraint (disjoint-support parallelism). Time is discretized in global scan
ticks t ∈ Z≥0. During any tick, one may execute in parallel any collection of primitives whose
supports are vertex-disjoint (equivalently, two-body primitives are executed on a matching of
Gphys, possibly together with arbitrary single-site primitives on vertices not engaged by a two-
body primitive in that tick). If a two-body primitive on an edge e has weight w(e) > 1, it occupies
its endpoints for w(e) consecutive ticks under this rule.

Routing primitive. Whenever a screen-local task requires a two-body interaction between
degrees of freedom placed far apart on Gphys, routing is implemented by sequences of local
swaps/permutations built from the same two-body primitives (standard swap-network compi-
lation).

Definition 7.2 (Local compilation overhead). Fix a reference local update task Gx supported
in a bounded screen neighborhood of x (e.g. a prescribed set of nearest-neighbor gates on (Σn,∼)
around x). Let DepthGphys(Gx) denote the minimal number of global scan ticks required to im-
plement Gx using the primitive gate set and disjoint-support scheduling constraint of Assump-
tion 7.1, together with any intermediate swaps/routing permitted on Gphys. Define

κ(x) := DepthGphys(Gx).
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When needed, we write G := {Gx}x∈Σn and κ(x) = κ(x;Gphys, πn,G) to emphasize the dependence
on the hardware graph, placement, and task family.

Definition 7.2 makes κ(x) an operationally auditable quantity once Gphys, πn, and the task
family Gx are fixed. It also allows graph-theoretic bounds that connect κ to standard notions of
circuit depth and routing congestion.

We define the computational lapse by (12):

N (x) = κ0
κ(x) .

Proposition 7.3 (Operational derivation of the lapse time-scaling). Let t ∈ Z≥0 denote global
scan ticks, and fix a reference overhead κ0 > 0 corresponding to a homogeneous region in which
the local update task completes in κ0 ticks. Define the local relational time τloc(t;x) to be
proportional to the number of completed local update cycles at x by time t, normalized so that
τloc(t;x) = t when κ(x) = κ0. Then, in the continuous notation used throughout the paper,

dτloc = N (x) dt = κ0
κ(x) dt. (14)

Proof. Define the completed-cycle count

Cx(t) :=
⌊

t

κ(x)

⌋
,

which is an operationally auditable integer derived from the compilation depth κ(x). By Defi-
nition 7.2, one local update cycle at x requires κ(x) global ticks, so Cx(t) is exactly the number
of completed local cycles by tick t. Define relational time by

τloc(t;x) := κ0Cx(t). (15)

Then τloc(t;x) = t when κ(x) = κ0, since Cx(t) = ⌊t/κ0⌋ and coarse-grained time ignores the
O(1) endpoint discrepancy. Moreover,

0 ≤ κ0
κ(x) t − τloc(t;x) < κ0,

so
τloc(t;x)

t
= κ0
κ(x) +O

(1
t

)
(t → ∞).

Passing to the continuous notation (coarse-grained in t) yields (14).

Remark 7.4 (Finite-horizon redshift test and quantitative error bound). The lapse ratio pre-
diction (16) is directly testable by counting completed cycles. For two sites x1, x2 and horizon t,
define the measured ratio

Rmeas(t) := τloc(t;x1)
τloc(t;x2) = Cx1(t)

Cx2(t) .

Whenever t > κ(x2) one has the deterministic bounds
t

κ(x1) − 1
t

κ(x2)
≤ Rmeas(t) ≤

t
κ(x1)
t

κ(x2) − 1
,

so Rmeas(t) → κ(x2)/κ(x1) with an explicit O(1/t) finite-horizon error controlled by κ(x1), κ(x2).
This is the discrete (auditable) counterpart of the differential statement dτ1/dτ2 = κ(x2)/κ(x1).

Equation (14) is therefore not an external relativistic postulate: it is a closed-layer conse-
quence of (i) the compilation model and (ii) the definition of relational time as auditable progress
of a standard local update task. In standard relativity language, it matches the role of the lapse
function in a static slicing with vanishing shift [36–38].
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Static-metric dictionary. In a static spacetime with vanishing shift, the line element can be
written as

ds2 = −N(x)2 c2 dt2 + hij(x) dxidxj ,

so for a stationary worldline (dxi = 0) one has dτ = N(x) dt. Thus, (14) identifies the GR lapse
N with the operational field N , up to the calibration that turns scan ticks into coordinate time.

Remark 7.5 (Calibration and reparameterization). The global tick parameter t is a protocol
coordinate. Rescaling t 7→ t′ := a t (or, more generally, applying a monotone reparameterization)
rescales the lapse by N ′(x) = N(x) dt/dt′. All closed-layer observables used below are formulated
either in terms of the relational time τloc itself or in terms of lapse ratios (redshifts), which
are invariant under such coordinate reparameterizations. To attach physical units, one fixes
a calibration map from ticks to coordinate time, e.g. tphys := ∆t t where ∆t is the duration
(in seconds) of a chosen primitive reference tick in the substrate, or ∆t := τ0 in a time-delay
realization (Appendix F). The reference overhead κ0 sets the zero of the potential Φ = log(κ/κ0)
and can be fixed by choosing a homogeneous reference region (or reference energy band) in which
the standard local task completes in κ0 ticks.

Remark 7.6 (Micro-to-macro map and scope). To avoid ambiguity about what is postulated
and what is derived, we summarize the dictionary used in this section.

• Auditable micro input. One fixes (i) a hardware graph (Gphys, w) and placement πn

(Assumption 7.1); (ii) a bounded-local task family G = {Gx} (Definition 7.2); and (iii)
calibration choices such as (κ0,∆t) or (κ0, τ0) (Remark 7.5).

• Derived closed-layer observables. Given (i)–(iii), the overhead field κ induces the
lapse field N = κ0/κ, hence the relational time scaling (14), redshift ratios (16), and the
potential Φ = − log N (Definition 7.11).

• Minimal macroscopic closure (Newtonian-limit template). To connect Φ to forces,
one additionally specifies (iv) an auditable defect/source interface σ at a chosen horizon
and readout scale, with a boundary convention, and (v) a macroscopic coupling G fixed
by calibration (Section 8.4 and Remark 8.17). Given (iv)–(v), the Dirichlet principle
yields Poisson closure for Φ, reproducing the weak-field template of GR at leading order
(Remark 8.18).

• Limitations. This paper does not derive the full Einstein dynamics from the micro-
scopic compilation model. Beyond the static weak-field template, additional constitutive
input is required to relate defect currents to protocol fields and to determine an effective
shift/spatial-metric evolution; Section 7.6 records the corresponding constraint-level tem-
plates.

Proposition 7.7 (Clock-task equivalence does not change the lapse field). Let Gx and G′
x be

two bounded-local update task families on the same screen neighborhood such that there exists a
constant C > 0 with

DepthGphys(G
′
x) = C DepthGphys(Gx) for all x ∈ Σn.

Let κ, κ′ be the corresponding overhead fields and choose κ′
0 := C κ0. Then the associated lapse

fields coincide: N ′(x) = N (x) for all x, and hence all redshift ratios are unchanged.

Proof. By definition, κ′(x) = C κ(x) for all x. Therefore N ′(x) = κ′
0/κ

′(x) = (Cκ0)/(Cκ(x)) =
κ0/κ(x) = N (x).
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7.1.1 Graph-theoretic bounds for κ

Definition 7.2 admits immediate lower bounds in terms of dilation (distance expansion) and con-
gestion (edge load) of any routing realizing the required screen-local couplings on the hardware
graph. These are standard notions in network routing and parallel compilation.

Definition 7.8 (Dilation and congestion (routing complexity measures)). Let

Escreen :=
{
{x, y} ⊂ Σn : x ∼ y

}
denote the nearest-neighbor edge set of the screen lattice. Consider a collection of required screen-
local interactions (edges) E ⊆ Escreen to be implemented during a local update. A routing assigns
to each {x, y} ∈ E a path Pxy in Gphys connecting πn(x) to πn(y). The dilation of the routing is

dil(E) := max
{x,y}∈E

∑
e∈Pxy

w(e),

and the congestion is
cong(E) := max

e∈Ephys

∑
{x,y}∈E:e∈Pxy

1,

interpreted as the maximum number of routed interactions whose chosen paths traverse a given
hardware edge.

Proposition 7.9 (Universal lower bounds). For any local update task whose required interaction
set is E one has

κ(x) ≥ dil(E), κ(x) ≥ cong(E),

up to fixed constant factors determined by the primitive gate set and scheduling convention.

Proof. No implementation can transmit information between πn(x) and πn(y) faster than the
weighted shortest-path distance, yielding the dilation bound. Each tick uses any hardware edge
at most once (parallel disjoint-edge constraint), so an edge traversed by k routed interactions
forces at least k time slices, yielding the congestion bound.

Proposition 7.10 (Existence of schedules with depth O(cong + dil)). Under standard store-
and-forward routing/scheduling models on graphs, there exist randomized schedules that realize
all interactions in E within

O(cong(E) + dil(E))

ticks, with high probability, and corresponding deterministic bounds with additional polylogarith-
mic overhead; see [39].

Propositions 7.9–7.10 provide a principled map from the protocol field κ(x) to well-defined
graph-theoretic complexity measures with provable bounds. They also identify what must be
specified to make κ experimentally meaningful: the hardware graph, the placement map, and
the local interaction task family.

Scan-chain specialization (explicit κ in terms of address separation). The simplest
substrate model is the one-dimensional scan chain, in which Gphys is the path graph on vertices
{0, 1, . . . , 2dn − 1} with unit weights w(e) ≡ 1 and primitive operations allowed only between
adjacent ticks. In this case, a natural placement is πn(x) := H−1

n (x) (Section 4.1). For a single
required interaction between screen neighbors {x, y} ∈ Escreen, any implementation by adjacent
swaps satisfies the tight bound

Depthchain({x, y}) ≥
∣∣∣H−1

n (x) −H−1
n (y)

∣∣∣ ,
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since information cannot traverse faster than one edge per tick on a path. Conversely, swap-
ping along the unique shortest path on the chain yields an implementation within O(∆xy) ticks,
where ∆xy :=

∣∣H−1
n (x) −H−1

n (y)
∣∣. Thus, in the scan-chain model, the lapse profile is quan-

titatively controlled by address-order separation of screen neighbors, making the address map
choice directly testable.

Canonical architecture scalings. As an order-of-magnitude guide, Definition 7.2 supports
immediate scaling estimates on standard graphs:

• Matched lattice (near-constant lapse). If Gphys contains a copy of the screen adja-
cency graph with unit weights and πn respects that adjacency locally (identity placement
at scale ε), then the local update task Gx can be scheduled in O(1) depth by a constant-
round edge-coloring/matching decomposition, hence κ(x) = O(1) and N is approximately
uniform.

• Hypercube (logarithmic diameter). If Gphys is a hypercube on |Vphys| = 2dn vertices,
its diameter is dn, so any two sites can be made adjacent via a path of length at most
dn. For bounded-degree local tasks this yields the conservative estimate κ(x) = O(dn),
i.e. logarithmic in the total number of sites.

• Scan chain (maximal distortion). On the path graph, the diameter is 2dn − 1, so
neighbor pairs in the screen graph that are far in scan order yield κ of order their index
separation, producing exponentially large overheads in the worst case.

These estimates clarify what the lapse field is sensitive to: the interplay between the required
screen-local interaction pattern and the geometric/graph-theoretic constraints of the underlying
primitive substrate.

Time-delay interface for a measurable overhead proxy. A practical way to interpret
and measure routing overhead is as an operational delay. If an experiment provides a local total
delay τWS(E) (e.g. via Wigner–Smith time delay at energy E), then a dimensionless overhead
proxy can be defined by

κWS(E) := τWS(E)
τ0

, NWS(E) := κ0
κWS(E) ,

for a chosen reference tick duration τ0. This energy/scale-dependent proxy is not the same
object as the spatial fields κ(x) and N (x) defined by a compilation task family; see Appendix F.

7.2 Redshift as an overhead ratio

Given two locations x1, x2, (14) yields the redshift ratio

dτ1
dτ2

= N (x1)
N (x2) = κ(x2)

κ(x1) . (16)

Thus, inhomogeneous compilation cost is directly observable as a relative slowing of local re-
lational time. This provides a concrete operational semantics for “gravitational time dilation”
within the scan–fold–readout framework [40,41].

7.3 Computational potential and a GR matching dictionary

Definition 7.11 (Computational potential). Define the computational potential

Φ(x) := − log N (x) = log
(
κ(x)
κ0

)
. (17)
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The potential Φ is directly measurable once κ is operationally specified, and it converts
multiplicative redshift into an additive field:

N (x1)
N (x2) = e−(Φ(x1)−Φ(x2)).

Schwarzschild matching (static vacuum template). In classical GR, for a static spheri-
cally symmetric vacuum solution in Schwarzschild coordinates, the lapse is

NSchw(r) =
√

1 − 2GM
c2r

,

so the corresponding overhead profile in the present dictionary is

κSchw(r) = κ0
NSchw(r) .

This provides a direct fitting interface: any measured redshift profile N (r) can be converted
into an inferred κ(r), and compared against the Schwarzschild template at the level of a single
parameter M [36, 37,42].

Weak-field expansion. For r ≫ 2GM/c2, one has

ΦSchw(r) = − logNSchw(r) = −1
2 log

(
1 − 2GM

c2r

)
= GM

c2r
+O

(
G2M2

c4r2

)
,

so N (r) = e−Φ(r) reproduces the standard first-order gravitational redshift/time-dilation scaling.

Closed-form one-parameter fit. Given two radii r1, r2 and a measured lapse ratio R :=
N (r1)/N (r2), the Schwarzschild formula yields

R2 =
1 − 2GM

c2r1

1 − 2GM
c2r2

,

so (provided 1/r1 ̸= R2/r2) one obtains

M = c2(1 −R2)
2G

(
1
r1

− R2

r2

) . (18)

7.4 Calibration example: Earth-to-GPS gravitational redshift

In the weak-field regime, the relative clock-rate difference between two stationary radii r1 < r2
is

dτ(r2)
dτ(r1) − 1 ≈ GM

c2

( 1
r1

− 1
r2

)
. (19)

Conversely, a measured rate difference immediately yields a one-parameter mass extraction in
this approximation:

M ≈ c2

G

(
dτ(r2)
dτ(r1) − 1

)
(

1
r1

− 1
r2

) ,

consistent with the exact inversion (18) when the redshift is not linearized. For Earth, taking
GM ≃ 3.986 × 1014 m3/s2, c = 299 792 458 m/s, r1 ≃ 6.371 × 106 m and r2 ≃ r1 + 2.02 × 107 m
(GPS altitude), (19) predicts a gravitational rate increase of

∆τ ≈ 45.7 µs/day,

consistent with the standard GPS gravitational redshift budget (before including the kinematic
special-relativistic correction) [43].
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7.5 Discrepancy as a source and a Poisson closure for a phase potential

To connect lapse and forces in a minimal way, we introduce a coarse-grained mismatch density
σ(x), intended to be an auditable proxy derived from discrepancy/regularization budgets (Sec-
tion 8.4). At the level of effective fields, the canonical closure is a Poisson equation for the scalar
phase potential Φ:

−∆Φ = 4πGσ, (20)

where G is Newton’s constant (or, more generally, the macroscopic coupling constant fixed by
calibration). With σ = ρ/c2 (mass-energy density divided by c2), (20) is equivalent to the
standard Newtonian form for ϕN := −c2Φ:

∆ϕN = 4πGρ.

The associated phase-pressure (force) field is

PΦ := −∇Φ. (21)

In these conventions, the weak-field gravitational acceleration template is

a = −∇ϕN = c2∇Φ = −c2 PΦ.

Newtonian template. In R3, the Green function of −∆ implies that a localized source pro-
duces

Φ(r) ≈ Φ0 + GM

c2r
, (22)

and therefore an inverse-square acceleration template |a| ∼ GM/r2. Section 9 includes a repro-
ducible FFT-based Poisson solver demonstrating the emergence of an approximate 1/r profile
on a periodic grid.

Remarks on closure. Equation (20) follows as an Euler–Lagrange equation both on the dis-
crete screen graph (Proposition 8.13) and in the continuum (Proposition 8.15). It also matches
the covariant weak-field limit of Einstein’s equations (Remark 8.18), and therefore serves as the
standard Newtonian-limit template for static weak fields [36–38, 42, 44]. In the present frame-
work, its closed-layer role is to provide a quantitative and falsifiable bridge: given a protocol-
defined source density σ (from discrepancy/defect budgets) one computes Φ and predicts redshift
and force profiles via (17) and (21). For extended discussions and variational embeddings within
the HPA–Ω program, see [40,45].

7.6 Beyond static lapse: drift/shift, defect currents, and constraint templates

The closed-layer constructions above are formulated in a static slicing with vanishing shift,
which suffices for the auditable redshift dictionary and the Newtonian-limit Poisson template.
For time-dependent protocol flows, the defect-density interface already provides the minimal
conservation structure: a source σ(t, x) and a defect current J(t, x) satisfying the continuity
equation ∂tσ + ∇ · J = 0 (Definition 8.11).

In GR language, a general ADM line element reads

ds2 = −N2c2 dt2 + hij
(
dxi +N idt

)(
dxj +N jdt

)
,

where the lapse N and shift N i act as Lagrange multipliers enforcing the Hamiltonian and
momentum constraints. In the present dictionary, N continues to be identified with the lo-
cal cycle-completion rate N = κ0/κ. A nontrivial effective shift is naturally interpreted as
a protocol-level drift of screen-local degrees of freedom induced by compilation schedules and
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routing, i.e. by systematic transport of defect budgets across the screen. In this sense, routing
overhead contributes not only to the scalar lapse landscape but also to transport costs controlling
feasible defect currents.

A fully closed dynamic model requires one additional input beyond the static Poisson clo-
sure: a constitutive principle relating J to the protocol fields (or, equivalently, a dynamical
penalty/constraint for transport on the hardware graph). Once such an input is fixed, the con-
tinuity constraint and the static Dirichlet principle (Section 8.4) provide a canonical route to a
time-dependent effective geometry: one enforces charge conservation at the protocol level while
determining Φ(t, ·) at each time slice from the instantaneous defect density by a variational
principle.

ADM constraint templates (for orientation). On each time slice, the ADM constraints
relate intrinsic geometry, extrinsic curvature, and matter sources. In standard notation, they
can be written schematically as

R(3) +K2 −KijK
ij = 16πG

c4 Tµνn
µnν , (23)

Dj

(
Kij − hijK

)
= 8πG

c4 Tµνn
µhνi, (24)

where R(3) is the scalar curvature of hij , Kij is the extrinsic curvature, D is the Levi–Civita
connection of hij , and nµ is the unit normal to the slice [36–38]. The static Poisson closure
used above corresponds to the weak-field, slow-motion regime in which the shift is negligible,
Kij ≈ 0, and T00 ≈ ρc2, so that (23) reduces at leading order to ∆ϕN = 4πGρ (Remark 8.18).

Momentum-constraint analogue and open input. In the protocol language, the defect
current J(t, x) (Definition 8.11) is the minimal conserved flux accompanying the source σ(t, x).
To match the spirit of (24) beyond the static template, one must provide an additional consti-
tutive or variational input that couples a shift/drift field (or an extrinsic-curvature surrogate)
to the conserved current. This paper does not fix such an input; rather, it isolates the point at
which new physics must enter to go beyond the scalar Poisson closure.

Limitations and non-claims. The present section provides an operational definition of the
lapse field and a calibrated Newtonian-limit template once a defect/source interface is speci-
fied. It does not establish a micro-to-macro derivation of full Einstein dynamics, the full ADM
constraint algebra, or a unique time-dependent closure for (hij , N

i) from compilation/routing
microphysics.

