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Abstract

This manuscript develops a dynamical closure for the Computational Action Principle
(CAP) in the unified Holographic Polar Arithmetic (HPA) and Ω-theory framework. Start-
ing from auditable protocol objects—a physical interaction graph, a compilation/scheduling
model, and a local task family—we define a routing-overhead field κ(x, t) and an operational
lapse N (x, t) = κ0/κ(x, t) as a redshift factor. We then state a minimal set of additional
closure assumptions under which κ can be identified with covariant effective fields and em-
bedded into a local, second-order, diffeomorphism-invariant action. Within this universality
class, the metric field equation is necessarily Einsteinian (Lovelock-type uniqueness), with
discrepancy and implementation costs entering through an effective stress tensor. We further
formulate a concrete scattering interface (Wigner–Smith time delay) enabling experimental
or numerical calibration of κ via linewidth and delay measurements, and we outline repro-
ducible in-repo numerics designed to test the weak-field and coarse-grained predictions with
explicit error budgets.

Keywords: computational action principle; routing overhead; computational lapse; emer-
gent gravity; Einstein equation; ADM split; POVM readout; Wigner–Smith time delay; Abel
finite part; universality class.

Conventions. Unless otherwise stated, log denotes the natural logarithm and we set c = 1.
We keep ℏ explicit when discussing scattering time delay and calibration. We use the mostly-
plus metric signature (−,+,+,+). Protocol time is discrete: we write the tick index as n ∈ Z≥0
and convert to physical time by t = nτ0 when comparing to continuum coordinate time in
the effective theory. Spatial coordinates are written as x in the continuum description and
v ∈ V on the underlying graph; coarse-grained continuum fields (e.g. κ(x, t)) are readout-scale
representatives of the underlying discrete protocol observables.
Core symbols.

κ(x, n) routing overhead (compilation depth) of the local task at tick n
κ0 reference overhead used to define the computational lapse
τ0 reference duration of one primitive tick (seconds per tick)
N computational lapse (redshift proxy), N = κ0/κ
N i ADM shift (gauge choice on slices)
hij ADM spatial metric on constant-t slices
ρ coarse-grained information density, ρ = χ2

χ Fisher-amplitude scalar field
u u = log(κ/κ0) = − log N (so u = Φ in the weak-field dictionary)
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1 Introduction
This paper is a dynamical companion to the constructive and weak-field templates developed
in the HPA–Ω program. The starting point is operational: finite observers access the world
through finite-resolution readout, and local laws must be consistent with the compilation and
scheduling constraints by which microscopic updates are physically realized. In this language a
routing overhead κ quantifies the minimal depth required to realize a prescribed local update on
a given hardware substrate. The corresponding computational lapse N = κ0/κ is an auditable
proxy for local redshift.

Scope and the role of assumptions. The main logical distinction in this manuscript is
between (i) definitions and bounds that follow from the compilation model, and (ii) additional
closure assumptions that embed those auditable quantities into a covariant effective theory. The
latter step is unavoidable if one wants more than a static weak-field template: full dynamical
gravity requires a prescription for how lapse, shift, and stress-energy are sourced by protocol
data. Accordingly, we state an explicit assumption ledger and keep each bridge input testable,
parameterized, and replaceable.
The closure assumptions used here are not presented as a derivation theorem from compilation
depth alone. Rather, they specify an effective-theory universality class that is natural for finite
observers on local substrates: locality reflects finite-range microscopic interactions and finite
readout bandwidth; diffeomorphism invariance is asserted only for coarse-grained observables
and is interpreted as protocol gauge (Section 4); and the restriction to second-order metric equa-
tions is the minimal ghost-free, well-posed choice within a low-energy EFT reading (Section 5).
The content of CAP-II is therefore concentrated in the auditable lapse proxy and in the explicit
source-sector closure, which can be falsified by quantitative fits and stability tests.

Contributions. The paper makes four concrete contributions:

1. We define a time-dependent routing-overhead field κ(x, n) (or its coarse-grained repre-
sentative κ(x, t) with t = nτ0) and an operational local proper-time count τloc(T ;x) by
cycle counting over a finite tick horizon T , and we state the redshift test targets in a
finite-horizon form.

2. We formalize a minimal closure package that maps κ to covariant fields (an information
density and Fisher-amplitude) and specifies a local, diffeomorphism-invariant, second-order
effective action.

3. Under this package, we derive the Einstein equation with an explicit information stress
tensor and summarize the ADM split, emphasizing where further constitutive identification
is required for shift and momentum flow.

4. We give a scattering interface (Wigner–Smith time delay) and a reproducibility policy that
allows numerical and experimental verification of lapse ratios and weak-field limits with
controlled coarse-graining error.

Relation to existing manuscripts. CAP [1] provides the variational unification viewpoint
and the static weak-field templates. HHU [2] develops constructive spacetime mechanisms and
a computational-lapse gravity dictionary anchored in explicit compilation models. The present
manuscript focuses on the dynamical bridge: how one passes from auditable routing overhead
to a time-dependent covariant effective theory without conflating definitions with assumptions.
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2 Assumption ledger and auditable objects
This manuscript separates three kinds of inputs:

1. Auditable protocol objects: hardware interaction data, a compilation/scheduling model,
and a local task family. These determine κ(x, n) (and hence, after readout smoothing, a
coarse-grained κ(x, t)) and lapse ratios by definition and counting.

2. Coarse-graining conventions: how finite-resolution readout maps discrete protocol data to
continuum fields at scale ε.

3. Closure assumptions: additional identifications required to embed the above into a covari-
ant effective theory with dynamical gravity.

We now record the non-definitional assumptions as an explicit ledger.

Scales and units (recorded once). We distinguish four scales: (i) the microscopic spacing
h of the hardware substrate (or the characteristic separation between physical sites), (ii) the
readout scale ε of the observer kernel, (iii) a macroscopic variation scale L of coarse-grained fields,
and (iv) the finite tick horizon T used in operational redshift tests. The intended continuum
regime is

h ≪ ε ≪ L, (1)
and tick costs are converted to physical time by a reference tick duration τ0 (seconds per primitive
tick).
Dimension conventions. With c = 1, we treat spacetime coordinates as having dimensions of
length, so ∇µ carries dimension L−1. We take the Fisher-amplitude field χ to have dimension
L−1 (equivalently ρ = χ2 has dimension L−2), so that the scalar kinetic term in (19) has the same
mass dimension as R without inserting an additional scale. Accordingly, λF is dimensionless in
our normalization, ρ0 carries dimension L−2 in Assumption 2.3, and V (χ2) has dimension L−4.

2.1 Structural assumptions (S)

Assumption 2.1 (Local compilation model). There exists a fixed physical interaction graph
Gphys = (V,E,w), where vertices are physical sites, edges are primitive two-site interactions,
and w : E → R>0 assigns tick costs. Primitive single-site operations are allowed at O(1) tick
cost. Parallel execution is permitted only on disjoint supports (matching constraints), with total
tick cost given by the maximum occupied edge weight per layer.
We treat w(e) as a dimensionless tick count; the corresponding physical duration is w(e)τ0.

Assumption 2.2 (Local task family). For each continuum point x and protocol tick index n
(equivalently, coarse-grained time t = nτ0), there is an associated bounded-diameter local update
task Gx(n) whose compilation depth under Assumption 2.1 defines κ(x, n). The task family is
stable under coarse-graining: after smoothing at scale ε the induced observables vary slowly on
that scale.

2.2 Identification and closure assumptions (C)

Assumption 2.3 (Cost-to-density identification). There exist constants ρ0 > 0, κ0 > 0 and an
exponent p > 0 such that the coarse-grained information density obeys

ρ(x, t) = ρ0

(
κ(x, t)
κ0

)p

in the effective domain of interest. (2)

The exponent p and calibration ρ0 are treated as fit parameters, not as derived constants.
We assume κ(x, t) is strictly positive and bounded on the domain of interest, so that N = κ0/κ
is well-defined and bounded away from 0.

5



Remark 2.4 (Micro-motivation and universality test for the cost-to-density map). Assump-
tion 2.3 is a closure input: it maps an auditable scheduling depth into an effective scalar density
used in the covariant source sector. The assumption is motivated by a generic mechanism in
constrained parallel execution on local graphs: schedule length is controlled by congestion (how
much weighted work must traverse/occupy a local bottleneck) and by dilation (the typical dis-
tance over which a task must route dependencies). In many routing/scheduling settings, one has
bounds of the form

Depth ≳ Congestion, (3)

and constructive upper bounds scaling like Depth ≲ C (Congestion + Dilation) up to polylog-
arithmic factors, for appropriate notions of congestion/dilation and admissible schedules; see,
e.g., [3, 4].
Operationally, this means that when the local task family at readout scale ε is parameterized by a
coarse-grained load observable (expected weighted number of required primitive interactions per
unit volume per cycle), the measured routing overhead κ is a monotone proxy for that load in
the effective domain. In the absence of additional local scales after coarse-graining, a power-
law ansatz in κ/κ0 is the simplest closed form compatible with multiplicative rescalings, and p
becomes a universality exponent capturing how load renormalizes into the effective density used
in the action.
Stability criterion (falsifiable). Fix a calibration rule for κ0 and a readout scale ε. Across
multiple task families and hardware realizations that are (ε, δ)-equivalent at the observable level
(Definition 4.2), estimate p by a log–log regression of ρ against κ/κ0 over the same effective
domain. If the inferred p is stable (within uncertainty) under changes of task family, address
protocol, and moderate changes of ε respecting h ≪ ε ≪ L, then Assumption 2.3 identifies a gen-
uine universality class; systematic drift signals that a richer constitutive map ρ = ρ(κ,∇κ, . . .)
is required.

