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Abstract
We propose and formalize a Computational Action Principle (CAP) in the unified Holo-

graphic Polar Arithmetic (HPA) and Ω-theory framework [1–3]. The guiding thesis is oper-
ational: physical “laws” are not externally imposed rules but minimal-cost error-correction
and steady-state constraints required for finite-resolution readout to remain self-consistent
over long horizons. The core tension is layered. At the ontic layer, the universe is mod-
eled by a continuous unitary scan and local quantum updates (Weyl pairs, PQCA). At the
readout layer, observers access only discrete projections with finite information capacity, in-
ducing canonical tick structures (Ostrowski/Zeckendorf) and structural mismatch measured
by discrepancy.

CAP upgrades this mismatch into a variational principle: dynamics selects configura-
tions minimizing a least-discrepancy functional subject to local covariance and implementa-
tion constraints. Under standard closure assumptions (locality, diffeomorphism invariance,
and second-order metric equations), the macroscopic gravitational field equation is forced
to be the Einstein equation (with a cosmological constant term) by Lovelock-type unique-
ness; discrepancy and implementation costs enter only through an effective stress tensor and
potential.

We further motivate an Ω action in which the Fisher-information amplitude of an infor-
mation density field is minimally coupled to gravity, and the routing overhead of compiling
local updates to nearest-neighbor circuits appears as a computational lapse field, providing
an operational interpretation of gravitational time dilation. Gauge fields arise as compen-
sating connections for local phase readout errors implied by Weyl complementarity, while
matter is modeled as topologically locked phase defects.

Finally, we provide reproducible toy experiments: numerical star-discrepancy compar-
isons across scan slopes illustrate the finite-depth optimality of the golden branch, and an
FFT-based Poisson solver verifies that a localized defect source produces an approximate 1/r
phase potential and an inverse-square “phase pressure” acceleration in the near-field regime.

Keywords: Holographic Polar Arithmetic (HPA); Ω theory; Computational Action Princi-
ple; least discrepancy; Fisher information; Weyl pair; routing overhead; emergent gravity; gauge
connection; topological defect.

Conventions. Unless otherwise stated, log denotes the natural logarithm. “mod 1” refers
to reduction in R/Z. We use the mostly-plus metric signature (−,+,+,+) and set c = 1 in
theoretical derivations unless explicitly restored.
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1 Introduction: from “laws” to variationalized error-correction
Interpreting physical laws as error-correction algorithms of a holographic computational system
is scientifically meaningful only if the claim can be written as a closed variational principle. The
Ω framework starts from a fixed global state ωΩ: ontically, the universe is a static ray/state,
and what observers call “time” and “dynamics” arise from finite readout and implementation
constraints [2, 3]. This viewpoint is supported by a small set of axioms (O1–O6) emphasiz-
ing finite information capacity (holographic bounds) [4–6], causal locality, and an approximate
isometric bulk–boundary encoding consistent with operator-algebraic quantum error correction
and entanglement wedge reconstruction [7–9].

Within the HPA–Ω semantics, an observer faces an irreducible structural mismatch between
two layers:

• Ontic layer (Layer 0): continuous unitary scan (irrational rotation / Weyl algebra) and
local unitary updates (PQCA, quantum walks).

• Readout layer (Layer 2): finite-resolution projections (windows), discrete ticks gener-
ated by canonical coding (Ostrowski/Zeckendorf), and bounded information capacity.

Readout discretization is not optional: it is an operational consequence of finite information
axioms. Therefore, “laws” should be understood as the minimal-cost constraints required for
the continuous ontic evolution and the discrete readout statistics to remain mutually consistent
over long horizons. The goal of this paper is to formalize this constraint as a variational principle
that

• yields closed field equations at the macroscopic level,

• identifies a minimal action functional encoding readout mismatch and implementation
cost,

• and supports toy-model numerical verification of key intermediate links.

Outline. Section 2 states the minimal axioms and the scan–projection readout semantics.
Section 3 introduces discrepancy as a quantitative mismatch measure and shows how a phase
potential sourced by coarse-grained discrepancy reproduces the Newtonian limit for isolated de-
fects. Section 4 formulates CAP and motivates the Ω action as a minimal coupling between
gravity, Fisher information, and routing overhead. Sections 5–7 derive field equations and inter-
pret gravity and gauge fields operationally. Sections 8–9 discuss matter as topological defects
and the variational role of the golden branch. Section 10 provides reproducible toy experiments,
and Section 11 discusses testable consequences and model boundaries.

2 Axiomatic frame and readout semantics: minimal structure
in HPA–Ω

2.1 Ω axioms (O1–O6) and the “no external time” starting point

We adopt the following axioms as a minimal commitment [2, 3]:

• O1 (Ω axiom). The theory is specified by a single global state ωΩ (not an ensemble);
external time is not fundamental.

• O2 (finite information / holographic bound). The distinguishable dimension of any
finite region is bounded by an exponential of its boundary area (holographic scaling) [4–6].
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• O3 (causal locality). Local algebras remain finitely propagating under discrete-step evo-
lution; correlation functions are determined by ωΩ and a sequence of local automorphisms.
In lattice systems this is compatible with Lieb–Robinson-type finite-velocity bounds [10].

• O4 (holographic map / QEC structure). The bulk–boundary map is approximately
isometric on a code subspace and supports entanglement-wedge reconstruction (operator-
algebraic QEC semantics) [7–9].

• O5 (scan–projection readout). Observer “time” arises from a scan orbit combined
with finite-resolution projection; readout probabilities are given by an effective state ρeff
and a POVM/effects family E(ε)

k [11, 12].

• O6 (Weyl scan algebra). Scan shift and phase multiplication form a Weyl pair (U, V )
satisfying

UV = e2πiαV U, α /∈ Q, (1)

implying intrinsic complementarity (non-simultaneous diagonalizability); see e.g. the irra-
tional rotation algebra literature [13].

These axioms can be read as a minimal operational contract. O1 fixes the ontic “whole” (a
single state) and removes external time as a primitive. O2 makes resolution a physical con-
straint rather than an analyst’s convenience. O3–O4 provide the structural inputs needed for
a local-to-global story: locality in the algebraic evolution and a bulk–boundary encoding con-
sistent with QEC semantics. O5 states that the observer’s timeline is not the ontic time but a
scan–projection composite; O6 fixes the irreducible complementarity of this composite via Weyl
noncommutativity.

Operationally, these axioms force any readout to confront a triad:

projection ∧ complementarity ∧ finite information. (2)

CAP will be formulated as a minimal variational closure of the mismatch induced by this triad.

2.2 Readout operators: irrational rotation, windows, and mechanical words

In the minimal model, the scan is an irrational rotation on the circle:

xk = x0 + kα (mod 1), α /∈ Q, x0 ∈ [0, 1). (3)

For irrational α, the orbit is equidistributed mod 1 (Weyl’s theorem) [14], providing the canonical
“uniform ontic measure” that discrepancy quantifies at finite readout depth. Given a binary
window W ⊂ [0, 1) (e.g. an interval), the readout sequence is the mechanical word

sk = 1W (xk) ∈ {0, 1}. (4)

For an irrational rotation, binary partitions generate Sturmian flows. The resulting symbolic dy-
namics has minimal complexity (exactly n+1 distinct length-n factors), making it the canonical
“least structured” non-periodic readout stream [15,16]. The golden branch yields the Fibonacci
word and equips the tick index with canonical Ostrowski numeration, degenerating to Zeckendorf
decomposition in the golden case [1, 17]. In CAP terms, canonical coding is not an aesthetic
choice but an operational compression: it is how a finite observer assigns stable addresses to
scan events under limited capacity.

Readout statistics at finite resolution ε are specified in operational quantum language by a
POVM/effects family {E(ε)

k }k with ∑
k E

(ε)
k = 1 and

P
(ε)
k = Tr

(
ρeff E

(ε)
k

)
. (5)
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This keeps “discrete observed events” inside standard operational semantics while making ex-
plicit the dependence on finite resolution. In particular, the same ontic state ωΩ can induce
different effective dynamics at different ε through the coarse-grained instrument {E(ε)

k }, which
is precisely the layer separation CAP exploits.

