Computational Teleology in Holographic Polar Arithmetic:
Scan Complexity, Readout Resolution, and an Undecidable
Quantum-Cellular Universe

Haobo Ma*
AFELF PTE LTD.
#14-02, Marina Bay Financial Centre Tower 1, 8 Marina Blvd, Singapore 018981

January 1, 2026

Abstract

We develop an operational isomorphism between complexity, geometry, and observation
within a unified syntax for Holographic Polar Arithmetic (HPA) and Omega Theory. In this
framework, computational resources are not external bookkeeping but internal geometric
costs of a scan-readout protocol: time is defined as the iteration count of a genuine unitary
scan operator ©, while space is defined as readout resolution (prefix length and orthogo-
nal cut capacity) induced by a window projection ITy and its canonical coding (Ostrowski
numeration, specializing to Zeckendorf in the golden branch). The scan shift and phase
multiplication form a Weyl pair, yielding a variance-type uncertainty relation that forbids
simultaneous minimization of scan-localization and readout-localization, thereby providing
a structural time—space complementarity.

On the dynamical side, Omega Theory models microscopic evolution as a partitioned
quantum cellular automaton (PQCA) and supports an exact compilation of a local PQCA
step on a finite region into a one-dimensional nearest-neighbor circuit. The resulting com-
pilation depth defines a routing overhead x and an emergent computational lapse field
N (z) = ko/k(x), making gravitational time dilation equivalent to computational slowdown
in an operational sense (Appendix . At the computability layer, universal QCA dynam-
ics admits an undecidable local reachability predicate by reduction from reversible halting
(Appendix , which provides a theorem-level “open-endedness boundary” for prediction.

We emphasize a strict separation of layers: undecidability is a theorem about internal
predicates, whereas modeling observers as interactive machines with oracle-like interfaces is
an interpretation-layer language for resource injection and conditionalization, not a deduc-
tion about physical collapse. Finally, the discrete scan provides an exact lattice dispersion
relation whose low-energy limit recovers approximately linear propagation and whose high-
energy deviation yields a testable template for energy-dependent corrections to effective
signal speed.

Keywords: Holographic Polar Arithmetic; Omega Theory; quantum cellular automata;
time complexity; space complexity; Weyl pair; Ostrowski numeration; Zeckendorf decomposition;
undecidability; interactive computation; oracle.

Conventions. Unless otherwise stated, log denotes the natural logarithm. “mod 1” refers to
reduction in R/Z, and “mod 27" refers to reduction in R/27Z.
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1 Introduction: from coordinate schematics to computational
teleology

1.1 If the universe were fully decidable, why has it not “halted”?

A standard division of labor treats time as a physical parameter (or a coordinate on a background
geometry) and treats time complexity as a computational resource (step count in an abstract
machine). The HPA-{) stance is more aggressive and more unified: time and space are not
background containers but internal costs paid by a readout protocol that accesses, cuts, and
encodes a conserved whole.

The motivating question can be phrased without metaphysics. If microscopic dynamics is
strictly local and unitary—as in a quantum cellular automaton (QCA)—then “history” is a
reversible computation. If, in addition, the internal reachability of certain local predicates is
undecidable (as in universal QCAs; Appendix [G]), then there is no general algorithm deciding
whether a given local event will ever occur from the finite description of the initial encoding.
In such a setting, “the universe computing an ultimate answer and stopping” is not the generic
computational narrative; undecidable reachability provides a theorem-level boundary condition
for long-time prediction.

1.2 What this paper does

This paper presents a self-contained system-architecture layer for Holographic Polar Arithmetic
(HPA) and Omega Theory. We treat their primitives as an axiomatic toolbox, but every
theorem-level statement used in the main chain is either proved in this manuscript (often in
the appendices) or cited to standard literature.

Contribution 1 (unified resource semantics). We define time complexity as scan depth
(iteration count of a unitary scan ©) and as compilation depth (1D nearest-neighbor circuit
depth for implementing a local PQCA step). We define space complexity as readout resolution:
prefix length of a window projection bitstream, canonical coding length (Ostrowski/Zeckendorf),
and active Hilbert-workspace capacity.

Contribution 2 (hard resource complementarity). From the Weyl-pair structure UV =
e'®VU (scan shift vs phase) we obtain a variance-type uncertainty relation, which becomes a,
quantitative statement that one cannot simultaneously minimize scan-localization and readout-
localization. This is the formal core behind time—space tradeoffs in the scan-readout setting.
Appendix [B] further gives an operational form in terms of Helstrom-optimal hypothesis testing
and an explicit sample-complexity lower bound for detecting a scan shift at error tolerance e.

Contribution 3 (universe—-QCA—undecidability chain). Omega Theory models micro-
scopic dynamics as a PQCA, and provides an exact compilation of finite-region steps to 1D
nearest-neighbor circuits. Universal QCAs support an undecidable local reachability predicate
(encoding halting into a local flag). Hence, in the “universe as computation” model, open-
endedness is a theorem-level boundary condition rather than a purely philosophical slogan.

Contribution 4 (observer as an interactive interface; interpretation layer). We model
an observer as an interactive machine that continually exchanges information with the environ-
ment. Treating “selection” or “collapse” as an oracle-like resource input is an interpretation-layer
language for conditionalization on undecidable predicates; it is not a physical conclusion forced
by the undecidability theorem.



HPA-Omega system architecture: scan-readout + compilation + computability boundary
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Figure 1: HPA—Q) system architecture. The paper organizes three layers: (i) a formal opera-
tor/coding layer (scan and readout), (ii) a computational implementation layer (1D compilation
and routing overhead), and (iii) a computability boundary layer (undecidable reachability), with
a strict separation between theorem statements and interpretation-layer mappings.

Contribution 5 (a testable dispersion template). The discrete scan yields an exact lattice
dispersion relation whose low-energy limit is approximately linear. The high-energy deviation
provides a concrete template for energy-dependent corrections to effective propagation speed.

1.3 Logic audit: definition edges, theorem edges, interpretation edges

To keep the chain explicit, we distinguish three edge types.

o Definition edge: an internal definition within the HPA-Q formalism.

e Theorem edge: a mathematical statement proved in this manuscript or cited to standard
literature.

o Interpretation edge: a mapping from formal objects to physical language; this is not a
theorem and must remain clearly marked.

The main chain of this paper is summarized in Table [T}

2 Formal interface: HPA and Omega Theory in one syntax

2.1 HPA: multiplicative ontology, scan time, and projection readout

We adopt the multiplicative-first stance: multiplication is treated as primitive structure, while
classical linear addition is realized operationally as a (lossy) readout. The starting point is the
multiplicative skeleton

M = (Nso, ), (1)

augmented by a radial character p : M — R-o and a multiplicative phase 0y : M — R/27Z
that is additive under multiplication. The basic embedding is

Z(n) = p(n)e?<™ e C*, Z(mn) = Z(m)Z(n). (2)



Edge Claim / link in the chain

Def. HPA defines a multiplicative polar embedding Z(n) = p(n)e?*(™ and intro-
duces a genuine unitary scan operator O, defining time as iteration count.
Thm. No-go: amap @ : Nyg — C cannot be simultaneously multiplicative and linearly

additive except in the trivial/identity cases (Theorem [2.3); therefore addition
must be realized as a lossy readout/projection, producing a structural gap.

Def. Window projection Ily, produces a binary mechanical word; the golden branch
selects Zeckendorf/Ostrowski canonical coding.
Thm. The scan shift and phase operator form a Weyl pair and satisfy an uncertainty

relation, yielding a hard time—space complementarity; operationally this can be
phrased as a hypothesis-testing and sample-complexity tradeoff (Appendix .

Def. Omega Theory models microdynamics as a PQCA; a local step on a finite re-
gion is exactly compilable to a 1D nearest-neighbor circuit. Compilation depth
defines routing overhead  and lapse N' = kq/x.

Thm. In a universal QCA, a local reachability predicate can encode reversible halting
and is undecidable.
Interp. An observer is modeled as an interactive machine; “selection” can be spoken

of as oracle-like resource input for conditioning on undecidable predicates (a
language choice, not a physical theorem).

Model Discrete scan induces an exact dispersion relation with low-energy linearity and
high-energy deviations, providing a testable template for effective signal-speed
corrections.

Table 1: Logic chain audit. Definition edges are internal to the formalism; theorem edges are
mathematical statements; interpretation edges are semantic mappings that must remain clearly
separated.

Remark 2.1 (Explicit parametrization via prime data). Writing n = I], p*(™ any choice of
prime parameters (rp,Vp) with r, >0 and ¥, € R/217Z induces

p(n) = Hrzp("), Ox(n) = va(n) Yp (mod 27), (3)
P P

and hence Z(n) = Hp(rpewp)%(”) is multiplicative. This makes explicit that the embedding is
fully determined by its values on primes.

Remark 2.2 (What depends on Z in this manuscript). All theorem-level results used in the main
chain (discrepancy/readout scaling, Weyl-pair complementarity, compilation-overhead bounds,
undecidable reachability, and the dispersion template) do not require any further specification of
the prime parameters beyond multiplicativity. The embedding Z enters only when one chooses a
concrete additive readout rule R (. Remark and studies embedding-dependent quantities such

as the quantum gap (Definition .

To decouple intrinsic phase from readout order, HPA introduces a genuwine unitary scan
operator © and defines time as iteration count k € Z>o. In the minimal model, © may be
realized as a Koopman shift for an irrational rotation on L?(S?1),

©f) (@) =flz+a), acR\Q (4)

Here we take S' = R/Z with coordinate = € [0,1) and Haar measure dz. Fix a measurable
window W C S! and let xw : S! — {0,1} denote its indicator. The corresponding sharp
window projection is the multiplication operator

(W f)(2) = xw(z) flz), T =y =10y, (5)



In the classical orbit limit (a sharply localized phase xg), readout produces the mechani-
cal/Sturmian word

sk := xw (zo + ka) € {0, 1}. (6)

For interval windows, this is the standard Sturmian construction; in particular, the prefix sums
satisfy the exact discrepancy identity

N-1
Sy =) sk=|Na+p]—|5] (7)
k=0
for a phase offset 8 determined by xg and the window convention [1}2].