8 Minimal dynamical closure: least-discrepancy flow and an au-
ditable arrow of time

8.1 Accumulated mismatch as a Lyapunov candidate

For a scan prefix PN , define the accumulated mismatch

EN := N D∗
N (PN ).

For bounded-type irrational scans (notably the golden branch), discrepancy certificates imply
EN = O(logN), so mismatch grows slowly and remains auditable at large horizons. In con-
trast, protocols that effectively introduce exponential-gain modes (Appendix D) destroy Abel
admissibility and drive EN beyond sustainable bounds.
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Remark 8.1 (Sensitivity away from the golden branch). The mismatch growth rate is quan-
titatively controlled by the continued-fraction data of the scan slope α. For Kronecker scans,
standard certificates bound D∗

N (PN ) in terms of partial quotients (Appendix B); bounded-type
slopes yield the logarithmic O((logN)/N) rate, while large partial quotients produce bursts of
irregularity at intermediate horizons. When the defect density σ is constructed from occupation
bias (Example 8.8), such discrepancy bursts translate into source perturbations at the readout
scale. Propagation to effective geometry is then controlled by the Poisson stability estimate
(Proposition 5.7): coarse-grained perturbations of σ induce proportionate perturbations of ∇Φ
(hence of lapse ratios) in Sobolev norms.

This motivates a minimal closed-layer arrow-of-time statement: in the space of admissible
protocols, sustainable evolution must flow toward configurations that keep mismatch growth
controlled under fixed resource budgets.

8.2 A least-discrepancy variational template

Let P denote protocol parameters (scan slope, readout resolution, address map selection within
the admissible family, routing scheme, truncation budget, etc.). A minimal auditable cost
functional at horizon T takes the schematic form

ET (P) = CertDiscT (P) + λCost(P) + µRegTailT (P), (25)

where:
• CertDiscT is a deterministic discrepancy-based certificate (e.g. Var(f)D∗

N );

• Cost is an implementation overhead cost (routing depth, memory, circuit size), including
the lapse profile N ;

• RegTailT controls truncation/regularization tail errors under the Abel-first convention.
One may then define dynamics as a (possibly damped) gradient flow on protocol space

decreasing ET . In the broader HPA–Ω program, this template is elevated to an Ω action principle
with explicit Fisher-information and gravitational terms [40]. For the present paper, (25) serves
only as the minimal closed-layer bridge between discrepancy certificates, routing overhead, and
effective gravitational templates.

8.3 An explicit least-discrepancy evolution and an H-theorem

To answer the “minimal deviation” question quantitatively, we record an explicit evolution
equation that is sufficient for a closed-layer monotonicity statement.
Definition 8.2 (Least-discrepancy gradient flow (continuous time)). Assume the protocol space
is modeled as an open subset U ⊂ Rm with coordinate vector P ∈ U , and assume ET : U → R is
differentiable. Fix a mobility (preconditioner) field M(P) ∈ Rm×m such that M(P) is symmetric
and positive semidefinite for all P. The least-discrepancy evolution is the gradient flow

dP
dτ = −M(P) ∇PET (P), (26)

where τ is an auxiliary (protocol) time parameter indexing updates in protocol space.

Proposition 8.3 (H-theorem (continuous flow)). Let P(τ) satisfy (26) and suppose ET is con-
tinuously differentiable along the trajectory. Then the “entropy” functional H(τ) := ET (P(τ))
is nonincreasing:

dH
dτ = − ⟨∇PET (P), M(P) ∇PET (P)⟩ ≤ 0.

Moreover, dH/dτ = 0 holds if and only if M(P) ∇PET (P) = 0 (a stationary protocol under the
chosen mobility).
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Proof. Differentiate H(τ) = ET (P(τ)) and use (26):

dH
dτ =

〈
∇PET (P), dP

dτ

〉
= − ⟨∇PET (P), M(P) ∇PET (P)⟩ ≤ 0,

since M(P) is positive semidefinite.

Definition 8.4 (Auditable discrete-time update (proximal/gradient step)). In practice the pro-
tocol is updated in discrete steps k ∈ Z≥0. A minimal auditable update rule compatible with (26)
is

Pk+1 = Pk − ηk Mk ∇PET (Pk), (27)

where ηk > 0 is a step size and Mk ⪰ 0 is a chosen preconditioner (for example, a diagonal
scaling reflecting heterogeneous audit costs of changing different protocol knobs).

Proposition 8.5 (Sufficient condition for monotonic decrease (discrete time)). Assume ET has
an L-Lipschitz gradient on a convex subset containing the iterates (i.e. ET is L-smooth). If
Mk = I and 0 < ηk ≤ 1/L, then the discrete update (27) satisfies

ET (Pk+1) ≤ ET (Pk)

for every step k. More generally, for symmetric Mk ⪰ 0, the same conclusion holds whenever
ηk∥Mk∥2 ≤ 1/L.

Proof. For an L-smooth function, the standard descent lemma gives

ET (Pk+1) ≤ ET (Pk) + ⟨∇ET (Pk), Pk+1 − Pk⟩ + L

2 ∥Pk+1 − Pk∥2
2.

Substituting Pk+1−Pk = −ηkMk∇ET (Pk) yields a negative quadratic form whenever ηk∥Mk∥2 ≤
1/L.

Remark 8.6 (When the H-theorem can fail). Monotonicity is guaranteed only under regularity
and step-size control (Propositions 8.3–8.5). In particular, ET is generally nonconvex in realistic
protocol spaces, and large steps or poorly conditioned preconditioners can increase ET transiently.
This is not a contradiction: it simply means the protocol update rule is itself part of the auditable
specification of dynamics.

8.4 From auditable defect budgets to a Poisson closure

Section 7 uses a phase potential Φ = − log N and a Poisson closure as the Newtonian-limit tem-
plate. Here we record a closed-layer derivation of this closure from a minimal energy principle.

Scope of the closure. The purpose of this subsection is to provide a minimal and auditable
route from protocol-level defect budgets to an effective scalar potential. It should be read as
a weak-field/static (Hamiltonian-constraint) template: once a source convention and boundary
condition are fixed, Poisson closure follows from the Dirichlet principle. A full time-dependent
recovery of the ADM system requires additional constitutive input coupling conserved defect
currents to an effective shift/drift sector (Section 7.6).

8.4.1 Defect charge measures and continuity constraints

To connect discrepancy/regularization budgets to a field source, it is convenient to treat mis-
match as a signed “defect charge” distributed over the screen.
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Definition 8.7 (Defect charge and source density). Let Ω ⊂ R3 denote a coarse-grained region
of the screen continuum limit. A protocol at horizon T induces an auditable defect charge
measure ΣT on Ω such that ΣT (B) equals the net mismatch budget assigned to a measurable
region B ⊆ Ω. Assume ΣT is finite and absolutely continuous with respect to volume measure,
so that there exists a density σT ∈ L1(Ω) with

ΣT (B) =
∫

B
σT (x) d3x.

In the static closure, we write σ := σT at a fixed horizon and suppress T .

Example 8.8 (A canonical auditable choice: coarse-grained occupation bias). At resolution n,
let x(n)

t ∈ Σn denote the addressed site at tick t and let

ν
(n)
T := 1

T

T −1∑
t=0

δ
x

(n)
t

be the empirical occupation measure on Σn up to horizon T . Let un := |Σn|−1∑
x∈Σn

δx be
the uniform reference measure and let w(ε) be a nonnegative readout kernel of width ε used to
coarse-grain lattice data into a continuum density. Then a concrete auditable defect measure is
obtained by smoothing the signed occupation bias ν(n)

T −un and scaling by a calibration constant:

ΣT := γσ (w(ε) ∗ (ν(n)
T − un)), σT = dΣT

d3x
.

On a periodic box, this construction automatically yields
∫

Ω σT d3x = 0 (zero mean), matching
the solvability condition of Remark 8.10.

Remark 8.9 (A discrete implementable source at resolution n). Let N (n)
T (x) := #{0 ≤ t < T :

x
(n)
t = x} be the occupation count at site x ∈ Σn. The signed occupation bias

b
(n)
T (x) := N

(n)
T (x)
T

− 1
|Σn|

satisfies
∑

x∈Σn
b

(n)
T (x) = 0. A concrete discrete source for the graph Poisson equation (29) is

then
σn(x) := γσ b

(n)
T (x),

and the continuum source density σ may be obtained by smoothing σn at readout scale ε.

Remark 8.10 (Conservation/solvability constraints). If Ω is treated as periodic (as in the FFT
Poisson experiment), solvability of −∆Φ = 4πGσ requires the zero-mean constraint

∫
Ω σ d3x = 0,

corresponding to fixing the Laplacian zero mode. On non-compact domains with decay at infinity,
or on bounded domains with Dirichlet boundary conditions, no such global neutrality is required.

For time-dependent protocol flows, one may encode conservation of auditable defect charge
by a continuity equation.

Definition 8.11 (Continuity equation (dynamic defect conservation)). Let σ(t, x) be a time-
dependent source density and let J(t, x) be a defect current. We say that defect charge is con-
served if, in the distributional sense on (0, T ) × Ω,

∂tσ + ∇ · J = 0.

8.4.2 Dirichlet principle and the Poisson equation

We now isolate the minimal variational structure that yields Poisson closure.
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Discrete screen formulation (graph Dirichlet principle). At finite resolution n, the
screen lattice (Σn,∼) is a finite graph with nearest-neighbor edge set Escreen (Definition 7.8). A
discrete source σn : Σn → R may be taken as the coarse-grained defect charge assigned to each
site (Definition 8.7), with the neutrality constraint ∑x∈Σn

σn(x) = 0 in the periodic convention
(Remark 8.10).

Definition 8.12 (Screen graph Laplacian). For a function Φ : Σn → R, define the (unscaled)
graph Laplacian

(∆ΣnΦ)(x) :=
∑

y∈Σn: y∼x

(
Φ(y) − Φ(x)

)
.

Proposition 8.13 (Discrete Dirichlet principle and graph Poisson equation). Fix G > 0 and a
discrete source σn : Σn → R. Consider the discrete Dirichlet functional on potentials Φ : Σn →
R,

Jn[Φ] :=
∑

{x,y}∈Escreen

1
8πG

(
Φ(x) − Φ(y)

)2 −
∑

x∈Σn

σn(x) Φ(x), (28)

with boundary convention (periodic/Dirichlet) fixed. If Φ is a stationary point of Jn under
arbitrary variations η : Σn → R compatible with the boundary convention, then Φ satisfies the
graph Poisson equation

−∆ΣnΦ = 4πGσn. (29)

Proof. Let Φϵ = Φ + ϵη. Differentiating (28) at ϵ = 0 gives

0 = d
dϵ

∣∣∣∣
ϵ=0

Jn[Φϵ] =
∑

x∈Σn

η(x)
(

1
4πG

∑
y∼x

(
Φ(x) − Φ(y)

)
− σn(x)

)
,

since each undirected edge contributes to exactly its two endpoints. Because η is arbitrary, the
bracket must vanish for each x, which is equivalent to (29) using Definition 8.12.

Remark 8.14 (Continuum limit and calibration). On a regular grid of spacing h = 2−n, the
standard scaled discrete Laplacian is h−2∆Σn, which converges to the continuum Laplacian under
smoothness/coarse-graining assumptions. In the present framework, the overall coefficient G is
fixed by calibration at finite resolution (Remark 8.17), so the discrete and continuum conventions
may be treated uniformly once a boundary convention and scale map are specified.

Proposition 8.15 (Dirichlet functional and Poisson Euler–Lagrange equation). Fix a coupling
constant G > 0. Let Ω ⊂ R3 be a domain and let σ ∈ L1(Ω) be a source density (Definition 8.7).
Consider the functional on admissible potentials Φ with suitable boundary conditions,

J [Φ] :=
∫

Ω

( 1
8πG |∇Φ(x)|2 − σ(x) Φ(x)

)
d3x. (30)

If Φ is a stationary point of J under compactly supported variations (or variations compatible
with the boundary condition), then Φ satisfies the Poisson equation

−∆Φ = 4πGσ (31)

in the weak sense; if Φ is sufficiently smooth, then (31) holds pointwise.

Proof. Let η be a smooth test function compatible with the boundary condition and consider
Φϵ = Φ + ϵη. Differentiating (30) at ϵ = 0 and integrating by parts yields

0 = d
dϵ

∣∣∣∣
ϵ=0

J [Φϵ] =
∫

Ω

( 1
4πG ∇Φ · ∇η − σ η

)
d3x =

∫
Ω

(
− 1

4πG ∆Φ − σ

)
η d3x,

which is exactly the weak formulation of (31).
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Remark 8.16 (Minimal closed-layer input for Poisson closure). Propositions 8.13–8.15 show
that the Poisson closure for the phase potential is not an additional axiom once the defect-density
interface is fixed. Beyond Axioms 3.1–3.2 and Hilbert folding (Axiom 3.4), the only additional
closed-layer inputs are: (i) an auditable defect charge density σ (or σn) at a chosen horizon
and readout scale (Definition 8.7); (ii) a boundary/gauge convention (periodic/Dirichlet/decay),
including neutrality when required for solvability (Remark 8.10); and (iii) a macroscopic coupling
constant G fixed by calibration (Remark 8.17). Given these, the Dirichlet principle uniquely
determines Φ (up to the standard Laplacian zero mode in the periodic convention), and the force
template follows by PΦ = −∇Φ (Section 7.5).

Remark 8.17 (Dimensional analysis and calibration). In the GR matching dictionary of Sec-
tion 7, Φ = − log N is dimensionless. Defining the Newtonian potential ϕN := −c2Φ gives ϕN

the standard physical units. Then (31) becomes the classical Poisson equation ∆ϕN = 4πGρ
upon setting ρ := c2σ. Operationally, the coefficient G is fixed by calibration against a reference
redshift profile (e.g. Earth-to-GPS) once σ is defined from auditable protocol budgets.

Remark 8.18 (Weak-field limit from general covariance). In general relativity, Einstein’s equa-
tion is Gµν = (8πG/c4)Tµν . In the weak, static, slow-motion limit with T00 ≈ ρc2 and negligible
stresses, one may write g00 = −(1 + 2ϕN/c

2) + O(c−4) and g0i = 0. Linearizing the field equa-
tions yields the Newtonian Poisson equation ∆ϕN = 4πGρ (see, e.g., [36–38, 42]). In a static
slicing with vanishing shift, the lapse is N = √

−g00 = 1 + ϕN/c
2 +O(c−4), hence

Φ = − logN = −ϕN

c2 +O(c−4).

Therefore −∆Φ = 4πGρ/c2 +O(c−4) = 4πGσ +O(c−4), matching (31) at leading order.

9 Reproducible numerics and scripts
This section provides optional reproducible scripts illustrating intermediate mechanisms dis-
cussed in the paper. No closed-layer theorem depends on computation; the scripts are included
to make the constructions auditable and testable.

9.1 Reproducibility protocol

All experiments are implemented in Python 3.10+. The Poisson solver uses numpy if avail-
able (FFT mode); if not, it falls back to a pure-Python iterative periodic solver (slower, but
dependency-free). All other scripts use only the Python standard library. Run the following
from this paper directory:

• python3scripts/exp_hilbert_locality.py

• python3scripts/exp_golden_discrepancy_bound.py

• python3scripts/exp_abel_pole_barrier.py

• python3scripts/exp_poisson_fft.py

• python3scripts/exp_wigner_smith_kappa.py

• python3scripts/exp_address_family_sensitivity.py

• python3scripts/exp_kappa_redshift_toy.py

• python3scripts/exp_1p1d_routing_worked_example.py

The scripts optionally write small LATEX row files into sections/generated/. If those files
are present, the tables below will include them.
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Determinism and randomness

All scripts are deterministic as written. The only use of pseudorandomness is in the “shuffled
baseline” of scripts/exp_address_family_sensitivity.py, and the RNG seeds are fixed in
code (2D: seed = 123456 + order; 3D: seed = 654321 + order). Thus, regenerating tables
does not require passing external seeds.

Generated artifacts (what each script writes)

Each script writes into sections/generated/ using fixed filenames; tables include them when
present.

• Hilbert locality (Experiment A).
exp_hilbert_locality.py writes hilbert_locality_rows.tex.
Defaults: orders n = 1, . . . , 8.

• Address-family sensitivity (Experiments A’, A”, A”’, A3D).
exp_address_family_sensitivity.py writes
address_kappa_proxy_rows.tex,
address_neighbor_model_sensitivity_rows.tex,
address_kappa_proxy_fit_rows.tex,
address_kappa_proxy_3d_rows.tex,
and (where used) address_neighbor_separation_rows.tex.
Defaults: 2D orders n = 1, . . . , 8 with Manhattan and Chebyshev neighborhoods. 3D orders
n = 1, . . . , 5. Shuffled baseline seeds fixed as stated above.

• Golden discrepancy (Experiment B). exp_golden_discrepancy_bound.py writes golden_
discrepancy_rows.tex. Defaults: α = 1/φ, x0 = 0.1, and N in {100, 300, 1000, 3000, 10000,
30000}.

• Abel pole barrier (Experiment C). exp_abel_pole_barrier.py writes abel_barrier_rows.
tex. Defaults: γ = 1 and Tmax = 5000. β in {0.5, 0.6}, with r sampled on a fixed grid around the
threshold.

• Poisson FFT (Experiments D and D’). exp_poisson_fft.py writes poisson_rows.tex and
poisson_scaling_rows.tex. Defaults: FFT mode uses N = 64 and rmax = 12 (fallback: N = 24).
The scaling table uses N in {32, 48, 64} (FFT) plus a modest Dirichlet-Jacobi comparison at
N = 32, with window band starting at r = 3.

• Wigner–Smith interface (Experiment E).
exp_wigner_smith_kappa.py writes wigner_smith_rows.tex.
Defaults: toy Breit–Wigner with E0 = 1 and γ = 0.2. Energy band [0, 2] sampled at n = 17 points.
τ0 = 1, smoothing window = 1 (off).

• Scan-chain redshift toy (Experiment F).
exp_kappa_redshift_toy.py writes kappa_redshift_toy_rows.tex.
Defaults: order n = 8 and horizon tmax = 2 × 108 ticks. Maps: Hilbert and Z-order.

• 1+1D worked example (Appendix G). exp_1p1d_routing_worked_example.py writes 1p1d_
error_rows.tex, 1p1d_scaling_fit_rows.tex, and 1p1d_curve_rows.tex. Defaults: weak-field
target with M = 0.05 on r in [1, 8], and κ0 = 109. Orders n = 6, . . . , 11 for scaling (representative
curve samples at order n = 9).

9.2 Experiment A: Hilbert address locality (2D)

We verify the one-step locality property (9) for the standard 2D discrete Hilbert map up to
order n = 8.
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order n mint ∥Hn(t+ 1) −Hn(t)∥1 maxt ∥Hn(t+ 1) −Hn(t)∥1

1 1 1
2 1 1
3 1 1
4 1 1
5 1 1
6 1 1
7 1 1
8 1 1

Table 2: Hilbert address one-step locality check for orders n = 1, . . . , 8.

9.3 Experiment A′: address-family sensitivity on a scan chain (2D)

We quantify how the choice of address family changes scan-order separations of screen neighbors.
For an address map An and a screen-neighbor edge {x, y}, define the separation ∆An(x, y) :=∣∣A−1

n (x) −A−1
n (y)

∣∣ (Definition 5.3). On a scan chain, ∆An lower bounds the depth required to
enact neighbor interactions (Proposition 5.4). We report statistics of the induced local proxy
κ̃An(x) = maxy∼x ∆An(x, y) across all sites in Σn for Hilbert vs. Morton/Z-order, together with
a deterministic shuffled baseline. Unless otherwise stated, the neighborhood relation y ∼ x here
refers to the 4-neighbor (Manhattan) screen adjacency.