Assumption 2.5 (Fisher-amplitude field). Define the Fisher-amplitude scalar field χ(x, t) by
χ = √

ρ. The effective action depends on ρ only through χ and its covariant derivatives, up to
a local potential term V (χ2).

Assumption 2.6 (Covariant effective action). There exists a local, diffeomorphism-invariant
effective action S[g, χ, ψm] in four dimensions such that the metric field equation is of second
differential order and the matter sector couples covariantly.

Assumption 2.7 (Protocol gauge and momentum density identification). In the ADM formu-
lation we regard the shift N i as a gauge choice (spatial coordinates on each slice). In the minimal
CAP-II closure used for quantitative targets, we work in a protocol-rest gauge with N i = 0 on the
domain of interest. The momentum density ji entering the momentum constraint is identified
with the standard slice quantity ji := −Tµνn

µhν
i built from the total stress tensor derived from

the effective action. Under the cost-to-density identification, the information-sector contribution
is therefore determined by κ via χ = √

ρ0(κ/κ0)p/2.

2.3 Readout and regularization assumptions (R)

Assumption 2.8 (Kernel readout regularity). Finite-resolution readout at scale ε is modeled by
a positive kernel Kε inducing coarse-grained observables by convolution/smoothed averaging. The
kernel has finite effective bandwidth and sufficient regularity so that discrete difference operators
approximate continuum derivatives with controlled error when the lattice spacing h ≪ ε.
A standard concrete model is a mollifier family Kε(x) = ε−dK(x/ε) with K ≥ 0,

∫
Rd K = 1,

and K smooth with sufficient decay/compact support.

Assumption 2.9 (Canonical regularization path). When a regulated-to-continuum limit requires
extracting a finite constant term, we fix a canonical prescription (Abel regularization along r ↑ 1
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and finite-part extraction). Different finite parts are interpreted as different local counterterm
choices in the effective action.

Testability. Each assumption above is associated with a measurable consequence: lapse ratios
from tick counting; parameter identification in the weak-field limit; and linewidth/time-delay
calibration in the scattering interface. Sections 3–9 make these targets explicit.

3 From protocol to fields: κ(x, t) and computational lapse

3.1 Hardware substrate, scheduling, and compilation depth

Fix the physical interaction graph Gphys = (V,E,w) of Assumption 2.1. We interpret each edge
e ∈ E as admitting a primitive two-site gate at cost w(e) ticks, and each vertex as admitting
primitive single-site gates at O(1) cost. A schedule is a sequence of parallel layers, where each
layer is a set of primitive gates with disjoint supports. The cost of a layer is the maximum tick
cost among the gates executed in that layer; the cost of a schedule is the sum of layer costs.
Protocol realizations are defined on discrete sites v ∈ V and tick indices n ∈ Z≥0. To compare
with the continuum effective theory we work with coarse-grained representatives at readout scale
ε; for readability we typically suppress ε and write (x, t) with t = nτ0 for the corresponding
physical time (Appendix E records representative bandwidth-error estimates).

Definition 3.1 (Compilation depth and routing overhead). Let Gx(n) be the local update task
at point x and tick index n (Assumption 2.2). Define the compilation depth Depth(Gx(n);Gphys)
as the minimum schedule cost required to realize Gx(n) using the primitive operations of Gphys.
Define the routing overhead field

κ(x, n) := Depth(Gx(n);Gphys). (4)

3.2 Local cycle counting and operational proper time

Fix a reference tick duration τ0 (seconds per primitive tick) and a reference overhead κ0 in a
chosen calibration region (e.g. a far-field region for asymptotically flat benchmark fits, where
one may set N ≈ 1 by convention). Consider a long protocol horizon of T ticks. At a fixed x,
the maximal number of completed local tasks by time T is

Cx(T ) :=
⌊
T

κ(x)

⌋
, (5)

where we suppress the explicit n-dependence for a quasi-static background over the horizon. We
define the operational local proper time by

τloc(T ;x) := Cx(T ) τ0. (6)

Proposition 3.2 (Finite-horizon proper-time scaling). Assume κ(x, n) is constant in n over
the horizon, written as κ(x). Then ∣∣∣∣τloc(T ;x) − T τ0

κ(x)

∣∣∣∣ ≤ τ0, (7)

and therefore
τloc(T ;x)

T
= τ0
κ(x) +O

( 1
T

)
. (8)

In particular, for two points x1, x2 with constant overheads over [0, T ] one has the finite-horizon
redshift ratio

τloc(T ;x1)
τloc(T ;x2) = κ(x2)

κ(x1) +O

( 1
T

)
. (9)
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Remark 3.3 (Time-dependent overhead). When κ(x, n) varies with the tick index n, a natural
cycle count over a T -tick horizon is the maximal number of completed tasks

Cx(T ) := max
{
m ∈ Z≥0 :

m−1∑
j=0

κ(x, j) ≤ T
}
, (10)

with τloc(T ;x) := Cx(T )τ0 as before. If κmin ≤ κ(x, j) ≤ κmax holds throughout the horizon,
then the crude but auditable bounds⌊

T

κmax

⌋
≤ Cx(T ) ≤

⌊
T

κmin

⌋
(11)

follow immediately. The present paper uses the quasi-static regime for clean test targets; fully
dynamical closure is addressed through the covariant action and the ADM formulation in Sec-
tions 5–7.

3.3 Computational lapse and a weak-field dictionary

Definition 3.4 (Computational lapse). Define the computational lapse field by

N (x, n) := κ0
κ(x, n) . (12)

When using the continuum effective description we write N (x, t) for the corresponding
coarse-grained representative with t = nτ0.

The quantity N is an auditable, protocol-level object: it is defined by compilation depth
and can be inferred by cycle counting. To compare with a relativistic effective description
we adopt the standard weak-field dictionary, working in a protocol-rest slicing in which the
shift is negligible (or set to zero; Section 7). More generally, in ADM variables one has g00 =
−N 2 + hijN

iN j , so the identification below is the shiftless limit.

g00(x, t) ≈ −N (x, t)2, Φ(x, t) := − log N (x, t), (13)

so that Φ plays the role of a Newtonian-type potential in the static regime. Section 10 records
the consistency targets in the Newtonian limit.

4 Continuum limit and universality class
This section records the minimal conditions under which protocol-level differences (addressing
family, local compilation details, tie-breaking rules) do not obstruct an effective continuum
description at finite readout resolution. The guiding principle is operational: invariance is
asserted only for coarse-grained observables accessible to a finite observer.

4.1 Coarse-graining by kernel readout

Fix a readout scale ε > 0. Assumption 2.8 models readout by a positive kernel Kε of bandwidth
∼ ε−1. For a field-like observable F we define the coarse-grained quantity

Fε(x) :=
∫
Rd
Kε(x− y)F (y) dy, (14)

or the analogous discrete convolution on a lattice. We emphasize that Fε is the object with
operational meaning; F itself is a model-dependent microscopic representative.
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Remark 4.1 (Derivative scaling under mollification). For a mollifier family Kε(x) = ε−dK(x/ε)
with K smooth, one has the standard scaling

∥∂αFε∥L∞(Ω) ≤ ∥F∥L∞(Ωε) ∥∂αK∥L1(Rd) ε
−|α|, (15)

where Ωε is an ε-neighborhood of Ω. Thus, at fixed readout scale, only a bounded number of
derivatives are operationally meaningful, and their natural magnitude scales like ε−|α|. See,
e.g., [5] for standard mollification estimates.

4.2 Protocol gauge and (ε, δ)-equivalence

Definition 4.2 ((ε, δ)-equivalent protocol realizations). Two protocol realizations are called
(ε, δ)-equivalent on a domain Ω if their coarse-grained lapse fields satisfy

sup
x∈Ω

|N1,ε(x) − N2,ε(x)| ≤ δ, (16)

and their coarse-grained source observables (when used) differ by at most δ in the same norm.

The definition is intentionally weak: it regards different microscopic representatives as the
same physical state whenever they cannot be distinguished at the readout scale. In particular,
the choice of address family (Hilbert vs Morton/Z-order, etc.) is interpreted as a protocol gauge
when it changes only sub-ε structure.

Proposition 4.3 (Universality of band-limited observables). Assume two realizations are (ε, δ)-
equivalent on Ω. Let Oε be any observable that depends on the lapse only through a bounded
number of derivatives at scale ε (equivalently, a band-limited functional in the readout band-
width). Then there exists a constant CO (depending on the readout kernel and on Oε but not on
microscopic representatives) such that

sup
x∈Ω

|Oε[N1](x) − Oε[N2](x)| ≤ CO δ. (17)

Corollary 4.4 (Derivative stability at fixed bandwidth). Assume supx∈Ω |N1(x) − N2(x)| ≤ δ
and Kε is a mollifier as in Assumption 2.8. Then for any multi-index α there exists a constant
Cα (depending only on K and α) such that

sup
x∈Ω

|∂αN1,ε(x) − ∂αN2,ε(x)| ≤ Cα δ ε
−|α|. (18)

This makes explicit how stability degrades as one asks for higher derivatives at fixed readout
scale.

Interpretation. Proposition 4.3 is the operative form of diffeomorphism invariance used in
this program: invariance is stated not for microscopic encodings, but for the coarse-grained
observables that define the effective continuum physics.

Clarification (microscopic gauge vs. operational invariance). Microscopic choices such
as address family can affect the representative N at scales below ε. However, the effective field
theory is formulated for Nε and its band-limited functionals, and it is only at this level that
invariance is asserted and tested.