Readout as a two-outcome measurement/instrument. At the interface layer, the same
window cut can be expressed as a standard two-outcome quantum measurement [3]. The sharp
readout is the projective measurement (PVM) {IIy;, 1 — Iy} on L?(S'). Given a state p, the
Born probability for outcome “1” is p; = Tr(IIyyp), and the associated Liiders instrument maps

Iy p Iy (1 — Ty)p (1 — Iy

P ToMwp) & T T (- Ty )p)

(8)

conditioned on the respective outcomes. If one samples after k scan steps, p; = 0%p©~* and
pr = Tr(Ilypk). In the idealized phase-eigenstate limit |xzg) (or a narrow wavepacket around
0), this reduces to the deterministic orbit rule py, = xw(xo + ko) in (6)).

More realistic readouts are naturally modeled by POVMs: for a “soft window” w : St — [0, 1],
define commuting Kraus operators M1 f = yJw f and Myf = /1 —w f, yielding effects Fy =
M{er and Fy = MJMO with Ey + E; = 1. This makes explicit how Il is the sharp (w = xw)
limit of a standard instrument model.

Within a QCA substrate, such readouts can be realized by a standard dilation: any POVM
can be implemented by coupling the system locally to an ancilla via a unitary and then per-
forming a projective measurement on the ancilla (Naimark/Stinespring-type realizations; see,
e.g., [3,4]). This places Ily and its noisy variants within the usual local-unitary-plus-projective-
measurement paradigm.

Golden branch and canonical coding. The golden ratio ¢ = (1 + +/5)/2 and its inverse
a = ¢~ ! play a privileged role. The golden rotation is maximally anti-resonant among irrational
rotations (hardest to approximate by rationals), and it minimizes symbolic complexity within
the binary Sturmian family. In this branch, Ostrowski numeration degenerates to the Zeckendorf
decomposition: every N € N admits a unique Fibonacci-sum representation with no adjacent
terms [5-7].

2.2 Structural quantum gap: addition as lossy readout

A key HPA theorem is a no-go statement: beyond trivial cases, one cannot preserve both
multiplicative structure and classical linear addition. We record the consequence in the form
needed here.

Theorem 2.3 (No-go for simultaneous multiplicativity and linear additivity). Let ® : Nyg — C
satisfy ®(mn) = ®(m)®(n) and ®(a + b) = ®(a) + ®(b) for all a,b,m,n € Nsg. Then P is
trivial (zero) or the identity embedding (up to the standard identification).

Proof. Let ¢ := ®(1). By additivity, ®(n) = ®(1+---+ 1) = nc for all n € N5(. By multiplica-
tivity, c = ®(1) = ®(1-1) = ®(1)2 = ¢?, hence ¢ € {0,1}. If c = 0 then ® = 0. If ¢ = 1 then
®(n) = n for all n, i.e. the standard embedding of N+ into C. O



Consequently, for a nontrivial multiplicative embedding Z, the continuous vector synthesis
Z(a) + Z(b) is not constrained to lie on the discrete image Z(M). HPA models the induced
additive operation as a readout projection (nearest-point, kernel projection, or a probabilistic
instrument), and defines the quantum gap as the residual mismatch between synthesis and
discrete coordinate recovery.

Definition 2.4 (Quantum gap (distance to the discrete image)). Fix a multiplicative embedding
Z: M — C and write Z(M) C C for its discrete image. For a pair (a,b) € N2, define the
quantum gap as the distance from continuous synthesis to the discrete image:

§(a,b) = dist(Z(a) + Z(b), Z(M)) = né%io 1Z(a) + Z(b) — Z(n)]. (9)

Remark 2.5 (Readout rules as (approximate) minimizers). Any concrete readout protocol sup-
plies a (possibly randomized) choice of an integer-valued map R : C — Nsg. If the infimum in
Deﬁnition is attained (or approximated), a natural deterministic readout is a nearest-image
rule Ry(v) € argmin, [|[v — Z(n)||. More generally, any admissible readout R induces a residual

Sr(a,b) == | Z(a) + Z(b) — Z(R(Z(a) + Z(b)))|| with or(a,b) > 5(a,b).

The central point for this paper is conceptual: space enters not as a container but as the
grammar and resolution of the readout protocol that discretizes a continuous ontological syn-
thesis.

2.3 Omega Theory: PQCA microdynamics, exact 1D compilation, and lapse
as routing overhead

We model microscopic evolution as a partitioned quantum cellular automaton (PQCA) on a
quasi-local substrate with strictly local, finite-depth unitary updates. The PQCA viewpoint
is compatible with standard QCA structure theorems (block representations and localizability)
[8,9]. For the present paper we only use one interface theorem: any local PQCA step on a finite
region can be compiled ezactly into a one-dimensional nearest-neighbor circuit, and the minimal
circuit depth becomes a computational notion of time.

Proposition 2.6 (Exact 1D nearest-neighbor compilation (Omega interface)). Let Ugr be a
single local PQCA step restricted to a finite region R. There exist an encoding isometry Er and
a 1D nearest-neighbor circuit C'r such that

Ur = EL,CrEg. (10)
Moreover, defining the routing overhead

K(R) i= min depthyp (Ui ) (11)

over 1D layouts/encodings f (Definition[F.1), one may take depth(Cr) = k(R). This overhead
admits explicit, geometry-controlled bounds (Appendix @) for n :=|R| sites and bounded-degree
local steps, k(R) = O(n) (Proposition[F.5), while k(R) = Q(bw(GR)) in terms of the interaction-
graph bandwidth (Proposition . In particular, for a d-dimensional L% grid region, x(R) =
QL) = Q(|OR|) (Theorem|F.6).

At the circuit level, such compilations reduce to nearest-neighbor routing by swap networks;
see Appendix [F| and, e.g., [10].
This motivates the computational lapse definition:

N(z) = dToc(z) = N (x) dt, (12)

Ko
k(z)’
where ¢ is measured in 1D nearest-neighbor depth and 7, counts locally realizable logical steps.
In this language, “time dilation” is literally a slowdown in the implementable logical rate due to

increased compilation/routing cost. Quantitative overhead bounds for standard geometries are
summarized in Appendix [F]



2.4 Undecidability interface: local reachability in universal QCA

The final interface fact is computability-theoretic. Universal QCAs can encode reversible com-
putation; in Omega Theory this is sharpened into a local reachability predicate.

Theorem 2.7 (Undecidable local reachability in a universal QCA (Omega theorem)). There
exist a universal QCA update U and a family of initial states encoding instances (M,z) (a
reversible machine M on input ), together with a finite region K and a local projector M,

such that the predicate
>0 (Wne| UM Ul |thpra) >0 (13)

(i.e. whether the local flag i is ever triggered) is algorithmically undecidable as a function of
(M, x).

This theorem provides a strict mathematical pivot for later sections: “open-ended history”
can be made precise as an undecidable reachability boundary within a strictly local, unitary
microdynamics.

3 Complexity as physical cost: a unified resource semantics

This section performs two tasks: (i) it aligns standard complexity models with HPA—{) objects,
and (ii) it makes precise in what sense “time complexity is time” and “space complexity is space”
in this framework: both are internal resource functionals of the scan—readout protocol.

3.1 Three standard models and their HPA—Omega alignment
Turing machine (TM). Time is step count T'(x); space is the number of tape cells visited
S(x).

Circuit model. Time is circuit depth depth(C); space is width / number of working wires.

Quantum cellular automaton (QCA). Time is the number of global update ticks t; space
is active region size |R| and local dimension d.

HPA-Omega alignment. The HPA scan iteration count k aligns with TM time and circuit
depth:
T ~ k. (14)

Readout prefix length N, canonical code length m (Ostrowski/Zeckendorf), and QCA active
region |R| align with space:
S~ (N, m, |R|). (15)

Omega Theory provides a further unification: local PQCA steps can be compiled to 1D nearest-
neighbor circuits, so “time” can be expressed uniformly as nearest-neighbor depth.
3.2 Time complexity as an internal definition: scan depth and compilation

depth

Definition 3.1 (Scan time complexity). Fiz a scan operator O, an initial state |¢), and a
readout predicate P (for example, a predicate on the stabilized canonical code derived from the
readout stream). For a tolerance € > 0, define the scan time complexity

To(P;e) := min{k: > 0: Readout(©F[¢))) decides P stably within error e}. (16)

If no such k exists, set To(P;e€) = +oo.



Definition 3.2 (Compilation time complexity). For a finite region R and a local PQCA update
Ur, define
Teomp(R) := min depth(Cr(fr)), (17)

where fr ranges over admissible 1D layouts/encodings of R onto the tape and Cr(fr) is the
corresponding 1D nearest-neighbor circuit implementing Ug (Proposition .

The lapse definition is exactly the statement that local proper time is measured by the
achievable logical rate per unit depth.
3.3 Space complexity as an internal definition: readout resolution and or-
thogonal cut capacity

Definition 3.3 (Readout space complexity). Fiz a readout task R (e.g. reconstructing a canon-
ical integer coordinate from the scan stream) and a tolerance € > 0. Let sq,...,sy—1 be the
binary stream induced by the window projection. Define

Sread(R; €) 1= min{N > 1: the length-N prefiz suffices to complete R within error e}. (18)

Definition 3.4 (Coding space complexity). Let Code,(NN) denote the Ostrowski representation
of N associated with slope c, and let £(Coden(N)) be its digit length. Define

Scode(N;Oé) = K(Codea(N)) (19)
In the golden branch o = <,0_1, this specializes to the Zeckendorf digit length.

Definition 3.5 (QCA workspace complexity). For a QCA with local Hilbert dimension d and
an active region R, define the workspace capacity

Sqca(R) == |R| logd. (20)

In the scan—readout ontology, “space” is the minimal orthogonal grammar required to distin-
guish and stabilize readout outcomes. This is why the natural space measures are prefix length,
canonical code length, and active-region capacity. Appendix [E] records explicit discrepancy and
digit-depth scalings in the Sturmian/golden setting.

Proposition 3.6 (A concrete (7,.5) scaling in the Sturmian scan model). In the window-scan

model producing a mechanical word s, . ..,SN—_1, the prefiz-sum estimator ay := Sy /N satisfies
v —al < (1)

ay — o < —

N N

uniformly in N (Proposition . Hence to achieve estimation error < € it suffices to take
N > [1/€] (Corollary[E.2). Since one scan iteration produces one readout bit, the scan time to
acquire an N-bit prefix scales as T = O(N) for such streaming tasks. In the golden branch, the
corresponding Zeckendorf digit depth obeys Seoge = ©(log N) = O(log(e™ 1)) (Proposition .