2.3 Orbit trace and finite part: a canonical regularization convention

Long-time averages in the scan–readout setting are not arbitrary: CAP requires a fixed con-
vention for taking regulated limits from discrete orbits to continuum functionals. We adopt a
canonical orbit trace / Abel finite-part convention (Convention R1) [1, 3, 18].

Conceptually, regulated readout sums often differ by additive constants that depend on the
chosen regularization scheme. In CAP this ambiguity is not ignorable: mismatch is promoted to
a source term, and source terms shift physical potentials unless the constant is fixed consistently.
Convention R1 fixes the additive constants in a way compatible with the scan semantics (Abel-
type regularization along the orbit), ensuring that “discrepancy accumulation” admits a well-
defined coarse-grained continuum interpretation that can be coupled to covariant field equations.

3 Least discrepancy: from mismatch accumulation to phase po-
tential and the Newtonian limit

3.1 Discrepancy as a readout mismatch measure

For a point set {xn}N
n=1 ⊂ [0, 1), define the one-dimensional star discrepancy [19]

D∗
N := sup

a∈[0,1]

∣∣∣∣∣ 1
N

N∑
n=1

1[0,a)(xn) − a

∣∣∣∣∣ , EN := ND∗
N . (6)

In the scan model xn = x0 + nα (mod 1), EN is interpreted as the accumulated mismatch
between finite-prefix readout statistics and the uniform ontic measure. CAP treats mismatch as
structural: it cannot be eliminated by longer observation but can be controlled.

To connect D∗
N to scan readout stability, write the orbit as xn = x0 + nα (mod 1) and

consider interval-window counts

sn = 1W (x0 + nα), SN (W ) =
N−1∑
n=0

sn, W ⊂ [0, 1) an interval. (7)

For W = [0, a) one has SN (W ) = ∑N
n=1 1[0,a)(xn) and therefore

EN = sup
a∈[0,1]

|SN ([0, a)) −Na| . (8)

Thus, a uniform interval-count bound immediately yields a star-discrepancy bound.

Continued fractions and Ostrowski expansion. Let α = [0; a1, a2, . . . ] ∈ (0, 1) \ Q and
let (qk)k≥0 be the convergent denominators defined by

q−1 = 0, q0 = 1, qk+1 = ak+1qk + qk−1. (9)

Every N ∈ N>0 admits a unique Ostrowski expansion relative to α,

N =
m∑

k=0
bkqk, (10)

with digits satisfying 0 ≤ b0 < a1, 0 ≤ bk ≤ ak+1 for k ≥ 1 and the standard admissibility
constraint (if bk = ak+1 then bk−1 = 0); see e.g. [16, 20].
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Theorem 3.1 (Ostrowski–Denjoy–Koksma bound for interval counts). Let α = [0; a1, a2, . . . ] ∈
(0, 1) \ Q and let qk be the convergent denominators. Let W ⊂ [0, 1) be any interval and
let SN (W ) = ∑N−1

n=0 1W (x0 + nα). For every N ∈ N>0 write the Ostrowski expansion N =∑m
k=0 bkqk. Then for every x0 ∈ [0, 1),

|SN (W ) −N µ(W )| ≤ 2
m∑

k=0
bk ≤ 2

m∑
k=0

ak+1, (11)

where µ is Lebesgue measure on [0, 1).

Proof. Let f := 1W − µ(W ). Then f has bounded variation Var(f) = 2 and
∫ 1

0 f dµ = 0. For
each k ≥ 0, the Denjoy–Koksma inequality for rotations gives a uniform bound at convergent
times: ∣∣∣∣∣∣

qk−1∑
j=0

f(x0 + jα)

∣∣∣∣∣∣ ≤ Var(f) = 2, (12)

see e.g. [21–23]. Now expand N = ∑m
k=0 bkqk and decompose the length-N sum into bm blocks

of length qm, then bm−1 blocks of length qm−1, and so on (the standard Ostrowski block decom-
position). Applying the qk-time bound to each block yields∣∣∣∣∣

N−1∑
n=0

f(x0 + nα)
∣∣∣∣∣ ≤ 2

m∑
k=0

bk. (13)

Since ∑N−1
n=0 f(x0 + nα) = SN (W ) −Nµ(W ), the first inequality follows. The second inequality

follows from the digit bounds b0 < a1 and bk ≤ ak+1 for k ≥ 1.

Corollary 3.2 (Golden optimality for a discrepancy proxy). Fix a depth m ≥ 0 and define the
continued-fraction proxy

Cm(α) :=
m∑

k=0
ak+1, α = [0; a1, a2, . . . ]. (14)

Then Cm(α) ≥ m+1 for every irrational α, with equality if and only if ai = 1 for all 1 ≤ i ≤ m+1
(the golden branch prefix). In particular, the golden slope α = φ−1 = [0; 1, 1, 1, . . . ] uniquely
minimizes the upper bound in Theorem 3.1 at every finite depth.

Proof. Since each ai ∈ N, one has ai ≥ 1 and therefore Cm(α) ≥ m+1, with equality if and only
if ai = 1 for 1 ≤ i ≤ m+ 1. The uniqueness of continued fractions yields the last statement.

Remark 3.3 (Star discrepancy bound and logarithmic growth for bounded type). Applying
Theorem 3.1 to W = [0, a) and taking the supremum over a yields

EN = ND∗
N ≤ 2

m∑
k=0

ak+1. (15)

If α is of bounded type, i.e. supk ak ≤ A < ∞, then EN ≤ 2A(m + 1). Moreover, since
ak+1 ≥ 1 implies qk+1 ≥ qk + qk−1, one has qk ≥ Fk (Fibonacci), hence m = O(logN) whenever
qm ≤ N < qm+1. Therefore EN = O(logN) for bounded type slopes.

This quantitative control should be contrasted with resonance-prone slopes that admit excep-
tionally good rational approximations on intermediate scales. In CAP semantics, good rational
approximation corresponds to phase locking over finite depth: the scan visits window bound-
aries in structured patterns that amplify readout mismatch before equidistribution asserts itself.
Least discrepancy is therefore not only a statement about asymptotic equidistribution but a
statement about finite-resolution stability under repeated projection.
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3.2 Finite-depth optimality of the golden branch

The previous subsection provides a concrete finite-depth proxy Cm(α) = ∑m
k=0 ak+1 controlling

mismatch via Denjoy–Koksma and Ostrowski decomposition. The golden slope

αφ := φ−1 =
√

5 − 1
2 , [0; 1, 1, 1, . . . ], (16)

minimizes this proxy uniformly at every depth (Corollary 3.2) and is the archetype of “most
badly approximable” numbers [24].

Canonical ticks via Ostrowski truncation. At finite depth m, an observer effectively
accesses only an m-truncated Ostrowski expansion of scan indices; this induces a discrete tick
structure whose stability depends on the continued-fraction prefix [16,20]. In the golden branch,
the truncation specializes to Zeckendorf/Fibonacci addressing, supplying a canonical “clock”
without external tuning [17].
In CAP terms, the golden branch is not aesthetic but variational: for a fixed readout resolution,
it minimizes the worst-case upper bound controlling mismatch accumulation, thereby lowering
the cost required for long-term self-consistent readout. Pointwise EN at a fixed N and x0 can
still fluctuate among bounded-type slopes (Section 10); CAP’s claim is the uniform stability of
the bound that governs sustainable readout.

3.3 Phase potential and phase pressure: mismatch sources generate 1/r fields

Omega Dynamics lifts coarse-grained mismatch into a continuum source [25]. Let σ(x) be a
mismatch density obtained from a regulated continuum limit of EN (Convention R1). We
define the phase potential Φ as the stationary point of the quadratic functional SΦ[Φ;σ] in (19);
equivalently, Φ solves the Poisson equation

∆Φ = 4πρΦ, ρΦ = κΦ σ. (17)

We then define the phase pressure vector field

PΦ := −∇Φ. (18)

The Poisson form is the natural weak-field, slow-variation limit: in the Newtonian limit of GR
one obtains ∆ϕ = 4πGρ for the gravitational potential ϕ [26,27]. CAP uses the same operator as
the minimal continuum lift of mismatch accumulation when promoted to an effective potential.