5 Effective action and closure principle
To move from an auditable lapse proxy to a dynamical spacetime theory, one must specify how
protocol observables embed into covariant fields and how those fields enter an effective action.
This step is a closure: it cannot be obtained from compilation depth alone, and it is therefore
stated explicitly as assumptions in Section 2.
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5.1 Action ansatz

Under Assumptions 2.3–2.6 we adopt an effective action of the form

S[g, χ, ψm] =
∫

d4x
√

−g
[
R− 2Λ
16πG − λF g

µν∇µχ∇νχ− V (χ2) + Lm(g, ψm)
]
. (19)

Here R is the Ricci scalar, Λ is a cosmological term, χ is the Fisher-amplitude field, and Lm

denotes additional effective matter degrees of freedom. The potential V (χ2) encodes mismatch
penalties and model-dependent implementation costs not captured by the quadratic Fisher term.

Remark 5.1 (Relation to Fisher information). Writing ρ = χ2, one has

gµν∇µχ∇νχ = 1
4
gµν∇µρ∇νρ

ρ
. (20)

Thus the scalar kinetic term is a covariant Fisher-information penalty on the coarse-grained
density profile, a structure familiar from information-theoretic variational principles; see, e.g.,
[6, 7].

Remark 5.2 (Sign choice and ghost-freedom). For the scalar sector to be ghost-free in the effec-
tive field theory, the kinetic coefficient should satisfy λF > 0 (with our mostly-plus convention).
We adopt this sign throughout and treat λF as a nonnegative fit parameter.

Remark 5.3 (Boundary terms and a well-posed metric variation). If the spacetime region has a
boundary, the Einstein–Hilbert term requires a boundary contribution for a well-posed Dirichlet
variational principle. One standard choice is the Gibbons–Hawking–York term [8,9]

SGHY = 1
8πG

∫
∂M

K
√

|h| d3x, (21)

where h is the induced metric and K is the trace of the extrinsic curvature of the boundary. In
this manuscript we either assume boundary conditions under which the boundary term does not
contribute, or we implicitly include SGHY in the gravitational sector.

5.2 Why the metric equation is Einstein

The left-hand side of the metric field equation is fixed within the chosen closure class by the
structural requirements of locality, diffeomorphism invariance, and second-order metric equa-
tions (Assumption 2.6). In four dimensions, Lovelock-type uniqueness implies that the only
symmetric, divergence-free rank-2 tensor built from the metric and its derivatives up to second
order is Gµν +Λgµν up to an overall coupling. Therefore the micro-to-macro content of CAP lies
in the source sector determined by χ and Lm, not in modifying the geometric skeleton. See [10]
for the original uniqueness statement and standard GR texts for the effective-field-theory read-
ing.

Remark 5.4 (Higher-derivative corrections in an EFT reading). In a generic low-energy ef-
fective field theory of gravity, the action includes higher-curvature operators (e.g. R2, RµνR

µν)
suppressed by a cutoff scale. CAP-II’s minimal closure restricts to a second-order metric equa-
tion as an explicit modeling choice (Assumption 2.6); higher-derivative terms can be incorporated
systematically as controlled corrections once a readout/cutoff scale is specified. See, e.g., [11,12].

5.3 Regularization, finite parts, and counterterms

Assumption 2.9 fixes a canonical rule for extracting finite constants from regulated sums or traces
(Abel regularization and finite-part extraction). At the effective-action level, different finite
parts correspond to different choices of local counterterms and hence to different renormalization
conditions. The role of the ledger is to keep this scheme choice explicit and to isolate it from
the purely operational definition of κ and N .
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6 Field equations from variation
We record the dynamical equations implied by the action (19). Full variational details are
deferred to Appendix B.

6.1 Metric variation and the information stress tensor

Theorem 6.1 (Einstein equation with information stress). Varying (19) with respect to the
metric yields

Gµν + Λgµν = 8πG
(
T (m)

µν + T info
µν

)
, (22)

where T (m)
µν is the matter stress tensor and

T info
µν = 2λF

(
∇µχ∇νχ− 1

2gµν(∇χ)2
)

− gµνV (χ2). (23)

6.2 Amplitude equation and conservation

Proposition 6.2 (Fisher-amplitude equation). Varying (19) with respect to χ yields

2λF □χ− dV
dχ = 0. (24)

By diffeomorphism invariance one has ∇µGµν = 0, hence the total stress tensor is covariantly
conserved:

∇µ
(
T (m)

µν + T info
µν

)
= 0. (25)

When (24) holds and the matter sector is covariantly conserved (or exchanges flow through
explicit couplings in Lm), the split into matter and information sectors is consistent.

6.3 κ-formulation under the cost-to-density map

The effective dynamics becomes explicitly closed in terms of the auditable routing overhead once
one fixes the cost-to-density identification (Assumption 2.3) and a potential V . Write

u(x, t) := log
(
κ(x, t)
κ0

)
, ρ = ρ0 epu, χ = √

ρ0 e
p
2 u. (26)

Proposition 6.3 (Closed scalar equation for u = log(κ/κ0)). Assume Assumptions 2.3–2.5.
Then the Fisher-amplitude equation (24) is equivalent to

λF p□u+ λF
p2

2 (∇u)2 = 1
χ

dV
dχ , χ = √

ρ0 e
p
2 u, (27)

where (∇u)2 := gµν∇µu∇νu.

Proof. This is a direct chain-rule substitution for χ = √
ρ0 e

p
2 u; see Appendix B.3.

Proposition 6.4 (Potential-derivative reconstruction from u). Assume V depends only on ρ =
χ2 (Assumption 2.5), so V (χ2) = V̂ (ρ). Then (27) is equivalently

V̂ ′(ρ) = 1
2

(
λF p□u+ λF

p2

2 (∇u)2
)
, ρ = ρ0 epu, (28)

where V̂ ′(ρ) = dV̂ /dρ. In particular, given a solution (g, u) one can reconstruct V̂ ′ along the
image of ρ.
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Remark 6.5 (Normalization of V̂ ). The additive constant in V̂ is not physically observable at
the level of equations of motion: it shifts the effective cosmological term by a constant. Accord-
ingly, one may impose a normalization condition such as V̂ (ρ0) = 0 without loss of generality,
absorbing any constant offset into Λ.

Proposition 6.6 (Information stress in terms of u). With the same identifications, the infor-
mation stress tensor (23) can be written as

T info
µν = λF

p2

2 χ2
(

∇µu∇νu− 1
2gµν(∇u)2

)
− gµνV (χ2), χ = √

ρ0 e
p
2 u. (29)

Quantitative closure and fitting viewpoint. Equations (22) and (27) form a closed co-
variant system for (gµν , u) once (p, ρ0, λF , V ) and the matter sector are specified. Operationally,
κ is measured (by compilation logs or via the scattering proxy in Section 9), hence u is data.
CAP-II uses this to impose a self-consistency fit: parameters are chosen so that the solution’s
lapse (in a chosen gauge) matches the operational lapse N = κ0/κ after coarse-graining.

6.4 Minimal potential families and long-range behavior

To make the closure predictive, one must specify a family for the local potential V (χ2). A
minimal requirement is stability of the reference background u = 0 (equivalently κ = κ0), which
suggests that V has a local minimum at χ2 = ρ0. One convenient parametrization is to write
V (χ2) = V̂ (ρ) with ρ = χ2 and expand around ρ0:

V̂ (ρ) = V̂ (ρ0) +
m2

ρ

2 (ρ− ρ0)2 +O
(
(ρ− ρ0)3

)
, (30)

where mρ sets an effective stiffness scale.

Remark 6.7 (Massless versus massive regime). In the linearized regime |u| ≪ 1 one has
ρ − ρ0 ≈ ρ0p u. If mρ > 0, the scalar sector has an effective correlation length (Compton
scale) and deviations sourced through u are suppressed beyond that scale. If instead the quadratic
term vanishes (effectively massless), then static spherically symmetric solutions generically carry
scalar hair and differ from Schwarzschild; see the classical Fisher/JNW family for Einstein grav-
ity coupled to a massless scalar [13, 14]. CAP-II treats the Schwarzschild lapse as a benchmark
fit target in a regime where scalar backreaction is either negligible or short-ranged compared to
the exterior window; deviations can be used to constrain the potential family.

7 ADM split and dynamical closure
The variational equations of Section 6 are covariant. To make contact with protocol time
(ticks) and with dynamical initial-value formulations, we summarize the standard 3 + 1 (ADM)
decomposition. The key point for CAP-II is not the ADM algebra itself, but where additional
constitutive closure is required to interpret lapse and shift in terms of protocol observables.
In the ADM equations below, t denotes the continuum coordinate time of the effective theory;
comparison to protocol logs uses t = nτ0 after coarse-graining (Section 1 and the conventions in
the front matter).

7.1 Kinematics: lapse, shift, and extrinsic curvature

Write the spacetime metric in ADM form:

ds2 = −N 2 dt2 + hij

(
dxi +N idt

) (
dxj +N jdt

)
, (31)
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where N is the lapse, N i is the shift, and hij is the induced spatial metric on constant-t slices.
The extrinsic curvature is

Kij := 1
2N

(
ḣij −DiNj −DjNi

)
, (32)

where Di is the covariant derivative of hij and a dot denotes ∂t.