Remark 3.7 (A worked resource pipeline (example)). For an estimation tolerance ¢ = 1073,
Corollary yields N > 103, so a streaming scan requires T = ©(103) iterations to acquire the
corresponding prefiz. In the golden branch, Proposition[E.] gives a Zeckendorf digit depth on
the order of

m 2 log,(V5e) ~ 16, (22)
illustrating the separation between raw prefix length (streaming memory) and compressed canon-
ical description length. Independently, for a 2D L x L grid region update, Theorem [F.6 implies

a compilation lower bound k(R) = Q(L) under 1D embedding; this is the quantitative sense in
which geometry reappears as implementation-time overhead.
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Time dilation as computational slowdown

Local step » 1D compilation - routing overhead 109 —— n'=1 (low overhead)
= N'=0.35 (high overhead)
region R

oo
L

1D NN tape

e O

depth(Cr) defines k(R)
N(x) = KolK(x)

local logical time Tjoc

a dTIoc:J\f(X)dt N:KO/K

0 2 4 6 8 10
baseline depth time t

Figure 2: Time complexity as scan/compilation depth and routing overhead. A local
PQCA step on a finite region can be implemented on a 1D nearest-neighbor tape at a depth
cost that defines the routing overhead x. The computational lapse N' = kg /k converts baseline
depth time ¢ into local logical time 7o via dne. = N () dt.

4 Time complexity as geometric impedance: from scan iteration
to emergent lapse

4.1 HPA: time as access order

In HPA, “time” is not a background parameter but the access order induced by the scan operator
©: the system is accessed by the orbit {©¥|¢))}1>0, and the physical content of “waiting longer”
is the need for a larger iteration count before the readout stabilizes (Definition .

This internalization of time has a direct complexity interpretation: if a readout task requires
deeper orbit sampling to resolve an ambiguity created by projection (or by phase aliasing), then
the time cost is literally larger k.

4.2 Omega Theory: compilation overhead and time dilation as computational
slowdown

Omega Theory adds a second, implementation-level notion of time: the depth required to imple-
ment a local update on a one-dimensional nearest-neighbor substrate (Definition . The key
point is that an abstract “one-step” local PQCA update is not automatically a constant-time
operation once one fixes a physical connectivity constraint (nearest neighbor). Routing induces
overhead.

The lapse definition

N(z)=—= dnoc(x) = N (z) dt (23)

states that the local proper time 7y, counts realizable logical steps, while ¢ counts baseline
nearest-neighbor depth. Regions with larger routing overhead (x large) execute fewer logical
steps per unit ¢ and therefore appear time-dilated.

4.3 Unitarity and reversible computation: why tradeoffs are structural

The scan and the QCA update are unitary and hence reversible. However, any nontrivial read-
out must involve projection, coarse graining, or conditioning—all of which are information-losing
operations on the observed algebra. This juxtaposition reproduces, in a geometric language, a
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standard phenomenon in reversible computation: simulating an irreversible computation re-
versibly typically forces a time—space tradeoft.

Bennett’s pebbling-based results formalize this in the classical reversible setting [11]. In the
present framework the tradeoff becomes transparent:

e Reducing space corresponds to using a shorter prefix, fewer orthogonal channels, or more
aggressive projection.

e Reducing time corresponds to using fewer scan iterations or a shallower compiled circuit.

But the Weyl complementarity (Section @ and the projection gap (Definition imply that
these reductions are incompatible beyond a structural limit: pushing readout resolution down-
ward increases aliasing and instability, which then forces either more scan depth (time) or more
workspace (space) to regain robustness.

In short, within HPA-Q the phrase “time dilation” has an exact computational meaning:
it is the slowdown induced by routing/compilation overhead required by locality constraints,
coupled to readout-induced irreversibility.

5 Space complexity as readout resolution: from window cuts to
canonical numeration

5.1 Readout produces a mechanical word: space as the cost of distinction

A window projection Ily turns a continuous orbit into a binary stream {s;} (Equation (0)).
This is the minimal observational alphabet: two outcomes corresponding to whether the phase
lies inside the window. For irrational rotations with interval windows, the resulting sequence is
Sturmian and has minimal factor complexity among aperiodic binary sequences:

p(n) =n+ 1. (24)

In other words, a Sturmian readout is a “least complex” way to encode a nonperiodic structure
in a binary grammar [1,2].

In the present language, space is the amount of grammar required to make distinctions
stable. A longer prefix yields finer resolution because it refines the orbit partition and reduces
discrepancy fluctuations (Equation (7). Thus readout space complexity is naturally measured
by prefix length (Definition ; see Appendix [E| for explicit O(1/N) discrepancy bounds.

5.2 Ostrowski and Zeckendorf: canonical coding as spatial resolution

The binary stream is not only a data record; in HPA it is also a coordinate system. Ostrowski
numeration provides a canonical way to represent integers based on the continued fraction ex-
pansion of the slope . In the golden branch a@ = ¢! (continued fraction coefficients all equal
to 1), Ostrowski representation degenerates to Zeckendorf representation: every N € N has a
unique Fibonacci-sum decomposition with no adjacent Fibonacci terms [5].

This is precisely why coding length is an appropriate space measure (Definition [3.4): a
readout prefix of length N corresponds to a canonical digit string whose length is a discrete
notion of spatial resolution.

5.3 Golden anti-resonance and coding minimality

Two extremal properties of the golden slope justify its role as a canonical “least locking” scan
clock.

12



e window W Readout resolution and canonical coding
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f \ prefix length N increases readout resolution
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Unitary scan: x » x+a (mod 1)
Readout: s_k = 1_W(x_0+ka)

Figure 3: Readout space complexity in the scan model. A unitary scan on S' combined
with a window projection Ilyy produces a binary mechanical word sg. Increasing the prefix
length N improves readout resolution (Appendix. In the golden branch, canonical Ostrowski
coding degenerates to Zeckendorf coding, so the compressed digit depth scales as m = ©(log V).

o Anti-resonance (Diophantine hardness). The golden ratio is extremal for rational
approximation: it is “worst approximable” in the Hurwitz sense (Appendix , which
minimizes phase lock-in and short periodic traps [64/7].

e Binary canonicality. Continued fraction coefficients all equal to 1 yield the simplest
Ostrowski constraints and hence the simplest canonical coding (Fibonacci/Zeckendorf).

Operationally: for fixed observational alphabet and fixed window grammar, the golden
branch distributes orbit visits in a way that is simultaneously aperiodic and as non-resonant
as possible, supporting stable readout without artificial periodicity.

5.4 Space is not a container but an orthogonal-cut syntax

The no-go theorem (Theorem forces addition to be a readout, not an ontological operation.
Hence every observable “coordinate” carries a memory of the cut that produced it. From this
perspective, space complexity is the price of orthogonalization: increasing distinguishability
requires either more channels (larger effective Hilbert workspace) or longer stabilization prefixes.
This directly aligns with Sqca(R) = |R|logd (Definition [3.5) and with the view that dimension
is a measurement grammar rather than a primitive container.

6 Time—-space complementarity: Weyl-pair uncertainty as a re-
source lower bound

6.1 Weyl pairs in the scan model
Let S' =R/Z and H = L?(S',dz). Fix an irrational slope o € R\ Q. Define the scan shift

(Uf)(@) = flz +a), (25)
and the phase multiplication operator
(VF)(z) =™ f(a). (26)
Then, by direct computation,
UV f)(x) = ) f(z 4 a) = 2 (VU f)(2), (27)

13



so U and V satisfy the Weyl relation
UV =e®VU, @ :=2na. (28)

Equivalently, U and V generate the irrational rotation algebra (the noncommutative torus) [12].

6.2 A variance-type uncertainty relation

Following Massar—Spindel [13] (see also the number—phase literature surveyed in [14] and the
Pegg—Barnett approach [15]), define for a normalized state |1))

AZ =1 U, AL = 1= |V (29)

Then Ay = 0 iff [¢) is an eigenstate of U, and similarly for V. The Weyl commutation implies
a quantitative obstruction to simultaneous eigenstate-like localization.

Theorem 6.1 (Weyl-pair complementarity (variance form)). Let U,V be unitary operators
satisfying UV = e ®V U, with the phase chosen so that 0 < ® < 7, and set A = tan(®/2). Then
for any normalized state |v),

(14 24) A% A2 + A% (A2 + A2) > A2 (30)
In particular, if ® Z 0 mod 27 then Ay and Ay cannot both be arbitrarily small.

Remark 6.2 (Closed-form vs tight unitary uncertainty bounds). Massar—Spindel [13] also pro-
vide a stronger (tight) characterization of the accessible region in the ([(U)|, [(V')|) plane via the
smallest eigenvalue of a Hermitian “Harper” operator (their Theorem 2). The present paper uses
the closed-form inequality because it yields an explicit algebraic tradeoff suitable for resource
lower bounds and operational translation (Appendix @) Whenever tighter constants matter, one
may replace by the implicit Harper-eigenvalue boundary without changing the scan—readout
semantics.

6.3 Resource semantics: why T and S cannot both be minimized

Equation (30)) becomes a resource statement once we identify U with scan access and V' with
readout phase channel.

e Scan invariance and temporal resolution. Small Ay means [¢) is close to an eigen-
state of the scan shift, so successive scan states have large overlap. Operationally, Ay is
the trace distance between p and UpUT for pure p (Appendix , hence small Ay means
it is difficult to distinguish “one tick” from “one tick plus a scan shift.” In readout tasks
that rely on accumulating distinguishable orbit information, such near-invariance typically
forces larger scan depth.

o Readout localization and phase-channel sharpness. Small Ay means |¢) is close
to an eigenstate of the phase channel. Equivalently, the unitary conjugation p — VpVT is
hard to distinguish from p (Appendix . In the scan—readout semantics this corresponds
to sharpening distinctions in the readout/phase channel, which is generally paid for by
increased readout resolution (longer prefixes and/or more orthogonal cut capacity).

Appendix [B] turns this into a concrete hypothesis-testing statement: the Helstrom-optimal bi-
nary decision errors for discriminating p from UpU' and p from VpVT obey the Weyl tradeoff

(Proposition [B.5)).
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A minimal T'(¢) lower bound (task-level). As a canonical example, consider the decision
problem of distinguishing whether a single scan shift has occurred, i.e. discriminating p from
UpUT for U = ©. For pure states, Appendix [Bf gives an explicit n-copy Helstrom formula and
an inversion: to achieve error < € one needs at least

log(1/(4e(1 = 9))) _ log(1/e)
“log(l-27) < A3

(31)

where A?, = 1 — |[(|U|)|? (Corollary [B.8)). Interpreting each repetition as one unit of scan
access, this gives a concrete sense in which “near invariance under the scan” forces increased
time cost for reliable discrimination.