9.4 Experiment A′′: neighborhood-model robustness (fixed order)

To assess robustness of the proxy to adjacency conventions, we recompute the local proxy at a
fixed order,

κ̃An(x) = max
y∼x

∆An(x, y),

using both the Manhattan 4-neighbor adjacency and the Chebyshev 8-neighbor adjacency (in-
cluding diagonals).

9.5 Experiment A′′′: finite-size trend fit for high quantiles

To summarize finite-size scaling, we fit log2 p99 and log2(max) as affine functions of n over the
computed range n = 1, . . . , 8 (least squares), and report the fitted slopes and R2.

9.6 Experiment A3D: address sensitivity in three dimensions (scan-chain
proxy)

As a minimal dimensional robustness check, we repeat the same scan-chain proxy construc-
tion on a 3D screen lattice Σn = {0, . . . , 2n − 1}3 with 6-neighbor (Manhattan) adjacency,
comparing Morton/Z-order against a shuffled baseline. We report the local proxy κ̃An(x) =
maxy∼x

∣∣A−1
n (x) −A−1

n (y)
∣∣ statistics across all sites.

9.7 Experiment B: golden-branch star discrepancy and an explicit bound

We compute D∗
N (PN ) for the golden scan and compare it against the explicit bound (7).

33



order n map mean p50 p90 p99 max
1 Hilbert 2.00 1 3 3 3
1 Z-order 2.00 2 2 2 2
1 Shuffled 2.50 2 3 3 3
2 Hilbert 5.25 3 11 13 13
2 Z-order 4.25 3 6 6 6
2 Shuffled 9.56 11 12 15 15
3 Hilbert 12.94 7 43 53 53
3 Z-order 10.31 6 22 22 22
3 Shuffled 34.33 33 51 62 62
4 Hilbert 30.25 11 75 211 213
4 Z-order 24.08 11 86 86 86
4 Shuffled 147.07 146 217 243 243
5 Hilbert 66.92 13 179 819 853
5 Z-order 53.64 22 171 342 342
5 Shuffled 565.18 565 822 962 1010
6 Hilbert 142.42 19 301 2869 3413
6 Z-order 115.10 22 342 1366 1366
6 Shuffled 2319.87 2309 3403 3856 4054
7 Hilbert 295.62 19 341 5201 13653
7 Z-order 240.49 22 342 5462 5462
7 Shuffled 9228.63 9138 13536 15521 16341
8 Hilbert 604.24 19 681 13133 54613
8 Z-order 493.86 22 683 10923 21846
8 Shuffled 37072.80 36807 54171 62123 65327

Table 3: Address-family sensitivity on the 2D screen: statistics of the local scan-chain overhead
proxy κ̃An for Hilbert, Morton/Z-order, and a shuffled baseline.

9.8 Experiment C: Abel pole barrier toy model

We illustrate Lemma 2.2 using a toy mode ut = e(β− 1
2 )t cos(γt). When β > 1

2 , the Abel weight
must satisfy r < e−(β− 1

2 ) to suppress exponential gain; otherwise the partial sums exhibit thresh-
old blow-up.

9.9 Experiment D: Poisson phase potential via FFT

We solve −∆Φ = 4πρ on a periodic grid and check that a localized source produces an approx-
imate 1/r potential profile before periodic images dominate.

9.10 Experiment D′: finite-size and source-width robustness of the 1/r win-
dow

To quantify how cleanly a periodic finite grid reproduces an intermediate 1/r regime, we measure
the flatness of r⟨Φ⟩ over a fixed radius band and report the relative RMS deviation as a simple
error proxy, for multiple grid sizes and for a point source vs. a small cube-smeared source. For
comparison, we also include a Dirichlet (zero boundary) iterative solve at a modest size.
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map p
(4)
99 p

(8)
99 ratio max(4) max(8) ratio

Hilbert 13133 13136 1.000 54613 54613 1.000
Z-order 10923 10929 1.001 21846 32769 1.500
Shuffled 62123 62955 1.013 65327 65444 1.002

Table 4: Sensitivity of the overhead proxy to the neighborhood model at a fixed resolution (script
default: order n = 8). Here (4) denotes Manhattan 4-neighbors and (8) denotes Chebyshev 8-
neighbors.

map slope for log2 p99 R2 slope for log2(max) R2

Hilbert 1.751 0.987 2.015 1.000
Z-order 1.856 0.997 1.939 0.999
Shuffled 2.027 1.000 2.041 1.000

Table 5: Finite-size trend fit for high quantiles of the Manhattan proxy κ̃An .

9.11 Experiment E: Wigner–Smith time delay and κWS(E)
To connect computational lapse to measurable delays, we include a minimal implementation of
the Wigner–Smith time-delay matrix

Q(E) = −iS(E)† dS
dE ,

the total delay τWS(E) = TrQ(E), and the dimensionless overhead proxy κWS(E) = τWS(E)/τ0
for a chosen reference tick duration τ0. The script scripts/exp_wigner_smith_kappa.py pro-
vides an interface and includes a 1-channel Breit–Wigner toy model; users may replace it with
a physical model or data for the scattering matrix S(E).

9.12 Experiment F: a scan-chain redshift toy from a computed κ(x) landscape

We demonstrate the redshift ratio (16) on a fully discrete scan-chain toy model. Fix a finite-
resolution address map An (Hilbert or Morton/Z-order) and place screen sites on a scan chain
by πn(x) = A−1

n (x). Define a site-local overhead proxy by

κ(x) := κ̃An(x) = max
y∼x

∣∣∣A−1
n (x) −A−1

n (y)
∣∣∣ ,

as in Definition 5.3. Interpreting one local “clock cycle” at x as requiring κ(x) global ticks, the
lapse dictionary predicts

dτ1
dτ2

= κ(x2)
κ(x1) .

The script below selects representative low/median/high overhead sites and verifies the ratio by
counting completed cycles over a long horizon.

10 Conclusion
We presented a constructive spacetime framework in the HPA–Ω scan–readout paradigm. The
key move is to treat finite-resolution readout as primitive: operational time and probability are
induced by scan ticks and POVM instruments, while nonclassicality arises from a Weyl pair in
the scan algebra.
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order n map mean p50 p90 p99 max
1 Z-order 4.00 4 4 4 4
1 Shuffled 5.00 5 7 7 7
2 Z-order 18.88 14 28 28 28
2 Shuffled 37.38 37 51 59 59
3 Z-order 92.83 55 220 220 220
3 Shuffled 309.24 305 439 489 503
4 Z-order 426.14 220 1756 1756 1756
4 Shuffled 2487.73 2473 3499 3933 4069
5 Z-order 1852.72 220 7022 14044 14044
5 Shuffled 20068.47 19897 28014 31372 32656

Table 6: 3D scan-chain proxy statistics for Morton/Z-order and a shuffled baseline (orders
n = 1, . . . , 5).

N D∗
N (PN ) bound 2(2 + logφN)/N ratio

100 0.0207764 0.231399 0.090
300 0.00575141 0.092353 0.062

1000 0.00134748 0.0327098 0.041
3000 0.000692067 0.0124253 0.056

10000 0.000244267 0.00422798 0.058
30000 8.00778e-05 0.00156153 0.051

Table 7: Exact star discrepancy for the golden-branch Kronecker sequence and the explicit
logarithmic bound.

To obtain higher-dimensional locality from a one-dimensional scan, we introduced the Hilbert
Folding Axiom, making space an explicit finite-resolution address graph rather than a back-
ground continuum. This exposes routing/compilation overhead as a physical resource and yields
the computational lapse field N = κ0/κ as an operational redshift factor. A minimal Poisson
closure for a phase potential provides a falsifiable Newtonian-limit template with an approximate
1/r profile.

On the arithmetic side, we isolated a single bridge assumption (HTF) that embeds zeta-zero
modes into an Abel-regularized scan trace. Under HTF and unit-disk holomorphy mandated
by bounded scan readout, we proved a conditional rigidity theorem: off-critical zeros would
force interior poles, contradicting holomorphy, hence Re(ρ) = 1

2 for all nontrivial zeros. This
conditional rigidity statement is recorded as an arithmetic appendix (Appendix D).

Reproducible scripts are provided to audit the discrete Hilbert addressing property, discrep-
ancy certificates, Abel threshold behavior, and Poisson potential numerics.

Limitations and open directions. The gravity dictionary developed here is operational
and calibrated, but it is presently matched to the weak-field/static template: a full micro-to-
macro derivation of the Einstein dynamics (including a dynamical closure for shift/drift and
spatial-metric evolution) is not established in this paper. On the arithmetic side, the rigid-
ity consequence is conditional: the remaining mathematical task is to construct a nontrivial
HTF bridge compatible with the Abel-first/finite-part convention and bounded scan readout,
beyond the explicit function-field model recorded in Appendix E. On the experimental side, the
Wigner–Smith interface provides an actionable delay-based proxy κWS(E), but mapping it to a
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β r
∣∣S(r;Tmax)

∣∣
0.500 0.8000 7.321034e-01
0.500 0.8800 6.369817e-01
0.500 0.9000 6.134388e-01
0.500 0.9050 6.075852e-01
0.500 0.9200 5.901151e-01
0.500 0.9500 5.556554e-01
0.500 0.9800 5.219656e-01
0.600 0.8000 6.320969e-01
0.600 0.8800 5.302520e-01
0.600 0.9000 5.058303e-01
0.600 0.9050 1.910336e+00
0.600 0.9200 1.193817e+36
0.600 0.9500 5.656057e+105
0.600 0.9800 1.823025e+173

Table 8: Toy Abel-threshold behavior at fixed Tmax.

r ⟨Φ⟩ r⟨Φ⟩

1 +0.704947 +0.704947
2 +0.335675 +0.671351
3 +0.203919 +0.611756
4 +0.131873 +0.527493
5 +0.082613 +0.413063
6 +0.051132 +0.306791
7 +0.031001 +0.217009
8 +0.016342 +0.130732
9 +0.004706 +0.042356

10 -0.003518 -0.035177

Table 9: Representative radial averages from the FFT Poisson solver (periodic box).

spatial overhead field κ(x) requires a concrete identification of scattering channels with localized
protocol tasks at a stated resolution (Appendix F).
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N boundary/solver source window count mean(r⟨Φ⟩) rel. RMS
20 periodic-Jacobi cube-0 3–5 3 +4.3128e-01 2.228e-01
20 periodic-Jacobi cube-1 3–5 3 +4.3283e-01 2.194e-01
24 periodic-Jacobi cube-0 3–6 4 +4.6478e-01 2.481e-01
24 periodic-Jacobi cube-1 3–6 4 +4.6574e-01 2.457e-01
20 Dirichlet-Jacobi cube-0 3–5 3 +6.0764e-01 1.104e-01
20 Dirichlet-Jacobi cube-1 3–5 3 +6.0714e-01 1.094e-01

Table 10: Finite-size and source-width robustness proxy for the 1/r window.

E τWS(E) κWS(E)
0.125 0.263063 0.263063
0.25 0.358906 0.358906

0.375 0.518752 0.518752
0.5 0.815577 0.815577

0.625 1.46489 1.46489
0.75 3.31311 3.31311

0.875 9.52232 9.52232
1 14.3369 14.3369

1.125 9.52232 9.52232
1.25 3.31311 3.31311

1.375 1.46489 1.46489
1.5 0.815577 0.815577

1.625 0.518752 0.518752
1.75 0.358906 0.358906

1.875 0.263063 0.263063

Table 11: Representative values from the Wigner–Smith toy model, providing an auditable
interface for κWS(E).

order n map x1 κ(x1) x2 κ(x2) predicted measured
8 Hilbert (0,255) 1 (2,7) 19 19.000000 19.000001
8 Hilbert (0,255) 1 (127,0) 54613 54613.000000 54614.964500
8 Hilbert (2,7) 19 (127,0) 54613 2874.368421 2874.471600
8 Z-order (0,0) 2 (0,3) 22 11.000000 11.000000
8 Z-order (0,0) 2 (0,127) 21846 10923.000000 10924.186148
8 Z-order (0,3) 22 (0,127) 21846 993.000000 993.107822

Table 12: Scan-chain toy redshift verification from a computed overhead proxy κ(x) (Hilbert vs
Morton/Z-order).
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A Discrete Hilbert addressing and one-step locality
The Hilbert curve is a classical space-filling construction mapping an interval continuously onto
a square (and, more generally, onto higher-dimensional cubes) [31, 32]. For the purposes of
this paper, we use only its finite-resolution discrete approximation: a bijection between indices
{0, . . . , 2dn − 1} and lattice sites {0, . . . , 2n − 1}d that visits each lattice site exactly once.

One-step locality. Standard Hilbert orders are constructed so that consecutive indices cor-
respond to lattice neighbors (in ℓ1), i.e. (9). This property is crucial for interpreting the address
map as a locality-preserving scan schedule.

Hölder scaling (continuum limit). The continuous Hilbert curve is Hölder continuous with
exponent 1/d [32], which quantitatively expresses locality preservation under coarse graining. In
the present paper, this scaling is invoked only as a standard mathematical property supporting
the finite-resolution interpretation; all operational claims remain at finite n.

Implementation (2D). For d = 2, a compact bitwise algorithm maps a Hilbert index to (x, y)
coordinates. We include a pure-Python reference implementation in scripts/exp_hilbert_
locality.py, which also brute-force verifies that ∥Hn(t+ 1) −Hn(t)∥1 = 1 for all t and for
orders up to n = 8. The script emits a small LATEX row file for Table 2.

B Notes on star discrepancy, Denjoy–Koksma, and the golden-
branch bound

We recall the one-dimensional star discrepancy

D∗
N (PN ) = sup

u∈[0,1]

∣∣∣∣ 1
N

#{t < N : xt < u} − u

∣∣∣∣
for PN = {x0, . . . , xN−1} ⊂ [0, 1), and the Koksma inequality (6) controlling sampling error for
bounded-variation observables [26,27].

Rotation sequences and bounded-type slopes. For an irrational rotation xt = x0 +
tα (mod 1), discrepancy behavior is governed by the continued fraction of α. When the partial
quotients are uniformly bounded (bounded type), Denjoy–Koksma estimates at convergent times
yield logarithmic mismatch stability; see [26,46,47].

A continued-fraction certificate. A standard bound for Kronecker sequences controls star
discrepancy in terms of the continued-fraction data of α: if pm/qm is a convergent and qm ≤
N < qm+1, then one has

D∗
N (PN ) ≤ 1 +∑m

k=1 ak

N
,

where ak are the partial quotients of α; see, e.g., [26, Ch. 2] or [27, Ch. 1]. For bounded type,∑m
k=1 ak = O(m) = O(logN), giving the familiar O((logN)/N) rate.

Golden branch. For the golden slope α = φ−1 = [0; 1, 1, 1, . . . ], all partial quotients sat-
isfy ak = 1 and the convergent denominators are Fibonacci numbers, hence qm grows expo-
nentially like φm. Specializing the continued-fraction certificate above therefore yields an ex-
plicit logarithmic bound of order (logN)/N ; (7) is a convenient uniform certificate. The script
scripts/exp_golden_discrepancy_bound.py computes D∗

N (PN ) exactly from its definition
and compares it against (7) for representative N .
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Higher-dimensional discrepancy and the inverse problem. The discussion in the main
text emphasizes one-dimensional deterministic certificates as a minimal auditable interface. In
dimension d ≥ 2, the theory of star discrepancy becomes substantially more delicate, with sharp
bounds depending on d, the point-set class, and the norm used to measure irregularities; see,
e.g., [48, 49]. One structural fact relevant to any “deterministic error certificate” narrative is
the inverse discrepancy problem: how large N must be (as a function of d and ε) to guarantee
D∗

N ≤ ε. In particular, the inverse of the star discrepancy can scale at least linearly with the
dimension in general settings [50]. Recent work also relates discrepancy growth to additive
energy and other arithmetic structure of sequences, providing additional mechanisms by which
protocols can exhibit large irregularities [51].

A sensitivity channel for coarse-grained field estimation. The closed-layer role of dis-
crepancy is to provide deterministic, non-asymptotic error certificates for finite-horizon readout.
For one-dimensional scan samples, Koksma-type inequalities bound the error of estimating a
bounded-variation observable by Var(f)D∗

N (PN ) (cf. (6)). When a protocol source density σ is
built from occupation bias and then coarse-grained by a kernel w(ε) (Example 8.8), the same
discrepancy controls the deviation of the coarse-grained empirical density from its uniform ref-
erence at fixed horizon and resolution. Propagation to the phase potential and lapse is then
controlled by the Poisson stability estimate (Proposition 5.7), which bounds the induced per-
turbation of ∇Φ in terms of the H−1 norm of the source perturbation. This provides a concrete
sensitivity pipeline from “off-golden” scan irregularities to coarse-grained geometric prediction
errors.

C Abel finite parts and unit-disk analyticity (notes)
Abel regularization replaces divergent infinite-horizon expressions by holomorphic generating
functions on the unit disk. Given a bounded sequence (at)t≥0, define

Aa(r) :=
∑
t≥0

atr
t, |r| < 1.

This is holomorphic for |r| < 1 and is computable at every r ∈ (0, 1). The only universal singular
behavior allowed by absolute convergence is at the boundary r ↑ 1.

Finite-part template. If Aa(r) admits an expansion

Aa(r) = c−1
1 − r

+ c0 + c1(1 − r) + · · · (r ↑ 1),

then the Abel finite part is defined by FPr↑1Aa(r) := c0. This is the canonical constant-term
extraction used in Convention 3.3; see [52,53] for classical treatments of Abelian summation and
finite-part asymptotics.

Rotation resolvent criterion. For rotation orbits with a sufficiently regular kernel f (abso-
lutely summable Fourier coefficients), the resolvent identity (3) shows that A(r) is holomorphic
on |r| < 1 and that all possible singularities occur only on the boundary |r| = 1. This is the
analytic backbone of the interior pole-barrier argument in Lemma 2.2.

Proposition C.1 (Canonical pole subtraction and scheme stability for rotation kernels). Let
α ∈ (0, 1) \Q and let xt = x0 + tα (mod 1). Let f : T → C have an absolutely summable Fourier
series

∑
m∈Z

∣∣∣f̂(m)
∣∣∣ < ∞ and define the Abel orbit sum Sf (r) = ∑

t≥0 r
tf(xt) for |r| < 1. Then:
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1. Unique universal pole. One has the decomposition

Sf (r) = f̂(0)
1 − r

+ Hf (r),

where Hf is holomorphic on |r| < 1 and extends continuously to r ↑ 1. In particular, no
subleading divergences of the form log(1 − r) occur in this kernel class.

2. Finite-part existence and uniqueness. The Abel finite part in (4) exists and equals
Hf (1).

3. Scheme dependence is reduced to a fixed constant. If a modified subtraction scheme
uses

lim
r↑1

(
Sf (r) − f̂(0)

1 − r
− g(r)

)
for some function g holomorphic in a neighborhood of r = 1, then the resulting value equals
Hf (1) − g(1). Thus, within the admissible kernel class and with the Abel-first canonical
path fixed, the only ambiguity is an additive constant corresponding to an explicitly chosen
counterterm g(1); Convention 3.3 fixes this ambiguity by taking g ≡ 0.

Proof. By (3),
Sf (r) =

∑
m∈Z

f̂(m) e2πimx0 1
1 − r e2πimα

.