7.2 Constraints vs evolution

The Einstein equation splits into constraint equations on each slice and evolution equations for
(hij ,Kij). Schematically, the Hamiltonian constraint and momentum constraint take the form

(3)R+K2 −KijK
ij = 16πGρtot + 2Λ, (33)

Dj

(
Kij − hijK

)
= 8πG ji

tot, (34)

where (3)R is the scalar curvature of hij , and ρtot, j
i
tot are the total energy density and momentum

flux seen by the slice normal.
To display the dynamical content explicitly, the evolution equation for the spatial metric is

ḣij = −2NKij +DiNj +DjNi, (35)

while the evolution of the extrinsic curvature takes the schematic form

K̇ij = −DiDjN + N
(

(3)Rij +KKij − 2KikK
k

j

)
+ LN⃗Kij

− 8πGN
(
Sij − 1

2hij(S − ρtot)
)

+ ΛN hij , (36)

where (3)Rij is the Ricci tensor of hij , LN⃗ denotes the Lie derivative along the shift vector,
and Sij := hi

µhj
νTµν with S := hijSij . See standard ADM references for the full system and

conventions [15,16].

Closure point. The protocol-level definition of κ directly provides an auditable lapse proxy
N = κ0/κ (Section 3). To obtain a quantitative initial-value system one must also specify
a spatial coordinate gauge (shift) and identify the slice densities (ρtot, j

i
tot, Sij). In GR the

shift is pure gauge, and in the minimal CAP-II closure we adopt a protocol-rest gauge N i = 0
(Assumption 2.7). The remaining quantities are then determined by the effective stress tensor
obtained from the action (Section 6), with κ entering through the κ 7→ χ identification. More
elaborate realizations may use protocol flow to define a preferred coordinate choice, but the
minimal fit targets in Section 10.2 do not require this.

8 Quantum interfaces: readout, unitary evolution, and band-
width

The effective gravitational equations of CAP-II live at the coarse-grained level. Quantum me-
chanics enters as an interface theory for finite observers: the observer has an effective Hilbert
space, applies local unitaries (scan/update), and accesses outcomes through finite-resolution
readout instruments. This section records the minimum interface structure used later, empha-
sizing what is assumed and what is merely a change of representation.

8.1 Effective observer sector and POVM readout

Let Heff be an effective observer sector and let ρ be a density operator on Heff . Finite-resolution
readout at scale ε is modeled by a POVM {E(ε)

k }k with ∑k E
(ε)
k = 1, giving Born probabilities

P
(ε)
k = Tr(ρE(ε)

k ). (37)
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The corresponding instrument (state update rule) may be written in Kraus form ρ 7→ MkρM
†
k/Pk

with Ek = M †
kMk. Any such POVM can be implemented by a dilation (system–ancilla unitary

followed by a projective measurement on the ancilla). This is a standard consequence of Naimark
and Stinespring representation theorems; see, e.g., [17–20].

8.2 Bandwidth and controlled continuum operators

Assumption 2.8 asserts that readout is sufficiently regular and band-limited so that discrete
difference operators approximate continuum derivatives on coarse-grained observables. Oper-
ationally, this is the condition under which a continuum effective field theory is meaningful:
the observer cannot resolve sub-ε microstructure, and the induced operators act on Fε with
controllable error when h ≪ ε. Appendix E records a representative error estimate for gradi-
ents/Laplacians under band-limited kernel readout.

8.3 Unitary evolution and representation choices

Whenever a one-parameter unitary family Ut implements an automorphism of the effective alge-
bra by A 7→ U †

t AUt, one may represent the same expectation data either by evolving observables
(Heisenberg) or by evolving the state representative (Schrödinger). CAP-II does not claim to
derive this unitary structure from Einstein gravity; rather, it treats it as part of the observer-
interface layer and uses it to define measurable quantities (e.g. scattering delay) that can be
calibrated against the operational lapse.

9 Scattering apparatus and Wigner–Smith time delay
This section states a minimal scattering interface that turns an operational delay measurement
into a calibrated proxy for routing overhead. The goal is to provide a concrete experimental and
numerical verification route for lapse ratios without requiring direct access to the underlying
compilation log.

9.1 Scattering apparatus (minimal Hamiltonian model)

Fix an internal (finite) region with Hamiltonian H coupled to M asymptotic channels (leads).
In a standard effective description, the coupling is encoded by a matrix W mapping channel
states into the internal region, leading to an effective non-Hermitian Hamiltonian

Heff(E) := H − iπWW †, (38)

and an on-shell scattering matrix of the form [21,22]

S(E) = 1 − 2πiW † (E −Heff(E))−1W. (39)

This model covers, at the level of interfaces, a broad class of platforms: mesoscopic transport,
microwave networks, photonic structures, and circuit-QED scattering measurements.

9.2 Wigner–Smith operator and time delay

Consider an M -channel scattering apparatus with on-shell scattering matrix S(E) ∈ U(M). The
Wigner–Smith time-delay operator [23,24] is

Q(E) := −i ℏS(E)† dS
dE (E), (40)

and the mean Wigner–Smith delay is

τWS(E) := 1
M

TrQ(E). (41)
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9.3 Resonance linewidth calibration

Near an isolated resonance at energy E0 with linewidth γ, the scattering matrix admits a Breit–
Wigner-type parametrization. In the single-resonance regime, the peak time delay scales as

τWS(E0) ≈ 4ℏ
γ
, (42)

up to apparatus-dependent prefactors that can be calibrated by a reference region.
For a single channel (M = 1) one may write S(E) = e2iδ(E). In the Breit–Wigner approximation
the phase shift takes the standard form

δ(E) ≈ arctan
(

γ/2
E0 − E

)
, (43)

see, e.g., [25]. so that τWS(E) = 2ℏdδ/dE and τWS(E0) = 4ℏ/γ, consistent with (42).

Remark 9.1 (Channel conventions). The prefactor in (42) depends on the convention used for
τWS (mean over channels, partial delay, or a particular incoming state) and on how γ is defined
from the pole structure. The present paper fixes the convention by (40)–(41) and uses (42) as a
benchmark in the single-resonance regime [23–25].

9.4 From delay to routing overhead

Define the dimensionless delay proxy

κWS(E) := τWS(E)
τ0

, (44)

where τ0 is the reference tick duration. The interface assumption is that a localized resonance
probe at location x has a characteristic resonance energy E0(x) and linewidth γ(x) such that

κ(x) ≈ κWS(E0(x)) ≈ 4ℏ
γ(x)τ0

. (45)

This identification makes lapse ratios directly testable:

N (x1)
N (x2) = κ(x2)

κ(x1) ≈ γ(x1)
γ(x2) . (46)

In practice one calibrates the overall scale by a reference region x0: define γ0 := γ(x0) and
κ0 := 4ℏ/(γ0τ0) in the same single-resonance convention, so that κ(x)/κ0 ≈ γ0/γ(x) within the
calibrated bandwidth window. Appendix G records standard trace identities, basis-invariance
properties, and loss/dispersion considerations relevant for turning measured S-data into cali-
brated κ ratios. Section 10 records consistency targets, and Appendix C comments on how
probe localization interacts with coarse-graining.

10 Benchmark limits
This section summarizes the consistency targets CAP-II is required to reproduce in appropriate
limits. The emphasis is not on claiming uniqueness, but on recording the regimes in which the
routing-overhead lapse should match known weak-field and cosmological templates under the
closure assumptions.
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10.1 Newtonian / weak-field limit

In the static weak-field regime, write the metric in scalar-potential form
ds2 = −(1 + 2ϕ) dt2 + (1 − 2ϕ) dx2, |ϕ| ≪ 1. (47)

Then g00 ≈ −(1 + 2ϕ) and the lapse satisfies N ≈ 1 +ϕ. We denote the ADM lapse by N (often
written N in the GR literature). With the dictionary Φ = − log N , one has Φ ≈ −ϕ to leading
order. The 00 Einstein equation reduces to the Poisson equation

∆ϕ = 4πGρtot, (48)
so in vacuum ∆ϕ = 0 and asymptotic flatness forces ϕ(r) = −GM/r for an isolated source. See,
e.g., [26, 27].
In terms of the auditable routing overhead, the computational-lapse dictionary gives u :=
log(κ/κ0) = − log N =: Φ. Therefore, in the same weak-field gauge one has Φ ≈ −ϕ and
hence

∆Φ = −4πGρtot (|ϕ| ≪ 1). (49)

10.2 Direct fit target: Schwarzschild lapse from operational κ

For a static, spherically symmetric exterior region in GR one has the Schwarzschild lapse

NSchw(r) =
√

1 − 2GM
r

, r > 2GM. (50)

In the weak-field regime r ≫ 2GM this becomes

NSchw(r) = 1 − GM

r
+O

( 1
r2

)
,

κ(r)
κ0

= 1
N (r) = 1 + GM

r
+O

( 1
r2

)
, (51)

where the last identity uses the operational lapse definition N = κ0/κ. Therefore a minimal
quantitative check is a linear fit of κ(r)/κ0−1 against 1/r in an exterior window where weak-field
and finite-resolution conditions hold.
Exact inversion (Schwarzschild benchmark). If one assumes the exact Schwarzschild form
N 2(r) = 1 − 2GM/r in an exterior window, then the benchmark admits a pointwise inversion:

GM = r

2
(
1 − N (r)2

)
= r

2

(
1 − 1

(κ(r)/κ0)2

)
= r

2

(
1 −

(
γ(r)
γ0

)2)
, (52)

where the last identity uses the linewidth proxy γ/γ0 ≈ N . The weak-field regressions in
Section 10.3 are the leading-order linearizations of this inversion.
Remark 10.1 (Scalar hair and why Schwarzschild is a benchmark, not an identity). CAP-II
couples gravity to an additional scalar sector determined by the cost-to-density identification. In
Einstein gravity with a massless scalar, the generic static spherically symmetric solution is not
Schwarzschild but the Fisher/JNW family [13,14]. Accordingly, the Schwarzschild lapse is used
here as a benchmark fit target in a controlled regime: either the scalar sector is effectively short-
ranged (pinned by the potential) or its backreaction is negligible in the chosen exterior window.
Departures from the benchmark provide quantitative constraints on the scalar potential family
and coupling scale.