Remark 6.3 (Resource accounting convention). The bound above is stated for n independent
repetitions (or n identical copies) of the discrimination task. In this paper we use it as a minimal
operational proxy for time cost: one repetition corresponds to one unit of experimental access to
the scan—readout interface. This convention is standard in complexity-style resource accounting
and is logically independent of any claims about obtaining multiple copies of a global universe
state.

The theorem says these objectives conflict when the scan is genuinely irrational (nontrivial ®).
Thus, in HPA-Q), time—space tradeoffs are not engineering artifacts but formal consequences of
(i) unitary access order and (ii) orthogonal projection readout.

This complements the reversible-computation tradeoff viewpoint (Section : unitarity pre-
serves information globally, while readout discards information locally. The Weyl-pair constraint
quantifies the irreducible incompatibility between “making access cheap” and “making distinc-
tions sharp”.

7 A quantum-cellular universe: 1D sufficiency, undecidability,
and the observer as an interactive interface

7.1 Why the universe can be modeled as a QCA

A quantum cellular automaton (QCA) is a discrete-time, causal, unitary dynamics on a lattice
(or graph) of finite-dimensional systems. Structure theorems show that unitarity plus causal-
ity implies implementability by local circuits (“localizability”) 9], and reversible QCAs admit
block representations in the sense of generalized Margolus partitionings [8]. It is a natural mi-
crodynamical carrier for three reasons: (i) it enforces finite propagation and locality (light-cone
bounds for local quantum dynamics are formalized by Lieb-Robinson-type estimates [16]), (i) it
is exactly unitary (hence reversible), and (iii) it is computationally expressive: one-dimensional
QCAs already support rich computation models [17], and intrinsically universal QCAs exist in
higher dimensions [18]. In this manuscript we take QCA/PQCA as the microphysical substrate
compatible with strict unitarity and locality constraints.

A complementary line of work studies continuum limits and emergent field dynamics in QCA /quantum-
walk settings. Already early lattice-QCA constructions reproduce relativistic wave equations
(Weyl/Dirac/Maxwell) as exact unitary updates with controlled lattice corrections [19]. More
recent analyses make convergence to the Dirac equation explicit (including higher dimensions
and observational convergence estimates) in discrete-time quantum walks [20,21]. These results
directly connect the QCA substrate to standard continuum kinematics and help situate scan-
induced dispersion within the broader lattice-dispersion literature. At the same time, lattice
fermion models face well-known obstructions such as fermion doubling in chiral settings [22],
which constrains how continuum fields can emerge from strictly local, translation-invariant dis-
cretizations and motivates careful symmetry/encoding choices in any concrete QCA realization.
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Universal QCA: local reachability as a halting predicate

Instance (M, x) Encode as QCA initial state Evolve by U"t

reversible computation |lw_{M,x}) (local unitary dynamics)

44—

Predicate: 3t = 0 such that
(g_{M,x}U~{tt} N_KU~tly_{M,x}) >0

Reduction: halting « local flag ever triggers = reachability is undecidable.

Figure 4: Undecidable local reachability in a universal QCA. A universal (reversible)
computation instance (M, z) is encoded into an initial QCA state |as). A finite flag region
K with projector Iy records a halting-like event. The predicate 3t : (s, |[UM Tk U [¢hps.) > 0
reduces halting to local reachability (Appendix .

7.2 Why one dimension is enough: geometry as compilation overhead

A recurring intuition is that “one-dimensional tape models are too thin to represent spacetime.”
The Omega interface theorem (Proposition changes the meaning of “dimension” at the
implementation layer: for any finite region update, there exists an exact 1D nearest-neighbor
realization, and the cost of embedding higher adjacency into 1D is measured by routing overhead
K.

Thus, geometry need not be identified with the base dimension of the tape. Instead, geometry
can be encoded as a complezity field: the overhead required to realize a given local logical
step under a fixed connectivity constraint. This is precisely what the computational lapse
N(x) = ko/k(x) captures.

7.3 Undecidability as a theorem-level boundary

The undecidable reachability theorem (Theorem has a direct conceptual reading. If a QCA
is universal, then the question “will a certain localized event ever occur?” can be as hard as the
halting problem. Hence, even in a completely unitary and local universe, there exist physically
well-defined internal predicates whose long-time truth value is not decidable by any general
algorithm.
This phenomenon is already present in classical cellular automata: many global properties and
decision problems become undecidable once the dynamics can encode universal computation,
and undecidability persists in reversible settings (see, e.g., for representative results).
Theorem is the unitary/QCA analogue tailored to the present interface: it packages unde-
cidability as a local hitting predicate for a fixed causal update.

The reduction is given in Appendix[G] In that precise sense, “open-ended history generation”
can be stated without metaphor: there is no general algorithmic shortcut that decides all future
local reachability events from the finite description of the initial encoding.

7.4 Observer = interactive machine + oracle-like interface (interpretation
layer)

Up to this point, all claims are definition- or theorem-level. We now introduce an interpretation
edge: a language for speaking about observation and selection without confusing it with a
nonunitary modification of microdynamics.

16



Oracle language. Turing’s ordinal-logic paper introduced oracle (o-machine) computation as
a formalization of relative computability: an external predicate is treated as a resource that can
be queried but not computed mechanically [25].

Interactive language. An observer in a QCA universe is not a one-shot function but a
process that continually exchanges information with its environment. This motivates modeling
observation as interactive computation, where the system’s capability depends on continual
input /output rather than on a single batch computation. (For broader discussions of interaction
vs algorithms see e.g. [26].)

Selection as conditionalization. In the scan—readout ontology, “measurement” is a choice
of cut and a conditioning on outcomes (a change of effective state on the observed algebra).
When the conditioned predicate is undecidable as a function of the initial encoding, describing
the selection step as an “oracle-like input” is a consistent interface language: it records that an
additional resource (choice/conditioning) is being supplied from outside the purely algorithmic
predictor.

Remark 7.1 (Strict layer separation). The undecidability theorem does not imply physical
nonunitarity. It is a statement about the algorithmic decidability of certain internal reacha-
bility predicates. Modeling an observer as an interactive machine with oracle-like resources is a
semantic choice: a way to talk about conditioning and resource injection at the readout level.

This perspective allows one to phrase “collapse” as a statement about the readout history
(conditionalization on a chosen branch) rather than as a modification of the global unitary
dynamics.

8 Discrete-scan dispersion and the “speed of light” question

This section isolates one concrete, model-level interface between the scan formalism and phe-
nomenology: the exact dispersion relation induced by a discrete scan/difference replacement.
The goal is not to claim a unique physical prediction, but to provide a falsifiable template: any
scan-based lattice model carries characteristic high-energy deviations from linear propagation.
Related lattice-unitary models (QCA/quantum walks) derive relativistic wave equations with
intrinsic lattice dispersion; see, e.g., [19,20].

8.1 A representative exact dispersion relation

Replacing derivatives by finite differences at step size ¢ yields an exact lattice-type dispersion
of the form

2 eP
E(P)= - in[ — . 2
(P) 8arcsm( 2) (32)
For e P < 1, the low-energy expansion is
2P3
E(P)=P+ 524 +O(4PY), (33)

so linear propagation is recovered to leading order.

8.2 Derivation via the symbol of a symmetric difference

A compact derivation uses the standard Fourier symbol of the symmetric difference. Let the
symmetric difference operator be
flt+e/2)— f(t—¢€/2
(Vep)) = LRI e2) (31)

e
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For a plane wave f(t) = exp(—iEt) one has

- ~ 2 E
V. exp(—iEt) = —i B(E) exp(—iEt), E@y:smf2) (35)
€

Imposing the continuum massless dispersion £ = P at the level of symbols by setting E (E)=P

gives
ek eP
n( =) = =— 36
sm( 5 > 5 (36)

which solves to Equation .

8.3 MDR form and the quadratic suppression scale

Squaring the low-energy expansion gives a convenient modified-dispersion-relation (MDR) form:

2
E*=p?y %P‘* + O PY). (37)
Define the quadratic suppression scale
V12
EQGQ = ? (38)

Then
E? = P?

2
P Pt
1+ +O0| —— 39

This places the scan-induced dispersion directly into the standard quadratic LIV/MDR phe-
nomenology vocabulary.

8.4 Group velocity and high-energy deviation

Differentiating gives

dFE 1
= - (40)
dpP 1— (eP/2)?
Thus, the scan-induced dispersion predicts an energy-dependent deviation from constant group
velocity. In particular, for eP < 1,
dE e2p?

-~ 1
dP + 8

2

P

+ 0(* P :1+3< ) e (41)
2 EQG’Q

8.5 Cosmological time-of-flight fitting (quadratic case)

For a source at redshift z in a standard FRW background, the leading quadratic time-delay
template takes the familiar form [27]:
3 Bio— By [*(1+2)

AtLIV >~ 89 — / dz’, (42)
2 Elg, Jo H(Z)

where Ey o, Eio are the observed photon energies and sa € {+1,—1} encodes subluminal vs
superluminal sign conventions. Here H(z) is the Hubble parameter; for a spatially flat ACDM
background one may take

H(z) = Hoy/Qum(1 + 2)% + Q. (43)
In the scan dispersion , the quadratic correction is superluminal (positive dE/dP — 1),
corresponding to a fixed sign choice in this template.
Equation provides a direct fitting pipeline: given (At;, By o4, Fi0,, 2i) one can regress
for Eqg2 (equivalently e via ) subject to astrophysical emission-lag systematics.
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Discrete-scan dispersion . Energy-dependent group velocity
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by locality (Lieb-Robinson).
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Figure 5: Discrete-scan dispersion and energy-dependent group velocity. The ex-
act scan-induced dispersion F(P) = %arcsin(sP/ 2) is approximately linear at low energy and
deviates at high momentum. The corresponding group velocity v, = dE/dP becomes energy-
dependent; microscopic locality in a QCA /PQCA imposes a separate signal/front-velocity bound

(Lieb-Robinson).

8.6 A concrete bound (example)

Using Fermi-LAT gamma-ray burst data, Vasileiou et al. reported a robust quadratic constraint
of order
Eqga2 > 1.3 x 10 GeV (44)

within their systematic treatment [28] (see also the earlier GRB 090510 limit [29]). Translating
via gives the corresponding bound on the scan step

V12

Yt x27x107H -1 4
£ 1.3 x 101 GeV T 107 GeV (45)

In length units, 1GeV ™! ~1.97 x 107 m, so ¢ < 5.3 x 1072 m.