The m = 0 term equals f̂(0)/(1 − r). For m ̸= 0, irrationality of α implies e2πimα ̸= 1, so
the denominators do not vanish at r = 1; absolute summability of f̂(m) then gives uniform
convergence and holomorphy of the remaining sum on |r| < 1 and continuity at r ↑ 1. This
yields the claimed decomposition with Hf (1) finite and excludes subleading divergences in this
class. The scheme-stability statement is immediate from holomorphy of g at r = 1.

Remark C.2 (Inadmissibility as a protection against subleading divergences). If one enlarges
the kernel class or the protocol object so that Sf (r) develops subleading divergences at r ↑ 1 (for
example, logarithmic terms), then the canonical finite-part limit in (4) need not exist. In the
Ω layer discipline, such quantities are rejected as inadmissible: the closed layer only assigns
protocol values when the Abel-first/finite-part convention yields a well-defined finite part along
the canonical path.

C.1 Relation to zeta/theta regularization in QFT and Casimir-type calcula-
tions

Abel-first finite parts are closely related to standard analytic regularization methods in QFT,
including zeta-function regularization and heat-kernel/theta regularization. We record the cor-
respondence and the (limited) scheme dependence.

Discrete Abel weight vs. Laplace/heat-kernel weights. Writing r = e−s with Re(s) >
0 turns an Abel sum ∑

t≥0 atr
t into a discrete Laplace transform ∑

t≥0 ate−st. This is the
discrete-time analogue of the heat-kernel regularization Tr(e−tA) and the associated Mellin trans-
form/zeta regularization ζA(s) = Tr(A−s) in spectral problems [54–56]. In both settings, the
renormalized value is obtained by extracting a finite part (constant term) after subtracting the
universal divergent piece.
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Finite-part extraction and renormalization conditions. In the present framework, the
canonical prescription is the Abel-first path r ↑ 1 and the constant-term extraction FPr↑1 (Con-
vention 3.3). In QFT/Casimir calculations, different zeta/heat-kernel subtraction schemes cor-
respond to different choices of local counterterms (renormalization conditions). Proposition C.1
makes the analogous statement in our admissible kernel class: modifying the subtraction by a
holomorphic counterterm g(r) shifts the finite part by an explicit additive constant g(1). Thus,
whenever the Abel finite part is well-defined in the sense of this appendix, the only remaining
scheme dependence is a controlled finite ambiguity corresponding to a chosen (local) countert-
erm, exactly as in analytic renormalization.

When can finite parts differ? Finite parts can differ if one compares:

• different subtraction choices (different g), which shift the finite part by a constant; or

• different regularization families (e.g. Abel vs. a non-equivalent cutoff) outside the admis-
sible class, where subleading divergences (e.g. logarithms) can appear and the Abel finite
part may fail to exist (Remark C.2).

In the closed-layer Ω discipline, such differences are not treated as paradoxes: the protocol value
is defined only after fixing the canonical path and the subtraction convention, and any additional
finite renormalization is an explicit, auditable modeling choice (cf. HTF-Types/HTF-Renorm in
Assumption D.6). For comparisons with physics literature using analytic renormalization, see,
e.g., [57] for representative Casimir/QFT discussions.

D Arithmetic appendix: holographic trace formulas and a con-
ditional Riemann critical-line rigidity theorem

D.1 Geometric-side holomorphy on the unit disk

In the closed layer, Abel-regularized traces are primary objects.

Lemma D.1 (Bounded scan readout implies unit-disk holomorphy). Let U be a unitary on Heff ,
let ωeff be an effective state, and let A be a bounded operator. Define the scan-readout sequence

at := ωeff
(
U tAU−t

)
, t ∈ Z≥0.

Then (at) is bounded, and the Abel generating function

G(r) :=
∑
t≥0

atr
t

converges absolutely for |r| < 1 and is holomorphic on the unit disk.

Proof. Since U is unitary, ∥U tAU−t∥ = ∥A∥. For any state ωeff on a C∗-algebra one has
|ωeff(B)| ≤ ∥B∥, hence |at| ≤ ∥A∥ for all t. Absolute convergence for |r| < 1 and holomorphy of
the resulting power series are immediate.

Corollary D.2 (Geometric-side growth bounds on the unit disk). In the setting of Lemma D.1,
for every r ∈ C with |r| < 1 one has the explicit bound

|G(r)| ≤ ∥A∥
1 − |r|

. (32)

More generally, for every integer k ≥ 0 the k-th derivative exists and satisfies∣∣∣G(k)(r)
∣∣∣ ≤ k! ∥A∥

(1 − |r|)k+1 .
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Proof. By Lemma D.1, |at| ≤ ∥A∥. Thus, for |r| < 1,

|G(r)| ≤
∑
t≥0

|at| |r|t ≤ ∥A∥
∑
t≥0

|r|t = ∥A∥
1 − |r|

.

Termwise differentiation is justified by absolute convergence on compact subsets of |r| < 1, and
the derivative bound follows from ∑

t≥k t(t− 1) · · · (t− k + 1) |r|t−k ≤ k!/(1 − |r|)k+1.

Lemma D.1 provides the geometric-side analyticity constraint mandated by bounded scan
readout (Axioms 3.1–3.2). This unit-disk holomorphy will be paired with the spectral-side mode
structure under HTF.

Remark D.3 (Concrete scan models realizing the holomorphy condition). Lemma D.1 is in-
tentionally minimal: it isolates the unit-disk analyticity that follows from bounded readout, inde-
pendent of any arithmetic content. A concrete realization consistent with the Weyl-pair setting
is obtained by taking Heff = L2(T), letting U be the irrational rotation shift (Uψ)(x) = ψ(x+α),
choosing A as a bounded multiplication operator (Aψ)(x) = f(x)ψ(x) with f ∈ L∞(T), and
letting ωeff be any normal state (e.g. a vector state). Then at = ωeff(U tAU−t) is a bounded scan-
readout sequence, and the Abel generating function G(r) is holomorphic on |r| < 1. In any HTF
candidate, this holomorphy verification is therefore straightforward once (U, ωeff , A) are fixed; the
nontrivial content is the existence of a trace identity whose spectral mode decomposition contains
the zeta data.

Definition D.4 (Abel-regularized scan trace). In the setting of Lemma D.1, we call

G(r) =
∑
t≥0

ωeff
(
U tAU−t

)
rt

the Abel-regularized scan trace associated to (U, ωeff , A). It is holomorphic on |r| < 1.

D.2 HTF as a bridge package (structured assumptions)

The Riemann Hypothesis in this framework is treated as a protocol consequence of a trace identity
that embeds arithmetic spectral data into scan traces. We isolate the needed input as a single
assumption.

Remark D.5 (A fully explicit model exists in the function-field setting). Before stating HTF,
we emphasize that the logical structure required here is not a purely formal slogan. Appendix E
records an unconditional HTF-style trace identity for Weil zeta functions of curves over finite
fields, where the analogue of RH is known. That example shows concretely how a resolvent-
mode decomposition produces interior poles when a spectral radius exceeds 1, and how unit-disk
holomorphy forces a “critical-line” modulus constraint.

Assumption D.6 (HTF: holographic trace formula bridge (Id, Types, Modes, Renorm, Non-
Cancel)). There exists a choice of (U, ωeff , A) and an Abel-regularized scan trace G in the sense
of Definition D.4, together with a spectral term S and a regular term A∞ on the unit disk, such
that:

HTF-Id (meromorphic identity). The following identity holds on |r| < 1 as an equality of meromorphic functions:

G(r) = S(r) + A∞(r), |r| < 1, (33)

HTF-Types (analytic types). G(r) is holomorphic on |r| < 1 by Lemma D.1. The regular term A∞(r) is holomorphic
on |r| < 1 and collects archimedean/renormalization contributions compatible with the
Abel-first/finite-part convention.
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HTF-Modes (zeta-zero resolvent modes). The spectral term S(r) is meromorphic on |r| < 1 and admits a decomposition

S(r) =
∑

ρ

cρ
1

1 − r e(ρ− 1
2 )

+ H(r), (34)

where the sum ranges over nontrivial zeros ρ of ζ, the coefficients cρ are complex num-
bers, and H(r) is holomorphic on |r| < 1. The sum is understood with a fixed summabil-
ity/renormalization prescription (for example, symmetric pairing of zeros and an Abel-first
limiting procedure) chosen so that the right-hand side defines a meromorphic function on
|r| < 1.

HTF-Renorm (local meromorphy under renormalization). The chosen summability/renormalization prescription is fixed once and for all (as part of
the HTF package) and defines S(r) as a meromorphic function on |r| < 1 whose principal
parts at its poles agree with the principal parts of the corresponding resolvent-mode factors
in (34). In particular, the prescription does not remove interior poles by subtracting their
principal parts.

HTF-NonCancel (no interior pole cancellation). Whenever Re(ρ) > 1
2 (equivalently |rρ| < 1), the point

rρ = e−(ρ− 1
2 )

is an actual pole of S(r), i.e. the principal part of S at r = rρ is nonzero. Equivalently,
the total residue at r = rρ contributed by all zero modes mapping to rρ is nonzero.

Remark D.7 (On “cancellation hiding poles”). In a meromorphic identity on |r| < 1 of the form
G = S + A∞, the regular term A∞ is holomorphic by HTF-Types and therefore cannot cancel
any interior pole. Hence any interior pole of the right-hand side must be canceled within S itself.
But cancellation between different pole locations is impossible: principal parts at distinct points
are independent. The only way for a pole to be “hidden” is therefore a same-point cancellation
(the total principal part at that pole vanishes). HTF-NonCancel excludes exactly this degenerate
possibility, and it is automatically satisfied in explicit resolvent-trace models in which residues
are fixed nonzero spectral multiplicities (Appendix E gives a fully explicit instance).

Assumption D.6 is a protocol-level abstraction of the classical “explicit formula as trace”
paradigm [23, 58, 59], rewritten in Abel r-coordinates with the Ω canonical path; see also the
companion protocol trace manuscript [60]. The present paper does not attempt to construct
such an identity; rather, it isolates the analytic hypotheses and proves the rigidity consequence
if HTF holds.
Remark D.8 (Logical separation and why the argument is not circular). The rigidity step
proved below is purely complex-analytic: unit-disk holomorphy of the geometric-side Abel trace
G (a boundedness consequence) is incompatible with interior poles produced by exponential-growth
modes. HTF does not assume RH; it assumes the existence of a trace identity whose spectral side
contains zeta-zero resolvent factors in the concrete Abel coordinate r. The conditional theorem
should therefore be read as a rigidity constraint on admissible trace bridges: any HTF candidate
compatible with bounded scan readout must be consistent with the critical-line location of all zero
modes.

Remark D.9 (HTF as a concrete verification checklist). Assumption D.6 is formulated so
that its components can be checked modularly in any proposed operator/dynamical model: (i)
the geometric-side boundedness and unit-disk holomorphy of G are ensured by the scan-readout
interface (Lemma D.1); (ii) the regular term A∞ must be holomorphic and compatible with the
Abel-first/finite-part discipline (Convention 3.3 and Appendix C); (iii) the spectral term must
admit a meromorphic mode decomposition with resolvent factors that produce interior poles for
off-critical growth, and those poles must not be canceled. Appendix E provides a fully explicit
model where this checklist is satisfied unconditionally (with the Frobenius spectrum in place of
zeta zeros).
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Remark D.10 (A fully explicit HTF instance in the function-field setting). In the setting
of zeta functions of curves over finite fields, trace identities of the form (33) are explicit and
unconditional, with spectral modes given by Frobenius eigenvalues. Appendix E records a concrete
model showing how the pole-barrier mechanism becomes a transparent spectral-radius statement.

D.3 Relation to explicit formulas and operator-trace frameworks

Abel coordinate r and Laplace coordinate s. Writing r = e−s with Re(s) > 0 converts
Abel weights into a Laplace-like coordinate. The zero-mode factor in (34) becomes

1
1 − r e(ρ− 1

2 )
= 1

1 − e−(s−(ρ− 1
2 ))
.

Thus, an off-critical zero with Re(ρ) > 1
2 produces a pole at rρ = e−(ρ− 1

2 ) strictly inside the unit
disk (Lemma 2.2). This is the analytic content of the “pole barrier” mechanism: in Abel/Laplace
coordinates, exponential-growth modes correspond to interior resolvent singularities.

Resolvent and determinant viewpoint (operator-theoretic intuition). Factors of the
form (1 − rλ)−1 are resolvent kernels. If an operator F has eigenvalues {λj} and the trace
Tr((I − rF )−1) is meaningful (possibly after regularization), then formally

Tr
(
(I − rF )−1) =

∑
j

1
1 − rλj

.

The function-field model in Appendix E is exactly of this form with F the normalized Frobenius
action. In an operator-trace instantiation of HTF, (34) should be interpreted as asserting that a
suitably regularized resolvent trace contains zeta-zero modes as resolvent singularities in the Abel
coordinate r (equivalently, in the Laplace coordinate s). Related determinant regularizations
can be viewed through log det(I − rF ) = −

∑
n≥1

rn

n Tr(Fn) when such expansions are justified.

Test-function viewpoint (explicit-formula dictionary). The Abel trace is the generating
function

G(r) =
∑
t≥0

atr
t,

and under r = e−s it becomes the discrete Laplace transform

G(e−s) =
∑
t≥0

at e−st.

In this language, the factor
(
1 − e−(s−(ρ− 1

2 )))−1 is exactly the Laplace image of the geometric
mode t 7→ e(ρ− 1

2 )t. Classical explicit formulas can be viewed as trace identities evaluated against
a family of test functions; HTF specializes to a concrete “geometric-series” test family adapted
to the Abel-first discipline.

Connection to classical explicit formulas and Connes’ trace framework. In analytic
number theory, the Weil explicit formula relates test-function transforms of primes to test-
function transforms of the nontrivial zeros of ζ; see, e.g., [58, 59]. Connes’ semilocal trace
formula provides an operator-theoretic realization of this paradigm in noncommutative geometry,
in which the zero spectrum appears through trace identities [23]. HTF should be understood as
the assertion that a specific Abel-regularized scan trace G(r) admits such a trace realization in
a form compatible with the Ω Abel-first discipline.

45



Relation to prolate-wave operator constructions. Recent work constructs explicit oper-
ators whose spectral data encode zeta zeros in novel ways, including prolate wave operators [25].
These constructions exemplify the operator-theoretic Hilbert–Pólya route that HTF presup-
poses: one seeks a concrete spectral object and a trace identity whose mode decomposition
contains the zeros [24]. From the present closed-layer perspective, HTF packages the existence
of such a trace bridge into a single auditable assumption, after which the rigidity consequence
follows from unit-disk holomorphy.

D.4 Interior poles from off-critical zeros

Theorem D.11 (Riemann critical-line rigidity (conditional)). Assume Axioms 3.1–3.2, Con-
vention 3.3, and the HTF bridge Assumption D.6 (HTF-Id/Types/Modes/Renorm/NonCancel).
If the geometric-side trace G(r) is holomorphic on the unit disk |r| < 1, then every nontrivial
zero ρ of ζ satisfies

Re(ρ) = 1
2 .

Proof. Suppose, for contradiction, that there exists a nontrivial zero ρ with Re(ρ) > 1
2 . By

Lemma 2.2, the corresponding mode factor
(
1 − r e(ρ− 1

2 ))−1 has a pole at rρ = e−(ρ− 1
2 ) with

|rρ| < 1. Under Assumption D.6, the point r = rρ is an actual pole of S(r). Since A∞(r) is
holomorphic on |r| < 1, the right-hand side of (33) has an interior pole at r = rρ.

On the other hand, by the boundedness/holomorphy of Abel traces on |r| < 1, the left-hand
side G(r) is holomorphic on the entire unit disk and has no interior poles. This contradicts (33)
as an equality of meromorphic functions on |r| < 1. Hence no zero can satisfy Re(ρ) > 1

2 .
Finally, the functional equation symmetry ρ 7→ 1 − ρ implies that if a zero with Re(ρ) < 1

2
existed, then 1 − ρ would be a zero with real part > 1

2 , which has been excluded. Therefore all
nontrivial zeros lie on the critical line.

Remark D.12 (Status of the result). Theorem D.11 is a closed-layer protocol consequence
of HTF and unit-disk holomorphy. The mathematical difficulty is isolated into a single task:
construct an HTF bridge compatible with the Abel-first/finite-part convention and with bounded
scan readout.

E An explicit HTF model: Frobenius trace and Weil zeta for
curves over finite fields

This appendix records a fully explicit instance of an HTF-style trace bridge in a setting where
the analogue of RH is known: zeta functions of smooth projective curves over finite fields. The
purpose is not to re-prove the Weil conjectures, but to exhibit a concrete trace identity in which
spectral modes appear through resolvent factors and the pole-barrier mechanism becomes an
elementary spectral-radius statement.

E.1 Weil zeta and Frobenius eigenmodes

Let C be a smooth projective geometrically connected curve of genus g over Fq. Define the point
counts Nn := #C(Fqn) and the Weil zeta function

ZC(u) := exp

∑
n≥1

Nn

n
un

 .
It is a rational function of the form

ZC(u) = PC(u)
(1 − u)(1 − qu) , PC(u) =

2g∏
j=1

(1 − αju) , (35)
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where the αj are algebraic numbers encoding the Frobenius spectrum on the first cohomology
of C (see, e.g., [61]). The nontrivial zeros of ZC occur at u = α−1

j . The Weil RH statement for
curves is the modulus condition

|αj | = q1/2 (1 ≤ j ≤ 2g),

equivalently
∣∣∣α−1

j

∣∣∣ = q−1/2.

E.2 A resolvent trace generating function and interior poles

Define the normalized eigenvalues

λj := αj

q1/2 , 1 ≤ j ≤ 2g.

Consider the formal power series

G(r) :=
∑
n≥0

 2g∑
j=1

λn
j

 rn, r ∈ C. (36)

Whenever the sequence ∑j λ
n
j is bounded, the series (36) is holomorphic on the unit disk |r| < 1

(cf. Lemma D.1). On the other hand, for |r| < 1 one has the resolvent identity

G(r) =
2g∑

j=1

1
1 − rλj

, (37)

which is meromorphic with poles at r = λ−1
j . Thus:

• if |λj | > 1 for some j, then r = λ−1
j is a pole strictly inside |r| < 1;

• if G(r) is holomorphic on |r| < 1, then necessarily |λj | ≤ 1 for all j;

• applying the same argument to the dual spectrum (or using the functional equation sym-
metry in (35)) forces |λj | = 1 for all j.

E.3 Relation to the pole-barrier mechanism

The identity (37) is a concrete trace bridge in the same structural form as Assumption D.6: the
geometric-side holomorphy of an Abel-type trace on |r| < 1 is incompatible with interior poles
created by exponential-growth spectral modes. In the function-field setting, the spectral data
are explicit (Frobenius eigenvalues), and the “critical line” statement becomes the unit-modulus
constraint |λj | = 1, i.e. |αj | = q1/2. This provides a fully worked model demonstrating that an
HTF package can be realized as a genuine trace identity rather than as a purely heuristic slogan:
the resolvent identity gives the mode decomposition (HTF-Modes), the unit-disk holomorphy
criterion is explicit, and interior poles are genuine unless the corresponding mode coefficient
vanishes (HTF-NonCancel).

E.4 A concrete genus-one example (explicit poles and noncancellation)

We now instantiate the discussion on an explicit genus-one curve, where all objects can be
written down concretely.
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Elliptic curve over F5. Let q = 5 and consider the elliptic curve

E : y2 = x3 + x+ 1 over F5.

Direct point counting gives #E(F5) = 9, hence the Frobenius trace is

a := q + 1 − #E(F5) = 6 − 9 = −3.