Using the scattering proxy. If κ(r) is inferred from Wigner–Smith delay via (45), then in
the same regime one predicts

γ(r)
γ0

= κ0
κ(r) = N (r) = 1 − GM

r
+O

( 1
r2

)
, (53)

so GM can be estimated by a weighted least-squares fit of 1 − γ(r)/γ0 against 1/r. The same
fit yields a falsifiable consistency check: the inferred GM must be stable under changing the
coarse-graining scale ε within the regime h ≪ ε ≪ r.
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10.3 Quantitative regression target and uncertainty (minimal)

Let (ri, κi)n
i=1 be measurements (or compiled estimates) of routing overhead at radii ri in an

exterior window, and define
xi := 1

ri
, yi := κi

κ0
− 1. (54)

In the weak-field model (51) one has the linear regression target

yi = (GM)xi + ϵi, (55)

where ϵi collects finite-resolution bias (controlled by ε), finite-horizon tick-count rounding error,
and measurement noise.

Remark 10.2 (Calibration offset and intercept fit). Model (55) fits through the origin and is
appropriate when κ0 (or γ0) is calibrated in a region where the benchmark normalization N ≈ 1
applies. If instead the reference is taken in a finite region, the weak-field fit should include an
intercept nuisance parameter b:

yi = (GM)xi + b+ ϵi. (56)

Given nonnegative weights wi (e.g. inverse variances), the weighted least-squares estimator
is

ĜM =
∑n

i=1wixiyi∑n
i=1wix2

i

. (57)

If the errors are independent with Var(ϵi) = σ2
i and wi = σ−2

i , then the standard estimated
variance is

Var(ĜM) ≈
(

n∑
i=1

wix
2
i

)−1

, (58)

up to model-misspecification bias.

Window conditions (what makes the fit meaningful). The fit window should satisfy
simultaneously:

• Weak field: ri ≫ 2GM so that truncation at O(1/r2) is controlled.

• Readout separation: ε ≪ ri so that coarse-graining does not wash out the radial profile.

• Microscopic separation: h ≪ ε so that continuum derivatives on coarse-grained fields are
meaningful.

The stability condition across ε is therefore not cosmetic but a key falsifiable test: if ĜM
drifts systematically as ε varies within the separation regime, the closure is inconsistent with a
Schwarzschild-like exterior interpretation.

Equivalent regression from linewidth ratios. When κ is inferred through the Wigner–
Smith linewidth proxy (45), one may instead set

yi := 1 − γi

γ0
, (59)

and use the same estimator (57) under the weak-field prediction (53).
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10.4 Homogeneous cosmology with lapse

For an FLRW ansatz with homogeneous lapse,

ds2 = −N 2(t) dt2 + a2(t) dΣ2
k, (60)

proper time is dτ = N (t) dt and the Friedmann equations take their standard form in τ . This
reduction provides a controlled setting for testing how the cost-to-density map (Assumption 2.3)
and the potential V (χ2) impact effective expansion histories.

10.5 Linearized sector (optional target)

If the effective theory is to capture dynamical gravitational degrees of freedom beyond the New-
tonian sector, the linearized equations around a background should reproduce standard wave-like
propagation at long wavelengths. In strictly local microscopic substrates (QCA/PQCA), causal-
ity bounds (Lieb–Robinson-type) constrain signal/front velocities; the effective description must
remain consistent with such bounds in its domain of validity.

11 Reproducible numerics (in-repo)
This repository follows an in-repo reproducibility discipline: numerical checks are generated by
scripts committed alongside the manuscript, and the manuscript records the exact commands,
parameters, and random seeds required to reproduce tables and figures. This section states the
reproducibility contract for CAP-II.

11.1 Build instructions

The paper is compiled from the project directory by:

latexmk-pdf-interaction=nonstopmode-halt-on-errormain.tex

11.2 Determinism and randomness

All numerical scripts used by this manuscript must:

• take parameters only via explicit command-line flags (with defaults printed on start), and

• fix all pseudo-randomness by a recorded integer seed.

When randomness is not required, scripts should be deterministic by construction.

11.3 Generated artifacts

To keep the LATEX build deterministic and lightweight, scripts write LATEX fragments (typically
table rows) under a dedicated directory (e.g. sections/generated/) which are then included
by the paper. The build remains valid even if generated artifacts are absent; in that case the
manuscript should fall back to static tables or omit the corresponding figure.

11.4 Reference scripts included in this repository

Finite-horizon rounding error for τloc. This script generates rows for Table 1 and empiri-
cally illustrates the bound in Proposition 3.2 (with τ0 scaled out):

python3scripts/exp_tau_loc_floor_error.py--outsections/generated/tau_loc_floor_error_
rows.tex
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T κ ⌊T/κ⌋ T/κ
∣∣⌊T/κ⌋ − T/κ

∣∣
10 3 3 3.33333 0.333333
10 7 1 1.42857 0.428571
10 11 0 0.909091 0.909091
10 37 0 0.27027 0.27027
25 3 8 8.33333 0.333333
25 7 3 3.57143 0.571429
25 11 2 2.27273 0.272727
25 37 0 0.675676 0.675676

100 3 33 33.3333 0.333333
100 7 14 14.2857 0.285714
100 11 9 9.09091 0.0909091
100 37 2 2.7027 0.702703
250 3 83 83.3333 0.333333
250 7 35 35.7143 0.714286
250 11 22 22.7273 0.727273
250 37 6 6.75676 0.756757

1000 3 333 333.333 0.333333
1000 7 142 142.857 0.857143
1000 11 90 90.9091 0.909091
1000 37 27 27.027 0.027027

Table 1: Finite-horizon rounding error in cycle counting. The last column is always < 1,
consistent with (7) after scaling out τ0.

Breit–Wigner peak Wigner–Smith delay calibration. This script generates rows for
Table 2 and numerically verifies the peak scaling τWS(E0) ≈ 4ℏ/γ using a central-difference
derivative:

python3scripts/exp_ws_breit_wigner_numeric_check.py--outsections/generated/ws_breit_
wigner_rows.tex--hbar1.0--dE1e-6

Weak-field Schwarzschild regression (data-driven). Given a CSV file containing radii
ri and either the ratio κi/κ0 or γi/γ0, the following script computes the weighted least-squares
estimate (57) and writes a one-row summary:
This repository ships small baseline CSVs under data/ generated from the exact Schwarzschild
lapse with GM = 1 (in the same length units as r) to validate the pipeline; differences between
the two linearized modes are therefore expected at O(1/r2) due to truncation.

python3scripts/fit_schw_weakfield_wls.py--modekappa_ratio--in_csvdata/schw_kappa_
ratio.csv--outsections/generated/schw_weakfield_fit_kappa_rows.tex

python3scripts/fit_schw_weakfield_wls.py--modegamma_ratio--in_csvdata/schw_gamma_
ratio.csv--outsections/generated/schw_weakfield_fit_gamma_rows.tex

Synthetic regression with an explicit error budget (sanity check). To demonstrate
recovery of GM within stated uncertainties under a simple noise model, the following script
generates synthetic weak-field data for y = (GM)/r with additive Gaussian noise of standard
deviation σy, performs the origin-constrained WLS fit, and reports the estimated standard error
SE(ĜM) and a z-score (ĜM −GM)/SE:
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γ ∆E τWS(E0) (num.) 4ℏ/γ rel. error
0.2 1.00e-06 20 20 1.000e-10
0.5 1.00e-06 8 8 1.600e-11

1 1.00e-06 4 4 4.000e-12
2 1.00e-06 2 2 1.000e-12
5 1.00e-06 0.8 0.8 1.600e-13

Table 2: Wigner–Smith peak delay for a Breit–Wigner resonance (single channel).
The numerical delay uses ℏ = 1 and a finite-difference derivative step ∆E.

mode n ĜM RMSE
kappa_ratio 12 1.02321 7.597e-05

gamma_ratio 12 1.00765 2.487e-05

Table 3: Weak-field Schwarzschild benchmark fit. The script fits the slope through the
origin in the model y = (GM)/r using either y = κ/κ0 − 1 or y = 1 − γ/γ0.

python3scripts/exp_schw_weakfield_synth_wls_demo.py--GM1.0--n25--r_min50--r_
max800--sigma_y1e-4--seed0--outsections/generated/schw_weakfield_synth_wls_row.tex

End-to-end microscopic example: interaction graph → κ(x) → coarse-grained lapse
→ WS recovery. This script provides an explicit microscopic triple (Gphys, Gx, scheduler): (i)
a weighted interaction graph Gphys given by data/demo_chain_edges.csv, (ii) a local clock-
task family Gx parameterized by nodes at radii in data/demo_chain_nodes.csv (each task
requires interaction with a fixed reference node), and (iii) a shortest-path scheduler in which
the compilation depth is the weighted path cost plus a unit local cost. The induced lapse profile
N(x) = κ0/κ(x) is compared against the corresponding normalized Schwarzschild target and
against a WS-based recovery via linewidth calibration with stated relative error.

python3scripts/demo_microscopic_chain_to_ws.py--nodes_csvdata/demo_chain_nodes.
csv--edges_csvdata/demo_chain_edges.csv--out_rowssections/generated/demo_microscopic_
chain_rows.tex--out_metricssections/generated/demo_microscopic_chain_metrics.tex--GM1.