Variational closure for the phase potential. Independently of GR, the Poisson equation
is the Euler–Lagrange equation of the quadratic field functional

SΦ[Φ;σ] :=
∫
R3

d3x

( 1
8π |∇Φ|2 + κΦ σΦ

)
, (19)

with fixed source σ and appropriate decay/boundary conditions. Varying Φ 7→ Φ + ϵδΦ and
integrating by parts yields

δSΦ =
∫

d3x δΦ
(

− 1
4π∆Φ + κΦσ

)
, ⇒ ∆Φ = 4πκΦσ. (20)

This recovers the Poisson-type sourcing used above. CAP therefore treats the Poisson lift not
as an extra postulate but as the least-action closure for a scalar potential field that encodes
mismatch cost at the macroscopic level.
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Exterior solution and mismatch charge. Let σ be compactly supported in R3 and assume
Φ → 0 at spatial infinity. Using the Green function identity ∆(1/|x|) = −4πδ(x) [28], the unique
decaying solution of

∆Φ = 4πκΦσ (21)

is
Φ(x) = −κΦ

∫
R3

σ(y)
|x − y|

d3y. (22)

In particular, for r = |x| → ∞ one has the multipole expansion

Φ(r) = −M

r
+O(r−2), M := κΦ

∫
R3
σ(y) d3y. (23)

Thus the monopole coefficient M is fixed by the total mismatch charge
∫
σ and the calibration

constant κΦ.

Remark 3.4 (Signed discrepancy vs. mismatch charge). The empirical measure µN = 1
N

∑N
n=1 δxn

and the uniform measure µ satisfy
∫

(µN −µ) = 0, so a signed equidistribution defect would have
zero total charge and would not generate a monopole 1/r term. CAP’s σ is therefore not the
signed measure µN −µ; it is a nonnegative coarse-grained cost density associated with sustaining
readout consistency (and, in the Newtonian closure of Appendix E, it can be tied to an effective
energy density). This is precisely why an isolated defect sector can carry nonzero total mismatch
charge and produce a monopole potential.

Remark 3.5 (Flux characterization). By the divergence theorem and ∆Φ = 4πκΦσ, one has∫
SR

PΦ · dS =
∫

BR

∇ · PΦ d3x = −
∫

BR

∆Φ d3x = −4πκΦ

∫
BR

σ d3x, (24)

so in the limit R → ∞ the monopole strength satisfies

M = − 1
4π lim

R→∞

∫
SR

PΦ · dS. (25)

This Gauss-law relation parallels the curvature-flux characterization of topological sectors in
Section 8.

For an isolated localized source (compactly supported σ), the exterior solution is harmonic;
in the far field the monopole term dominates, and for an approximately spherically symmetric
core one may write

Φ(r) = −M

r
, a(r) ≡ PΦ(r) = −M

r2 r̂, (26)

recovering the Newtonian inverse-square form as a mismatch-induced phase-pressure limit.
This establishes CAP’s first closed chain:

discrete readout mismatch (discrepancy) ⇒ phase potential Φ ⇒ phase pressure ⇒ Newtonian limit.
(27)

4 Computational Action Principle and the Ω action

4.1 Two notions of “time” and the geometry of implementation cost

HPA defines scan time as the iteration count of a unitary scan. Ω theory introduces a second
operational notion: implementation time. Even if ontic evolution is unitary and reversible, an
observer can only implement and read out local updates through finite hardware constraints. In
the Ω program, microscopic evolution is modeled as a partitioned quantum cellular automaton
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(PQCA), and a local PQCA step on a finite region is exactly compilable into a one-dimensional
nearest-neighbor circuit [2]. This construction is compatible with standard QCA locality results
(e.g. unitarity + causality ⇒ localizability) [29–31]. The required circuit depth defines a rout-
ing overhead field κ(x), i.e. the implementation cost of moving information through the local
network to realize the update. Appendix F records model-independent circuit-theoretic bounds
supporting κ as an operational invariant.

This naturally induces a computational lapse:

N (x) = κ0
κ(x) , dτloc(x) = N (x) dt, κ(x) ≥ κ0. (28)

Intuitively: higher routing overhead means fewer effective local logical updates per unit back-
ground depth dt, and therefore a slower local clock. This is the computational interpretation
of gravitational time dilation: local clocks slow down because implementing local dynamics
consumes more routing budget.

The dictionary becomes concrete in static GR. If we identify N (x) with the GR lapse, then
in Schwarzschild coordinates [26,32]

N (r) =
√

1 − 2GM
rc2 ,

κ(r)
κ0

= 1
N (r) = 1 + GM

rc2 +O(r−2), (29)

so gravitational redshift is operationally equivalent to computational slowdown in the imple-
mentation layer.

4.2 Why a Fisher term: information geometry as a minimal covariant quadratic
form

To lift readout statistics into a covariant action, we require a local, coordinate-invariant, quadratic
form that measures infinitesimal statistical distinguishability of an effective density field. Under
standard information-geometric axioms (monotonicity under coarse-graining, locality, and scale
naturalness), the Fisher metric is the canonical choice [33,34]. In particular, Fisher information
is the unique (up to scale) Riemannian metric on probability manifolds that is contractive under
stochastic maps (coarse-graining), matching the operational fact that finite-resolution readout
cannot increase distinguishability.
Remark 4.1 (Uniqueness input (Cěncov)). On finite probability simplices, Cěncov’s theorem
states that, up to an overall constant factor, the Fisher information metric is the unique Rieman-
nian metric that is monotone under Markov morphisms (stochastic coarse-grainings) [33, 34].
CAP uses this uniqueness as the quantitative reason why a Fisher-gradient term is the minimal
canonical quadratic penalty compatible with finite-resolution readout semantics.

Let ϱ(x) ≥ 0 be an information density and define the Fisher functional in covariant form:

IF [ϱ] =
∫

d4x
√

−g gµν ∇µϱ∇νϱ

ϱ
= 4

∫
d4x

√
−g gµν(∇µχ)(∇νχ), χ ≡ √

ϱ. (30)

This suggests a minimal scalar degree of freedom χ (the Fisher amplitude) coupled to gravity.

4.3 Minimal Ω action: Einstein–Hilbert + Fisher amplitude

We take the minimal Ω action to be

SΩ =
∫

d4x
√

−g
[
R− 2Λ
16πG − λF g

µν(∇µχ)(∇νχ) − V (χ2) + Lm

]
, ϱ = χ2. (31)

Here V (χ2) is an effective potential encoding readout-stability and topological-sector costs, and
Lm collects additional matter/gauge degrees of freedom. CAP interprets (31) as a minimal-cost
closure consistent with O1–O6 and with the requirement that mismatch and implementation
overhead must be expressible as local covariant functionals.
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Interpretation. The Einstein–Hilbert term fixes the macroscopic geometry under the closure
assumptions of Section 5.3. The Fisher-amplitude term is the minimal local quadratic penalty
for spatial/temporal variation in distinguishability (readout information density). The potential
V encodes the “quantized penalties” required to stabilize discrete readout sectors and to main-
tain nontrivial topological sectors. The matter/gauge sector captures compensating degrees of
freedom required for local consistency under phase complementarity (Section 7).

4.4 Cost–density identification: from routing overhead to information den-
sity

To inject implementation cost into the continuum action, we identify a dimensionless cost field

s(x) ≡ κ(x)
κ0

= 1
N (x) ≥ 1, (32)

and relate it to the information density by a smooth local map. In the weak-field, slow-variation
regime, a leading-order model is

ϱ(x) = ϱ0 s(x)p, (33)

or more generally ϱ = ϱ0F (s) with F twice differentiable near s = 1, in which case the dominant
term reduces to a power law in the relevant asymptotic expansion. Then the Fisher-gradient
term becomes a routing-gradient energy: χ = √

ϱ ∝ sp/2.