8.7 Translating GRB 090510 timing limits into the quadratic scale

Equation can be inverted to obtain a one-sided lower limit on Eqgo (hence an upper
limit on €) from any published time-delay constraint. For a single event with observed energies
En 0, E1p at redshift z and an upper bound |At| < Atpax, one obtains

1/2
3B, —El [ 7 (1+2)?
E 2 Tho = / 1
Qo2 = [2 Atimax /0 aw “)| 1o

which is a conservative one-sided bound obtained from the absolute time-delay constraint (in-
dependent of the sign convention). Abdo et al. [29] tabulate a set of conservative and less-
conservative upper bounds on |At| for GRB 090510 based on different choices of the reference
emission time (their Table 2). Using a standard flat ACDM background in the integral, these
bounds translate to quadratic limits on Eqg 2 and ¢ that are consistent (in order of magnitude)
with the later systematic analysis [28].

19



Constraint source Atmax  EqQa,2 lower bound ¢ upper bound

(ms) (GeV) (GeV1)
GRB 090510, conservative onset choice (Table 2a) [29] 859 3.0 x 10%0 1.1 x 10710
GRB 090510, > 1 GeV onset choice (Table 2d) |29 99 8.9 x 10%° 3.9 x 1071
GRB 090510, spike association (Table 2e) [29] 10 2.8 x 101 1.2 x 10711
Fermi-LAT systematic quadratic bound [28] — 1.3 x 101 2.7 x 1071

Table 2: Representative published timing constraints translated into the quadratic
scan scale. The GRB 090510 entries are obtained by combining the published Aty values [29]
with the quadratic time-of-flight template ; the corresponding € bound uses . The
numerical translation uses z = 0.900 and the 1o lower energy E}, o = 28 GeV reported in [29],
with the low-energy reference chosen as in their Table 2, and a standard flat ACDM background
in the redshift integral (e.g. Hy ~ 67.4kms~! Mpc™!, Q,,, ~ 0.315). Results depend only weakly
on the background cosmology.

8.8 A reproducible likelihood template for fitting ¢ (quadratic case)

Given a dataset of observed spectral lags At; with uncertainties o; and associated (Ey 04, 10,4, 2i),
define the regressor
2 N2
G TN - A B Ul 0 u
Xi = (Eh,O,z' El,O,i) /0 H() dz’. (47)
Introduce the parameter n = sg Eéé o, (equivalently ¢ = /12 E(ié 5). Then the leading
quadratic model is

3
Aty = Atint; + 577Xz' + €, (48)

where Aty captures intrinsic source emission lags and ¢; is observational noise. A standard
conservative treatment is to model Aty ; as a nuisance term (either per-burst intercepts or a
hierarchical distribution) and to include an intrinsic-scatter parameter oj,;. For Gaussian errors,
one convenient log-likelihood is

2
(Ati — Ating,i — %UXz'>
: 2 2
012 + 0_2 + log(oi + Uint) . (49)

int

1
log L(n, {Atint}y Tint) = D) Z

This template makes explicit what is and is not being assumed: constraints on ¢ tighten only
to the extent that intrinsic-lag systematics can be controlled (e.g. by within-burst association
methods, by multi-pulse modeling, or by hierarchical pooling).

8.9 Causality: group velocity vs signal velocity

Equation can exceed 1 for sufficiently large P. However, in a strictly local update model
(QCA/PQCA), information propagation is bounded by locality: per tick, influence can spread
only within a finite neighborhood. In fact, for a causal QCA with neighborhood radius r, the
Heisenberg evolution obeys a strict light-cone statement [9]:

supp(UTAxU) € No(X), (50)

for any observable Ax supported on a finite set X, where N,.(X) denotes the r-neighborhood
of X in graph distance. Iterating gives supp(U ‘AxU") C N,+(X), so the front/signal velocity
is bounded by the microscopic causality radius. For more general local quantum dynamics gen-
erated by Hamiltonians, strict causality is replaced by an exponentially suppressed tail outside
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an effective cone, formalized by Lieb—Robinson bounds [16]. Therefore, an apparent “superlu-
minal group velocity” extracted from a lattice dispersion must be interpreted cautiously: group
velocity is not a signal-velocity guarantee, while the microscopic locality constraint enforces the
true causal speed limit.

8.10 How this connects back to complexity

In the unified semantics, the effective propagation speed is determined by the scan step and by
the compilation overhead required to realize local updates. Hence, “light-cone structure” is itself
a complexity statement: it is a bound on how many sites can be causally reached within a given
depth budget. This ties the phenomenological dispersion discussion back to the central theme:
kinematics is constrained by scan complexity (iteration/depth) and by readout resolution (which
determines which deviations are operationally accessible).

8.11 Laboratory constraints and operator content

It is important to distinguish which kind of Lorentz-violation tests apply to which operator
structures. The scan-induced MDR in is an isotropic, energy-dependent modification of
propagation (quadratic in energy at leading order). At optical or microwave energies, the relative
correction is suppressed by (E/Eqg2)?. For example, taking E ~ 1eV and Eqg2 2> 10 GeV
yields (E/Eqa2)? < 10710, far below laboratory sensitivity. Accordingly, precision cavity ex-
periments are most constraining for anisotropic and/or polarization-dependent modifications
(SME-type operator coefficients) rather than for an isotropic n = 2 time-of-flight term; see the
review [30] and representative optical-resonator tests such as [31]. This is why high-energy,
long-baseline time-of-flight observations dominate the quantitative bounds quoted in Table [2] for
the present MDR template.

9 Computational teleology and cybernetics: an open-ended uni-
verse near the undecidability boundary

9.1 Teleology as a computable objective: sustaining open-endedness

Once undecidable reachability predicates exist (Theorem , the phrase “the universe aims to

compute an ultimate answer and halt” is not the natural fixed point. A more precise statement is

available: for finite-resource observers, what matters is whether the scan-readout protocol con-

tinues to generate histories that are simultaneously (i) not trapped in short periodic loops (overly

decidable/compressible) and (ii) not washed out into pure noise (unreadable/incompressible).
We package this as a definition at the interpretation/interface layer.

Definition 9.1 (Computational teleology (interface definition)). A wnitary scan-readout uni-
verse exhibits computational teleology if its effective operation stabilizes a regime in which

e Expressivity: local reachability remains rich enough to support undecidable predicates
(open-endedness);

o Legibility: finite-resource observers can extract stable, compressible, and actionable read-
out histories.

Equivalently, teleology is an operational balance between undecidability (expressivity) and readout
feasibility (resource-bounded distinguishability).
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9.2 Golden anti-resonance as a control law

The golden branch supplies a particularly rigid “control” mechanism: it avoids phase lock-in
(anti-resonance) while minimizing symbolic complexity (binary Sturmian minimality), thus gen-
erating a clock texture that is neither periodic nor maximally random. In the present language,
this is a resource-control statement: golden coding minimizes the space overhead needed to avoid
resonant collapse of the scan dynamics.

9.3 Complexity classes: what can and cannot be claimed

It is tempting to map physical motifs directly onto complexity-class conjectures (e.g. to treat
“persistent matter” as evidence of class separations such as P # NP). Such statements are not
acceptable as theorem-level claims, because the conjectures are open.

What is acceptable is a carefully separated analogy: interaction can boost verification power
in the standard interactive-proof setting [32], culminating in the theorem IP = PSPACE [33].
In an observer-as-interactive-machine picture (Section , one may view the environment as a
prover-like stream and the observer as a verifier-like process constrained by (7,.5). This does
not prove any new separation, but it clarifies how “verification” and “construction” may have
different resource profiles in a scan—readout universe.

9.4 A cybernetic reading

In cybernetic terms, the observer is a controller operating under resource constraints. The scan
supplies an access channel; the projection supplies a compression channel; undecidability supplies
a hard boundary on prediction; and the control objective is to keep the system in a regime where
prediction is neither trivial nor impossible. This yields a concrete, publication-friendly version
of “teleology”: not metaphysical purpose, but resource-stabilized open-ended operation.

10 Conclusion and outlook

We organized Holographic Polar Arithmetic and Omega Theory into a single operational chain
connecting computation, geometry, and observation. The central move is definitional: time and
space are internal resource costs of a scan—readout protocol.

Time. Time complexity becomes physical time in two equivalent guises: scan depth (iteration
count of ©) and 1D compilation depth (nearest-neighbor circuit depth implementing a local
PQCA step). The Omega lapse N (x) = ro/r(z) makes time dilation an explicit computational
slowdown induced by routing overhead.

Space. Space complexity becomes readout resolution: the prefix length and canonical digit
depth required to stabilize a coordinate under projection readout, together with the active-region
workspace capacity |R|logd.

Tradeoffs. A Weyl-pair uncertainty relation provides a hard complementarity between scan-
localization and readout-localization, and reversible-computation theory explains why projection
readout forces time—space tradeoffs rather than optional engineering compromises.

Open-endedness. Universal QCAs support undecidable local reachability predicates, sup-
plying a theorem-level boundary for “open-ended history.” Modeling observers as interactive
machines with oracle-like resources is an interpretation-layer interface that keeps unitary micro-
dynamics intact.
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Testability. Discrete scan dynamics induces an exact lattice dispersion relation: it is approx-
imately linear at low energy and deviates at high momentum, providing a falsifiable template
for energy-dependent propagation.

Future directions

Two technically sharp directions follow from this organization.

o Quantitative (7'(e),S(¢)) bounds. Derive explicit upper/lower bounds for stabiliza-
tion time and readout space at tolerance e, connecting discrepancy control (Denjoy—
Koksma/Ostrowski bounds) to complexity lower-bound techniques.

e Linking x to observables. Establish a more direct quantitative bridge from routing
overhead k(x) to effective gravitational observables (time-delay, redshift templates), with
controlled approximations and explicit error budgets.

A Complexity—geometry dictionary
For convenience we collect the main identifications used throughout the paper.

1. Scan time. k € Z>, iteration count of the unitary scan OF.
2. Readout operator. Window projection Ily producing binary readout bits s € {0, 1}.

3. Readout resolution. Prefix length N and canonical code length m (Ostrowski digit
depth; Zeckendorf in the golden branch).