0--eps_r50--ws_modelinewidth--sigma_rel_gamma1e-3--seed0

12 Discussion and open problems
CAP-II is designed to make the dynamical bridge explicit: compilation-level objects define
lapse ratios operationally, while covariant dynamics requires additional closure inputs. This
separation makes the theory falsifiable in layers: some predictions are definition-level and must
hold in any realization of the compilation model; others are closure-dependent and can be tested
to discriminate between constitutive choices.

12.1 Assumption sensitivity

Three sensitivities are central:
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n rmin rmax σy GM ĜM SE RMSE z

25 50 800 1.0e-04 1 0.998663 3.45e-03 1.09e-04 -0.39

Table 4: Synthetic weak-field regression with uncertainty. This table is a pipeline sanity
check: under the stated noise model, the estimator (57) recovers GM within the predicted
uncertainty budget.

r Ntarget Nε NWS rel. err(Nε) rel. err(NWS)
800 1.00000000 0.99999986 1.00000000 1.40e-07 0.00e+00
600 0.99958220 0.99958206 0.99724708 1.41e-07 2.34e-03
400 0.99874608 0.99863216 0.99712821 1.14e-04 1.62e-03
300 0.99790926 0.99760842 0.99733978 3.01e-04 5.71e-04
250 0.99723930 0.99690281 0.99528848 3.37e-04 1.96e-03
200 0.99623351 0.99530642 0.99522444 9.31e-04 1.01e-03
150 0.99455493 0.99247182 0.99379728 2.09e-03 7.62e-04
120 0.99287352 0.99056293 0.99111500 2.33e-03 1.77e-03
100 0.99118926 0.98933048 0.98896043 1.88e-03 2.25e-03
80 0.98865748 0.98817795 0.98791883 4.85e-04 7.47e-04
60 0.98442338 0.98713698 0.98447406 2.76e-03 5.15e-05
50 0.98102294 0.98666486 0.97946586 5.75e-03 1.59e-03

Table 5: Explicit microscopic end-to-end lapse test. Ntarget is the normalized
Schwarzschild lapse at the radii in data/demo_chain_nodes.csv. Nε is the Gaussian coarse-
grained lapse induced by the graph-computed κ(x) (with bandwidth parameter ε in r-units).
NWS is recovered by a calibrated WS linewidth proxy with a stated relative linewidth error
σrel,γ .

• Cost-to-density map. The exponent p in Assumption 2.3 and the potential V control
how routing overhead backreacts as effective stress-energy; Remark 2.4 records a micro-
motivated congestion viewpoint and a stability criterion for treating p as a universality
exponent.

• Gauge and slicing choices. In the minimal closure we fix a protocol-rest shift gauge (As-
sumption 2.7); beyond this, physically preferred coordinate choices may be induced by
protocol flow, and should be treated as part of the model specification when comparing
time-dependent data.

• Readout bandwidth. Assumption 2.8 controls which microscopic differences are unobserv-
able and therefore which invariances can be claimed at the effective level.

12.2 Relation to scalar–tensor frameworks and solar-system constraints

The minimal CAP-II closure (19) is Einstein gravity with an additional scalar source sec-
tor, not a Brans–Dicke-type modification of the geometric coupling. Accordingly, the lead-
ing post-Newtonian coefficients of the metric are Einsteinian in regimes where the exterior is
well-approximated by a Schwarzschild-like template. Observable departures arise when the in-
formation scalar is light enough to carry exterior hair (Fisher/JNW-type behavior) or when its
stress-energy produces measurable higher-order corrections in a benchmark window. Appendix F
records the corresponding PPN positioning, the standard light-deflection/Shapiro-delay observ-
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n ε WS mode σrel,γ RMSE(Nε) RMSE(NWS) max rel. err(NWS)
12 50 linewidth 1.00e-03 2.114e-03 1.438e-03 2.336e-03

Table 6: End-to-end error summary. The coarse-graining width ε is given in the same length
units as r. In linewidth mode the WS recovery uses κWS(E0) ≈ 4ℏ/(γτ0) with a synthetic relative
linewidth uncertainty σrel,γ .

ables, and the massive-vs-light scalar regimes in terms of (p, ρ0, λF , V ) through the constitutive
identification.

12.3 Relation to trace/regularization mechanisms

Abel-type regularization and finite-part extraction provide a canonical way to assign constants
to regulated orbit sums and traces. In a dynamical setting, the same scheme choice appears as
a renormalization condition in the effective action (Section 5.3), and therefore must be treated
as part of the model specification rather than as an after-the-fact numerical trick.

12.4 Open problems

One open problem is to derive, from microscopic protocol data, a physically preferred coordi-
nate gauge or current interpretation in genuinely time-dependent regimes, beyond the minimal
protocol-rest gauge used for the benchmark fits. A second open problem is to integrate the dy-
namical closure with spectral/trace-formula mechanisms in a single unified framework without
conflating the observer-interface layer with the covariant field layer.

13 Conclusion
We presented CAP-II as an explicit dynamical closure program for computational-lapse gravity.
At the protocol level, routing overhead κ(x, t) and cycle counting define lapse ratios opera-
tionally. To obtain a dynamical spacetime theory one must add a controlled package of closure
assumptions mapping κ to covariant fields and specifying a local, diffeomorphism-invariant,
second-order effective action. Under these assumptions the macroscopic metric equation is Ein-
steinian with an information stress tensor, and the remaining dynamical freedom is isolated in
the constitutive identification of shift and currents.

We also formulated a concrete scattering interface (Wigner–Smith time delay) that allows
empirical calibration of κ and direct tests of lapse ratios via linewidth ratios. Future work will
focus on deriving the shift/current closure from microscopic protocol flow and on expanding the
reproducible numerical suite for genuinely time-dependent benchmarks.

A Appendices

B Variation details
This appendix records the core variational identities behind Section 6. We emphasize that
the purpose is auditability: all assumptions are isolated in the action ansatz (19), while the
derivation is standard.
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B.1 Metric variation

For a covariant action S =
∫ √

−gL, variation of the Einstein–Hilbert term yields

δ
(√

−g R
)

=
√

−g Gµν δg
µν + (boundary term). (61)

For the Fisher-amplitude term one uses δ√−g = −1
2
√

−g gµνδg
µν and the definition (∇χ)2 =

gµν∇µχ∇νχ to obtain the stress tensor (23).

B.2 Scalar variation

Varying with respect to χ gives the Euler–Lagrange equation

2λF □χ− dV
dχ = 0, (62)

where □ = ∇µ∇µ. When the scalar equation holds, the divergence of T info
µν reduces to a term

proportional to the scalar equation, yielding the consistency statement in (25).

B.3 u = log(κ/κ0) chain rule identity

This subsection records the elementary chain rule behind Proposition 6.3. Under Assump-
tion 2.3, write u = log(κ/κ0) so that

χ = √
ρ = √

ρ0 e
p
2 u. (63)

Then
∇µχ = p

2 χ∇µu, □χ = ∇µ∇µχ = p

2 χ□u+ p2

4 χ (∇u)2, (64)

where (∇u)2 = gµν∇µu∇νu. Substituting into the scalar equation 2λF□χ − dV/dχ = 0 and
dividing by χ > 0 yields

λF p□u+ λF
p2

2 (∇u)2 = 1
χ

dV
dχ , (65)

which is (27).

C ADM details and closure interfaces
This appendix complements Section 7 by recording standard ADM identities and highlighting
where CAP-specific closure enters.

C.1 Constraint quantities

Let nµ be the future-directed unit normal to a spatial slice. Define the energy density and
momentum flux by

ρtot := Tµνn
µnν , jtot

i := −Tµνn
µhν

i. (66)
These are the quantities appearing in (33)–(34).

C.2 Gauge versus constitutive content

In pure GR, lapse and shift encode gauge freedom in foliating spacetime. In CAP-II, the lapse is
also an operational observable (Section 3.3). This dual role forces an explicit separation between:

• a gauge choice used to set up an initial-value formulation, and

• a constitutive identification that maps protocol data to the slice quantities (ρtot, j
tot
i ).

Assumption 2.7 asserts that such a constitutive map exists and is local within the readout
bandwidth.
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C.3 Preferred shift from protocol flow (optional extension)

The minimal CAP-II closure used for benchmark fits works in a protocol-rest gauge with N i = 0
(Assumption 2.7). In genuinely time-dependent regimes it can be advantageous to use protocol
data to define a preferred spatial frame, i.e. a preferred shift beyond pure gauge fixing.
A concrete route is to treat directed protocol activity as a measurable coarse-grained current.
For example, compilation logs can provide, at readout scale ε, oriented edge-usage counts (net
executed two-site primitives across an oriented cut per tick) which define an effective spatial
flow field vi(x, t) after coarse-graining. Given such a vi, one may impose a comoving slicing
condition

N i(x, t) = vi(x, t), (67)

or, equivalently, select coordinates in which the measured protocol flow has vanishing spatial
components. This turns part of the gauge freedom into constitutive content and is therefore an
additional modeling assumption, to be recorded alongside the ledger when used.
Operationally, adopting a preferred shift requires at least:

• an auditable definition of a coarse-grained protocol current (directed edge utilization, task-
dependency flow, or a related transport observable), and

• a compatibility rule relating that current to the slice momentum density ji
tot in (34) (e.g.

identifying a frame in which ji
tot is minimized or vanishes for the information sector).

The present manuscript isolates this issue by keeping the benchmark targets in a shiftless gauge;
preferred-shift closure is left as an explicit extension point for time-dependent datasets.

D Regularization notes: finite parts and counterterms
When orbit sums or traces diverge in regulated-to-continuum passages, CAP adopts a canonical
finite-part prescription. The present manuscript uses this only at the level of model specification:
the choice of finite part is part of the effective action via renormalization conditions.