Remark 4.2 (Why power laws appear at leading order). If ϱ = ϱ0F (s) with F (1) = 1 and F
positive and C2 near s = 1, then log ϱ = log ϱ0 + logF (s) admits a Taylor expansion in log s:

log ϱ = log ϱ0 + p log s+O
(
(log s)2

)
, p := d logF

d log s

∣∣∣∣
s=1

. (34)

Exponentiating yields ϱ = ϱ0s
p

(
1 +O

(
(log s)2))

, justifying (33) as the universal leading-order
form.

This provides CAP’s second chain: implementation overhead κ controls s = 1/N ; s controls
ϱ; gradients of ϱ generate Fisher energy and therefore gravitational backreaction through the
information stress tensor.

4.5 CAP as a variational principle: embedding least discrepancy into the
potential

CAP asserts that among all effective field configurations (gµν , χ, ψm, . . . ) compatible with the
Ω axioms and boundary data, physical configurations extremize the total action (31), with the
readout mismatch encoded as a least-discrepancy penalty in the potential:

V (χ2) = Vdisc(χ2) + Vtopo(χ2) + V0. (35)

Here Vdisc encodes quantized penalties induced by window projection and discrepancy accumu-
lation (stabilizing discrete readout sectors), while Vtopo encodes the maintenance cost of topo-
logical sectors (defects, winding). Including gauge symmetry adds compensating connections
and Yang–Mills-type terms in Lm without changing the minimal gravity–Fisher backbone.

CAP in one sentence. Among all covariant effective configurations compatible with finite-
resolution readout, the realized configuration is the stationary point that minimizes accumulated
readout discrepancy and implementation overhead in a single action.
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5 Closed field equations: from variation to Einstein gravity with
information stress

5.1 Metric variation: information stress tensor and Einstein equation

Varying the action (31) with respect to the metric yields the Einstein equation sourced by matter
plus an information stress tensor :

Gµν + Λgµν = 8πG
(
T (m)

µν + T info
µν

)
, (36)

where

T info
µν = 2λF

(
∇µχ∇νχ− 1

2gµν(∇χ)2
)

− gµνV (χ2), (∇χ)2 ≡ gρσ∇ρχ∇σχ. (37)

Thus, once the Fisher-amplitude sector is accepted as the minimal covariant quadratic form
encoding readout distinguishability, the tensorial structure of macroscopic gravity is fixed; mis-
match and implementation costs enter through T info

µν and the model-dependent V (χ2).

5.2 Information-field variation: amplitude equation and conserved flow

Varying with respect to χ gives

2λF □χ− dV
dχ = 0, dV

dχ = 2χ dV
dϱ , ϱ = χ2. (38)

By diffeomorphism invariance, the total stress tensor is covariantly conserved. When the χ
equation holds, the information sector can be treated as separately conserved within the effective
theory.

More explicitly, the contracted Bianchi identity ∇µGµν = 0 implies

∇µ
(
T (m)

µν + T info
µν

)
= 0. (39)

If the matter sector is conserved (or if matter exchanges flow with the χ sector through explicit
couplings), then the χ equation ensures consistency of the split. This is the covariant statement
that least-discrepancy closure must respect local conservation laws imposed by diffeomorphism
invariance.

It is useful to define a natural “information current”:

Jµ ≡ χ∇µχ = 1
2∇µϱ, (40)

which captures the simplest covariant flow associated with the density gradient.

5.3 Covariant closure and uniqueness: why the macroscopic equation must
be Einstein

CAP emphasizes that the macroscopic field equation should not be postulated by hand. If the
effective continuum limit satisfies:

• locality and diffeomorphism invariance,

• metric field equations of at most second differential order,

• and asymptotic flatness (or a controlled cosmological background),

12



then in four dimensions the only symmetric, divergence-free rank-2 tensor built from the metric
and its derivatives up to second order is Gµν + Λgµν , up to an overall coupling [35]. (The next
Lovelock density is the Gauss–Bonnet term, which is topological in 4D and does not contribute
to local metric field equations.) Therefore the gravitational skeleton is uniquely Einsteinian;
CAP’s micro-to-macro content lies in the structure of the effective stress tensor (mismatch and
cost) and in the sector dictionary that links readout/implementation objects to covariant fields.

This is the central closure mechanism behind CAP: once the effective description is required
to be local, covariant, and second-order, there is no freedom left in the left-hand side of the
metric equation. All microstructural choices—scan slope selection, coding stability, discrepancy
penalties, compilation overhead—must appear on the right-hand side, as effective sources and
potentials.

6 Gravity as computation: refractive index, routing cost, and
Fermat principle

6.1 Computational refractive index and propagation delay

The computational lapse N (x) = κ0/κ(x) can be interpreted as an effective slowdown factor:
under a fixed background depth dt, the number of realizable local logical updates is reduced by
routing overhead. This is equivalent to viewing spacetime as a computational refractive medium
with index

ncomp(x) ∼ 1
N (x) = κ(x)

κ0
. (41)

Regions of larger ncomp incur larger effective delays, matching the operational content of gravi-
tational time delay (e.g. Shapiro delay) when the dictionary N ↔

√
−g00 is adopted.

In the weak-field regime, one may write g00 ≈ −(1 + 2ϕ) with Newtonian potential ϕ, so
N ≈ 1 +ϕ [26,27]. Then ncomp ≈ 1 −ϕ, making the optical-length language directly compatible
with standard lensing and delay calculations.

6.2 A computational form of Fermat’s principle

In this readout–implementation language, “geodesics” are not introduced as primitive geometric
minimizers; rather, propagation follows trajectories minimizing total implementation cost. In a
slowly varying background, this reduces to Fermat’s principle in the effective index ncomp(x):
light and information follow paths of stationary optical length, which in turn reproduces the
familiar macroscopic bending and delay phenomena.

Concretely, for spatial paths γ connecting two endpoints, CAP suggests an effective optical
functional

T [γ] ∝
∫

γ
ncomp(x) dℓ, (42)

so that stationary δT = 0 yields the Euler–Lagrange equations equivalent to null geodesics of
the associated optical metric. The novelty is semantic rather than algebraic: ncomp is not a
material refractive index but an operational proxy for routing overhead.

CAP thus supplies a second closed chain:

routing overhead κ ⇒ computational lapse N ⇒ effective metric component g00 ⇒ refraction/delay and emergent curvature.
(43)
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7 Emergent gauge fields: compensating local phase errors under
Weyl complementarity

7.1 Weyl-pair complementarity and unavoidable local phase jitter

In the scan–phase algebra, the Weyl relation

UV = e2πiαV U (44)

implies that scan localization (readout tick/position) and phase-mode localization (frequency/energy)
cannot be simultaneously sharpened. In CAP language, finite-resolution readout of phase nec-
essarily introduces local phase errors δθ(x), which can accumulate into macroscopic structure.

This is the field-theoretic translation of the layer tension. The readout layer cannot simul-
taneously enforce sharp time ticks (scan localization) and sharp phase coherence (mode local-
ization) because the underlying operators do not commute. Therefore, any effective continuum
description that treats phase as a local degree of freedom must include a mechanism that tracks
and compensates unavoidable phase jitter.

7.2 From local rephasing to a connection field

If readout errors are interpreted as uncontrolled local rephasings

ψ(x) 7→ eiλ(x)ψ(x), (45)

then keeping the effective action invariant under this redundancy requires a compensating con-
nection Aµ and the replacement of derivatives by covariant derivatives:

∇µ → Dµ = ∇µ − iqAµ, Aµ 7→ Aµ + ∂µλ. (46)

This is the standard minimal-coupling construction for local U(1) redundancy [36, 37]. At
second order in derivatives, the minimal local gauge kinetic term is the Yang–Mills quadratic
form FµνF

µν [38, 39], which can be included in Lm in (31).