The Weil zeta numerator is therefore

PE(u) = 1 − au+ qu2 = 1 + 3u+ 5u2.

The Frobenius eigenvalues α± are the roots of T 2 − aT + q = 0, i.e.

α± = a±
√
a2 − 4q
2 = −3 ± i

√
11

2 , |α±| =
√

5.

The normalized eigenvalues are

λ± := α±√
q

= −3 ± i
√

11
2
√

5
, |λ±| = 1, λ− = λ+ = λ−1

+ . (38)

Geometric-side boundedness and unit-disk holomorphy. In genus g = 1 one has 2g = 2
modes, and the coefficient sequence in (36) becomes

bn :=
2∑

j=1
λn

j = λn
+ + λn

− = 2 Re(λn
+), n ≥ 0.

Since |λ±| = 1, the coefficients are bounded by |bn| ≤ 2 for all n. Therefore the Abel series
G(r) = ∑

n≥0 bnr
n is holomorphic on |r| < 1 (cf. Lemma D.1).

Spectral-side resolvent decomposition and explicit poles. The resolvent identity (37)
is completely explicit here:

G(r) = 1
1 − rλ+

+ 1
1 − rλ−

. (39)

Hence G is meromorphic with simple poles at

r± = λ−1
± = λ±, |r±| = 1.

In particular, there are no poles in the open unit disk, matching the geometric-side holomorphy.

Noncancellation is explicit. The principal part of (1 − rλ±)−1 at r = r± is

1
1 − rλ±

= − 1
λ±

· 1
r − r±

+ (holomorphic),

so the residue is −1/λ± ̸= 0. Because r+ ̸= r−, the poles are at distinct points and cannot
cancel. Thus HTF-NonCancel holds in this explicit model in the strongest possible sense: each
off-unit-circle eigenmode would force a genuine interior pole.

Pole barrier as a spectral-radius statement. If one replaces (38) by a hypothetical mode
with |λ| > 1, then r = λ−1 lies strictly inside |r| < 1 and (39) would contain an interior pole.
Equivalently, the coefficient sequence would grow like |bn| ∼ |λ|n, and the Abel series would have
radius of convergence 1/|λ| < 1. Therefore, demanding unit-disk holomorphy forces |λ| ≤ 1, and
applying the same argument to the dual mode (or using the functional equation symmetry)
forces |λ| = 1. This is exactly the pole-barrier mechanism in its simplest fully explicit form.
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F Wigner–Smith time delay as an interface for measuring com-
putational lapse

If computational lapse is interpreted as an operational time-delay density, then scattering theory
provides a natural measurable proxy. Given a unitary scattering matrix S(E) as a function of
energy E, the Wigner–Smith time-delay matrix is

Q(E) = −iS(E)† dS
dE . (40)

A common scalar summary is the total delay

τWS(E) = TrQ(E). (41)

In the present framework, τWS(E) can be interpreted as a measurable time-delay proxy for
routing overhead at energy/scale E. Choosing a reference tick duration τ0 defines a dimensionless
overhead proxy

κWS(E) := τWS(E)
τ0

, NWS(E) := κ0
κWS(E) .

Standard references for time delay include [62,63].

Remark F.1 (What κWS(E) is (and is not)). The proxy κWS(E) is an energy/scale-dependent
delay observable derived from a scattering measurement. It is not, by itself, the same object as
the spatial compilation field κ(x;Gphys, πn,G) (Definition 7.2). Connecting the two requires an
additional experimental/modeling identification specifying how the measured scattering channel
probes localized degrees of freedom and how the energy scale E corresponds to a protocol resolution
band.

F.1 Protocol: from measured S-parameters to κWS

The definition (40) is operational once S(E) is available as a calibrated function of energy
(or frequency). In many experiments one measures S as a function of angular frequency ω or
frequency f . Writing E = ℏω, one has

dS
dE = 1

ℏ
dS
dω ,

so an equivalent formulation is Q(ω) = −(i/ℏ)S(ω)†(dS/dω). The following steps define a
minimal, auditable pipeline.

Step 1: acquire and calibrate S. Measure the complex scattering matrix elements on
a grid of energies/frequencies. Calibration should remove systematic phase delays from the
measurement chain and fix a reference plane so that S represents the sample/device.

Step 2: diagnose (approximate) unitarity and losses. Equation (40) is standard for
unitary S (lossless elastic scattering). In realistic settings absorption, dissipation, or imperfect
calibration can make S non-unitary. Operationally one should report a unitarity diagnostic (e.g.
∥S†S − I∥ in multi-channel settings or |S(E)| in the 1-channel setting) and either: (i) restrict
attention to bands where unitarity holds to a stated tolerance, or (ii) interpret τWS as an effective
delay proxy under a stated loss model.
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Step 3: set derivative resolution and regularize. Time-delay estimates differentiate noisy
data, so dS/dE must be regularized. A minimal method is a central finite difference on a uniform
grid: for sampled energies Ek with step ∆E,

dS
dE

∣∣∣∣
Ek

≈ S(Ek+1) − S(Ek−1)
2∆E .

In the 1-channel case one may equivalently unwrap the phase δ(E) = argS(E) and compute
τWS(E) = dδ/dE, which avoids branch-cut artifacts at ±π. If smoothing is used (moving
average, local polynomial fit), the window size should be reported because it sets the effective
resolution.

Step 4: compute Q and τWS. With a derivative estimate in hand, evaluate Q(E) by (40) and
take the trace (41). In multi-channel settings, one may additionally inspect eigenvalues of Q(E)
(proper delay times) and report their distribution; the trace is the simplest scalar compression.

Step 5: normalize to κWS and report stability. Choose a reference tick duration τ0 and
define κWS(E) = τWS(E)/τ0. Because τWS is a derivative estimate, uncertainty scales roughly
like δτWS ∼ δS/∆E (or δδ/∆E in the phase method). A minimal report should therefore
include the sampling step ∆E (or ∆f), the smoothing window, and a basic stability check
under moderate changes of ∆E and smoothing window.

Script interface. The script scripts/exp_wigner_smith_kappa.py implements the central-
difference/phase-unwrapping pipeline in a dependency-free way. It includes a 1-channel Breit–
Wigner toy model for S(E) and supports replacing it by a physical model or experimental data
source.

A one-channel Breit–Wigner model (analytic check). For a single-channel elastic scat-
terer, one may write S(E) = eiδ(E) and the Wigner–Smith delay reduces to the phase derivative
τWS(E) = dδ/dE. A minimal exactly unitary resonance model is the Breit–Wigner form

S(E) = E − E0 − iγ/2
E − E0 + iγ/2 , (42)

whose phase rises by π across the resonance. In this case one obtains the Lorentzian delay profile

τWS(E) = γ

(E − E0)2 + (γ/2)2 . (43)

The toy implementation in scripts/exp_wigner_smith_kappa.py computes τWS(E) numeri-
cally via a phase-unwrapped finite difference and provides an auditable interface for replacing
(42) by a physical S(E).

F.2 A minimal device-level realization (Hamiltonian, lead coupling, and tick
calibration)

To make the Wigner–Smith interface concrete at the level requested by experimental/numerical
tests, we record a minimal open-system model that produces (42) and therefore an explicit κWS.

Device Hamiltonian and coupling (one level, one channel). Let the device have a single
internal mode |0⟩ with Hamiltonian

Hdev = E0 |0⟩⟨0| .
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Couple this mode to a single propagation channel (lead) in the standard wide-band approxima-
tion so that the retarded self-energy is purely imaginary, Σ(E) ≈ −i γ/2 with γ > 0. Equiva-
lently, the effective non-Hermitian Hamiltonian is

Heff := Hdev − i γ2 |0⟩⟨0| .

Then the on-shell scattering matrix is unitary and equals the Breit–Wigner form (42). In this
realization, the linewidth γ is the coupling-induced decay rate (inverse lifetime) of the internal
mode.

Tick period and the dimensionless overhead proxy. To compare with compilation over-
head (which is measured in discrete ticks), fix a reference tick duration τ0 in seconds. Opera-
tionally, τ0 is the duration of one primitive substrate tick, i.e. the time required to execute a
chosen reference primitive on the physical platform (or, in a wave network, the calibrated delay
of a single standard cell). Then

κWS(E) = τWS(E)
τ0

is a dimensionless, directly measurable delay/overhead proxy.

Resonance-height normalization (closed form). For (43) one has, at the resonance energy
E = E0,

τWS(E0) = 4
γ
, κWS(E0) = 4

γ τ0
. (44)

Thus, in this minimal model the overhead proxy is proportional to the inverse linewidth. This
provides a clean experimental/numerical handle: γ can be extracted from the measured phase
jump or delay peak width, and (44) then yields κWS(E0).

F.3 A testable map from κWS(E) to spatial κ(x) (calibrated interface)

The spatial field κ(x) is defined by compilation depth on a hardware graph (Definition 7.2),
whereas κWS(E) is defined by a scattering delay measurement. To relate them in a concrete
platform one must specify a localization map (how a spatial location x is addressed by a scat-
tering channel) and a band map (how an energy/frequency band corresponds to a protocol res-
olution/time scale). We record a minimal calibrated interface that is sufficient for quantitative
tests.

Assumption F.2 (Localized resonance probe (calibrated delay-to-depth identification)). For
each coarse-grained spatial location x (or for each probe region centered at x at readout scale ε),
there exists an experimentally realizable scattering configuration with:

• a localized resonance centered at energy E0(x) with extracted linewidth γ(x);

• a fixed platform tick duration τ0 (calibration);

• a fixed local-update clock task family used to define κ(x).

The calibrated identification is

κ(x) ≈ κWS(E0(x)) = 4
γ(x) τ0

, (45)

up to a location-independent constant factor that depends only on the chosen clock task normal-
ization (cf. Proposition 7.7) and on the probe geometry.
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Remark F.3 (Quantitative test form). Under Assumption F.2, the lapse dictionary predicts

N(x) = κ0
κ(x) ≈ κ0

κWS(E0(x)) = κ0 γ(x) τ0
4 ,

so lapse ratios are directly expressed in terms of measurable linewidth ratios:

N(x1)
N(x2) ≈ γ(x1)

γ(x2) .

This gives a concrete experimental/numerical falsifiability channel: one extracts γ(x) (or, more
generally, τWS(E)) from measured S-data and compares the induced lapse field (or its ratios)
against the gravitational templates of Section 7.

F.4 Candidate experimental platforms (example)

The Wigner–Smith interface is most natural in platforms where a scattering description is al-
ready standard. One concrete example is a microwave cavity / microwave network experiment
in which S(f) is measured directly as complex S-parameters over a frequency band; the group
delay and resonance widths are extracted from phase evolution and delay peaks. Another com-
mon arena is mesoscopic transport, where multi-channel scattering matrices and time delays
arise naturally. In either case, the minimal protocol is the same: measure S on a frequency grid,
calibrate, differentiate with stated regularization, and report τWS and κWS with uncertainty
diagnostics.

F.5 Relation to spatial overhead κ(x)
The compilation field κ(x) is defined from a spatial task family and a hardware graph, whereas
κWS(E) is defined from a spectral/time-delay measurement. To map between them in a concrete
system one must specify how the scattering channel probes localized degrees of freedom and
how the energy scale E corresponds to a protocol resolution band. Operationally, one may use
κWS(E) as a calibrated overhead proxy and compare redshift-type ratios across energies/bands,
or use it as an input to fit an effective lapse profile once a spatial identification is supplied by
the experimental model.

Directly measurable observables. In laboratory settings where a scattering description
is available, the most direct measurable objects are the scattering matrix elements (e.g. mi-
crowave/mesoscopic S-parameters) as functions of energy/frequency. From these one extracts:

• the phase argS(E) (or multi-channel eigenphases) and its energy derivative (group delay);

• resonance locations E0 and linewidths γ via fits of phase jumps or delay peaks;

• in the multi-channel case, the full time-delay matrix Q(E) and its trace τWS(E) = TrQ(E).

Fixing a reference tick duration τ0 turns the measured delay into the dimensionless overhead
proxy κWS(E) = τWS(E)/τ0, and hence into a lapse proxy NWS(E) = κ0/κWS(E).

G A complete 1+1D worked example:
weighted scan-chain lapse matching

This appendix provides a fully explicit 1+1-dimensional worked example (one spatial lattice
dimension plus scan time) that closes the micro-to-macro loop required for quantitative testing:
addressing → hardware graph → routing/compilation depth κ(x) → lapse N(x) = κ0/κ(x) →
coarse-grained readout and comparison against a weak-field template.
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G.1 Microscopic specification: address, hardware graph, primitives, and a
local clock task

Screen (1D) at resolution n. Let Σn := {0, 1, . . . , L−1} with L := 2n and nearest-neighbor
adjacency i ∼ i± 1 (with endpoints treated as boundaries).

Addressing and placement. Fix the trivial address map An(t) = t and the identity place-
ment

πn(i) := i ∈ Vphys.

In this example, addressing is explicit and routing is driven entirely by the (weighted) hardware
constraint rather than by a nontrivial folding permutation.

Hardware interaction graph. Take the weighted path graph

Vphys = {0, 1, . . . , L− 1}, Ephys =
{
{i, i+ 1} : 0 ≤ i ≤ L− 2

}
,

with integer edge weights wi+ 1
2

:= w({i, i+1}) ∈ Z>0 interpreted as tick costs (Assumption 7.1).

Local clock task (two-edge update). Fix a bounded-local task family G = {Gi}i∈Σn as
follows. For interior sites 1 ≤ i ≤ L− 2, the task Gi consists of executing a prescribed two-body
primitive on the left edge {i− 1, i} and on the right edge {i, i+ 1} once each (the specific gate is
irrelevant for depth accounting). Because the two edges share the vertex i, the disjoint-support
scheduling constraint forces sequential execution, so the minimal depth is exactly

κ(i) = DepthGphys(Gi) = wi− 1
2

+ wi+ 1
2
, 1 ≤ i ≤ L− 2. (46)

This gives a completely explicit and auditable κ(i).

Lapse and potential. Fix a reference overhead κ0 > 0 and define

N(i) := κ0
κ(i) , Φ(i) := log

(
κ(i)
κ0

)
= − logN(i).

By Proposition 7.3, N(i) is the operational lapse linking global scan ticks to local relational time
in this concrete model.

G.2 Weak-field target and construction of a matching hardware profile

Target lapse (weak-field Schwarzschild template along a radial line). To compare
against a standard weak-field template used throughout Section 7, we take the Schwarzschild
lapse

NSchw(r) =
√

1 − 2M
r

(c = G = 1), (47)

restricted to a radial interval r ∈ [rmin, rmax] with rmin > 2M so that NSchw is real and close to
1. In the worked numerics below we use a weak-field choice with 2M/rmin ≪ 1.

Grid embedding. Embed the 1D screen sites into the radial interval by

ri := rmin + i h, h := rmax − rmin
L− 1 , 0 ≤ i ≤ L− 1,

and midpoints ri+ 1
2

:= ri + h
2 for 0 ≤ i ≤ L− 2.
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Target overhead and midpoint edge weights. Define the target overhead field

κtar(r) := κ0
NSchw(r) .

We choose the hardware edge weights by midpoint sampling:

wi+ 1
2

:=
⌊1

2 κtar(ri+ 1
2
) + 1

2

⌋
, 0 ≤ i ≤ L− 2. (48)

This choice is constructive, integer-valued (as required by Assumption 7.1), and yields a second-
order accurate site overhead by symmetric averaging.

Proposition G.1 (Second-order matching). Assume κtar ∈ C2([rmin, rmax]). Define κ(i) for
interior sites by (46)–(48). Define the induced lapse by N(i) = κ0/κ(i). Then for interior sites
1 ≤ i ≤ L− 2,

κ(i) = κtar(ri) +O(h2) +O(1), N(i) = NSchw(ri) +O(h2) +O

( 1
κ0

)
,

where the O(1) term comes from integer rounding of edge weights and is uniformly bounded
independent of h. In particular, at fixed κ0 large enough that rounding is negligible, the mismatch
decays as O(h2) under refinement.

Proof sketch. Ignoring the integer rounding in (48), one has

wi± 1
2

≈ 1
2 κtar(ri ± h/2), κ(i) = wi− 1

2
+ wi+ 1

2
≈ 1

2
(
κtar(ri − h/2) + κtar(ri + h/2)

)
.

Taylor expansion shows the symmetric average equals κtar(ri) + h2

8 κ
′′
tar(ri) + O(h4), hence the

O(h2) term. Rounding each edge weight introduces an error bounded by 1/2 tick per edge,
hence an O(1) error in κ(i). Finally, N(i) = κ0/κ(i) and smoothness of NSchw on [rmin, rmax]
transfer the scaling to lapse errors, with an additional O(1/κ0) quantization term under fixed
physical calibration.

G.3 Readout at finite resolution

To model finite-resolution measurement, we read out coarse-grained fields using a nonnegative
normalized kernel w(ε) of width ε (cf. Section 5.2 and Definition 5.8). On the 1D grid, a concrete
discrete implementation is the windowed average

Φε(i) :=
L−1∑
j=0

w
(ε)
ij Φ(j),

∑
j

w
(ε)
ij = 1, w

(ε)
ij ≥ 0,

with w
(ε)
ij supported mainly on |rj − ri| ≲ ε. The induced coarse lapse is Nε(i) = exp(−Φε(i)).

G.4 Numerical pipeline and generated tables

The script scripts/exp_1p1d_routing_worked_example.py implements the construction (48),
computes κ(i), produces the induced lapse N(i), and compares it to the weak-field target (47).
It reports finite-size errors across multiple resolutions and a simple log–log scaling fit.
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order n sites L h maxi |∆Ni| RMS(|∆N |) rel. RMS
6 64 0.111111 1.270e-04 2.535e-05 2.642e-05
7 128 0.0551181 3.668e-05 6.691e-06 6.982e-06
8 256 0.027451 9.882e-06 1.718e-06 1.794e-06
9 512 0.0136986 2.566e-06 4.351e-07 4.545e-07

10 1024 0.00684262 6.536e-07 1.095e-07 1.144e-07
11 2048 0.00341964 1.647e-07 2.748e-08 2.871e-08

Table 13: 1+1D worked example: induced lapse N(i) = κ0/κ(i) vs. the weak-field target
NSchw(ri), with finite-size error metrics evaluated on interior sites.

fit range (orders) slope for RMS vs. h R2

6–11 1.9642 0.99993

Table 14: Finite-size scaling fit for the 1+1D worked example. The midpoint construction yields
second-order convergence in h up to the integer-quantization floor.

H Reproducible experiment code

H.1 Experiment A: discrete Hilbert addressing locality check
# -*- coding: utf-8 -*-
"""
Discrete 2D Hilbert curve addressing: index -> (x,y), and locality verification.