D.1 Abel regularization and finite part

Given a divergent series ∑n≥0 an, define its Abel generating function

A(r) :=
∑
n≥0

anr
n, 0 < r < 1. (68)

If A(r) admits an asymptotic expansion as r ↑ 1 of the form

A(r) = c−m

(1 − r)m
+ · · · + c−1

1 − r
+ c0 + o(1), (69)

we define the Abel finite part by FP ∑
n≥0 an := c0.

D.2 Scheme dependence

Different prescriptions for extracting c0 correspond, at the level of an effective action, to different
local counterterm choices. Therefore CAP-II treats the regularization scheme as part of the
model specification (Assumption 2.9) and isolates it from the operational definition of κ.

D.3 A concrete counterterm correspondence (one worked interface)

This subsection records a minimal calculation showing how a finite-part choice translates into a
local counterterm in the CAP-II effective action.
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Constant finite parts shift the cosmological term. Suppose a regulated protocol-derived
scalar contribution to the effective Lagrangian density takes the form

∆Lreg(r) = A(r), 0 < r < 1, (70)

with an Abel expansion as r ↑ 1:

A(r) = c−1
1 − r

+ c0 + o(1). (71)

Under the Abel finite-part rule, the renormalized contribution is ∆Lren := c0. If instead one
chooses a different finite part c0 7→ c0 + δc0, then the action shifts by

δS =
∫

d4x
√

−g δc0, (72)

which is equivalent to a shift of the cosmological term in (19):

Λ 7→ Λ − 8πGδc0. (73)

Thus, at the level of local covariant dynamics, scheme dependence of constant finite parts is
exactly the usual cosmological-constant counterterm freedom.

Density-proportional finite parts shift the potential. Similarly, if a regulated contribu-
tion takes the form

∆Lreg(r) = B(r)χ2, B(r) = b−1
1 − r

+ b0 + o(1), (74)

then a finite-part change b0 7→ b0 + δb0 shifts the action by

δS =
∫

d4x
√

−g (δb0)χ2, (75)

which is equivalent to adding a local counterterm to the scalar potential:

V (χ2) 7→ V (χ2) − (δb0)χ2. (76)

More generally, finite-part choices for protocol-level traces can renormalize the coefficients of any
local invariant allowed in the chosen effective-theory class; CAP-II fixes a canonical prescription
(Assumption 2.9) and interprets any residual finite ambiguity as an explicit renormalization
condition on (Λ, V ).

E Readout bandwidth and controlled differential operators
This appendix records a representative controlled-approximation statement for differential op-
erators under kernel readout. The goal is not to optimize constants, but to exhibit the scale
separation structure h ≪ ε.

E.1 A model estimate (with standard references)

Let f be a smooth function on a domain Ω ⊂ Rd. Let fh denote its sampling on a lattice of
spacing h, and let Kε be a smooth kernel of bandwidth ∼ ε−1. Define the coarse-grained field
fε,h := Kε ∗ fh. Then discrete symmetric differences acting on fε,h approximate continuum
derivatives with an error controlled by the ratio h/ε:

∥∇hfε,h − ∇fε∥L∞(Ω) ≲ C

(
h

ε

)2
, (77)

under standard smoothness assumptions on f and Kε. An analogous estimate holds for discrete
Laplacians.
Such statements are standard in numerical analysis (finite differences) combined with mollifica-
tion/smoothing estimates; see, e.g., [5, 28].
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Interpretation. Assumption 2.8 asserts that the observer’s readout bandwidth enforces pre-
cisely this kind of scale separation, ensuring that continuum operators are meaningful on coarse-
grained observables even when the microscopic substrate is discrete and protocol-dependent.

E.2 Microscopic “protocol gauge” perturbations and ε/h suppression (model
bound)

The universality notion of Section 4.2 treats microscopic representation choices (e.g. address
order or tie-breaking rules) as a protocol gauge whenever they affect only sub-ε structure. Here
we record one representative bound exhibiting explicit ε/h suppression for a class of lattice-scale
perturbations.
For simplicity we state the estimate on a regular lattice; the same proof extends to bounded-
degree graphs with h interpreted as the microscopic spacing and with degree-dependent con-
stants.

Proposition E.1 (Divergence-form perturbations are suppressed by h/ε). Let κh and κ′
h be two

lattice fields on a spacing-h lattice in Rd. Assume their difference admits a discrete divergence
representation

δκh := κ′
h − κh = ∇h · Jh, (78)

where Jh is an edge/flux field supported on edges and bounded in sup norm by ∥Jh∥∞ ≤ Jmax.
Let Kε be a smooth mollifier as in Assumption 2.8 and set δκε,h := Kε ∗ δκh. Then there exists
a constant CK depending only on the kernel family such that

∥δκε,h∥L∞ ≤ CK Jmax
h

ε
. (79)

Sketch of proof. Write δκε,h = Kε ∗ (∇h · Jh) and apply discrete integration by parts to
move ∇h onto the smooth kernel. One obtains δκε,h = −(∇hKε) ∗ Jh. Since ∥∇hKε∥L1 ≲
(h/ε)∥∇K∥L1 for a mollifier family, the bound (79) follows.
On a bounded-degree graph of maximum degree ∆, the same argument yields an additional
factor polynomial in ∆ through the discrete divergence definition. If the microscopic protocol
gauge choice acts only within a bounded task diameter D (Assumption 2.2), then Jmax can
be taken to scale at most polynomially in (∆, D) for that task family, making the suppression
explicit.

F Post-Newtonian and solar-system constraints (Einstein grav-
ity with an information scalar)

This appendix positions the CAP-II source sector relative to standard scalar–tensor frameworks
and records the minimal post-Newtonian (PPN) implications needed for solar-system tests.
The goal is not to re-derive the full PPN formalism, but to make explicit what is fixed by
the Einsteinian geometric skeleton and what must be constrained by the information-sector
constitutive inputs.

F.1 Relation to scalar–tensor theories

The minimal CAP-II closure uses the action (19), i.e. Einstein–Hilbert gravity with an additional
scalar field χ and covariant matter Lm(g, ψm). In particular, in this manuscript:

• the gravitational coupling G is constant in the action, and

• matter couples minimally to the metric (no direct χ–matter coupling is assumed in Lm).
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This differs from Brans–Dicke and more general scalar–tensor theories, where the scalar typi-
cally modifies the effective gravitational coupling (Jordan-frame F (φ)R terms) and/or couples
nontrivially to matter in the Einstein frame; see, e.g., [29–31].
Consequently, CAP-II in its minimal form is a metric theory with Einstein field equations and
an additional stress tensor contribution. Deviations from Schwarzschild in exterior regions arise
not from a modified left-hand side, but from nontrivial information-sector stress-energy T info

µν

(and from any additional matter sector used in a given realization).

F.2 PPN parameters in the minimal closure

In standard PPN gauge (isotropic spatial coordinates), the weak-field metric of a static source
is written schematically as

g00 = −1 + 2U − 2βU2 +O(U3), (80)

gij =
(
1 + 2γU +O(U2)

)
δij , (81)

where U = GM/r is the Newtonian potential and (γ, β) are theory parameters; see, e.g., [30,31].
For Einstein gravity with constant G and minimally coupled matter, one has

γ = 1, β = 1, (82)

independent of the detailed constitution of the source. In CAP-II this statement applies to the
geometric skeleton: the post-Newtonian coefficients are those of GR in the regime where the
exterior metric is well-approximated by a Schwarzschild-like solution.
Empirically, solar-system tracking constrains γ at the level |γ − 1| ≪ 1; see [31] for current
bounds and a consolidated discussion.

A check in a non-vacuum exterior (massless scalar/JNW family). To make the above
concrete in a setting where the exterior is not vacuum, consider Einstein gravity coupled to a free
massless scalar (the V ≡ 0 limit of (19) with λF > 0). The generic static spherically symmetric
solution is the Fisher/JNW family [13,14], which can be written in curvature coordinates as

ds2 = −
(

1 − b

r

)ν

dt2 +
(

1 − b

r

)−ν

dr2 +
(

1 − b

r

)1−ν

r2dΩ2, 0 < ν ≤ 1, (83)

with ν = 1 recovering Schwarzschild. Transforming to an isotropic radius ρ and expanding at
large ρ yields

g00 = −1 + νb

ρ
− ν2b2

2ρ2 +O(ρ−3), (84)

gij =
(

1 + νb

ρ
+O(ρ−2)

)
δij , (85)

so identifying GM = νb/2 one reads off γ = β = 1 at post-Newtonian order. Thus, even
when the exterior contains scalar stress-energy, the leading PPN coefficients remain Einsteinian;
constraints arise from higher-order terms and from departures from a Schwarzschild benchmark
in a chosen exterior window.

F.3 Standard solar-system observables (leading order)

At leading post-Newtonian order, the classic tests depend only on γ and β. In particular, for
light deflection at impact parameter b and Shapiro time delay for a radar signal with endpoints
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at radii r1, r2, one has (restoring c for clarity)

δθlight = 1 + γ

2
4GM
bc2 = 4GM

bc2 (γ = 1), (86)

∆tShapiro ≈ 1 + γ

2
4GM
c3 log

(4r1r2
b2

)
= 2GM

c3 log
(4r1r2

b2

)
(γ = 1), (87)

see [30–32] for conventions and refinements.
In CAP-II’s operational dictionary (Section 3.3), the weak-field potential is Φ = − log N =
log(κ/κ0) and g00 ≈ −N 2 in a shiftless gauge. Therefore, once a dataset provides κ(x) (by
compilation logs or by the WS interface) and a benchmark exterior interpretation identifies GM
in an exterior window (Section 10.2), the standard leading-order solar-system observables follow
in that same window.