Proposition 7.1 (Quadratic gauge rigidity). Assume an effective local action contains a gauge
sector for a U(1) connection Aµ that is (i) invariant under Aµ 7→ Aµ + ∂µλ, (ii) local and
Lorentz covariant, (iii) built using at most first derivatives of Aµ, and (iv) quadratic in Aµ and
its derivatives in the bulk. Then, up to an overall normalization and boundary terms, the unique
bulk quadratic kinetic term is FµνF

µν , where Fµν = ∂µAν − ∂νAµ.

Proof. Gauge invariance forbids dependence on Aµ without derivatives in the pure gauge sec-
tor, and the only gauge-invariant tensor built from first derivatives of Aµ is the antisymmetric
combination Fµν . Any local Lorentz scalar quadratic in first derivatives therefore reduces (up
to integration by parts) to a linear combination of FµνF

µν and ϵµνρσFµνFρσ; the latter is a total
derivative in four dimensions and does not affect the bulk Euler–Lagrange equations [36,37].

Nonabelian extension. If the effective phase redundancy is promoted from a U(1) rephasing
to a local internal symmetry group G, the same compensating logic yields a nonabelian connec-
tion Aµ = Aa

µT
a and curvature Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] [37]. CAP does not fix G at the

present level; it fixes that some compensating connection is required once local phase alignment
is demanded.
The key point is structural: gauge fields need not be postulated as external symmetries; they
arise as the minimal compensating structure demanded by local phase consistency under Weyl
complementarity and finite readout resolution. In this sense, gauge dynamics is the variationally
cheapest “patch” that keeps local phase descriptions compatible with finite-resolution readout.
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8 Origin of matter: topologically locked phase defects and in-
ertial budget

8.1 Topological charge from curvature flux (Dirac/Wu–Yang)

CAP treats stable localized “matter” as a defect sector of the compensating connection intro-
duced in Section 7. The relevant rigidity statement is standard in gauge theory and topology:
nontrivial defect sectors are characterized by integral cohomology classes (Chern numbers) ex-
tracted from curvature flux [37,39–41].

U(1) example. Let U = R3 \ {0} be space with an isolated puncture. A U(1) gauge field is
described by local 1-forms A with curvature 2-form F = dA, which satisfies the Bianchi identity
dF = 0. Surround the defect by a sphere S2 ⊂ U . Global consistency of phase (single-valued
transition functions between local gauges) implies the first Chern number is an integer:

Qtop := 1
2π

∫
S2
F ∈ Z. (47)

Lemma 8.1 (“Closed but not exact” on a punctured region). On U = R3\{0}, a smooth 2-form
F with dF = 0 and

∫
S2 F = 2πn ̸= 0 cannot be exact. Equivalently, no global gauge choice can

remove the defect sector.
Proof. If F = dA globally on U , then Stokes’ theorem gives

∫
S2 F =

∫
S2 dA = 0, contradicting∫

S2 F = 2πn ̸= 0. In de Rham language, the flux labels the nontrivial class in H2(U) ∼=
H2(S2) ∼= Z [37].

8.2 Mass as sustained budget: internal winding and geometric impedance

Omega Dynamics further proposes an organizing hypothesis: stable matter corresponds to phase
errors that cannot be removed by local gauge redefinitions (closed but not exact), i.e. topologi-
cally locked defects. Maintaining a nontrivial topological sector requires persistent implementa-
tion budget, which manifests macroscopically as inertial mass and as resistance to propagation
(geometric impedance).

In HPA language, such defects can be modeled as localized impedance centers in the scan–
phase dynamics: routing around a local algebraic obstruction requires extra scan cycles and
accumulates additional geometric phase. From the readout perspective, this appears as propa-
gation delay and curvature, consistent with the computational-lapse dictionary of Section 4.1.

A quantitative interface inequality. The phase-potential closure (Section 3.3) assigns to a
nonnegative coarse-grained mismatch cost density σ a monopole strength

M := κΦ

∫
R3
σ(x) d3x, (48)

so that Φ(r) ∼ −M/r for isolated sources. A topologically nontrivial gauge sector (Lemma 8.1)
necessarily carries nonzero curvature and therefore incurs a positive maintenance cost in any
local quadratic effective action. In soliton models this appears as Bogomol’nyi-type bounds that
lower-bound energy by topological charge [42, 43]. CAP packages the same structural fact as a
minimal, testable interface inequality:
Proposition 8.2 (Topological lower bound on mismatch charge). Assume sustaining a defect
sector with |Qtop| requires mismatch charge Qσ :=

∫
R3 σ d3x satisfying

Qσ ≥ m0 |Qtop| (49)

for some microscopic per-charge budget m0 > 0. Then the exterior monopole coefficient obeys

M ≥ κΦm0 |Qtop|. (50)
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At the current stage, m0 and the full defect spectrum (charges, stability, interactions) must
be computed from explicit microscopic scan/readout architectures; this remains an open task
within the broader Ω program [2].

9 Variational inevitability of the golden branch: from minimal
discrepancy to canonical clocks

The distinguished role of the golden ratio in HPA–Ω follows from two independent mechanisms:

1. Discrepancy minimization. At finite readout depth, the golden branch minimizes
monotone discrepancy proxies controlled by continued-fraction coefficients (Section 3.2).
This reduces mismatch accumulation and therefore the total cost required to sustain self-
consistent readout.

2. Shortest canonical coding. In the golden branch, Ostrowski numeration degenerates
to Zeckendorf decomposition: every integer has a unique representation as a sum of non-
consecutive Fibonacci numbers [17]. This yields a canonical discrete tick structure that
naturally decomposes finite budgets across scales without external tuning.

These two mechanisms are logically independent: the first is about anti-resonance (hardness
of rational approximation) and mismatch suppression, while the second is about addressability
(canonical normal form for finite tick budgets). Their conjunction explains why the golden
branch repeatedly appears as a stable fixed point across the HPA–Ω chain: it simultaneously
lowers mismatch cost and shortens the bookkeeping needed to maintain readout coherence.

In CAP terms, the golden branch is not an aesthetic ornament; it is a variational attractor
selected by readout sustainability under finite information and Weyl complementarity.

10 Numerical toy experiments: reproducible checks of key CAP
links

This section provides two minimal simulations that check intermediate CAP links: (i) discrep-
ancy accumulation across scan slopes; (ii) defect source → Poisson phase potential → approxi-
mate 1/r field. The corresponding reference implementations are included in Appendix C.

10.1 Experiment A: star discrepancy for Kronecker sequences

We consider the Kronecker orbit

xn = (x0 + nα) mod 1, x0 = 0.12345, (51)

and compute the one-dimensional star discrepancy D∗
N and the accumulated mismatch EN =

ND∗
N .

Interpretation. Theorem 3.1 provides a worst-case upper bound on EN in terms of the
continued-fraction proxy Cm(α), and Corollary 3.2 shows that the golden branch minimizes
this proxy at every finite depth. The empirical EN at a fixed x0 can still fluctuate among
bounded-type slopes; the relevant CAP statement is the uniform stability of the bound that
governs sustainable readout.
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N α = φ−1 (golden) α =
√

2 − 1 (silver) α = e − 2 α = π − 3
200 1.790506 1.835317 2.557223 3.672939
500 1.802811 1.741094 1.599947 7.110437

1000 1.752245 1.706770 1.268638 8.140322
2000 1.911260 2.062419 1.973620 17.143745
5000 2.173936 2.258847 2.934050 37.846869

10000 2.942666 2.909670 2.845196 60.373228
20000 2.818185 2.595185 4.146376 61.891876

Table 1: Accumulated mismatch EN = ND∗
N for selected scan slopes. Smaller EN indi-

cates lower finite-prefix mismatch. Bounded-type slopes (golden/silver) maintain low mismatch
over large N , while more resonance-prone slopes can exhibit much larger EN in the same range.

slope α A B R2

φ−1 (golden) 0.268900 0.109201 0.771640√
2 − 1 (silver) 0.240277 0.316830 0.753593

e − 2 0.409865 −0.666467 0.490403
π − 3 14.499032 −83.104486 0.899618

Table 2: Finite-range log-fit for EN on the sampled N values. Bounded-type slopes show
modest A at this resolution; slopes with strong intermediate-scale rational approximations can
exhibit much larger apparent coefficients in finite ranges.