4. Compilation time. 1D nearest-neighbor circuit depth depth(Cpr) implementing a local
PQCA step on region R.

5. Routing overhead. r(x), the overhead functional controlling depth under 1D embedding;
computational lapse N'(z) = ko/k(x).

6. Workspace capacity. Sqca(R) = |R|logd for local dimension d.

7. Undecidability pivot. Local reachability predicate “3t : [Ix triggers” is undecidable in
a universal QCA.

B From Weyl pairs to resource complementarity: inequality and
operational meaning

We record the minimal objects behind the variance-form uncertainty inequality used in The-
orem The inequality (in essentially this form) is due to Massar—Spindel [13] for unitary
operators obeying a Weyl commutation relation; for completeness we include a self-contained
derivation (following their proof of Theorem 1 in [13]).

Weyl relation. Let U,V be unitaries satisfying UV = ¢!®VU. Nontrivial ® implies U and V/
cannot be simultaneously diagonalized.

Unitary variances. For a normalized state |¢), define
AL =1-[O), Ay =1-|(V), (51)

where (U) := (|U|¢). These vanish exactly on eigenstates.
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B.1 Proof of Theorem (Massar—Spindel inequality)

We assume the phase is chosen so that 0 < ® < 7 (this can always be arranged without changing

Ay, Ay by replacing U or V' with its adjoint, which flips ® — —® modulo 27). Set

A :=tan(®/2) > 0.

Sine/cosine operators. Introduce the Hermitian operators

U+ Ut U-ut
= SU::

Cy :
U 9 ) 2i )

Sy =
9 7V 21

v
They satisfy C% + S5 = 1 and CZ + SZ = 1. Moreover,
A? = ACE+ASE, A} = ACE + ASE,
where AX? := (X?) — (X)? for Hermitian X.
Robertson reduction. Since A, > AS? and A? > ASZ, one has
A}AYL > ASEASE.
By the Robertson uncertainty relation, for any Hermitian A, B,

AAAB > C[{[A,B))

and therefore 1
2
ApAY > l(ISu,sv)f

V4Vt Vvt

(52)

(57)

Lemma B.1 (Sine-commutator identity [13, Proof of Theorem 1]). If U,V satisfy UV = e ®VU

with 0 < ® <7 and A = tan(®/2), then
[SU, Sv] = —iA (CUCV + CVCU).

Proof. Using one expands

SySy = —% UV + UV + i (Utv +uvh),
Sy Sy = —i (VU + VU + i ViU +vuh,
CyCy = i (UV +UWVT + i UV +UvT),
CyCy = i (VU + VU + i (Vv +vuh).

Using UV = e ®VU and UV = VUTe™® to rewrite terms yields two equivalent forms:

[Syr, Sy] = —isin ® Cy Cyy — 2sin?(®/2) Sy Sy,
[SU, Sv] = —isin® CyCy + 251112((1)/2) SySy.

Combining them gives

sin ®

|5, Sv] =~ 2cos?(9/2)

as claimed.
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(CUCV + CvCU) = —itan(fb/Q) (CUCV + CVCU),

(58)
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Lemma B.2 (Lower bound on (CyyCy) |13, Proof of Theorem 1]). By rephasing U +— e 1287
and V +— e 128VIV one may assume (U), (V) € Rsg, hence (Sy) = (Sy) = 0 and (Cy) =

/1= A%, (Cy) = /1 — AL, With this choice,
(CuCv)| = /1-A%/1- A2 - ApAy. (66)

Proof. Write Cy|y) = zp|¥) + yu|¢®) where [¢pF) is normalized and orthogonal to |¢), and
zy = (Cy). Since ||Cy| < 1, one has 23, + y# = (Y|CEY) < 1, hence vy} < 1 —z} = A,
Similarly, Oy [v) = zv|) + yy |[¢'L) with 2y = (Cy) and y? < AZ. Therefore

(CvCr)| = |zray + yoyv (W' )| (67)
> zyzy — [yoyv| (68)
> \/1- A2 \/1- A% - ApAy, (69)
which implies . ]
Proof of Theorem[6.1]. Using Lemma in gives
ApAy > A|CuCy). (70)
Applying Lemma [B:2] yields
AyAy > A(\/l—A%] \/1—A2V—AUAV). (71)
Rearranging and squaring gives . ]

Resource reading. In the scan model, U = © encodes access order (time), while V' encodes
phase/readout channels (space). The inequality asserts that sharpening readout localization
(small Ay) forces scan delocalization (large Ar), and vice versa. This is the formal kernel of
time—space resource complementarity.

B.2 Operational meaning: overlap, trace distance, and binary decision error

The variance quantities Ay, Ay admit a direct operational meaning in quantum hypothesis
testing. Let p := |1¥) (1| be a pure state and define the unitary conjugates

pu =UpU',  py=VpVT. (72)
Write the trace distance as D(p, o) := 3||p — o||1, where || X||; := TrvV/XTX [3].

Lemma B.3 (Unitary variance equals trace distance for pure states). For any normalized |i)

and unitary U,
D(p, pv) = /1= [(|UW)|* = Ap. (73)

The analogous identity holds with U replaced by V.
Proof. For pure states p = |¢)(¢0] and o = |¢)(¢| one has the standard formula D(p,0) =

V1—=[{[§)]* [3]. Taking |¢) := Ul) yields D(p, py) = v/1 = [(¥[U[¢)[>. =

Corollary B.4 (Helstrom error for distinguishing a unitary conjugate). Consider binary dis-
crimination between p and py with equal prior probabilities. The optimal (minimum) error
probability is given by the Helstrom formula [3,34)]

* 1 1
Pe(Ui) = £ (1= Dip.pu)) = £ (1 - Ag). (74)
Equivalently, Ay =1 —2p%,,.(U; ). The same statement holds for V. with Ay .

Thus, Ay measures how distinguishable successive scan states are (one tick vs one tick
plus a scan shift), while Ay measures how distinguishable the phase/readout channel is under
conjugation by the phase operator.
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B.3 A task-level tradeoff induced by the Weyl inequality
Combine Theorem [6.1] with Corollary [B:4l Define the optimal equal-prior error probabilities

bu = pzrr(U; 7!})’ bv = p:rr(v; 1/}) (75)
Then Ay =1 —2py and Ay =1 — 2py.

Proposition B.5 (Binary-decision tradeoff for a Weyl pair). Let U,V satisfy UV = ¢ ®VU,
with the phase chosen so that 0 < ® < m, and set A = tan(®/2). For any normalized state |1),
the optimal discrimination errors py,py satisfy

(1+2A4) (1 —2pp)*(1 —2pv)* + A*(1 — 2pv)* + (1 — 2pv)?) > A% (76)
Equivalently, in terms of Ay, Ay the inequality is exactly .

Remark B.6 (How this functions as a resource lower bound). Fquation is a concrete, task-
level statement: one cannot simultaneously make both unitary conjugations U and V' “almost
invisible” to the state (i.e. py ~ py =~ %) In the scan—readout semantics, making the readout
channel sharp pushes the state toward a regime where the V -conjugation is hard to detect (small
Ay ), which forces scan shifts to be detectable (large Ay ), and vice versa. This tradeoff underlies
the impossibility of jointly optimizing access (scan) and distinction (readout) in a single state
preparation.

B.4 From distinguishability to a sample-complexity lower bound

The preceding identities are single-shot statements. To translate them into a time-like resource,
one may consider repeating the same discrimination task with n identical copies (or, equivalently,
n independent repetitions of state preparation and measurement).

Proposition B.7 (Helstrom error for n copies of pure states). Let pg = |¢o){(vo| and p; =
|1h1) (11| be pure states with equal priors. For n copies, the optimal (minimum) error probability
for distinguishing p§™ from pP" is

P o, t) = 5 (1= /1= [oln) ). (1)

Proof. The Helstrom formula gives p:gl) = %(1 — D(pg"™, pY™)) [3,/34]. For pure states one has

D(p,0) = /1= F(p,0) with F(p,0) = [()|¢)|* [3]. Since [()g"[7™)|* = [(to]¢h1)[*", the claim
follows. O

Corollary B.8 (Copies needed to detect a unitary conjugation). Let p = |[¥)(¥| and py =

UpUT with overlap Fy = |(|UlY)|> = 1 — A}. For any target error € € (0,3), achieving
Pzgl)(U;d}) < € requires

log(1/(4e(1 = €))  log(1/(4e(1 - )

—log Fyy  —log(1—A%)

(78)

If Ay = 0 (equivalently Fyy = 1), then p = py and no finite n can reduce the optimal error below
1/2. In particular, for A% < 1 one has —log(1 — A?) = A + O(A}), so

log(1/e€)

e VR (79)
Af

Proof. By ([77)), the condition pe < ¢ is equivalent to | (| U])[?™ < 4e(1 — €). Taking loga-

rithms yields . The asymptotic expansion uses —log(1 — z) = z + O(z?). O

Corollary makes the “small Ay implies expensive time” intuition precise for a canonical
task: if a scan shift is almost invisible to the state (small Ay), then the number of independent
repetitions required to achieve error < e must grow at least on the order of log(1/¢€)/A%,.
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C Ostrowski/Zeckendorf numeration and readout space com-
plexity

We briefly recall the numeration objects used to quantify readout space.

Mechanical words and prefix sums. For irrational rotation by o and window offset 3, the
Sturmian prefix sum identity

N-1

Sy=3 s =|Na+8] -8 (80)

k=0

connects symbolic readout to a rigid “staircase vs line” geometry. This is the basic tool for
translating prefix length into approximation/resolution.

Ostrowski numeration. Let o € (0,1) have continued fraction expansion o = [0;aq,as,...]
and convergents p,/q,. Ostrowski numeration represents integers as constrained digit sums
over the denominators ¢,. The digit constraints are determined by the partial quotients a,; see
standard references in Diophantine approximation [6}/7].

Golden specialization. For oo = ¢! one has a, = 1 and ¢, = F,11 (Fibonacci numbers).
The digit constraints reduce to “no adjacent 1” in a Fibonacci basis, yielding Zeckendorf unique-
ness [5].

Space complexity meaning. In the scan-readout semantics, the Ostrowski/Zeckendorf digit
length is a discrete measure of how much orthogonal-cut grammar is needed to specify the
readout coordinate at a given resolution.

D Oracle language and interactive observers

This appendix clarifies the formal position of the oracle/interaction vocabulary used in Sec-

tion [T.41

D.1 Oracle (relative computability)

An oracle machine (o-machine) extends a Turing machine with access to an external predicate
that can be queried but not computed internally [25]. In modern complexity language, this is
the basis of relativization and oracle complexity classes.