This script checks the one-step Manhattan locality:
||H_n(t+1) - H_n(t)||_1 = 1

for orders n = 1..8, and writes a small LaTeX row file into sections/generated/.
"""

from __future__ import annotations

from pathlib import Path

def _rot(s: int, x: int, y: int, rx: int, ry: int) -> tuple[int, int]:
"""Rotate/flip a quadrant (standard Hilbert helper)."""
if ry == 0:

if rx == 1:
x = s - 1 - x
y = s - 1 - y

x, y = y, x
return x, y

def hilbert_d2xy(order: int, d: int) -> tuple[int, int]:
"""
2D Hilbert mapping: d in [0, 2^(2*order)-1] -> (x,y) in [0, 2^order-1]^2.
"""
n = 1 << order
x = 0
y = 0
t = int(d)
s = 1
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r NSchw(r) N(r) (measured) ∆N
1.0137 0.9493952556 0.9493926892 -2.566e-06

1.64384 0.9691061173 0.9691055461 -5.713e-07
2.28767 0.9778994964 0.9778992893 -2.072e-07
2.91781 0.9827144547 0.9827143562 -9.856e-08
3.54795 0.9858066097 0.9858065554 -5.438e-08
4.17808 0.9879603098 0.9879602764 -3.339e-08
4.82192 0.9895763556 0.9895763343 -2.134e-08
5.45205 0.9907867033 0.9907866885 -1.486e-08
6.08219 0.9917452085 0.9917451979 -1.055e-08
6.71233 0.9925230682 0.9925230598 -8.374e-09
7.35616 0.9931797214 0.9931797157 -5.705e-09
7.9863 0.9937195576 0.9937195533 -4.308e-09

Table 15: Representative lapse curve samples from the 1+1D worked example at a fixed order
(script default).

while s < n:
rx = 1 & (t // 2)
ry = 1 & (t ^ rx)
x, y = _rot(s, x, y, rx, ry)
x += s * rx
y += s * ry
t //= 4
s *= 2

return x, y

def manhattan(p: tuple[int, int], q: tuple[int, int]) -> int:
return abs(p[0] - q[0]) + abs(p[1] - q[1])

def check_order(order: int) -> tuple[int, int]:
n = 1 << order
total = n * n
pts = [hilbert_d2xy(order, d) for d in range(total)]
dists = [manhattan(pts[i], pts[i + 1]) for i in range(total - 1)]
return min(dists), max(dists)

def write_rows(rows: list[tuple[int, int, int]]) -> None:
root = Path(__file__).resolve().parent.parent
out_dir = root / "sections" / "generated"
out_dir.mkdir(parents=True, exist_ok=True)
out_path = out_dir / "hilbert_locality_rows.tex"

lines = []
for order, mn, mx in rows:

lines.append(f"{order} & {mn} & {mx} \\\\")
out_path.write_text("\n".join(lines) + "\n", encoding="utf-8")

def main() -> None:
rows: list[tuple[int, int, int]] = []
for order in range(1, 9):

mn, mx = check_order(order)
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rows.append((order, mn, mx))
print(f"order={order}: min_L1={mn}, max_L1={mx}")
if mn != 1 or mx != 1:

raise AssertionError("Hilbert one-step locality violated.")
write_rows(rows)
print("Wrote sections/generated/hilbert_locality_rows.tex")

if __name__ == "__main__":
main()

H.2 Experiment B: golden-branch star discrepancy bound check
# -*- coding: utf-8 -*-
"""
Golden-branch Kronecker scan star discrepancy and an explicit logarithmic bound.

Computes the exact 1D star discrepancy D*_N for P_N = {x0 + t*alpha mod 1}_{t=0}^{N-1}
with alpha = 1/phi, and compares against:

D*_N <= 2(2 + log_phi N)/N.

Writes a LaTeX row file into sections/generated/golden_discrepancy_rows.tex.
"""

from __future__ import annotations

import math
from pathlib import Path

def kronecker_points(alpha: float, N: int, x0: float) -> list[float]:
return [((x0 + t * alpha) % 1.0) for t in range(N)]

def star_discrepancy_1d(points: list[float]) -> float:
xs = sorted(points)
N = len(xs)
# For intervals [0,u): D* = max(max_i ((i+1)/N - x_i), max_i (x_i - i/N))
d_plus = max((i + 1) / N - xs[i] for i in range(N))
d_minus = max(xs[i] - i / N for i in range(N))
return max(d_plus, d_minus)

def golden_bound(N: int) -> float:
phi = (1.0 + 5.0**0.5) / 2.0
return 2.0 * (2.0 + (math.log(N) / math.log(phi))) / N

def write_rows(rows: list[tuple[int, float, float, float]]) -> None:
root = Path(__file__).resolve().parent.parent
out_dir = root / "sections" / "generated"
out_dir.mkdir(parents=True, exist_ok=True)
out_path = out_dir / "golden_discrepancy_rows.tex"

lines = []
for N, D, bound, ratio in rows:
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lines.append(f"{N} & {D:.6g} & {bound:.6g} & {ratio:.3f} \\\\")
out_path.write_text("\n".join(lines) + "\n", encoding="utf-8")

def main() -> None:
phi = (1.0 + 5.0**0.5) / 2.0
alpha = 1.0 / phi
x0 = 0.1

Ns = [100, 300, 1000, 3000, 10000, 30000]
rows: list[tuple[int, float, float, float]] = []

for N in Ns:
pts = kronecker_points(alpha, N, x0=x0)
D = star_discrepancy_1d(pts)
bound = golden_bound(N)
ratio = D / bound if bound > 0 else float("nan")
rows.append((N, D, bound, ratio))
print(f"N={N:6d} D*={D:.6g} bound={bound:.6g} ratio={ratio:.3f}")

write_rows(rows)
print("Wrote sections/generated/golden_discrepancy_rows.tex")

if __name__ == "__main__":
main()

H.3 Experiment C: Abel pole-barrier toy model
# -*- coding: utf-8 -*-
"""
Toy Abel pole-barrier / threshold experiment.

We consider the mode:
u_t = exp((beta - 1/2) t) * cos(gamma t),

and its Abel-weighted partial sum:
S(r;T) = sum_{t=0}^{T-1} r^t u_t.

When beta > 1/2, the effective growth factor is r * exp(beta - 1/2).
The threshold radius is:

r_c = exp(-(beta - 1/2)).

This script evaluates |S(r;T_max)| across r values around r_c and writes
sections/generated/abel_barrier_rows.tex for the paper table.
"""

from __future__ import annotations

import math
from pathlib import Path

def abel_mode_partial_sum(r: float, beta: float, gamma: float, T_max: int) -> float:
lam = beta - 0.5
s = 0.0
for t in range(T_max):
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s += (r**t) * math.exp(lam * t) * math.cos(gamma * t)
return s

def critical_radius(beta: float) -> float:
return math.exp(-(beta - 0.5))

def write_rows(rows: list[tuple[float, float, float]]) -> None:
root = Path(__file__).resolve().parent.parent
out_dir = root / "sections" / "generated"
out_dir.mkdir(parents=True, exist_ok=True)
out_path = out_dir / "abel_barrier_rows.tex"

lines = []
for beta, r, val in rows:

lines.append(f"{beta:.3f} & {r:.4f} & {val:.6e} \\\\")
out_path.write_text("\n".join(lines) + "\n", encoding="utf-8")

def main() -> None:
gamma = 1.0
T_max = 5000

betas = [0.5, 0.6]
rows: list[tuple[float, float, float]] = []

for beta in betas:
rc = critical_radius(beta)
print(f"beta={beta:.3f} critical radius r_c={rc:.6f}")

# Choose r values around the threshold.
r_values = [0.80, 0.88, 0.90, 0.905, 0.92, 0.95, 0.98]
for r in r_values:

s = abel_mode_partial_sum(r, beta=beta, gamma=gamma, T_max=T_max)
mag = abs(s)
rows.append((beta, r, mag))
print(f" r={r:.4f} |S|={mag:.6e}")

write_rows(rows)
print("Wrote sections/generated/abel_barrier_rows.tex")

if __name__ == "__main__":
main()

H.4 Experiment D: Poisson phase potential via FFT
# -*- coding: utf-8 -*-
"""
Poisson solver in 3D (periodic box) for a point source.

We solve:
-Delta Phi = 4*pi rho

on a periodic cube using either:
(A) an FFT-based solver (if numpy is available), or
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(B) a pure-Python iterative Jacobi/SOR fallback (if numpy is unavailable).

We set the zero mode to 0 (zero-mean gauge) by subtracting the mean of rho.

The script outputs radial shell averages <Phi>(r) and writes a small LaTeX row
file into sections/generated/poisson_rows.tex.

It also reports simple finite-size and source-width robustness statistics for the
approximate 1/r window by checking the flatness of r*<Phi>(r) over an intermediate
radius band, and writes sections/generated/poisson_scaling_rows.tex.
"""

from __future__ import annotations

import math
from pathlib import Path

try:
import numpy as np # type: ignore

except ModuleNotFoundError:
np = None # type: ignore

def poisson_solve_fft(rho: "np.ndarray", L: float = 1.0) -> "np.ndarray":
"""
Solve -Delta Phi = 4*pi rho on a periodic cube [0,L)^3 using FFT.
The k=0 mode is set to 0 (zero-mean gauge).
"""
if np is None:

raise RuntimeError("numpy is required for the FFT solver.")

N = int(rho.shape[0])
assert rho.shape == (N, N, N)

# Ensure solvability in the periodic setting by removing the mean (zero mode).
rho = rho - float(rho.mean())
rho_k = np.fft.fftn(rho)

k = 2 * np.pi * np.fft.fftfreq(N, d=L / N)
kx, ky, kz = np.meshgrid(k, k, k, indexing="ij")
k2 = kx * kx + ky * ky + kz * kz

phi_k = np.zeros_like(rho_k, dtype=np.complex128)
mask = k2 != 0.0
phi_k[mask] = (4 * np.pi) * rho_k[mask] / k2[mask]
phi_k[~mask] = 0.0

phi = np.fft.ifftn(phi_k).real
return phi

def radial_shell_average_numpy(phi: "np.ndarray", r_max: int = 12):
"""
Return shell averages for integer radii r=1..r_max (in lattice steps).
"""
if np is None:

raise RuntimeError("numpy is required for the numpy radial averaging.")
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N = int(phi.shape[0])
assert phi.shape == (N, N, N)

center = np.array([N // 2, N // 2, N // 2], dtype=float)
coords = np.indices((N, N, N), dtype=float).reshape(3, -1).T
r = np.linalg.norm(coords - center, axis=1)
phi_flat = phi.reshape(-1)

out = []
for rad in range(1, r_max + 1):

shell = (r >= rad - 0.5) & (r < rad + 0.5)
if int(shell.sum()) == 0:

continue
mean = float(phi_flat[shell].mean())
out.append((rad, mean))

return out

def poisson_solve_jacobi_periodic(
N: int,
rho: list[float],
max_iter: int = 4000,
omega: float = 0.9,

) -> list[float]:
"""
Pure-Python periodic Poisson solver for -Delta phi = 4*pi rho using damped

Jacobi/SOR.↪→

The grid spacing is 1. rho is a flat list of length N^3.
"""
n3 = N * N * N
if len(rho) != n3:

raise ValueError("rho must have length N^3.")

# Enforce solvability by subtracting mean (zero mode).
mean_rho = sum(rho) / n3
rho = [v - mean_rho for v in rho]

phi = [0.0] * n3
phi_new = [0.0] * n3

for _it in range(max_iter):
for i in range(N):

ip = (i + 1) % N
im = (i - 1) % N
for j in range(N):

jp = (j + 1) % N
jm = (j - 1) % N
base_ip = ip * N * N
base_im = im * N * N
base_i = i * N * N
base_jp = jp * N
base_jm = jm * N
base_j = j * N
for k in range(N):

kp = (k + 1) % N
km = (k - 1) % N
p = base_i + base_j + k
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neigh = (
phi[base_ip + base_j + k]
+ phi[base_im + base_j + k]
+ phi[base_i + base_jp + k]
+ phi[base_i + base_jm + k]
+ phi[base_i + base_j + kp]
+ phi[base_i + base_j + km]

)

# Discrete stencil for -Delta phi = 6 phi - sum(neigh) = 4*pi rho
candidate = (neigh + 4.0 * math.pi * rho[p]) / 6.0
phi_new[p] = (1.0 - omega) * phi[p] + omega * candidate

phi, phi_new = phi_new, phi

# Gauge-fix to zero mean.
mean_phi = sum(phi) / n3
phi = [v - mean_phi for v in phi]
return phi

def poisson_solve_jacobi_dirichlet(
N: int,
rho: list[float],
max_iter: int = 12000,
omega: float = 0.9,

) -> list[float]:
"""
Pure-Python Dirichlet Poisson solver for -Delta phi = 4*pi rho on a cube with
boundary condition phi=0 on the boundary.

The grid spacing is 1. rho is a flat list of length N^3.
"""
n3 = N * N * N
if len(rho) != n3:

raise ValueError("rho must have length N^3.")

def idx(i: int, j: int, k: int) -> int:
return (i * N + j) * N + k

phi = [0.0] * n3
phi_new = [0.0] * n3

# Keep boundaries pinned to 0; update only interior sites (weighted Jacobi).
for _it in range(max_iter):

for i in range(1, N - 1):
for j in range(1, N - 1):

for k in range(1, N - 1):
p = idx(i, j, k)
neigh = (

phi[idx(i + 1, j, k)]
+ phi[idx(i - 1, j, k)]
+ phi[idx(i, j + 1, k)]
+ phi[idx(i, j - 1, k)]
+ phi[idx(i, j, k + 1)]
+ phi[idx(i, j, k - 1)]

)
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candidate = (neigh + 4.0 * math.pi * rho[p]) / 6.0
phi_new[p] = (1.0 - omega) * phi[p] + omega * candidate

# Boundaries stay 0.
phi, phi_new = phi_new, phi

return phi

def radial_shell_average_pure(phi: list[float], N: int, r_max: int = 12) ->
list[tuple[int, float]]:↪→

"""
Pure-Python shell averages for integer radii r=1..r_max (in lattice steps).
"""
n3 = N * N * N
if len(phi) != n3:

raise ValueError("phi must have length N^3.")

cx = N // 2
cy = N // 2
cz = N // 2

sums = [0.0] * (r_max + 1)
counts = [0] * (r_max + 1)

for i in range(N):
dx = i - cx
for j in range(N):

dy = j - cy
for k in range(N):

dz = k - cz
r = (dx * dx + dy * dy + dz * dz) ** 0.5
rad = int(round(r))
if 1 <= rad <= r_max and abs(r - rad) < 0.5:

p = (i * N + j) * N + k
sums[rad] += phi[p]
counts[rad] += 1

out: list[tuple[int, float]] = []
for rad in range(1, r_max + 1):

if counts[rad] == 0:
continue

out.append((rad, sums[rad] / counts[rad]))
return out

def write_rows(rows: list[tuple[int, float]]) -> None:
root = Path(__file__).resolve().parent.parent
out_dir = root / "sections" / "generated"
out_dir.mkdir(parents=True, exist_ok=True)
out_path = out_dir / "poisson_rows.tex"

lines = []
for r, mean in rows:

lines.append(f"{r} & {mean:+.6f} & {(r*mean):+.6f} \\\\")
out_path.write_text("\n".join(lines) + "\n", encoding="utf-8")
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def flatness_metric(stats: list[tuple[int, float]], r_min: int, r_max: int) ->
tuple[float, float, int]:↪→

"""
Given shell averages (r, <Phi>(r)), compute mean and relative RMS of r*<Phi>(r)
over the window r in [r_min, r_max]. Returns (mean, rel_rms, count).
"""
vals: list[float] = []
for r, mean in stats:

if r_min <= r <= r_max:
vals.append(float(r) * float(mean))

if not vals:
return 0.0, float("inf"), 0

m = sum(vals) / float(len(vals))
rms = (sum((v - m) ** 2 for v in vals) / float(len(vals))) ** 0.5
rel = rms / abs(m) if m != 0.0 else float("inf")
return m, rel, len(vals)

def write_scaling_rows(rows: list[str]) -> None:
root = Path(__file__).resolve().parent.parent
out_dir = root / "sections" / "generated"
out_dir.mkdir(parents=True, exist_ok=True)
out_path = out_dir / "poisson_scaling_rows.tex"
out_path.write_text("\n".join(rows) + "\n", encoding="utf-8")

def build_rho_cube_pure(N: int, radius: int) -> list[float]:
"""
A simple compact source: uniform mass on a (2*radius+1)^3 cube centered at N//2.
"""
n3 = N * N * N
rho = [0.0] * n3
cx = cy = cz = N // 2
total = 0
for i in range(cx - radius, cx + radius + 1):

for j in range(cy - radius, cy + radius + 1):
for k in range(cz - radius, cz + radius + 1):

if 0 <= i < N and 0 <= j < N and 0 <= k < N:
p = (i * N + j) * N + k
rho[p] = 1.0
total += 1

if total > 0:
rho = [v / float(total) for v in rho]

return rho

def build_rho_cube_numpy(N: int, radius: int) -> "np.ndarray":
if np is None:

raise RuntimeError("numpy is required.")
rho = np.zeros((N, N, N), dtype=float)
c = N // 2
for i in range(c - radius, c + radius + 1):

for j in range(c - radius, c + radius + 1):
for k in range(c - radius, c + radius + 1):

if 0 <= i < N and 0 <= j < N and 0 <= k < N:
rho[i, j, k] = 1.0

s = float(rho.sum())
if s > 0.0:
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rho /= s
return rho

def main() -> None:
r_max = 12

if np is not None:
N = 64
L = 1.0

rho = build_rho_cube_numpy(N, radius=0)

phi = poisson_solve_fft(rho, L=L)
stats = radial_shell_average_numpy(phi, r_max=r_max)

else:
# Pure-Python fallback: smaller grid and iterative solver.
N = 24
rho = build_rho_cube_pure(N, radius=0)
phi_flat = poisson_solve_jacobi_periodic(N=N, rho=rho, max_iter=6000,

omega=0.9)↪→

stats = radial_shell_average_pure(phi_flat, N=N, r_max=r_max)

print("r | <Phi> | r*<Phi>")
for r, mean in stats[:12]:

print(f"{r:2d} | {mean:+.6f} | {(r*mean):+.6f}")

write_rows(stats[:10])
print("Wrote sections/generated/poisson_rows.tex")

# Robustness / finite-size scaling table for the 1/r window.
scaling_lines: list[str] = []
window_min = 3

if np is not None:
for N in (32, 48, 64):

for radius in (0, 1):
rho = build_rho_cube_numpy(N, radius=radius)
phi = poisson_solve_fft(rho, L=1.0)
statsN = radial_shell_average_numpy(phi, r_max=min(r_max, N // 3))
window_max = min(10, N // 4)
m, rel, cnt = flatness_metric(statsN, r_min=window_min,

r_max=window_max)↪→

scaling_lines.append(
f"{N} & periodic-FFT & cube-{radius} & {window_min}--{window_max}

& {cnt} & {m:+.4e} & {rel:.3e} \\\\"↪→

)

# Dirichlet comparison (pure-Python SOR) at a modest size.
N = 32
for radius in (0, 1):

rho_pure = build_rho_cube_pure(N, radius=radius)
phi_flat = poisson_solve_jacobi_dirichlet(N=N, rho=rho_pure,

max_iter=12000, omega=0.9)↪→

statsD = radial_shell_average_pure(phi_flat, N=N, r_max=min(r_max, N //
3))↪→

window_max = min(10, N // 4)
m, rel, cnt = flatness_metric(statsD, r_min=window_min, r_max=window_max)
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scaling_lines.append(
f"{N} & Dirichlet-Jacobi & cube-{radius} & {window_min}--{window_max}

& {cnt} & {m:+.4e} & {rel:.3e} \\\\"↪→

)
else:

# Pure-Python only: keep the grid small for runtime.
for N in (20, 24):

for radius in (0, 1):
rho_pure = build_rho_cube_pure(N, radius=radius)
phi_flat = poisson_solve_jacobi_periodic(N=N, rho=rho_pure,

max_iter=7000, omega=0.9)↪→

statsN = radial_shell_average_pure(phi_flat, N=N, r_max=min(r_max, N
// 3))↪→

window_max = min(8, N // 4)
m, rel, cnt = flatness_metric(statsN, r_min=window_min,

r_max=window_max)↪→

scaling_lines.append(
f"{N} & periodic-Jacobi & cube-{radius} &

{window_min}--{window_max} & {cnt} & {m:+.4e} & {rel:.3e}
\\\\"

↪→

↪→

)

N = 20
for radius in (0, 1):

rho_pure = build_rho_cube_pure(N, radius=radius)
phi_flat = poisson_solve_jacobi_dirichlet(N=N, rho=rho_pure,

max_iter=10000, omega=0.9)↪→

statsD = radial_shell_average_pure(phi_flat, N=N, r_max=min(r_max, N //
3))↪→

window_max = min(8, N // 4)
m, rel, cnt = flatness_metric(statsD, r_min=window_min, r_max=window_max)
scaling_lines.append(

f"{N} & Dirichlet-Jacobi & cube-{radius} & {window_min}--{window_max}
& {cnt} & {m:+.4e} & {rel:.3e} \\\\"↪→

)

write_scaling_rows(scaling_lines)
print("Wrote sections/generated/poisson_scaling_rows.tex")

if __name__ == "__main__":
main()

H.5 Experiment E: Wigner–Smith time delay interface
# -*- coding: utf-8 -*-
"""
Wigner--Smith time-delay matrix and an overhead proxy (standard-library only).