Log-fit diagnostic. To quantify the “slow growth” trend, we fit a simple finite-range model

EN ≈ A logN +B (52)

by least squares on the sampled N values (Table 1). This fit is not a theorem; it is an operational
diagnostic consistent with the EN = O(logN) bound for bounded-type slopes (Remark after
Corollary 3.2).

Dependence on the phase offset x0. Because D∗
N is a star discrepancy (intervals anchored

at 0), the measured EN depends on the phase offset x0 even for a fixed slope α. To avoid selection
bias from a single seed, we report summary statistics over a uniform grid x0 ∈ {0, 1

16 , . . . ,
15
16} at

N = 20000:

Theorem-bound sanity check (golden/silver). For quadratic irrational slopes with even-
tually periodic continued fractions (golden and silver), the proxy bound in Theorem 3.1 can
be computed explicitly from the convergent denominators. Table 4 reports the corresponding
UN := 2 ∑

j≤m+1 aj (where qm ≤ N < qm+1) and the empirical ratio EN/UN .

10.2 Experiment B: FFT solution of Poisson equation and an approximate
1/r phase potential

We solve the periodic-grid Poisson equation

∆Φ = 4πρ (53)

in a three-dimensional periodic box using FFT, with ρ a single lattice-site point source. After
solving, we compute radial shell averages of Φ about the source center.

For a representative run with n = 64 grid, the near-field behavior is well-approximated by
Φ(r) ∼ −const/r (so r⟨Φ⟩ is approximately constant) before periodic-boundary effects dominate
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slope α minEN maxEN mean std
φ−1 (golden) 2.818185 3.818185 3.073116 0.366927√

2 − 1 (silver) 2.595185 3.595185 2.881189 0.308296
e − 2 3.146376 4.893425 3.879091 0.525654
π − 3 37.309031 69.891876 53.662953 10.095011

Table 3: x0-sensitivity of EN at fixed N = 20000. Values are computed over a uniform grid
of 16 phase offsets. The worst-case theoretical upper bound from Theorem 3.1 is uniform in x0;
the table reports empirical spread for anchored-interval discrepancy.

golden α = φ−1 silver α =
√

2 − 1
N EN UN EN/UN EN UN EN/UN

200 1.790506 24 0.074604 1.835317 28 0.065547
500 1.802811 28 0.064386 1.741094 32 0.054409

1000 1.752245 32 0.054758 1.706770 36 0.047410
2000 1.911260 34 0.056214 2.062419 36 0.057289
5000 2.173936 38 0.057209 2.258847 40 0.056471

10000 2.942666 40 0.073567 2.909670 44 0.066129
20000 2.818185 44 0.064050 2.595185 48 0.054066

Table 4: Empirical mismatch vs. theorem proxy upper bound. Even with anchored-
interval star discrepancy and a fixed x0, the empirical EN remains well below the uniform proxy
bound UN at these scales.

at larger radii. The script also supports a least-squares fit of the form ⟨Φ⟩ ≈ C0 − M/r over a
chosen radius range and reports RMS residuals as a quantitative goodness-of-fit.

1/r fit (representative). Using the values in Table 5 and fitting over r ∈ {2, 3, 4, 5, 6} gives

⟨Φ⟩(r) ≈ C0 − M

r
, C0 ≈ 0.016236, M ≈ 0.854953, (54)

with RMS residual ≈ 6.09 × 10−3 and R2 ≈ 0.9964 on that fit window. This provides a quanti-
tative confirmation of the near-field 1/r behavior expected from the Poisson closure.

In the continuum normalization ∆Φ = 4πρ with a unit point source ρ = δ, one expects
M = 1 (Green function normalization). The fitted M ≈ 0.855 is therefore within ∼ 15% of the
continuum value, consistent with finite-grid and periodic-image effects at n = 64.

11 Discussion: testable consequences and model boundaries
(1) Time dilation as implementation cost. If an operational estimate of the effective
routing overhead κ(x) of a region can be extracted (e.g. via compilation-depth proxies inferred
from phase delays or scattering-time observables in an explicit microscopic model), then the
computational lapse N = κ0/κ predicts redshift and time delay in that region via the dictionary
N ↔

√
−g00.

(2) Phenomenology of information stress. Spatially inhomogeneous cost fields κ(x) in-
duce Fisher-gradient energy in the χ sector. In weak-field regimes this contributes positively to
curvature through T info

µν and can be comparable to the Newtonian potential in low-acceleration
regions, providing a structured space for effective deviations without abandoning the Einsteinian
skeleton.
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r ⟨Φ⟩ r⟨Φ⟩

1 −0.7908 −0.7908
2 −0.4057 −0.8113
3 −0.2775 −0.8326
4 −0.2029 −0.8116
5 −0.1529 −0.7645
6 −0.1195 −0.7172

Table 5: Representative FFT Poisson output (periodic box). The near-field shows
r⟨Φ⟩ ≈ const, consistent with Φ ∼ −1/r.

(3) Topological sectors and dark-matter candidates. Stable defects carrying internal
topological charge but neutral under long-range gauge flux could behave as collisionless matter.
In CAP, a defect sector labeled by Qtop incurs mismatch charge Qσ and therefore a gravitational
monopole strength M = κΦQσ (Section 3.3). Proposition 8.2 implies the quantitative lower
bound M ≥ κΦm0|Qtop|. The microscopic per-charge budget m0 (and the detailed spectrum)
remain to be derived from explicit scan/readout architectures or fixed phenomenologically.

Model boundary. This paper closes the minimal backbone from scan–projection readout,
discrepancy, and implementation overhead to an Einstein–Fisher action and its field equations.
Completing the bridge to Standard Model parameters, a first-principles defect spectrum, and
higher-dimensional quasicrystal/Dirac homotopy limits requires additional microscopic input;
these are explicit open tasks in the Ω program [2].

12 Conclusion
We formulated a Computational Action Principle (CAP) that upgrades the slogan “physical
laws as error correction” into a closed variational program within HPA–Ω. The key content is
structural:

• discrete readout mismatch is quantified by discrepancy and lifted (under a fixed regular-
ization convention) into continuum source terms;

• under locality, diffeomorphism invariance, and second-order closure, the macroscopic grav-
itational equation is uniquely Einsteinian (with Λ), while mismatch and implementation
costs enter through effective stress and potentials;

• the Ω action provides a minimal backbone coupling gravity to Fisher-information ampli-
tude and to routing overhead (computational lapse), giving an operational interpretation
of time dilation as computational slowdown;

• gauge fields arise as compensating connections for local phase readout errors, and matter
is modeled as topologically locked defects sustained by implementation budget.

Together, these elements support a unified view: physical structure emerges as the geomet-
ric/computational cost required for a finite readout system to remain self-consistent.

A Symbols and objects quick reference
• ωΩ: global state (Axiom O1).

• α: scan slope for irrational rotation; golden branch α = φ−1.
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• U, V : Weyl pair; UV = e2πiαV U .

• W : readout window; sk = 1W (xk) mechanical word.

• E
(ε)
k : readout effects/POVM elements at resolution ε; P (ε)

k = Tr(ρeffE
(ε)
k ).

• D∗
N : star discrepancy; EN = ND∗

N accumulated mismatch.

• κ(x): routing overhead (implementation depth); N (x) = κ0/κ(x) computational lapse.

• ϱ = χ2: information density; χ Fisher-information amplitude.

• Φ: phase potential sourced by mismatch; PΦ = −∇Φ phase pressure.