F.4 Constraints on the information scalar: massive vs. light regimes

The parameter dependence specific to CAP-II enters through the source sector T info
µν and the κ 7→

χ constitutive map. Solar-system consistency is therefore most naturally phrased as a constraint
that the information sector does not generate observable departures from the benchmark exterior
templates in the relevant window.

Massive (pinned) regime. Assume V has a local minimum at the background χ = χ0 with
V ′(χ0) = 0. Linearizing (24) gives

□ δχ−m2
χ δχ = 0, m2

χ := V ′′(χ0)
2λF

, (88)

so δχ is Yukawa-suppressed beyond the Compton length ℓχ := m−1
χ . In this regime, an exterior

window with length scales r ≫ ℓχ is effectively Schwarzschild-like up to exponentially small
corrections from the scalar gradients, and the benchmark fits of Section 10.2 are self-consistent.
A conservative solar-system consistency condition is that the scalar be short-ranged compared
to the smallest impact parameters b used in classic time-delay/deflection tests, i.e.

mχ b ≫ 1 (or equivalently ℓχ ≪ b). (89)

For example, taking b of order a solar radius provides a concrete benchmark scale. In terms of
the ρ-expansion family (30) with V (χ2) = V̂ (ρ) and ρ = χ2, one has near the minimum ρ0 = χ2

0
that V ′′(χ0) = 4χ2

0 V̂
′′(ρ0), so

m2
χ = 2χ2

0
λF

V̂ ′′(ρ0). (90)

Thus a lower bound on V̂ ′′(ρ0) (given λF and χ0) is a directly interpretable short-range condition.
In the explicit quadratic family (30), V̂ ′′(ρ0) = m2

ρ, hence

m2
χ = 2ρ0

λF
m2

ρ, (ρ0 = χ2
0). (91)

The exponent p enters these constraints through the constitutive identification χ = √
ρ0(κ/κ0)p/2:

in the weak-field regime u = log(κ/κ0) is small and δχ/χ0 ≈ (p/2)u. Thus, for a fixed oper-
ational lapse profile u(x), smaller p suppresses the amplitude of scalar-sector excursions and
therefore the size of T info

µν corrections in an exterior window.
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Light (nearly massless) regime and JNW deviations. If mχ is very small on solar-system
scales, static spherically symmetric exteriors generically carry scalar hair and are described by
Fisher/JNW-type families (or their potential-deformed analogues). Although γ = β = 1 at
leading PPN order (Section F.2), the exact exterior metric can differ from Schwarzschild at
higher orders and in the near field. In CAP-II this regime is treated as an observable deviation
channel: departures from the Schwarzschild benchmark constrain the potential family V (χ2)
and the effective coupling scale set by (p, ρ0, λF ) through the κ 7→ χ identification.

F.5 Fifth-force interpretation and screening mechanism

In the minimal closure (19) with minimally coupled matter, test bodies follow metric geodesics, so
there is no additional direct fifth force from a matter–scalar coupling. Any observable deviation
from GR arises indirectly through the scalar contribution to the metric sourced by T info

µν .
Accordingly, the operative “screening” mechanism in this setup is the massive/pinned regime
of Section F.4: if mχ is large compared to the inverse length scales probed by an experiment,
scalar gradients and their stress-energy are exponentially suppressed outside the source region,
making exterior observables indistinguishable from GR within stated precision. Chameleon-like
screening requires an environment-dependent effective potential (typically via explicit matter
coupling), which is not assumed in the minimal CAP-II closure and would constitute an addi-
tional modeling layer.

F.6 Binary-pulsar and radiative constraints (qualitative placement)

Binary-pulsar tests constrain departures from GR through strong-field dynamics and radiative
channels. In scalar–tensor theories with matter coupling, light scalars typically generate dipole
radiation and are therefore tightly constrained; see [31]. CAP-II in its minimal form does not
introduce a direct matter–scalar coupling, so the leading dipole-radiation mechanism of Jordan-
frame scalar–tensor theories is not automatically present. Operationally, the relevant CAP-II
constraint is again that the information sector remain short-ranged or sufficiently weak in the
exterior/radiative zone so that waveform phase evolution and timing observables are consistent
with the GR templates used in the analysis.

G Wigner–Smith interface details: basis invariance, loss mod-
els, and calibration

This appendix complements Section 9 by recording standard identities and practical interface
points needed for quantitative use of Wigner–Smith delay as a calibrated proxy for routing
overhead. The emphasis is operational: which quantities are basis-independent, how to handle
non-unitarity/loss at the interface level, and how to define calibration rules that make lapse
ratios testable.

G.1 Trace identities and a density-of-states reading (unitary case)

Let S(E) ∈ U(M) be the on-shell scattering matrix for M asymptotic channels and define the
Wigner–Smith operator

Q(E) := −i ℏS(E)† dS
dE (E). (92)

Since S†S = 1, one has Q(E) = Q(E)†. The scalar delay used in the main text is

τWS(E) := 1
M

TrQ(E). (93)
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Determinant identity. Using d
dE log detS = Tr

(
S−1 dS

dE

)
and unitarity (S−1 = S†), one

obtains
TrQ(E) = −i ℏ d

dE log detS(E). (94)

Equivalently, writing detS(E) = eiΘ(E) with total scattering phase Θ(E) ∈ R,

TrQ(E) = ℏ
dΘ
dE (E). (95)

Density-of-states interface. In standard scattering theory, the energy derivative of the to-
tal scattering phase is proportional to the (excess) density of states in the interaction region
(Friedel/Krein-type relations). At the interface level, (94) can therefore be read as: the WS
trace measures a spectral delay/dwell observable which is naturally interpreted as a density-of-
states proxy at the chosen probe energy. For background and conventions, see [21–24].

G.2 Channel-basis dependence and a basis-invariant scalar observable

Let U ∈ U(M) be an energy-independent change of channel basis and set S′(E) := U S(E)U †.
Then

Q′(E) = −i ℏS′(E)† dS′

dE (E) = U Q(E)U †, (96)

so the trace and eigenvalues of Q(E) are basis-invariant:

TrQ′(E) = TrQ(E), Spec(Q′(E)) = Spec(Q(E)). (97)

This is the main reason to prefer TrQ(E) (or M−1TrQ(E)) as a scalar interface observable: it
is insensitive to static unitary mixing of measurement ports.
If the effective basis transformation is energy-dependent, U = U(E), then TrQ(E) acquires
an additive contribution from the apparatus dispersion. Operationally, CAP-II treats this as
part of the calibration: the same probe configuration and derivative regularization are used
throughout the dataset and a reference region is used to normalize out apparatus-dependent
offsets (Section 9.4).
Non-reciprocity. Non-reciprocal devices generally have scattering matrices that are not sym-
metric (S ̸= ST) even in the lossless case. This does not obstruct the WS interface: for unitary
S(E), Q(E) remains Hermitian and TrQ(E) remains basis-invariant in the sense above. Non-
reciprocity therefore affects the detailed channel-resolved delay structure (eigenvectors/eigenphases),
but not the scalar trace observable used for calibrated κ-ratio targets.

G.3 Loss, non-unitarity, and a calibrated ratio protocol

Realistic devices can exhibit absorption, dissipation, inelasticity, or imperfect calibration, so the
measured S(E) may be non-unitary. CAP-II uses two complementary interface viewpoints.

Hidden-channel completion. Non-unitarity can be modeled by coupling the interaction
region to additional unobserved channels (loss ports, absorptive baths). In the enlarged channel
space the full scattering matrix S̃(E) is unitary, and the WS operator Q̃(E) and trace identities
above apply to S̃. The measured S(E) is then a sub-block of S̃(E), and TrQ(E) is interpreted
as a partial delay observable.
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Self-energy and renormalized resonance parameters. In device-level models (Section 9.1),
coupling to leads/baths induces an energy-dependent self-energy. Equivalently, one writes an
effective non-Hermitian Hamiltonian Heff(E) = H+∆(E)− i Γ(E)/2, so that both the resonance
center E0 and linewidth γ are renormalized by the environment. The WS interface does not
require a microscopic subtraction of these effects: E0(x) and γ(x) are defined operationally by
the measured/simulated S(E) in the chosen probe configuration, and the ratio protocol below
uses these renormalized parameters consistently across locations. For background on effective-
Hamiltonian and self-energy formulations, see [21,22].

Ratio protocol (calibration robustness). For lapse tests CAP-II primarily uses ratios of
calibrated delays (or linewidths) between regions. Fix a probe convention and a reference region
x0. Define the dimensionless overhead proxy by

κWS(x) := τWS(x)
τ0

, κ0 := κWS(x0), (98)

where τWS(x) is evaluated at the local probe energy E0(x) under the same derivative regular-
ization rule. Then the ratio

κ(x)
κ0

≈ κWS(x)
κWS(x0) = τWS(x)

τWS(x0) (99)

is insensitive to any multiplicative apparatus factor that is common to the two measurements
(e.g. an overall port-normalization convention or a global tick-to-second calibration). When the
interface uses linewidth extraction in the single-resonance regime, the corresponding ratio form
is

κ(x)
κ0

≈ γ(x0)
γ(x) , (100)

consistent with Section 9.3.

Minimal reporting standard. To make the WS interface auditable, a quantitative report
should include:

• the measured (or simulated) S(E) data source and port normalization convention;

• a unitarity diagnostic (e.g. ∥S†S − 1∥ over the band) and a stated loss model when non-
unitarity is present;

• the derivative regularization choice (grid step, smoothing window, or phase-unwrapping
method);

• a stability check under moderate changes of the derivative resolution.

This is the minimal data required to evaluate how sensitive inferred κ ratios are to loss and to
apparatus dispersion.
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