Given a unitary scattering matrix S(E), define:
Q(E) = -i S(E)^dagger dS/dE
tau_WS(E) = Tr Q(E)
kappa_WS(E) = tau_WS(E) / tau0.

This script provides a finite-difference approximation and a small toy example.
Users can replace the toy S(E) with a model or experimental S(E).
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"""

from __future__ import annotations

import argparse
import cmath
import math
from pathlib import Path
from typing import Callable

Matrix = list[list[complex]]
Scattering = complex | Matrix

def _is_matrix(S: Scattering) -> bool:
return isinstance(S, list)

def conj_transpose(A: Matrix) -> Matrix:
n = len(A)
if n == 0:

raise ValueError("Empty matrix.")
m = len(A[0])
if any(len(row) != m for row in A):

raise ValueError("Ragged matrix.")
return [[A[i][j].conjugate() for i in range(n)] for j in range(m)]

def matmul(A: Matrix, B: Matrix) -> Matrix:
n = len(A)
if n == 0:

raise ValueError("Empty matrix.")
k = len(A[0])
if any(len(row) != k for row in A):

raise ValueError("Ragged matrix A.")
if len(B) == 0:

raise ValueError("Empty matrix B.")
m = len(B[0])
if any(len(row) != m for row in B):

raise ValueError("Ragged matrix B.")
if len(B) != k:

raise ValueError("Incompatible shapes for matmul.")

out: Matrix = [[0j for _ in range(m)] for _ in range(n)]
for i in range(n):

for j in range(m):
s = 0j
for t in range(k):

s += A[i][t] * B[t][j]
out[i][j] = s

return out

def trace(A: Matrix) -> complex:
n = len(A)
if n == 0:

raise ValueError("Empty matrix.")
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if any(len(row) != len(A[0]) for row in A):
raise ValueError("Ragged matrix.")

m = len(A[0])
if n != m:

raise ValueError("Trace requires a square matrix.")
return sum(A[i][i] for i in range(n))

def wigner_smith_Q(Sm: Scattering, Sp: Scattering, dE: float) -> Scattering:
"""
Central finite-difference approximation of Q(E) using S(E-dE) and S(E+dE).
"""
if dE == 0:

raise ValueError("dE must be nonzero.")

if not _is_matrix(Sm) and not _is_matrix(Sp):
dS = (Sp - Sm) / (2.0 * dE)
S_mid = 0.5 * (Sp + Sm)
return -1j * (S_mid.conjugate() * dS)

if not _is_matrix(Sm) or not _is_matrix(Sp):
raise ValueError("Sm and Sp must have the same representation (both scalar or

both matrix).")↪→

dS: Matrix = [[(Sp[i][j] - Sm[i][j]) / (2.0 * dE) for j in range(len(Sp[0]))] for
i in range(len(Sp))]↪→

S_mid: Matrix = [[0.5 * (Sp[i][j] + Sm[i][j]) for j in range(len(Sp[0]))] for i in
range(len(Sp))]↪→

return [[(-1j) * z for z in row] for row in matmul(conj_transpose(S_mid), dS)]

def tau_ws_from_S(Sm: Scattering, Sp: Scattering, dE: float) -> float:
Q = wigner_smith_Q(Sm, Sp, dE)
if _is_matrix(Q):

return float(trace(Q).real)
return float(Q.real)

def toy_S_breit_wigner(E: float, *, E0: float = 1.0, gamma: float = 0.2) -> complex:
"""
A 1-channel unitary Breit--Wigner resonance model:

S(E) = (E - E0 - i gamma/2) / (E - E0 + i gamma/2).
"""
z = (E - E0) + 0.5j * gamma
return ((E - E0) - 0.5j * gamma) / z

def linspace(a: float, b: float, n: int) -> list[float]:
if n < 2:

raise ValueError("n must be >= 2.")
step = (b - a) / float(n - 1)
return [a + i * step for i in range(n)]

def sample_tau_ws(S: Callable[[float], Scattering], energies: list[float]) ->
list[float | None]:↪→

"""
Compute tau_WS(E) for interior points using central differences.
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Endpoints are returned as None.
"""
if len(energies) < 3:

raise ValueError("Need at least 3 energy points.")

S_list = [S(float(E)) for E in energies]
taus: list[float | None] = [None for _ in energies]

# Scalar 1-channel case: compute tau_WS as a phase derivative with unwrapping to
# avoid branch-cut artifacts at resonant phase jumps.
if not _is_matrix(S_list[0]):

phases = [cmath.phase(z) for z in S_list] # principal values in (-pi, pi]
unwrapped: list[float] = [phases[0]]
for i in range(1, len(phases)):

p = phases[i]
prev = unwrapped[-1]
delta = p - prev
while delta > math.pi:

p -= 2.0 * math.pi
delta = p - prev

while delta < -math.pi:
p += 2.0 * math.pi
delta = p - prev

unwrapped.append(p)

for i in range(1, len(energies) - 1):
dE = energies[i + 1] - energies[i - 1]
taus[i] = (unwrapped[i + 1] - unwrapped[i - 1]) / dE

return taus

for i in range(1, len(energies) - 1):
dE = energies[i + 1] - energies[i - 1]
taus[i] = tau_ws_from_S(S_list[i - 1], S_list[i + 1], dE)

return taus

def moving_average(values: list[float], window: int) -> list[float]:
if window <= 1:

return list(values)
if window % 2 == 0:

raise ValueError("Smoothing window must be odd.")
n = len(values)
half = window // 2
out: list[float] = []
for i in range(n):

a = max(0, i - half)
b = min(n, i + half + 1)
out.append(sum(values[a:b]) / float(b - a))

return out

def sample_tau_ws_from_scalar_samples(
energies: list[float],
S_list: list[complex],
*,
smooth_window: int = 1,

) -> list[float | None]:
"""
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Compute tau_WS(E) from sampled 1-channel complex S(E) values.
Uses phase unwrapping and central differences; optional smoothing is applied
to the unwrapped phase before differentiating.
"""
if len(energies) != len(S_list):

raise ValueError("energies and S_list must have the same length.")
if len(energies) < 3:

raise ValueError("Need at least 3 sample points.")

phases = [cmath.phase(z) for z in S_list] # principal values in (-pi, pi]
unwrapped: list[float] = [phases[0]]
for i in range(1, len(phases)):

p = phases[i]
prev = unwrapped[-1]
delta = p - prev
while delta > math.pi:

p -= 2.0 * math.pi
delta = p - prev

while delta < -math.pi:
p += 2.0 * math.pi
delta = p - prev

unwrapped.append(p)

unwrapped = moving_average(unwrapped, window=smooth_window)

taus: list[float | None] = [None for _ in energies]
for i in range(1, len(energies) - 1):

dE = energies[i + 1] - energies[i - 1]
if dE == 0.0:

raise ValueError("Repeated energy value encountered.")
taus[i] = (unwrapped[i + 1] - unwrapped[i - 1]) / dE

return taus

def load_scalar_S_data(path: str) -> tuple[list[float], list[complex]]:
"""
Load sampled 1-channel scattering data from a text file.

Supported formats (whitespace or comma separated, comments start with '#'):
- E phase_radians
- E Re(S) Im(S)

"""
energies: list[float] = []
values: list[complex] = []
with open(path, "r", encoding="utf-8") as f:

for line in f:
line = line.strip()
if not line or line.startswith("#"):

continue
parts = line.replace(",", " ").split()
if len(parts) == 2:

E = float(parts[0])
phase = float(parts[1])
S = cmath.exp(1j * phase)

elif len(parts) == 3:
E = float(parts[0])
re = float(parts[1])
im = float(parts[2])
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S = complex(re, im)
else:

raise ValueError("Expected 2 or 3 columns per row.")
energies.append(E)
values.append(S)

if len(energies) < 3:
raise ValueError("Need at least 3 sample points.")

# Sort by energy.
pairs = sorted(zip(energies, values), key=lambda t: t[0])
energies_sorted = [p[0] for p in pairs]
values_sorted = [p[1] for p in pairs]
return energies_sorted, values_sorted

def write_latex_rows(energies: list[float], taus: list[float | None], tau0: float,
out_path: Path) -> None:↪→

kappas: list[float | None] = [None if t is None else (t / tau0) for t in taus]
rows: list[str] = []
for E, tau, kappa in zip(energies, taus, kappas):

if tau is None or kappa is None:
continue

rows.append(f"{E:.6g} & {tau:.6g} & {kappa:.6g} \\\\")
out_path.write_text("\n".join(rows) + "\n", encoding="utf-8")

def main() -> None:
ap = argparse.ArgumentParser(description="Compute Wigner-Smith time delay and

kappa_WS(E).")↪→

ap.add_argument("--input", type=str, default="", help="Optional input data file
for 1-channel S(E).")↪→

ap.add_argument("--tau0", type=float, default=1.0, help="Reference tick duration
tau0 for kappa_WS.")↪→

ap.add_argument("--smooth", type=int, default=1, help="Odd moving-average window
for phase smoothing (1=off).")↪→

ap.add_argument("--E0", type=float, default=1.0, help="Toy model resonance center
E0.")↪→

ap.add_argument("--gamma", type=float, default=0.2, help="Toy model linewidth
gamma.")↪→

ap.add_argument("--Emin", type=float, default=0.0, help="Toy model: minimum
energy.")↪→

ap.add_argument("--Emax", type=float, default=2.0, help="Toy model: maximum
energy.")↪→

ap.add_argument("--n", type=int, default=17, help="Toy model: number of energy
points.")↪→

ap.add_argument(
"--output",
type=str,
default="",
help="Optional output path for LaTeX rows (default:

sections/generated/wigner_smith_rows.tex).",↪→

)
args = ap.parse_args()

tau0 = float(args.tau0)
if tau0 <= 0.0:

raise ValueError("tau0 must be positive.")
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root = Path(__file__).resolve().parent.parent
out_dir = root / "sections" / "generated"
out_dir.mkdir(parents=True, exist_ok=True)

out_path = Path(args.output) if args.output else (out_dir /
"wigner_smith_rows.tex")↪→

if args.input:
energies, S_list = load_scalar_S_data(args.input)
# Basic unitarity diagnostic for the 1-channel case.
mags = [abs(z) for z in S_list]
mean_mag = sum(mags) / float(len(mags))
max_dev = max(abs(m - 1.0) for m in mags)
print(f"Loaded {len(energies)} samples. mean|S|={mean_mag:.6f},

max||S|-1|={max_dev:.6f}")↪→

taus = sample_tau_ws_from_scalar_samples(energies, S_list,
smooth_window=int(args.smooth))↪→

else:
energies = linspace(float(args.Emin), float(args.Emax), int(args.n))

def S(E: float) -> complex:
return toy_S_breit_wigner(E, E0=float(args.E0), gamma=float(args.gamma))

taus = sample_tau_ws(S, energies)

write_latex_rows(energies, taus, tau0=tau0, out_path=out_path)

print("E\ttau_WS(E)\tkappa_WS(E)")
for E, tau in zip(energies, taus):

if tau is None:
continue

kappa = tau / tau0
print(f"{E:.6g}\t{tau:.6g}\t{kappa:.6g}")

print(f"Wrote {out_path}")

if __name__ == "__main__":
main()

H.6 Experiment A′: address-family sensitivity (Hilbert vs. Morton vs. shuf-
fled)

# -*- coding: utf-8 -*-
"""
Address-family sensitivity on a 2D screen lattice.

For a finite-resolution address map A_n : {0..2^(2n)-1} -> {0..2^n-1}^2,
define the neighbor separation on screen edges:

Delta_A(x,y) = |A_n^{-1}(x) - A_n^{-1}(y)|
and the local scan-chain overhead proxy:

kappa_tilde(x) = max_{y~x} Delta_A(x,y).

This script compares Hilbert vs Morton (Z-order) plus a shuffled baseline for
orders n=1..8 (2D), and writes LaTeX table rows into sections/generated/.
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It also reports:
(i) sensitivity to the neighborhood model (Manhattan vs Chebyshev neighbors),
(ii) a simple finite-size trend fit for the growth of high quantiles.

As an additional robustness check, it also computes the same proxy for a 3D
screen using Morton vs shuffled baselines (orders n=1..5).
"""

from __future__ import annotations

from dataclasses import dataclass
import math
from pathlib import Path
import random
from typing import Callable

def _rot(s: int, x: int, y: int, rx: int, ry: int) -> tuple[int, int]:
"""Rotate/flip a quadrant (standard Hilbert helper)."""
if ry == 0:

if rx == 1:
x = s - 1 - x
y = s - 1 - y

x, y = y, x
return x, y

def hilbert_d2xy(order: int, d: int) -> tuple[int, int]:
"""
2D Hilbert mapping: d in [0, 2^(2*order)-1] -> (x,y) in [0, 2^order-1]^2.
"""
n = 1 << order
x = 0
y = 0
t = int(d)
s = 1
while s < n:

rx = 1 & (t // 2)
ry = 1 & (t ^ rx)
x, y = _rot(s, x, y, rx, ry)
x += s * rx
y += s * ry
t //= 4
s *= 2

return x, y

def morton_d2xy(order: int, d: int) -> tuple[int, int]:
"""
2D Morton / Z-order mapping via bit de-interleaving.
"""
x = 0
y = 0
for i in range(order):

x |= ((d >> (2 * i)) & 1) << i
y |= ((d >> (2 * i + 1)) & 1) << i

return x, y
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def morton_d2xyz(order: int, d: int) -> tuple[int, int, int]:
"""
3D Morton / Z-order mapping via bit de-interleaving.
"""
x = 0
y = 0
z = 0
for i in range(order):

x |= ((d >> (3 * i)) & 1) << i
y |= ((d >> (3 * i + 1)) & 1) << i
z |= ((d >> (3 * i + 2)) & 1) << i

return x, y, z

def build_index_map(order: int, d2xy) -> list[list[int]]:
m = 1 << order
total = m * m
idx = [[0] * m for _ in range(m)]
for d in range(total):

x, y = d2xy(order, d)
idx[x][y] = d

return idx

def build_index_map_shuffled(order: int, seed: int) -> list[list[int]]:
"""
A deterministic shuffled baseline: assign indices to uniformly shuffled

coordinates.↪→

"""
m = 1 << order
total = m * m
coords = [(x, y) for x in range(m) for y in range(m)]
rng = random.Random(seed)
rng.shuffle(coords)
idx = [[0] * m for _ in range(m)]
for d in range(total):

x, y = coords[d]
idx[x][y] = d

return idx

def build_index_map_3d(order: int, d2xyz) -> list[int]:
m = 1 << order
total = m * m * m
idx = [0] * total
for d in range(total):

x, y, z = d2xyz(order, d)
idx[(x * m + y) * m + z] = d

return idx

def build_index_map_shuffled_3d(order: int, seed: int) -> list[int]:
m = 1 << order
total = m * m * m
coords = [(x, y, z) for x in range(m) for y in range(m) for z in range(m)]
rng = random.Random(seed)
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rng.shuffle(coords)
idx = [0] * total
for d in range(total):

x, y, z = coords[d]
idx[(x * m + y) * m + z] = d

return idx

def percentile(sorted_values: list[int], p: float) -> int:
if not sorted_values:

raise ValueError("Empty sample.")
if p <= 0.0:

return sorted_values[0]
if p >= 1.0:

return sorted_values[-1]
i = int(p * (len(sorted_values) - 1))
return sorted_values[i]

@dataclass(frozen=True)
class Stats:

mean: float
p50: int
p90: int
p99: int
mx: int

def stats_int(values: list[int]) -> Stats:
if not values:

raise ValueError("Empty sample.")
values_sorted = sorted(values)
n = len(values_sorted)
mean = sum(values_sorted) / float(n)
return Stats(

mean=mean,
p50=percentile(values_sorted, 0.50),
p90=percentile(values_sorted, 0.90),
p99=percentile(values_sorted, 0.99),
mx=values_sorted[-1],

)

def neighbor_separations(idx: list[list[int]]) -> list[int]:
m = len(idx)
deltas: list[int] = []
for x in range(m):

for y in range(m):
if x + 1 < m:

deltas.append(abs(idx[x][y] - idx[x + 1][y]))
if y + 1 < m:

deltas.append(abs(idx[x][y] - idx[x][y + 1]))
return deltas

@dataclass(frozen=True)
class NeighborModel:

name: str
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offsets: tuple[tuple[int, int], ...]