B Key derivation chains (summary)

B.1 The Ω action and field equations (minimal sector)

The minimal CAP sector is gravity plus Fisher amplitude plus matter:

SΩ =
∫

d4x
√

−g
[
R− 2Λ
16πG − λF g

µν(∇µχ)(∇νχ) − V (χ2) + Lm

]
. (55)

Metric variation yields

Gµν+Λgµν = 8πG
(
T (m)

µν + T info
µν

)
, T info

µν = 2λF

(
∇µχ∇νχ− 1

2gµν(∇χ)2
)

−gµνV (χ2). (56)

Variation in χ yields

2λF□χ− dV
dχ = 0, dV

dχ = 2χdV
dϱ , ϱ = χ2. (57)

B.2 Second-order covariant closure ⇒ Einstein uniqueness

If the macroscopic continuum limit is local, diffeomorphism invariant, and second-order in the
metric, then the divergence-free symmetric rank-2 tensor on the left-hand side is uniquely Gµν +
Λgµν (up to coupling), so the gravitational skeleton must be Einsteinian [35].

B.3 Discrepancy source ⇒ Poisson phase potential ⇒ Newton limit

Theorem 3.1 provides a finite-depth quantitative bound on mismatch accumulation EN in terms
of continued-fraction data. In CAP, a regulated continuum limit of the corresponding mismatch
is packaged into a coarse-grained density σ, and one assumes it sources a phase potential:

∆Φ = 4πκΦσ, PΦ = −∇Φ. (58)

For an isolated defect with quantized flux, spherical symmetry enforces the exterior harmonic
solution Φ = −M/r, hence PΦ = −M r̂/r2. Appendix E explains why the Poisson operator is
the correct weak-field closure (Newtonian limit of GR) and how the Ω action sources it through
an effective energy density.

C Reproducible toy experiments (Python)
This appendix contains reference implementations for Section 10. They require numpy. A
minimal requirement file is provided in requirements.txt.
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C.1 Experiment A: star discrepancy and accumulated mismatch EN

import math

import numpy as np

def star_discrepancy_1d(x: np.ndarray) -> float:
"""Compute 1D star discrepancy for points x in [0,1)."""
x = np.sort(np.asarray(x, dtype=float))
N = len(x)
i = np.arange(1, N + 1, dtype=float)
d1 = np.max(i / N - x)
d2 = np.max(x - (i - 1) / N)
return float(max(d1, d2))

def orbit_points(alpha: float, N: int, x0: float = 0.0) -> np.ndarray:
n = np.arange(N, dtype=float)
return (x0 + n * alpha) % 1.0

def EN(alpha: float, N: int, x0: float = 0.12345) -> float:
x = orbit_points(alpha, N, x0=x0)
D = star_discrepancy_1d(x)
return float(N * D)

def stats(vals: np.ndarray):
vals = np.asarray(vals, dtype=float)
return float(vals.min()), float(vals.max()), float(vals.mean()), float(vals.std())

def continued_fraction(alpha: float, max_terms: int = 64):
"""
Return partial quotients [a1, a2, ...] for alpha in (0,1) with
alpha = [0; a1, a2, ...] using floating-point iteration.
"""
x = float(alpha)
a = []
for _ in range(max_terms):

if x <= 0:
break

inv = 1.0 / x
ai = int(math.floor(inv))
a.append(ai)
x = inv - ai
if abs(x) < 1e-15:

break
return a
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def dk_upper_bound(alpha: float, N: int, max_terms: int = 64):
"""
Denjoy--Koksma/Ostrowski proxy upper bound used in Theorem 03:

E_N = N D_N^* <= 2 * sum_{j=1}^{m+1} a_j,
where q_m <= N < q_{m+1} and alpha = [0; a1, a2, ...].
Returns (U_N, m, C_m) with U_N = 2*C_m and C_m = sum_{j=1}^{m+1} a_j.
"""
a = continued_fraction(alpha, max_terms=max_terms)
if not a:

return float("nan"), -1, float("nan")

# q_{-1} = 0, q_0 = 1
q_prev = 0
q_curr = 1
m = -1
for j, aj in enumerate(a, start=1):

q_next = aj * q_curr + q_prev
if q_curr <= N < q_next:

m = j - 1 # current q_curr is q_m
break

q_prev, q_curr = q_curr, q_next

if m < 0:
# Fallback: N is beyond computed range; treat last available as m.
m = len(a) - 1

C_m = float(sum(a[: m + 1])) # sum_{j=1}^{m+1} a_j
U_N = 2.0 * C_m
return U_N, m, C_m

def linfit(xs: np.ndarray, ys: np.ndarray):
"""Least squares fit y = a x + b with R^2."""
xs = np.asarray(xs, dtype=float)
ys = np.asarray(ys, dtype=float)
mx = float(xs.mean())
my = float(ys.mean())
sxx = float(((xs - mx) ** 2).sum())
sxy = float(((xs - mx) * (ys - my)).sum())
a = sxy / sxx if sxx != 0 else float("nan")
b = my - a * mx
sst = float(((ys - my) ** 2).sum())
sse = float(((ys - (a * xs + b)) ** 2).sum())
r2 = 1.0 - sse / sst if sst != 0 else float("nan")
return a, b, r2

if __name__ == "__main__":
alphas = {

"golden_phi^-1": (math.sqrt(5) - 1) / 2,
"sqrt2_minus_1": math.sqrt(2) - 1,
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"e_minus_2": math.e - 2,
"pi_minus_3": math.pi - 3,

}

Ns = [200, 500, 1000, 2000, 5000, 10000, 20000]

header = ["N"] + list(alphas.keys())
print("\t".join(header))
series = {name: [] for name in alphas}
for N in Ns:

row = [str(N)]
for name, a in alphas.items():

v = EN(a, N)
series[name].append(v)
row.append(f"{v:.6f}")

print("\t".join(row))

print("\nFit: E_N ~ A log N + B (least squares on the sampled Ns)")
xs = np.log(np.asarray(Ns, dtype=float))
for name, ys_list in series.items():

ys = np.asarray(ys_list, dtype=float)
A, B, r2 = linfit(xs, ys)
print(f"{name}: A={A:.6f}, B={B:.6f}, R2={r2:.6f}")

# x0 sensitivity (anchored-interval discrepancy depends on phase shift x0).
N0 = 20000
x0s = np.arange(16, dtype=float) / 16.0
print(f"\nPhase-offset sensitivity at N={N0} over x0 in {{0,1/16,...,15/16}}")
for name, a in alphas.items():

vals = np.array([EN(a, N0, x0=float(x0)) for x0 in x0s], dtype=float)
mn, mx, mean, sd = stats(vals)
print(f"{name}: min={mn:.6f}, max={mx:.6f}, mean={mean:.6f}, std={sd:.6f}")

# Theorem proxy upper bound (uniform in x0).
print("\nTheorem proxy upper bound U_N = 2*sum_{j<=m+1} a_j (float CF)")
for N in Ns:

print(f"N={N}")
for name, a in alphas.items():

U_N, m, C_m = dk_upper_bound(a, N)
e = EN(a, N)
ratio = e / U_N if U_N > 0 else float("nan")
print(f" {name}: E_N={e:.6f}, U_N={U_N:.6f}, ratio={ratio:.6f}, m={m}, C_m={C_m:.0f}")

C.2 Experiment B: 3D periodic Poisson solver via FFT and radial averaging

import numpy as np

def poisson_periodic_green_3d(n: int, source_pos=None) -> np.ndarray:
"""
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Solve Laplacian(phi) = 4*pi*rho on an n x n x n periodic grid (spacing 1) via FFT.
Gauge: set k=0 mode to 0 (zero-mean potential).
"""
if source_pos is None:

source_pos = (n // 2, n // 2, n // 2)

rho = np.zeros((n, n, n), dtype=float)
rho[source_pos] = 1.0

rho_k = np.fft.fftn(rho)

k = 2 * np.pi * np.fft.fftfreq(n)
KX, KY, KZ = np.meshgrid(k, k, k, indexing="ij")
k2 = KX**2 + KY**2 + KZ**2

phi_k = np.zeros_like(rho_k, dtype=complex)
mask = k2 != 0
phi_k[mask] = -4 * np.pi * rho_k[mask] / k2[mask]

phi = np.real(np.fft.ifftn(phi_k))
return phi

def radial_average(phi: np.ndarray):
n = phi.shape[0]
center = np.array([n // 2, n // 2, n // 2], dtype=float)
coords = np.indices(phi.shape).reshape(3, -1).T.astype(float)
r = np.linalg.norm(coords - center, axis=1)
phi_flat = phi.ravel()

out = []
for rad in range(1, n // 4):

shell = (r >= rad - 0.5) & (r < rad + 0.5)
if shell.sum() == 0:

continue
out.append((rad, float(phi_flat[shell].mean()), float(phi_flat[shell].std()), int(shell.sum())))

return out

def fit_inverse_r(stats, r_min: int, r_max: int):
"""
Fit <Phi>(r) approx C0 - M/r over integer radii r in [r_min, r_max].
Returns (C0, M, rms).
"""
rows = [(r, mean) for (r, mean, _std, _cnt) in stats if r_min <= r <= r_max]
if len(rows) < 2:

raise ValueError("Need at least two radii for fitting.")