In this paper, “oracle-like” is used as a resource-language label: when a readout/selection
step conditions on a predicate that is undecidable from within the model, one may consistently
describe the conditioning as supplying an external resource.

D.2 Interaction (process vs function)

Observation is modeled as an ongoing process rather than a one-shot input—output function.
This motivates using interactive computation language, where the environment is a stream and
the observer is an online machine. The analogy to interactive proof systems is especially useful
as a resource metaphor: interaction can raise verification power, culminating in the theorem

IP = PSPACE [33].
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D.3 What is not claimed

Nothing in this paper claims that physical reality literally contains oracle hardware. The ora-
cle/interaction vocabulary is explicitly placed in the interpretation/interface layer, as a way to
talk about conditionalization and resource accounting while keeping theorem-level statements
(unitarity, locality, undecidability) logically separate.

E Quantitative readout bounds: discrepancy, resolution, and
digit depth

This appendix turns several qualitative readout claims into quantitative statements that can be
cited or verified directly.

E.1 A sharp discrepancy identity for mechanical words
Let a € (0,1) \ Q and let 5 € R. Define the mechanical word
sp:=|(k+1Da+p| - |ka+ 5] €{0,1}. (81)

Then the prefix sum satisfies the exact identity

N-1

Sy =3 sc=Na+ 8] - |8]. (2)

k=0
This is equivalent to Equation after fixing the window convention.

Proposition E.1 (Uniform discrepancy bound). For all N > 1,

1Sy — Na| < 1. (83)
Consequently,

SN 1
Proof. Write Sy = |[Na+ 3] — |8]. Then Sy < Na+ 8 — |8] < Sy + 1. Subtract Na and
note 8 — [A] €[0,1). O

Corollary E.2 (Prefix length for relative accuracy). If a readout task reduces to estimating o
by SN /N and one requires error < e, it suffices to take

N> H . (85)

€

This is the simplest quantitative instance of Definition in the Sturmian scan model,
readout resolution improves at least as O(1/N).

E.2 Denjoy—Koksma control at continued-fraction times

Let o = [0;a1,az,...] and let p, /g, be its convergents. Denjoy—Koksma type inequalities bound
Birkhoff sums of bounded-variation functions along the rotation by « at times g,; see standard
discrepancy references [7].

Theorem E.3 (Denjoy-Koksma inequality for rotations (quoted)). Let f : S' — R have
bounded variation Var(f). For irrational rotation T(x) = x + a and convergent denominators

qn;
Qn_l

f(T*2) = gn | fdp| < Var(f 86
5 S(T40) —an [ F ) < Var(s) (56)

for all x.

28



Specializing f to the indicator of an interval (a window), Var(f) = 2, so the deviation of the
window-hit count from its mean is uniformly bounded at the convergent times. This yields a
rigorous notion of “stability scales” tied to continued fractions.

E.3 Golden anti-resonance as a quantitative extremum

The golden ratio ¢ is extremal for rational approximation. Hurwitz’s theorem implies that every
irrational o has infinitely many rationals p/q with | —p/q| < 1/(v/5¢?), and the constant 1//5
is optimal. Moreover, for &« = ¢! one has the lower bound

1_p’>1 for all £ € 87
‘@ ql ~ V542 q (87)

See, for example, [6, Ch. II].
This quantifies the “anti-resonance” claim: the golden scan minimizes the possibility of short
rational lock-in at a given denominator budget.

E.4 Digit depth scaling in the golden branch

In the golden branch, convergent denominators are Fibonacci numbers, g, = Fj,+1. Using Binet’s
formula one has the standard bounds for n > 2,

San2 S Fn S gpnfl‘ (88)

Therefore the Zeckendorf digit depth m (the index of the largest Fibonacci number used) satisfies
m

m=0(ogN), N~ Fy,~%_. (89)

V5

Combining this with Corollary one obtains an explicit resolution-to-digit-depth relation:

Proposition E.4 (Resolution vs digit depth (golden case)). To achieve relative readout error
< € via Sturmian prefiz statistics, it suffices to take N > [1/e]. In the golden branch, the
corresponding Zeckendorf digit depth obeys

m > log,, (\/5 6_1> +O(1). (90)
Thus Sread(€) = O(e71) while Seoqe = O(log(e™1)).

These relations make the “space as resolution” claim quantitative and highlight a dual notion
of space: raw prefix length (a streaming memory cost) versus canonical digit depth (a compressed
description length).

E.5 Stability under imperfect readout: a bit-flip noise model

The bounds above are deterministic statements about the underlying mechanical word s; €
{0,1}. To connect to realistic readout, it is useful to quantify how the required prefix length
changes under a minimal noise model.
Noise model. Assume the observed bits are corrupted by independent bit-flips:

Sk = Sk B &k, &, ~ Bernoulli(p), 0<p<i, (91)
independently over k. Let Sy = Z]kvzfol s and Sy = fo;ol Sk. Then

E[Sn] = (1 — 2p) Sx + pN. (92)

If p is known (or separately calibrated), a natural unbiased estimator of Sy is

& Sy—pN _ Sn
S = — = —_— 93
NT T Ty TN (93)
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Proposition E.5 (High-probability accuracy under bit-flip noise). Fiz § € (0,1). Under the
model above, for all N > 1,

P(|@N—ay <11 10g(2/5)) > 1-4. (94)

N 1-2p\ 2N
Consequently, to ensure |an — a| < € with probability at least 1 — 6, it suffices to take

_ log(2/9)
N > !
> max{[e -‘, {2(1_2]?)2(6_1/]\[)2}}, (95)
and in the noise-dominated regime one has the scaling N = O((1 — 2p)~2e2log(1/9)).

Proof. Decompose

ay —a = (?—a) + N(11_2p)(§N—E[§N]). (96)

The deterministic discrepancy bound gives |Sy /N —a| < 1/N (Proposition [E.1f). Conditional on
{sk}, the random variables s — E[s;] are independent and lie in [—1,1]. Hoeffding’s inequality

[35] yields
=~ ~ Nlog(2/6
IP’(‘SN ~E[Sy]| < Og;/)) > 1-4. (97)
Divide by N(1 — 2p) and combine with the deterministic term to obtain (94)). O

Remark E.6 (Interpretation for readout space complexity). Proposition cleanly separates
two contributions: the intrinsic O(1/N) deterministic discrepancy term from the rotation coding,
and a stochastic O(N_I/Q) term induced by measurement noise. Thus, for sufficiently small € the
noise-dominated regime forces the familiar N = ©(e~2) sample-complexity scaling. This is the
quantitative sense in which imperfect readout increases the operational space cost of stabilization.

F Routing overhead and 1D compilation: quantitative bounds

This appendix makes the compilation notion used in Proposition quantitatively explicit. The
goal is not to re-prove all compilation technology but to (i) formalize the overhead functional x
and (ii) record standard upper/lower bounds that tie x to graph geometry.

F.1 A canonical definition of routing overhead

Let Ggr = (Vg, ER) be the interaction graph of a finite region R for a single PQCA step, with
n := |Vg|. Assume the PQCA step on R can be expressed as a constant-depth circuit of two-site
gates along edges of Gr (this is the standard “local finite-depth” meaning of PQCA).

Let L,, be the path graph on n vertices (a 1D nearest-neighbor line). A layout is an injection
f:Vr — {1,...,n} specifying where each site is placed on the line. Given f, let depth,(Ug; f)
be the minimal depth of a 1D nearest-neighbor circuit on L,, that implements Ug up to the fixed
encoding/decoding isometries of Proposition

Definition F.1 (Routing overhead). Define the routing overhead of the region update as

k(R) = mfin depth,p(Ur; f). (98)
When comparing to an “ideal” connectivity where the same circuit has constant depth dy, one
may also consider the dimensionless ratio k(R)/dy.

This definition is purely operational: k is a resource functional determined by locality con-
straints and implementability.
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F.2 Bandwidth as a universal lower bound

For a layout f, define the bandwidth

bw(Gr, f) == max |f(u)— f(v)]. (99)
{u7U}EER
Intuitively, an edge spanning distance d requires at least d — 1 nearest-neighbor swaps to bring
its endpoints adjacent at some time. This yields a robust lower bound.

Proposition F.2 (Bandwidth lower bound). For any layout f,
depth;p(Ur; f) > cbw(Gr, f) (100)

for a constant ¢ > 0 that depends only on the allowed local gate radius and on whether swaps
and interaction gates can be parallelized in the same layer. Consequently,

k(R) > cbw(GR), bw(GR) = m}an(Gij). (101)

Rigorous formulations of bandwidth-based lower bounds are standard in VLSI layout and in
nearest-neighbor circuit compilation.

Remark F.3 (Explicit constants and interaction range). If the 1D target architecture allows only
nearest-neighbor swaps and two-site gates, and one counts depth in layers of disjoint nearest-
neighbor operations, then a qubit can move by at most one site per layer. Hence two qubits
separated by distance d can reduce their separation by at most 2 per layer, so making them
adjacent requires at least [(d — 1)/2] layers. In this standard accounting one may take ¢ > 1/2
up to lower-order additive constants.

Remark F.4 (Dependence on geometric interaction radius). If a single PQCA step includes
two-site interactions within geometric graph distance at most v (a bounded interaction range),
then Gg is the corresponding r-neighborhood interaction graph. For fized r = O(1), the bound-
ary/bandwidth scaling exponents in Theorem are unchanged; the dependence on r enters
only through constants in the Q(-) and O(-) bounds.

F.3 A constructive linear upper bound via swap networks

A matching universal upper bound follows from the existence of depth-O(n) swap networks
that realize any permutation of n items on a line. A classical example is odd—even trans-
position sorting (brick sort), which implements any permutation in depth n using nearest-
neighbor swaps [36]. Quantum-circuit formulations of this “compute permutations with ad-
jacent swaps” primitive for linear-nearest-neighbor architectures are discussed, for example, by
Kutin—-Moulton—Smithline |10].

Proposition F.5 (Universal O(n) 1D compilation bound). Let Ug be a constant-depth circuit of
bounded-degree two-site gates on n sites. Then there exists a 1D nearest-neighbor implementation
with

depth,p(Ur) = O(n). (102)

The constant in O(n) depends only on the mazimal degree and on the number of circuit layers
in the PQCA step.