MANHATTAN_1 = NeighborModel(name="Manhattan", offsets=((1, 0), (-1, 0), (0, 1), (0,
-1)))↪→

CHEBYSHEV_1 = NeighborModel(
name="Chebyshev",
offsets=(

(-1, -1),
(-1, 0),
(-1, 1),
(0, -1),
(0, 1),
(1, -1),
(1, 0),
(1, 1),

),
)

def local_kappa_proxy(idx: list[list[int]], neighbors: NeighborModel) -> list[int]:
m = len(idx)
prox: list[int] = []
for x in range(m):

for y in range(m):
best = 0
for dx, dy in neighbors.offsets:

xx = x + dx
yy = y + dy
if 0 <= xx < m and 0 <= yy < m:

best = max(best, abs(idx[x][y] - idx[xx][yy]))
prox.append(best)

return prox

def local_kappa_proxy_3d(idx: list[int], m: int) -> list[int]:
"""
3D Manhattan (6-neighbor) local proxy field on an m x m x m grid.
"""
prox: list[int] = []
for x in range(m):

for y in range(m):
for z in range(m):

p = (x * m + y) * m + z
base = idx[p]
best = 0
if x > 0:

best = max(best, abs(base - idx[((x - 1) * m + y) * m + z]))
if x + 1 < m:

best = max(best, abs(base - idx[((x + 1) * m + y) * m + z]))
if y > 0:

best = max(best, abs(base - idx[(x * m + (y - 1)) * m + z]))
if y + 1 < m:

best = max(best, abs(base - idx[(x * m + (y + 1)) * m + z]))
if z > 0:

best = max(best, abs(base - idx[(x * m + y) * m + (z - 1)]))
if z + 1 < m:

best = max(best, abs(base - idx[(x * m + y) * m + (z + 1)]))
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prox.append(best)
return prox

def linear_fit(xs: list[float], ys: list[float]) -> tuple[float, float, float]:
"""
Ordinary least squares fit for y = a + b x. Returns (b, a, R^2).
"""
if len(xs) != len(ys) or len(xs) < 2:

raise ValueError("Need at least 2 points for a fit.")
n = float(len(xs))
x_bar = sum(xs) / n
y_bar = sum(ys) / n
sxx = sum((x - x_bar) ** 2 for x in xs)
if sxx == 0.0:

raise ValueError("Degenerate x values.")
sxy = sum((x - x_bar) * (y - y_bar) for x, y in zip(xs, ys))
b = sxy / sxx
a = y_bar - b * x_bar
ss_tot = sum((y - y_bar) ** 2 for y in ys)
ss_res = sum((y - (a + b * x)) ** 2 for x, y in zip(xs, ys))
r2 = 1.0 - (ss_res / ss_tot) if ss_tot > 0.0 else 1.0
return b, a, r2

@dataclass(frozen=True)
class AddressMap:

name: str
build_idx: Callable[[int], list[list[int]]]

def write_rows(rows: list[str], filename: str) -> None:
root = Path(__file__).resolve().parent.parent
out_dir = root / "sections" / "generated"
out_dir.mkdir(parents=True, exist_ok=True)
(out_dir / filename).write_text("\n".join(rows) + "\n", encoding="utf-8")

def main() -> None:
maps = [

AddressMap(name="Hilbert", build_idx=lambda order: build_index_map(order,
hilbert_d2xy)),↪→

AddressMap(name="Z-order", build_idx=lambda order: build_index_map(order,
morton_d2xy)),↪→

AddressMap(name="Shuffled", build_idx=lambda order:
build_index_map_shuffled(order, seed=123456 + order)),↪→

]

edge_rows: list[str] = []
proxy_rows: list[str] = []
fit_rows: list[str] = []
neighbor_model_rows: list[str] = []

# Accumulate per-map proxy stats across orders for a simple scaling fit.
by_map: dict[str, list[tuple[int, Stats]]] = {m.name: [] for m in maps}

for order in range(1, 9):
for amap in maps:
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idx = amap.build_idx(order)

deltas = neighbor_separations(idx)
s_edge = stats_int(deltas)
edge_rows.append(

f"{order} & {amap.name} & {s_edge.mean:.2f} & {s_edge.p50} &
{s_edge.p90} & {s_edge.p99} & {s_edge.mx} \\\\"↪→

)

prox = local_kappa_proxy(idx, MANHATTAN_1)
s_prox = stats_int(prox)
by_map[amap.name].append((order, s_prox))
proxy_rows.append(

f"{order} & {amap.name} & {s_prox.mean:.2f} & {s_prox.p50} &
{s_prox.p90} & {s_prox.p99} & {s_prox.mx} \\\\"↪→

)

print(f"order={order}: ok")

# Neighborhood-model sensitivity at a fixed resolution.
fixed_order = 8
for amap in maps:

idx = amap.build_idx(fixed_order)
s_m = stats_int(local_kappa_proxy(idx, MANHATTAN_1))
s_c = stats_int(local_kappa_proxy(idx, CHEBYSHEV_1))
ratio_p99 = (float(s_c.p99) / float(s_m.p99)) if s_m.p99 > 0 else float("inf")
ratio_max = (float(s_c.mx) / float(s_m.mx)) if s_m.mx > 0 else float("inf")
neighbor_model_rows.append(

f"{amap.name} & {s_m.p99} & {s_c.p99} & {ratio_p99:.3f} & {s_m.mx} &
{s_c.mx} & {ratio_max:.3f} \\\\"↪→

)

# Simple finite-size trend fits for high quantiles of the Manhattan proxy.
for amap in maps:

data = by_map[amap.name]
xs = [float(order) for order, _ in data]
ys_p99 = [math.log2(float(s.p99)) for _, s in data]
ys_max = [math.log2(float(s.mx)) for _, s in data]
b_p99, _a_p99, r2_p99 = linear_fit(xs, ys_p99)
b_max, _a_max, r2_max = linear_fit(xs, ys_max)
fit_rows.append(f"{amap.name} & {b_p99:.3f} & {r2_p99:.3f} & {b_max:.3f} &

{r2_max:.3f} \\\\")↪→

write_rows(edge_rows, "address_neighbor_separation_rows.tex")
write_rows(proxy_rows, "address_kappa_proxy_rows.tex")
write_rows(neighbor_model_rows, "address_neighbor_model_sensitivity_rows.tex")
write_rows(fit_rows, "address_kappa_proxy_fit_rows.tex")
# 3D robustness rows.
proxy_3d_rows: list[str] = []
for order in range(1, 6):

m = 1 << order
for name, idx3 in [

("Z-order", build_index_map_3d(order, morton_d2xyz)),
("Shuffled", build_index_map_shuffled_3d(order, seed=654321 + order)),

]:
prox3 = local_kappa_proxy_3d(idx3, m=m)
s3 = stats_int(prox3)
proxy_3d_rows.append(
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f"{order} & {name} & {s3.mean:.2f} & {s3.p50} & {s3.p90} & {s3.p99} &
{s3.mx} \\\\"↪→

)
print(f"order={order} (3D): ok")

write_rows(proxy_3d_rows, "address_kappa_proxy_3d_rows.tex")
print("Wrote sections/generated/address_neighbor_separation_rows.tex")
print("Wrote sections/generated/address_kappa_proxy_rows.tex")
print("Wrote sections/generated/address_neighbor_model_sensitivity_rows.tex")
print("Wrote sections/generated/address_kappa_proxy_fit_rows.tex")
print("Wrote sections/generated/address_kappa_proxy_3d_rows.tex")

if __name__ == "__main__":
main()

H.7 Experiment F: scan-chain redshift toy from a computed κ(x) landscape
# -*- coding: utf-8 -*-
"""
Toy redshift from a computed overhead landscape on a scan chain.

We build a position-dependent overhead proxy kappa(x) on the 2D screen lattice
using a fixed address map A_n and a scan-chain placement pi(x)=A_n^{-1}(x):

kappa(x) := max_{y~x} |A_n^{-1}(x) - A_n^{-1}(y)|

Interpreting one local "clock cycle" at x as taking kappa(x) global ticks,
the relational time scaling predicts:

d tau_loc = (kappa0 / kappa(x)) dt
and the redshift ratio between x1 and x2 is kappa(x2)/kappa(x1).

This script demonstrates the ratio numerically by counting completed cycles
over a long horizon t_max and writes LaTeX rows into sections/generated/.
"""

from __future__ import annotations

from dataclasses import dataclass
from pathlib import Path

def _rot(s: int, x: int, y: int, rx: int, ry: int) -> tuple[int, int]:
if ry == 0:

if rx == 1:
x = s - 1 - x
y = s - 1 - y

x, y = y, x
return x, y

def hilbert_d2xy(order: int, d: int) -> tuple[int, int]:
n = 1 << order
x = 0
y = 0
t = int(d)
s = 1
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while s < n:
rx = 1 & (t // 2)
ry = 1 & (t ^ rx)
x, y = _rot(s, x, y, rx, ry)
x += s * rx
y += s * ry
t //= 4
s *= 2

return x, y

def morton_d2xy(order: int, d: int) -> tuple[int, int]:
x = 0
y = 0
for i in range(order):

x |= ((d >> (2 * i)) & 1) << i
y |= ((d >> (2 * i + 1)) & 1) << i

return x, y

def build_index_map(order: int, d2xy) -> list[list[int]]:
m = 1 << order
total = m * m
idx = [[0] * m for _ in range(m)]
for d in range(total):

x, y = d2xy(order, d)
idx[x][y] = d

return idx

def kappa_proxy_field(idx: list[list[int]]) -> tuple[list[int], tuple[int, int], int,
tuple[int, int], int]:↪→

m = len(idx)
vals: list[int] = []
min_xy = (0, 0)
max_xy = (0, 0)
min_k = 10**18
max_k = -1

for x in range(m):
for y in range(m):

best = 0
if x > 0:

best = max(best, abs(idx[x][y] - idx[x - 1][y]))
if x + 1 < m:

best = max(best, abs(idx[x][y] - idx[x + 1][y]))
if y > 0:

best = max(best, abs(idx[x][y] - idx[x][y - 1]))
if y + 1 < m:

best = max(best, abs(idx[x][y] - idx[x][y + 1]))

vals.append(best)
if best < min_k:

min_k = best
min_xy = (x, y)

if best > max_k:
max_k = best
max_xy = (x, y)
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return vals, min_xy, int(min_k), max_xy, int(max_k)

def find_any_coordinate_with_kappa(idx: list[list[int]], target_k: int) -> tuple[int,
int] | None:↪→

m = len(idx)
for x in range(m):

for y in range(m):
best = 0
if x > 0:

best = max(best, abs(idx[x][y] - idx[x - 1][y]))
if x + 1 < m:

best = max(best, abs(idx[x][y] - idx[x + 1][y]))
if y > 0:

best = max(best, abs(idx[x][y] - idx[x][y - 1]))
if y + 1 < m:

best = max(best, abs(idx[x][y] - idx[x][y + 1]))
if best == target_k:

return (x, y)
return None

def percentile(sorted_values: list[int], p: float) -> int:
if not sorted_values:

raise ValueError("Empty sample.")
if p <= 0.0:

return sorted_values[0]
if p >= 1.0:

return sorted_values[-1]
i = int(p * (len(sorted_values) - 1))
return sorted_values[i]

@dataclass(frozen=True)
class PairRow:

x1: int
y1: int
k1: int
x2: int
y2: int
k2: int
pred: float
meas: float

def cycles(t_max: int, kappa: int) -> int:
if kappa <= 0:

raise ValueError("kappa must be positive.")
return t_max // kappa

def write_rows(rows: list[str], filename: str) -> None:
root = Path(__file__).resolve().parent.parent
out_dir = root / "sections" / "generated"
out_dir.mkdir(parents=True, exist_ok=True)
(out_dir / filename).write_text("\n".join(rows) + "\n", encoding="utf-8")
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def main() -> None:
order = 8
t_max = 200_000_000

maps = [
("Hilbert", hilbert_d2xy),
("Z-order", morton_d2xy),

]

rows: list[str] = []

for name, d2xy in maps:
idx = build_index_map(order, d2xy)
vals, min_xy, min_k, max_xy, max_k = kappa_proxy_field(idx)

vals_sorted = sorted(vals)
med_k = percentile(vals_sorted, 0.50)
med_xy = find_any_coordinate_with_kappa(idx, med_k)
if med_xy is None:

med_xy = (0, 0)

points = [
("min", min_xy, min_k),
("median", med_xy, med_k),
("max", max_xy, max_k),

]

pairs: list[PairRow] = []
for (tag1, (x1, y1), k1), (tag2, (x2, y2), k2) in [

(points[0], points[1]),
(points[0], points[2]),
(points[1], points[2]),

]:
pred = float(k2) / float(k1)
c1 = cycles(t_max, k1)
c2 = cycles(t_max, k2)
meas = float(c1) / float(c2) if c2 != 0 else float("inf")
pairs.append(PairRow(x1=x1, y1=y1, k1=k1, x2=x2, y2=y2, k2=k2, pred=pred,

meas=meas))↪→

for p in pairs:
rows.append(

f"{order} & {name} & ({p.x1},{p.y1}) & {p.k1} & ({p.x2},{p.y2}) &
{p.k2} & {p.pred:.6f} & {p.meas:.6f} \\\\"↪→

)

print(f"{name}: min_k={min_k} at {min_xy}, median_k={med_k} at {med_xy},
max_k={max_k} at {max_xy}")↪→

write_rows(rows, "kappa_redshift_toy_rows.tex")
print("Wrote sections/generated/kappa_redshift_toy_rows.tex")

if __name__ == "__main__":
main()
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H.8 Appendix worked example: 1+1D weighted scan-chain lapse matching
# -*- coding: utf-8 -*-
"""
1+1D worked example: weighted scan-chain compilation and weak-field lapse matching.

We specify:
- a 1D screen lattice Sigma_n = {0..L-1}, L = 2^n,
- a weighted path hardware graph with edge weights w_{i+1/2} (tick costs),
- a local clock task at site i that executes a fixed two-body primitive on

edges (i-1,i) and (i,i+1) sequentially (shared vertex constraint).

Then the exact compilation depth for interior sites is:
kappa(i) = w_{i-1/2} + w_{i+1/2}

and the induced lapse is:
N(i) = kappa0 / kappa(i).

We choose the edge weights by midpoint sampling so that N(i) matches a standard
weak-field target along a radial line: the Schwarzschild lapse

N_Schw(r) = sqrt(1 - 2M/r) (units c=G=1),
and we report finite-size errors and a log-log scaling fit.

This script writes LaTeX table rows into:
sections/generated/1p1d_error_rows.tex
sections/generated/1p1d_scaling_fit_rows.tex
sections/generated/1p1d_curve_rows.tex

"""

from __future__ import annotations

from dataclasses import dataclass
import math
from pathlib import Path

def schw_lapse(r: float, *, M: float) -> float:
if r <= 2.0 * M:

raise ValueError("Need r > 2M for a real Schwarzschild lapse.")
return math.sqrt(1.0 - (2.0 * M) / r)

@dataclass(frozen=True)
class Metrics:

n: int
L: int
h: float
max_abs: float
rms: float
rel_rms: float

def _round_half_up(x: float) -> int:
return int(math.floor(x + 0.5))

def build_profile(
*,
n: int,
r_min: float,
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r_max: float,
M: float,
kappa0: int,

) -> tuple[list[float], list[float], list[int], list[int | None], list[float | None]]:
"""
Returns:

r_sites: r_i at sites
N_target: N_Schw(r_i)
w_edges: w_{i+1/2} for i=0..L-2 (edge weights, integers)
kappa_sites: kappa(i) for i=0..L-1 (None at endpoints)
N_meas: induced N(i)=kappa0/kappa(i) (None at endpoints)

"""
L = 1 << n
if L < 4:

raise ValueError("Need L >= 4 to have interior sites.")
if r_max <= r_min:

raise ValueError("Need r_max > r_min.")

h = (r_max - r_min) / float(L - 1)
r_sites = [r_min + i * h for i in range(L)]
N_target = [schw_lapse(r, M=M) for r in r_sites]

# Midpoint construction of edge weights:
# w_{i+1/2} ~ (1/2) * kappa_target(r_{i+1/2}), rounded to integer ticks.
w_edges: list[int] = []
for i in range(L - 1):

r_mid = r_sites[i] + 0.5 * h
N_mid = schw_lapse(r_mid, M=M)
kappa_mid = float(kappa0) / N_mid
w_edges.append(_round_half_up(0.5 * kappa_mid))

# Exact compilation depth for the 2-edge local task on interior sites.
kappa_sites: list[int | None] = [None for _ in range(L)]
N_meas: list[float | None] = [None for _ in range(L)]
for i in range(1, L - 1):

k = w_edges[i - 1] + w_edges[i]
kappa_sites[i] = k
N_meas[i] = float(kappa0) / float(k)

return r_sites, N_target, w_edges, kappa_sites, N_meas

def metrics_for_n(
*,
n: int,
r_min: float,
r_max: float,
M: float,
kappa0: int,

) -> Metrics:
r_sites, N_target, _w_edges, _kappa_sites, N_meas = build_profile(

n=n, r_min=r_min, r_max=r_max, M=M, kappa0=kappa0
)
L = len(r_sites)
h = (r_max - r_min) / float(L - 1)

errs: list[float] = []
rel_errs: list[float] = []
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for i in range(1, L - 1):
if N_meas[i] is None:

continue
e = abs(N_meas[i] - N_target[i])
errs.append(e)
rel_errs.append(e / N_target[i])

if not errs:
raise ValueError("No interior errors computed.")

max_abs = max(errs)
rms = math.sqrt(sum(e * e for e in errs) / float(len(errs)))
rel_rms = math.sqrt(sum(e * e for e in rel_errs) / float(len(rel_errs)))
return Metrics(n=n, L=L, h=h, max_abs=max_abs, rms=rms, rel_rms=rel_rms)

def linear_fit(xs: list[float], ys: list[float]) -> tuple[float, float, float]:
"""
Ordinary least squares fit for y = a + b x.
Returns (b, a, R^2).
"""
if len(xs) != len(ys) or len(xs) < 2:

raise ValueError("Need at least 2 points for a fit.")
n = float(len(xs))
x_bar = sum(xs) / n
y_bar = sum(ys) / n
sxx = sum((x - x_bar) ** 2 for x in xs)
if sxx == 0.0:

raise ValueError("Degenerate x values.")
sxy = sum((x - x_bar) * (y - y_bar) for x, y in zip(xs, ys))
b = sxy / sxx
a = y_bar - b * x_bar
ss_tot = sum((y - y_bar) ** 2 for y in ys)
ss_res = sum((y - (a + b * x)) ** 2 for x, y in zip(xs, ys))
r2 = 1.0 - (ss_res / ss_tot if ss_tot != 0.0 else 0.0)
return b, a, r2

def write_rows(lines: list[str], filename: str) -> None:
root = Path(__file__).resolve().parent.parent
out_dir = root / "sections" / "generated"
out_dir.mkdir(parents=True, exist_ok=True)
(out_dir / filename).write_text("\n".join(lines) + "\n", encoding="utf-8")

def main() -> None:
# Weak-field target parameters (units c=G=1).
M = 0.05
r_min = 1.0
r_max = 8.0

# Tick calibration: larger kappa0 reduces integer-quantization effects.
kappa0 = 1_000_000_000

# Finite-size scan (orders).
n_min = 6
n_max = 11
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# Representative curve sample order.
n_curve = 9
curve_points = 12

metrics: list[Metrics] = []
for n in range(n_min, n_max + 1):

m = metrics_for_n(n=n, r_min=r_min, r_max=r_max, M=M, kappa0=kappa0)
metrics.append(m)
print(

f"n={m.n:2d} L={m.L:4d} h={m.h:.6g} max|dN|={m.max_abs:.3e}
rms|dN|={m.rms:.3e} rel_rms={m.rel_rms:.3e}"↪→

)

# LaTeX rows: errors per n.
error_rows: list[str] = []
for m in metrics:

error_rows.append(
f"{m.n} & {m.L} & {m.h:.6g} & {m.max_abs:.3e} & {m.rms:.3e} &

{m.rel_rms:.3e} \\\\"↪→

)
write_rows(error_rows, "1p1d_error_rows.tex")

# Scaling fit: log(rms) vs log(h) (expect slope ~ 2 from midpoint averaging).
xs = [math.log(mm.h) for mm in metrics]
ys = [math.log(mm.rms) for mm in metrics]
slope, _a, r2 = linear_fit(xs, ys)
fit_rows = [f"{n_min}--{n_max} & {slope:.4f} & {r2:.5f} \\\\"]
write_rows(fit_rows, "1p1d_scaling_fit_rows.tex")
print(f"fit: log(rms) ~ a + b log(h), b={slope:.4f}, R^2={r2:.5f}")

# Representative curve samples.
r_sites, N_target, _w_edges, _kappa_sites, N_meas = build_profile(

n=n_curve, r_min=r_min, r_max=r_max, M=M, kappa0=kappa0
)
L = len(r_sites)
idxs = [

int(round(1 + (L - 3) * k / float(curve_points - 1))) for k in
range(curve_points)↪→

]
idxs = [min(max(i, 1), L - 2) for i in idxs]
idxs = sorted(set(idxs))

curve_rows: list[str] = []
for i in idxs:

Nm = float(N_meas[i]) if N_meas[i] is not None else float("nan")
Nt = float(N_target[i])
dn = Nm - Nt
curve_rows.append(f"{r_sites[i]:.6g} & {Nt:.10f} & {Nm:.10f} & {dn:.3e} \\\\")

write_rows(curve_rows, "1p1d_curve_rows.tex")

print("Wrote sections/generated/1p1d_error_rows.tex")
print("Wrote sections/generated/1p1d_scaling_fit_rows.tex")
print("Wrote sections/generated/1p1d_curve_rows.tex")

if __name__ == "__main__":
main()
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