r = np.asarray([rr for rr, _ in rows], dtype=float)
y = np.asarray([yy for _, yy in rows], dtype=float)
x = 1.0 / r
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# y = a + b x, with b = -M and a = C0
A = np.vstack([np.ones_like(x), x]).T
coef, *_ = np.linalg.lstsq(A, y, rcond=None)
C0, b = float(coef[0]), float(coef[1])
M = -b
resid = y - (C0 + b * x)
rms = float(np.sqrt(np.mean(resid**2)))
return C0, M, rms

if __name__ == "__main__":
n = 64
phi = poisson_periodic_green_3d(n)
stats = radial_average(phi)

print("r | <Phi> | r*<Phi> | std | count")
for r, mean, std, cnt in stats[:12]:

print(f"{r:2d} | {mean: .6f} | {r*mean: .6f} | {std: .6f} | {cnt}")

# Example near-field fit window; adjust as needed to avoid periodic-image effects.
r_min, r_max = 2, 6
C0, M, rms = fit_inverse_r(stats, r_min=r_min, r_max=r_max)
print(f"\nFit over r in [{r_min},{r_max}]: <Phi>(r) approx C0 - M/r")
print(f"C0={C0:.6f}, M={M:.6f}, RMS={rms:.6e}")

D Extensible numerical directions (brief)
• Window-perturbation stability. Under small perturbations of mechanical-word win-

dows, shifts in empirical statistics can be bounded by Denjoy–Koksma-type estimates,
providing a quantitative link between “window noise” and effective defect density.

• From 1D to higher-dimensional quasicrystals. The Ω program emphasizes higher-
dimensional quasicrystal quantum walks and Dirac homotopy limits as a route to isotropic
continuum behavior; numerical diagnostics may use structure factors and phason-strain
control.

• Direct measurement of routing overhead. In explicit PQCA/circuit models, one
can compute local compilation depth κ(x) and test the operational dictionary N = κ0/κ
against effective redshift, delay, and refraction phenomena.

E Newtonian limit: Poisson equation from Einstein closure and
the Ω action

This appendix makes explicit the weak-field chain used in Section 3.3: why a Poisson equation
is the correct macroscopic operator in the static, slow-variation limit, and how the Ω action
sources it through an effective energy density.
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E.1 Poisson equation from the weak-field Einstein equation

In the Newtonian regime (static sources, nonrelativistic velocities, weak fields), write the metric
in the standard scalar-potential form

ds2 = −(1 + 2ϕ) dt2 + (1 − 2ϕ) dx2, |ϕ| ≪ 1. (59)

To leading order, the 00 component of the Einstein equation yields the Poisson equation

∆ϕ = 4πGρ, (60)

where ρ = T00 is the energy density in the nonrelativistic limit; see e.g. [26,27,32]. In particular,
for isolated sources, ρ = 0 outside the support of matter and therefore ∆ϕ = 0 in the exterior
region, forcing ϕ(r) = −GM/r under asymptotic flatness.

E.2 Effective energy density from the Fisher-amplitude sector

For the minimal Ω action (31), the information stress tensor is

T info
µν = 2λF

(
∇µχ∇νχ− 1

2gµν(∇χ)2
)

− gµνV (χ2). (61)

In a static weak-field configuration with negligible time derivatives of χ, one may read off an
effective energy density

ρinfo ≡ T info
00 ≈ λF (∇χ)2 + V (χ2), (62)

up to higher-order corrections in ϕ and in time derivatives. Therefore, the Newtonian potential
sourced by the χ sector satisfies

∆ϕ ≈ 4πG (ρm + ρinfo) , (63)

which is the precise sense in which mismatch penalties (encoded in V ) and implementation-
gradient energy (encoded in (∇χ)2 through the cost–density map) backreact on macroscopic
geometry.

E.3 Phase potential as a rescaled Newtonian potential

Section 3.3 introduces a phase potential Φ with ∆Φ = 4πρΦ and phase pressure PΦ = −∇Φ.
In the weak-field regime, this is consistent with GR provided one identifies Φ with a rescaled
Newtonian potential:

Φ = γ ϕ, ρΦ = γ G (ρm + ρinfo) , (64)
for some calibration constant γ determined by the chosen normalization of Φ and of the mismatch
density σ. With this identification, the “phase pressure” acceleration coincides with gravitational
acceleration up to the same calibration:

a = −∇ϕ = − 1
γ

∇Φ = 1
γ

PΦ. (65)

E.4 Quantitative fit targets for the toy Poisson experiment

For an isolated defect, the exterior prediction is

Φ(r) ≈ C0 − M

r
, (66)

with C0 a gauge constant (zero-mean convention in the periodic FFT solver) and M the effective
defect strength. In a periodic box, the far field deviates due to image charges; therefore fits
should be performed over an intermediate “near-field” radius range where periodic effects are
small. The reference script in Appendix C reports least-squares estimates of (C0,M) and RMS
residuals for a chosen fit window.
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F Routing overhead as a circuit-theoretic invariant (basic bounds)
This appendix isolates a minimal, model-independent backbone behind the “routing overhead”
κ used in Section 4.1. The goal is not to fix a particular microscopic architecture but to show
that (i) a well-defined circuit-depth notion exists, (ii) it obeys universal locality bounds, and
(iii) it therefore supports the interpretation of N = κ0/κ as an operational slowdown factor.

F.1 1D nearest-neighbor depth and causal light cones

Consider a one-dimensional chain of qubits (or finite-dimensional local systems) indexed by
i ∈ Z, and a depth-D circuit composed of layers of disjoint nearest-neighbor two-site gates. Let
supp(O) denote the set of sites on which an operator O acts nontrivially.

Lemma F.1 (Light-cone bound for 1D nearest-neighbor circuits). Let U be a depth-D 1D
nearest-neighbor circuit. Then for any local operator O,

diam
(
supp(U †OU)

)
≤ diam(supp(O)) + 2D. (67)

In particular, information (operator support) propagates at speed at most one lattice site per
circuit layer.

Proof. Each circuit layer consists of disjoint nearest-neighbor gates. Conjugation by a two-site
gate can enlarge the support of an operator by at most one site on each side (because the gate
touches at most one new neighbor of the current support). Iterating over D layers yields an
expansion by at most D sites to the left and D sites to the right.

F.2 A universal lower bound on routing overhead

Corollary F.2 (Range lower bound). Suppose a target unitary Utar maps some strictly local op-
erator at site i to an operator supported at distance at least L away (i.e. diam(supp(U †

tarOUtar))−
diam(supp(O)) ≥ 2L for some O). Then any 1D nearest-neighbor circuit implementing Utar has
depth ≥ L.

This is the minimal reason why “routing overhead” is not arbitrary bookkeeping: locality alone
enforces depth lower bounds.

F.3 Finiteness and a coarse upper bound

On any finite region of n sites, depth is also finite. A crude universal statement is that any
target unitary can be implemented with depth O(n2) using gate decompositions plus SWAP
routing, hence κ is always finite on finite regions [12]. In structured models (e.g. fixed local
update rules), one expects much better bounds; CAP does not require the optimal construction,
only that κ(x) is a well-defined operational cost field.
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