Proof. Route, layer by layer, the disjoint pairs of qubits that need to interact. Each layer induces
a partial matching on V. Use a swap network to permute the line so that each matched pair
becomes adjacent; apply all gates in parallel; then undo (or continue with a new permutation
for the next layer). Odd—even transposition provides a depth-n permutation primitive. O

This shows that Proposition [2.6] is not merely existential: it has a concrete depth scaling.
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F.4 Grid regions: overhead scales like boundary area

For a 2D L x L grid (the Cartesian product Pr, x Pr) with nearest-neighbor interactions, the
bandwidth is exactly
bW(PL X PL) = L, (103)

as shown by Chvatalova [37]. For higher-dimensional grids, Billera—Blanco give an explicit
formula for the bandwidth of P¢ (the d-fold Cartesian product of a length-L path) and, in
particular, show that for fixed d one has the asymptotic scaling

bw(P{) = ©(L4). (104)

See [38] and references therein for related product-graph bandwidth results (see also [39] for
classical optimal-numbering/isoperimetric perspectives).
Since the boundary size also scales as [OR| = ©(LY"1), one obtains a geometric law:

Theorem F.6 (Boundary-scaling compilation overhead). Let R be a d-dimensional cubic grid
region of side length L with bounded-range local interactions. Then the minimal 1D nearest-
neighbor compilation depth for one local update obeys

R(R) = (L) = Q(|oR]), (105)

and there exists a compilation with depth O(n) = O(L%). In particular, for d = 2 one has
k(R) = Q(L) = Q(V/n).

Proof. For a local nearest-neighbor update on a d-dimensional L% grid region, the interaction
graph contains (up to constant-radius thickening) the grid adjacency P‘Li. Therefore its band-
width is at least that of Pg. By Proposition any 1D nearest-neighbor implementation depth
is lower-bounded (up to a locality-dependent constant) by bandwidth, hence x(R) = Q(bw(P)).
The scaling bw(P¢) = ©(L4!) for fixed d follows from [38] (and for d = 2 one has the exact
value L by [37]). Since |OR| = ©(L41), this yields x(R) = Q(|OR|). The upper bound O(n)
follows from Proposition O

This theorem gives a quantitatively rigid bridge from geometry to computation: encoding
higher-dimensional locality into 1D forces an overhead controlled by a boundary-like measure.
Under the lapse definition N = k/k, this becomes a precise “time slows down where compilation
gets expensive” statement.

G Undecidable local reachability in universal QCA: a reduction

This appendix provides a concrete halting-to-reachability reduction establishing Theorem
Once a fixed local, reversible dynamics can simulate a universal machine and a halting event
is recorded in a localized flag, the corresponding hitting predicate is undecidable by a direct
reduction from halting. For classical CA undecidability results in closely related settings see,
e.g., [23,24]. For undecidability results about reachability properties of quantum-system models
(quantum automata), see [40].

G.1 Formal predicate

Fix a lattice Z and a local Hilbert space C? per site. Let U be a QCA update on Rnez C?. For a
finite region K and a local projector Il supported on K, define the local reachability predicate

Reach(U, Tx; ) 1= [3t>0: (UM |p) > 0]. (106)

Theorem [2.7|claims the existence of a fixed (U, Il ) for which Reach(U, I x; s 4) is undecidable
as a function of the encoded instance (M, x).
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G.2 Step 1: reversible halting as a well-posed predicate

The classical halting problem is undecidable [41]. To embed it into a unitary dynamics, it is
convenient to work with a reversible (injective) machine model. Reversible simulation of Turing
machines is standard in reversible computation [11,|42]. In particular, there exist universal
reversible Turing machines whose halting behavior encodes the usual halting problem.

G.3 Step 2: a fixed local, reversible dynamics simulating a universal re-
versible machine

Let M, be a fixed universal reversible Turing machine (URTM). Fix a finite tape alphabet T,
a finite internal state set @), and a distinguished halting state qna;x € Q. Encode the URTM
configuration into a 1D lattice by using a finite local alphabet that stores: (i) a tape symbol
in I', (ii) a head marker plus internal state in @) at exactly one site, and (iii) auxiliary registers
used to make halting-event recording reversible [11,42].

One can implement one URTM step by a translation-invariant, finite-radius reversible local
rule (equivalently, a reversible cellular automaton on the computational basis). Promoting this
reversible basis permutation to a unitary yields a QCA update U which acts as the classical
reversible dynamics on basis states. Universal QCA constructions and QCA structure theorems
are discussed in [8}|9}/17,18].

G.4 Step 3: a localized halting flag projector

Given an instance (M, z), construct an initial basis state |¢ps,) that encodes M and input x in
a finite “program/data” region, with blank padding elsewhere. Reserve a dedicated finite region
K containing a “flag cell” whose local basis includes states |0) and |1).

Design the simulation so that: (i) if M halts on z, then at the moment of halting the flag
cell is set to |1) and remains |1) thereafter (this can be achieved without violating reversibility
by recording the halting event in an ancilla and continuing with a reversible idle loop); (ii) if M
does not halt, the flag cell remains |0) forever.

Let IIx be the local projector onto the subspace where the flag cell is in state |1) (tensored
with identity on the rest of K). Then

3t >0: (Wre|UMIKU [Par2) > 0 (107)
holds if and only if M halts on x.

Proof. Because the evolution is classical on the computational basis, for each ¢ the state U*|¢ps )
is again a basis state. Hence the quantity (ps.|UT U |¢pr,) is in {0,1} and equals 1 iff the
flag cell is in state |1) at time t. By construction, the flag is triggered at some time iff the
simulated computation halts. ]

G.5 Conclusion: undecidability

If there were an algorithm deciding the reachability predicate above for all (M, z), it would
decide halting. Therefore the local reachability predicate is undecidable.

Remark G.1 (Why this is compatible with unitarity). The construction never modifies U
nonunitarily. Undecidability arises because the predicate quantifies over unbounded time and
because universal dynamics can encode arbitrarily long computations.

33



G.6 Robustness: a thresholded reachability predicate

The bare predicate 3t : (Ilx) > 0 is intentionally sharp, but it is not robust under arbitrary
perturbations of the initial encoding: an arbitrarily small component in the flag subspace would
make the inequality true. One can, however, state a robust version that remains equivalent for
perturbations bounded in trace distance.

Lemma G.2 (Projector expectation is Lipschitz in trace distance). For any two density oper-
ators p,o and any projector 11,

Tr(llp) — Tx(Tlo)| < Dlp,o).  D(p.o):=}lp—olh. (108)

Proof. This is standard: for any effect 0 < E < 1 one has |Tr(E(p — 0))| < 3|p — ol|1; see,
e.g., [3]. O

Proposition G.3 (Robust halting-to-reachability with a probability threshold). Let U and Ik
be as in the reduction above and let prry = |Yrmz) (Y| be the ideal basis-state encoding.
Assume the reduction is deterministic on the computational basis so that for all t,

TT(HK UtpM,:vUTt) € {Oa 1}7 (109)

and there exists a time t, such that this quantity equals 1 if and only if M halts on x. Let p be
an imperfect encoding with D(p, pav,z) < 6. Then for every t,

I Te(Tg Ul UT) — Tr(lx Ulpar U™ < 4, (110)
and in particular, if 6 < 1/2 the thresholded predicate
3t>0: Tr(llg U'GUT) > 1/2 (111)
1s true if and only if M halts on x.

Proof. Unitary evolution preserves trace distance: D(U'pUT, Ulpys U™ = D(p, prr). Apply
Lemma If M does not halt then the ideal expectation is O for all ¢, hence the imperfect
expectation is < 1/2 for all ¢. If M halts then at ¢t = ¢, the ideal expectation is 1, hence the
imperfect expectation is > 1/2. O

H From routing overhead to a relativistic lapse: an axiomatic
correspondence

This appendix records an explicit mapping under which the computational lapse N (z) = ko /k(z)
reproduces the kinematic role of a relativistic lapse function. The goal is to make the corre-
spondence operational and quantitatively checkable under explicit axioms relating geometry to
compilation overhead.

H.1 A minimal operational statement

Fix a baseline depth time ¢t measured in 1D nearest-neighbor circuit depth. By definition, the
local logical time 7, counts locally realizable logical steps. If implementing one logical step at
location z requires routing overhead (z) (Definition [F.1]), then

AT (1) = %dt = N(z)dt, (112)

which is Equation .
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H.2 A geometry-to-x model via boundary scaling

To connect x to geometric data, one must specify how a spatial region and its local interaction
structure are encoded into an interaction graph. We formalize this as a geometric rigidity
postulate.

Axiom H.1 (Geometric rigidity of overhead). At each location x, the effective local update acts
on a region R(x) whose interaction graph contains a d-dimensional cubic grid of side length L(x)
at bounded interaction range, and the minimal 1D compilation depth saturates the boundary-
scaling lower bound up to a fixed constant factor:

k(x) = ¢ L(z)41, (113)
for some constant ¢ > 0 independent of x.

By Theorem the scaling s(x) = Q(L(z)%" 1) is unavoidable under 1D embedding; Ax-
iom asserts that the realized compilation is asymptotically optimal in this sense. Under

Axiom the lapse scales as
Nz) = 20 [(z)=@-D, (114)

C

H.3 Relativistic kinematics: redshift from x

For a static spacetime metric in ADM form,
ds* = —N(z)*dt* + hy;(x) dz'da?, (115)

proper time obeys dr = N(x)dt for observers at rest in the chosen coordinates. Define the
emergent lapse by

N =N = 116
(@) = Nw) = 70 (116)
Then the gravitational redshift factor between two static observers at zen, and xgps is
Vobs _ N(mobs) _ /'i(xem)7 (117)
Vem N(mem) K'(xobs)
so frequency shifts become directly measurable ratios of compilation overheads.
H.4 Matching a target relativistic lapse (example)
Consider a static spacetime metric in ADM form
ds? = —N(x)* dt* + hij(z) dz'da?, (118)

so that proper time obeys d7 = N (z) dt for observers at rest in the chosen coordinates. Given a
target lapse profile N (z), the boundary-scaling model suggests choosing a geometric scale
field L(x) such that

L(z) o« N(z)~'/@=1), (119)

For instance, in d = 2 one has L(x) oc N(x)~!. In particular, for a Schwarzschild-like kinematic
lapse N(r) = +/1 —2GM/r (in units ¢ = 1), the corresponding overhead profile is

1

wr) < r=aay

which makes the “clock rate” slowdown an explicit routing/compilation slowdown.

(120)
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